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SUMMARY

Planar cell polarity (PCP) signaling controls tissue
morphogenesis by coordinating collective cell
behaviors. We show a critical role for the core PCP
proteins Celsr1 and Vangl2 in the complex morpho-
genetic process of intraluminal valve formation in
lymphatic vessels. We found that valve-forming
endothelial cells undergo elongation, reorientation,
and collective migration into the vessel lumen as
they initiate valve leaflet formation. During this
process, Celsr1 and Vangl2 are recruited from endo-
thelial filopodia to discrete membrane domains at
cell-cell contacts. Celsr1- or Vangl2-deficient mice
show valve aplasia due to failure of endothelial cells
to undergo rearrangements and adopt perpendicular
orientation at valve initiation sites. Mechanistically,
we show that Celsr1 regulates dynamic cell move-
ments by inhibiting stabilization of VE-cadherin and
maturation of adherens junctions. These findings
reveal a role for PCP signaling in regulating adherens
junctions and directed cell rearrangements during
vascular development.

INTRODUCTION

Tissue remodeling and formation of organs rely on cooperative

behavior of cells in groups or layers and integration of inputs

from neighboring tissues, which generate forces to drive

morphogenic movements. Cell-cell junctions have emerged as

key signal integrators that can sense and transduce mechanical

tension and thus coordinate cell behaviors (Gomez et al., 2011).

Duringmorphogenesis, the junctions are dynamically remodeled

to allow cells to move relative to each other but without losing

their contact. For example, intercalation of cells during gastrula-
D

tion, a process that drives anterior-posterior elongation of the

body axis, relies on polarized remodeling of adherens junctions

(AJs) to enable expansion of cell-cell adhesions in one plane of

the epithelium and contraction in the perpendicular plane (Bertet

et al., 2004).

The key components and regulators of cell-cell junctions are

members of the cadherin family of cell-cell adhesion proteins,

consisting of classical cadherins, protocadherins, and atypical

cadherins (Fat, Dachsous, and Flamingo in Drosophila) (re-

viewed in Halbleib and Nelson, 2006). In addition to their role in

mechanical cell-cell adhesion, cadherins participate in local

regulation of the actin cytoskeleton and in diverse signaling

pathways. Consequently, cadherins regulate a variety of devel-

opmental processes such as cell-cell recognition and sorting,

coordination of morphogenic cell movements, and the establish-

ment and maintenance of cell and tissue polarity (Halbleib and

Nelson, 2006). A well-studied example of the last is the establish-

ment of planar cell polarity (PCP) within an epithelial sheet (re-

viewed in Goodrich and Strutt, 2011; Gray et al., 2011; Seifert

and Mlodzik, 2007) One of the core components of the PCP

signaling pathway is the seven-pass transmembrane atypical

cadherin Flamingo (Celsr1–3 in vertebrates), which orchestrates

the establishment of polarized cell-cell junctions across proxi-

modistal cell boundaries by recruiting an asymmetric complex

consisting of Strabismus/Van Gogh-like (Vangl) and Frizzled to

the membrane (Chen and Clandinin, 2008; Usui et al., 1999).

The PCP pathway, first discovered in Drosophila, is a conserved

regulator of epidermal planar polarity; disruption of PCP in verte-

brates leads to defects in neural tube closure, stereocilia orienta-

tion of hair cells in inner ear and skin hair patterning (Curtin et al.,

2003; Devenport and Fuchs, 2008; Kibar et al., 2001; Montcou-

quiol et al., 2003). However, it has recently been recognized

that PCP signaling is utilized more widely to control polarized

cell movements and tissuemorphogenesis in a variety of organs.

For example, core PCP genes regulate convergent-extension

and polarized intercalation of mesenchymal cells during gastru-

lation (Carreira-Barbosa et al., 2009; Formstone and Mason,

2005; Tada and Smith, 2000; Wallingford et al., 2000) and of
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neural progenitor cells across the midline into the contralateral

neuroepithelial layer (Ciruna et al., 2006). PCP pathway is also

implicated in the regulation of neuronal migration (Qu et al.,

2010; Wada et al., 2006), dendrite growth (Gao et al., 2000; Mat-

subara et al., 2011), and target selection (Chen and Clandinin,

2008; Hakeda-Suzuki et al., 2011; Lee et al., 2003) as well as

axon guidance and tract formation (Tissir et al., 2005; Zhou

et al., 2008). PCP drives epithelial polarization by regulating acto-

myosin-dependent contraction of AJs (Nishimura et al., 2012),

although it is less well understood how this pathway controls

other processes that do not involve apparent planar polarization,

such as neuronal migration.

Like other morphogenic processes, the development of the

vascular system involves dynamic cell rearrangements and alter-

ations in cell-cell contacts between individual endothelial cells,

as has been observed in actively growing vascular sprouts and

anastomosing vessels (Blum et al., 2008; Jakobsson et al.,

2010). In addition, in the developing lymphatic and venous

valves, endothelial cells undergo profound changes in their

shape, polarity, and arrangement as part of a complex morpho-

genic process leading to the formation of two intraluminal leaflets

(Bazigou et al., 2009, 2011; Sabine et al., 2012). However, the

mechanisms that regulate endothelial cell-cell adhesion

dynamics during development in vivo, including in valvemorpho-

genesis, are not well understood. We show that the core PCP

proteins Celsr1 and Vangl2 regulate directed cell rearrange-

ments during lymphatic valve formation by controlling the

stabilization of endothelial AJs.

RESULTS

Lymphatic Endothelial Cells Undergo Reorientation and
Collective Migration into the Vessel Lumen to Initiate
Valve Leaflet Formation
The earliest known sign of lymphatic valve formation is the

appearance and clustering of cells expressing elevated levels

of Prox1 and Foxc2 transcription factors in defined areas of

the vessel (Bazigou et al., 2009; Norrmén et al., 2009; Sabine

et al., 2012). The Prox1high valve-forming cells initially cluster

along the wall of embryonic day (E)16.5 mesenteric vessels (Fig-

ure 1A) (Sabine et al., 2012). Notably, at this stage the Prox1high

cells showed highly elongated nuclei and aligned along the lon-

gitudinal axis of the vessel (Figure 1A). In contrast, when valve

leaflet formation was initiated at E17.5, Prox1high cells reoriented

by 90� and aligned perpendicular to the flow direction (Figure 1B)

(Bazigou et al., 2009).

To better understand the changes in shape and relative

arrangement of valve-forming cells, we induced mosaic labeling

of endothelial cells in the developing lymphatic vessels with a

membrane-bound fluorescent marker. For this purpose,

Prox1-CreERT2 mice (Bazigou et al., 2011) were crossed with

R26-mTmG reporter (Muzumdar et al., 2007). After adminis-

tering the mice with a low dose of 4-hydroxytamoxifen

(4-OHT), individual endothelial cells were visualized by GFP fluo-

rescence (Figures 1C–1F0). Cell shape analysis, combined with

visualization of the morphology and orientation of cell nuclei

by Prox1 immunostaining, confirmed that the valve-forming

cells adopted an elongated morphology at an early stage of

valve formation and prior to cell reorientation (Figures 1C–1D0;
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Figures S1A–S1C available online). Cells that underwent reor-

ientation maintained highly elongated morphology compared

to those on the vessel wall (Figures 1E–1F0). During the reorien-

tation process, the valve-forming cells also extended polarized

membrane protrusions, indicative of active cell migration (Fig-

ures 1F and 1F0).
We further studied the developing valves using correlative

fluorescence and transmission electron microscopy (TEM).

Ring-shaped valves composed of reoriented endothelial cells

were localized under a fluorescence microscope in the mesen-

teric lymphatic vessels of Prox1-CreERT2;R26-mTmG embryos

(Figure 1G). Three-dimensional reconstruction of a vessel from

serial images of semi-thin sections showed that the reoriented

valve-forming cells protruded into the vessel lumen to form a

disc-like structure (Figure 1H). Further analysis of cross sections

of the disc revealed that they were composed of two or even

multiple layers of endothelial cells that were in contact with

each other but with no apparent extracellular matrix in between

them (Figures 1I and 1J). TEM revealed discontinuous and

low density cell-cell junctions between the valve-forming cells,

suggesting dynamic regulation and high turnover of the

junctions (Figures 1K, 1L, and 1L0). Such arrangement was

unique to the early stage of valve formation. In mature lymphatic

valve leaflets of postnatal mesenteric vessels continuous and

high density overlapping junctions were observed between

endothelial cells that were organized into two sheets separated

by an extracellular matrix core (Figures 1M and 1M0) (Bazigou
et al., 2009).

In summary, these results show that prior to the initiation of

valve leaflet formation, the Prox1high endothelial cells undergo

dramatic cell shape and polarity changes, characterized by elon-

gation and reorientation by 90�. This leads to the alignment of

valve-forming cells perpendicular to the longitudinal axis of the

vessel and is followed up by their collective migration into the

vessel lumen. The organization of cell-cell junctions further sug-

gests dynamic re-arrangements of valve-forming endothelial

cells during this process.

Planar Cell Polarity Proteins Celsr1-3 and Vangl2 Are
Expressed in Lymphatic Endothelial Cells of Luminal
Valves
Planar cell polarity (PCP) pathway controls cell morphology,

polarized cell movements, and tissue morphogenesis (Goodrich

and Strutt, 2011; Gray et al., 2011; Seifert andMlodzik, 2007). To

address whether this pathway also regulates morphology and

rearrangements of cells during valve morphogenesis, we first

analyzed the expression of the core PCP protein Celsr1 in the

developing vasculature. Celsr1 was not present in embryonic

mesenteric lymphatic vessels before E16 (data not shown), how-

ever, its expression was induced at E16.5 upon valve initiation in

areas of Prox1high cell clusters (Figure 2A). Prominent Celsr1

expression was subsequently found in endothelial cells that reor-

iented perpendicular to the flow direction at E17.5, whereas

punctuate staining remained in cells in the proximity of the

constriction zone (Figure 2B). In E18.5 and postnatal mesenteric

lymphatic vessels Celsr1 was largely restricted to the valve leaf-

lets (Figures 2C and S2A). Celsr1 interactor Vangl2 colocalized

with Celsr1 in the developing and mature valves (Figures 2D

and S2A). In contrast, Frizzled 6, another key component of



Figure 1. Lymphatic Endothelial Cells Elongate, Reorient by 90�, andMigrate Collectively to Vessel Lumen to Initiate Valve Leaflet Formation

(A and B)Whole-mount immunofluorescence of E16.5 (A) and E17.5 (B) wild-typemesenteric vessels for Prox1 (green) and PECAM-1 (red). Note the elongation of

Prox1high cells at E16.5 (arrowheads in A) and their reorientation by 90� at E17.5 (arrowheads in B).

(C–F0 ) Labeling of individual lymphatic endothelial cells with a membrane targeted GFP in Prox1-CreERT2;R26-mTmG mesentery. At all stages analyzed

(E16.5–E17.5), Prox1high valve forming cells show elongated shape (arrowheads) compared to cells on the vessel wall (arrows). Note polarized membrane

protrusions in reorienting cells (open arrowhead in F and F0).
(G and H) Visualization of a ‘‘ring-shaped’’ valve in E17.5 mesenteric lymphatic vessel of Prox1-CreERT2;R26-mTmG reporter mouse (G). The boxed area shows a

valve that was analyzed by serial sectioning for light microscopy and 3D reconstruction (H, shown at two different angles). Arrow in (H) shows the direction of flow.

Blue color highlights valve endothelial cells forming a disc and gray represents the vessel wall.

(I and J) Semi-thin section stained with 1% toluidine blue showing a cross section of a valve ‘‘disc’’ in E17.5 mesentery. Boxed area in (I) is magnified in (J).

Endothelial cells are present in multiple layers (arrowheads in J).

(K–M0) Transmission electron microscopy of developing (E17.5; K, L, and L0) and mature (P6; M andM 0) valves in mesenteric lymphatic vessels. Boxed area in (K)

is magnified in (L), and the areas in (L) and (M) are magnified in (L0) and (M0), respectively. Note discontinuous cell-cell junctions (arrowheads in L and L0) and large

intercellular gaps (asterisks in L and L0) at E17.5, compared to continuous overlapping cell-cell junctions in mature valves (arrowhead in M and M0). Extracellular
matrix core of the valve leaflet is highlighted in red in (M) and (M0).
Scale bars represent 40 mm (A–F), 100 mm (G and H), 10 mm (I), 5 mm (J and K), and 1 mm (L–M0).
See also Figure S1 and Movie S1.
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Figure 2. Core Planar Cell Polarity Proteins,

Celsr1 and Vangl2, Are Recruited from

Membrane Filopodia to Cell-Cell Contacts

in the Valve-Forming Endothelial Cells

(A–C) Whole-mount immunofluorescence for

Celsr1 (green) and Prox1 (red) at indicated stages

of development. Note punctuate Celsr1 staining in

areas of Prox1high valve-forming cells. Dotted lines

outline lymphatic vessels.

(D) Localization of Celsr1 (green) and Vangl2 (red)

in mature valves.

(E–G0 ) Visualization of Celsr1 (purple, E and F) or

Vangl2 (purple, G) in individually labeled lymphatic

endothelial cells (marked by mGFP fluorescence

(green) in Prox1-CreERT2;R26-mTmG vessels) at

E16.5. (E and E0) Tile scan of E16.5 lymphatic

vessel showing Celsr1 at areas of developing

valves (arrowheads). (F–G0) Higher magnification

images of vessels showing localization of Celsr1

(F and F0) and Vangl2 (G and G0) to the tips of

membrane filopodia (arrowheads) at an early stage

of valve development.

(H–I) Whole-mount immunofluorescence of E16.5

wild-type mesenteric lymphatic vessel for Celsr1

(purple), Claudin-5 (green, H–H00), or VE-cadherin
(green, I). Boxed areas in (H) are magnified in (H0)
and (H00). The direction of flow is indicated by an

arrow. Note the localization of Celsr1 to the tips of

Claudin-5+ and VE-cadherin+ filopodia (arrow in

H0 and I) and membrane protrusions (H00).
(J–M0) Visualization of Celsr1 (purple) in individually
labeled lymphatic endothelial cells (green) at indi-

cated stages. Celsr1 is localized to cell-cell con-

tacts (arrowheads in J–M0) and junctions (arrows in

J–M0) in reorienting cells. (L and M) Magnifications

of areas shown by arrowhead and arrow, respec-

tively, in (K). Dotted lines in (M) and (M0) outline
individual endothelial cells. Single channel images

for indicated stainings are shown.

Scale bars represent 40 mm (A–D), 100 mm (E–E00),
40 mm (F–G0 and J–M0), 30 mm (H), 7.5 mm (H0 and
H00), and 20 mm (I).

See also Figure S2.
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the PCP signaling pathway, was expressed in lymphatic vessels

but did not localize specifically to the valve regions (Figure S2B).

Celsr1 Is Recruited fromMembrane Protrusions to Cell-
Cell Contacts during Cell Reorientation
Next we studied the subcellular localization of Celsr1 by per-

forming immunostaining on Prox1-CreERT2;R26-mTmG reporter

mice in which mosaic labeling of individual cells was induced by

a suboptimal dose of 4-OHT. Tile scan images of mesenteric

lymphatic vessels along their entire length confirmed that Celsr1

expression was predominantly found at areas of developing

valves (Figures 2E and 2E0). At E16.5, Celsr1 localized to the

tips of membrane protrusions and filopodia (Figures 2F, 2F0
34 Developmental Cell 26, 31–44, July 15, 2013 ª2013 The Authors
and S2C). Vangl2 was also recruited to

filopodia, suggesting the presence of

PCP signaling (Figures 2G and 2G0).
Celsr1-enriched filopodia also expressed

junctional proteins Claudin-5 (Figures

2H–2H00) and VE-cadherin (Figure 2I).
Celsr1-positive filopodia oriented along the vessel with the

majority pointing against the flow direction (Figure S2D), which

suggests a possible role in sensing flow or directional cues.

Celsr1 was also present in larger Claudin-5 positive protrusions

of overlapping cells (Figure 2H00).
When cells reoriented, Celsr1 localized to the sites of filopodial

contacts and along cell-cell junctions (Figures 2J–2M0). Interest-
ingly, Celsr1 showed discontinuous and punctuate localization

at the cell membrane both in developing (Figures 2J–2M0) and
mature valves (Figure 2D). These expression data demonstrate

that the reorientation of valve-forming cells coincides with the

recruitment of Celsr1 from specialized tips of membrane filopo-

dia to cell-cell contacts.



Figure 3. PCP Mutants Show Defect in

Lymphatic Valve Morphogenesis

(A–C) Whole-mount immunofluorescence of

E18.5 wild-type (A), Crsh (Celsr1 mutant; B), and

Looptail (Vangl2 mutant; C) mesenteric lymphatic

vessels for Prox1 (green) and PECAM-1 (red).

Note abnormal valves in the mutants (arrows in B

and C).

(D and E) Visualization of lymphatic valve leaflets in

E18.5 in wild-type (D) and Crsh mutants (E) by

Laminin-a5 (green) and PECAM-1 (red) staining.

(F) Quantification of Laminin-a5 positive valves in

mesenteric lymphatic vessels. Mature valves

(black bars) were defined as V-shaped and

immature valves (gray bars) as ring-shaped

structures (as in E). Data representmean ± SD (nR

5). *p < 0.0001 and **p < 0.001 (Student’s t test).

Scale bars represent 40 mm (A–E).
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PCP Signaling Is Required for Lymphatic Valve
Morphogenesis
To study the role of PCP signaling in vivo in lymphatic valve for-

mation, we analyzed mouse mutants Crsh and Looptail, which

harbor point mutations in genes encoding Celsr1 and Vangl2,

respectively (Curtin et al., 2003; Kibar et al., 2001). Mesenteric

lymphatic vessels of E18.5 embryos were stained for Prox1, to

visualize lymphatic valves and the orientation of valve-forming

cells, and for Laminin-a5, to highlight the matrix core of the valve

leaflet (Bazigou et al., 2009). At this stage, the wild-type vessels

showed mature valves with elongated Prox1high cells and fully

developed Laminin-a5 positive leaflets (Figures 3A and 3D). In

Crsh and Looptailmutants, the valves were identified as clusters

of Prox1high cells that showed abnormal organization (Figures 3B

and 3C). In addition, a reduced number of valves that were

positive for Laminin-a5 were observed, and they failed to

develop leaflets (Figures 3E and 3F). These results demonstrate

a critical role for the core PCP proteins Celsr1 and Vangl2 in

lymphatic valve morphogenesis.

Celsr1 Functions Tissue-Autonomously in Lymphatic
Endothelia to Regulate Valve Formation
To further explore the role of PCP signaling in valve develop-

ment, we generated a conditional deletion of Celsr1 specifically

in lymphatic endothelial cells using theProx1-CreERT2mice. Effi-

cient depletion of Celsr1 protein was observed (Figures S3A–

S3D00). Similar to the Crsh mutants, Celsr1flox/flox;Prox1-CreERT2

(hereafter denoted as Celsr1�/�) embryos showed abnormal

lymphatic valves compared to the controls at E18.5 (Figures

4A and 4B). The defect was specific to Celsr1 function because

normal valves were observed in Celsr2�/� and Celsr3flox/flox;

Prox1CreERT2 (hereafter denoted as Celsr3�/�) mice (Figures

S3E and S3F). Interestingly, however, a more severe defect in

valve formation was observed in embryos that lacked both
Developmental Cell 26, 3
Celsr1 and Celsr3 (Figures 4E and S3G),

suggesting that Celsr3 can functionally

compensate for Celsr1. Consistent with

the previously demonstrated role of

Celsr1 in recruiting Vangl2 to the cell

membrane (Bastock and Strutt, 2007;
Devenport and Fuchs, 2008; Strutt, 2001), Vangl2 was absent

in Celsr1�/� vessels (Figures 4C and 4D).

Quantification revealed that the total number or valves was

similar in Celsr1�/� (32.3 ± 7.65, n = 10) and Celsr1�/�;
Celsr3�/� (28 ± 3.54, n = 5) vessels compared to the control

(34.7 ± 6.5, n = 7) at E18.5 (Figure 4E). However, a significantly

larger proportion of mutant valves were immature or abnormal.

Immature valves, which were also detected at lower frequency

in control vessels at E18.5, showed reorientation of Prox1high

cells but no leaflets (‘‘ring-shape’’, Figures 4E and S3B). The

majority of mutant valves were characterized by Prox1high cells

remaining aligned parallel to the vessel axis (Figures 4B and

S3C) or showing random orientation (Figure S3D). Although

both Celsr1 and Vangl2 continued to be expressed in fully devel-

oped valves (Figure S2A), deletion of Celsr1 and Celsr3 in the

mature lymphatic vessels of 3-week-old mice did not lead to

valve defects (Figures 4F and 4G). Together, these in vivo data

demonstrate a specific role for PCP signaling in regulating cell

reorientation during valve morphogenesis, although it is not

required for determining the sites of developing valves or valve

maintenance.

Celsr1 Deficiency Leads to Defects in the Organization
of Endothelial Junctions and Cell Reorientation during
Valve Formation
Given the ability of Celsr1 to mediate homophilic adhesion, we

next analyzed endothelial cell junctions in the control andmutant

vessels by Claudin-5 staining. Lymphatic endothelial cells of

control vessels formed continuous ‘‘zipper-like’’ junctions,

except for the cells forming the valves, which had less defined

junctions with junctional discontinuities (Figures 4H and 4H0). In
contrast, cell-cell junctions of Celsr1�/�;Celsr3�/� vessels were

disorganized. They showed large protrusions and uneven distri-

bution of Claudin-5 along the junctions (Figures 4I and 4I0).
1–44, July 15, 2013 ª2013 The Authors 35



Figure 4. Celsr1 Is Required for Lymphatic Endothelial Cell Reorientation during Valve Formation

(A–D) Whole-mount immunofluorescence of E18.5 mesenteric lymphatic vessels for Prox1 (green, A and B) or Vangl2 (green, C and D) and PECAM-1 (red). Note

the lack of Vangl2 in Celsr1 deficient vessel (arrow in D).
(legend continued on next page)
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In order to further decipher the function of Celsr1 in vivo, we

analyzed the valves at an earlier stage at E17.5, when most

Prox1high cells in control vessels aligned perpendicular to the

flow direction but valve leaflets were not yet formed (Figures

S3H, S3H0, and 1B). At this stage, Celsr1�/� valves contained a

similar number of Prox1high cells compared to control (Figure S3I

and data not shown). Furthermore, the same proportion of valve-

forming cells in mutant and control vessels displayed elongated

morphology with a nuclear length/width ratio greater than two

(Figure 4J). However, assessment of cell orientation by

measuring the rotation angles of Prox1high cells in respect to

the longitudinal axis of the vessel (Figure S3I) showed that only

22%of mutant compared to 63%of control cells were in the pro-

cess of reorienting perpendicular to the vessel wall (Figure 4K).

Instead, the majority of the mutant Prox1high cells remained

aligned parallel to the vessel axis showing <40� angle of rotation

(Figure 4K).

Celsr1-Regulated Cell Reorientation Is an Active
Cellular Process that Precedes Assembly of FN-EIIIA+
Valve Matrix into a Perpendicular Ring Structure
Valve leaflets contain an extracellular matrix core composed of

Laminin-a5 and Fibronectin containing the alternatively spliced

EIIIA/EDA domain (FN-EIIIA) (Bazigou et al., 2009). Alignment

of Prox1high cells perpendicular to the flow direction coincides

with upregulation of the FN-EIIIA receptor, Integrin-a9, and the

organization of FN-EIIIA into a ring structure at the sites of

developing valves (Figures 4L and 4M) (Bazigou et al., 2009). In

mature valves, Integrin-a9 and FN-EIIIA are subsequently found

on valve endothelial cells or the free edges of the leaflets,

respectively (Figures 4N and 4O) (Bazigou et al., 2009). Fibro-

nectin matrix assembly, which can also be regulated by

Cadherin activity (Dzamba et al., 2009), could, therefore,

indirectly regulate cell reorientation during valve formation.

Despite abnormal orientation of Prox1high cells, Celsr1�/� and

Celsr1�/�;Celsr3�/� valves showed normal deposition of FN-

EIIIA (Figures 4P and 4Q). Prominent FN-EIIIA fibers were also

observed in valve areas in Looptailmutant vessels, even in those

that displayed random orientation of Prox1high cells (Figure 4R).

Consistent with its requirement for FN-EIIIA assembly (Bazigou

et al., 2009), Integrin-a9was present inCelsr1�/�;Celsr3�/�-defi-
cient valves (Figure 4S).
(E) Quantification of valvemorphology (based on Prox1/PECAM-1 staining) in them

black bars), immature (ring-shape; dark gray bars) and abnormal (no reorientation

(n R 5). *p < 0.0001, **p < 0.01, compared to control (Student’s t test).

(F and G) Whole-mount immunofluorescence of adult ears, following postnatal

valves are observed in the mutant when compared to the control (arrowheads in

(H–I0) Visualization of cell junctions using Claudin-5 staining at E18.5. Note zippe

cells (arrow in H0) and disorganization of junctions in the mutant vessel (arrowhe

(J) Analysis of the shape of Prox1high cell nuclei in E17.5mesenteric vessels (nR 9)

(%) showing elongated morphology with nuclear length/width ratio >2 (gray dott

(K) Orientation of Prox1high cells in E17.5mesenteric vessels. Individual values sho

vessel are plotted. 0� = longitudinal, 90� = perpendicular alignment to the axis of

(gray dotted line) are shown in red and their proportion (%) is indicated. p < 0.00

(L–S) Whole-mount immunofluorescence of wild-type (L-N), Celsr1�/� (P), Cels

indicated stages for Prox1 (red) and FN-EIIIA (green) or Integrin-a9 (green). FN-EI

Note the assembly of FN-EIIIA fibers and the presence of Integrin-a9 in the valv

vessels.

Scale bars represent 40 mm (A–D and L–S), 100 mm (F and G), 30 mm (H and I), a

See also Figure S3.

D

Together, these results show that the failure of PCP mutant

valve-forming endothelial cells to adopt correct orientation is

not due to defective assembly of extracellular matrix. Instead,

they indicate that cell reorientation is an active Celsr1-regulated

process that precedes matrix assembly.

Lymphatic Endothelial AJs Undergo Maturation from
Overlapping Membrane Contacts to Linear Junctions
In Vitro
To understand the cell-cell junction defects in the PCP mutant

mice, we studied primary lymphatic endothelial cells (LECs) at

different confluence states, which are known to regulate the

organization of AJs. Analysis of the changes in junction

morphology during different stages of cell-cell contact formation

and stabilization revealed a junction maturation process in the

LECs. When plated at low confluence, within 24 hr LECs

formed ‘‘islands’’ in which the cells established stable contacts

with each other, rather than migrating as single cells (data not

shown). Under these conditions the majority of their junctions

were characterized by the presence of large overlapping mem-

brane protrusion in between the neighboring cells (Figures S4A

and S4C). The number of overlapping junctions, as well the width

of the junctional structures, decreased over time when the cells

reached confluence and the junctions acquired a linear

morphology (Figures S4A and S4B). During their stabilization,

there was a gradual enrichment of VE-cadherin at the junctions

(Figure S4C). Confluent LECs displayed cortical actin when

VE-cadherin was stabilized at the mature junctions, whereas

under the same conditions, the blood endothelial cells showed

stress fibers and mainly overlapping junctions (Figure S4D)

(Petrova et al., 2002).

Celsr1 Localizes to Specific Membrane Domains at
Endothelial Cell Junctions
To study the potential role of Celsr1 in regulating cell-cell

junctions, we examined its localization and function in the

primary LECs that were transfected with Celsr1-GFP and

analyzed at different confluence states. Like in epithelial cells

(Devenport and Fuchs, 2008), Celsr1-GFPwas diffuse in isolated

LECs (data not shown). Upon contact between two transfected

cells, Celsr1-GFP was rapidly recruited to the sites of contact

(Movie S2). Under subconfluent conditions Celsr1 localized to
utantmice at E18.5. Three different categories were defined: mature (V-shape;

or misalignment of Prox1high cells; light gray bars). Data represent mean ± SD

deletion of Celsr1/Celsr3, for Laminin-a5 (green) and PECAM-1 (red). Normal

F and G).

r-like junctions in the control (arrowhead in H0), except between valve-forming

ads in I0).
. Individual values are plotted. Black line indicatesmean. The proportion of cells

ed line) is shown.

wing rotation angles of Prox1high cells with respect to the longitudinal axis of the

the vessel. Black line indicates mean. Reoriented cells that showed >40� angle
01 (Mann-Whitney test).

r1�/�;Celsr3�/� (Q and S), and Looptail (R) mesenteric lymphatic vessels at

IIA organizes into fibers (arrowheads in M and N) when Prox1high cells reorient.

e areas in mutant vessels (arrowheads in O–S). Dotted lines outline lymphatic

nd 15 mm (H0 and I0),
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Figure 5. Celsr1 Localizes to Specific Membrane Domains within Cellular Protrusions in Primary Lymphatic Endothelial Cells

(A–E0) Celsr1-GFP (green) and VE-cadherin (red) localization during the establishment (A and B) and maturation (C) of cell-cell junctions. Note mutually exclusive

localization of Celsr1-GFP and VE-cadherin/F-actin to specific membrane domains (C0). Single channel images for Celsr1-GFP, VE-Cadherin, and F-actin are

included as indicated. (E and E0) show a Celsr1-GFP positive cell making contact to a distant Celsr1 positive cell underneath another cell. (E00) shows schematic

representation of cell arrangement. Asterisks indicate cells expressing Celsr1-GFP. (D) Intensity scan profile showing pixel intensity values for Celsr1-GFP

(green), VE-cadherin (red), and F-actin (blue) measured across a cell-cell junction. The position of the scan line is shown in (C0).
(legend continued on next page)
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membrane protrusions in between cells and to filopodia origi-

nating from the protrusions that were highly dynamic (Figures

5A, 5B, S5A and S5B; Movie S2). Celsr1 did not induce the for-

mation of these filopodia as they were also observed in control

cells expressing membrane-bound YFP (Movie S3). Inter-

estingly, Celsr1 positive membrane protrusions sometimes

extended underneath other cells (Figures 5E–5E00; Movie S4)

and formed a connection with a distant Celsr1 expressing cell

(Figures 5E–5E00 0). However, Celsr1 did not mediate stable adhe-

sion because cells were able to migrate away from each other

after forming contacts (Movie S4).

In confluent LECs, Celsr1 showed a punctuate pattern along

the junctions (Figure 5C). However, in contrast to epithelial cells

where Celsr1 localized to E-cadherin containing AJs (Nishimura

et al., 2012), in the LECs, Celsr1-GFP showed a mutually exclu-

sive localization with VE-cadherin and F-actin to discrete

membrane domains (Figures 5C0 and 5D). Celsr1-GFP also did

not colocalize with the components of tight junctions, including

Claudin-5 and ZO-1 (Figure S6). Furthermore, Myosin IIB and

phosphorylated myosin light chain (pMLC), which is the active

form of Myosin II implicated in PCP-mediated contraction of

epithelial AJs (Nishimura et al., 2012), did not colocalize with

Celsr1 (Figure S6). In contrast, Vangl2 was specifically recruited

to cell junctions with Celsr1 in a Celsr1-dependent manner (Fig-

ures 5F–5G0).
To further characterize the molecular composition of Celsr1-

positive junctions, we analyzed the recruitment of the PAR com-

plex (PAR6/PAR3/aPKC), which is known to regulate polarity in

epithelial cells. Surprisingly, we found that PAR6 was recruited

specifically to Celsr1 positive cell-cell junctions in the absence

of PAR3 and aPKC (Figures 5H–5I00 and data not show). A distinct

PAR3-PAR6 complex that lacks aPKC was previously demon-

strated in blood endothelial cells (Iden et al., 2006). This complex

was shown to localize to adherens junctions by binding to VE-

cadherin (Iden et al., 2006). However, in the LECs PAR6 was

found at the Celsr1 positive junctions prior to the recruitment

of VE-cadherin (Figures 5J–5J00).
These results show a similar localization of Celsr1 at the endo-

thelial membrane protrusions and cell-cell junctions in vitro as

observed in vivo in the developing lymphatic valves. This locali-

zation and the molecular composition of the Celsr1 positive

adhesive structures appear to be unique to lymphatic endothelial

cells, because, in contrast to epithelial cells, they do not contain

other classical junctional proteins but instead recruit the polarity

proteins Vangl2 and PAR6.

Celsr1 Inhibits Stabilization of Endothelial AJs by
Delaying VE-Cadherin Recruitment
Next we asked whether the presence of Celsr1 has functional

consequences on junctional organization in the LECs. We first

compared the localization of Celsr1-GFP and VE-cadherin-
(F–G0) Localization of Vangl2-GFP (green) with endogenous VE-cadherin (red, F) o

only in presence of Celsr1-Flag (arrow in G0).
(H–J00) PAR6 and PAR3 localization in Celsr1-GFP expressing cells. Single channe

Celsr1 positive (arrow in H0 and H00) but not negative (arrowhead in H0 and H00) ju
arrowhead in I0 and I00). PAR6 is recruited to Celsr1 positive junctions before the

Scale bars represent 40 mm (A–C, E–G0, H, I, and J), 10 mm (C, H0, H00, I0, I00, J0, a
See also Figures S4–S6 and Movies S2, S3, and S4.

D

GFP in subconfluent LECs with PECAM-1 immunostaining. As

described above, Celsr1-GFP localized predominantly to imma-

ture junctions displaying large membrane protrusions (Figures

6A–6A00 and 6C). In contrast, VE-cadherin-GFP showed an

exclusive localization to mature cell-cell junctions, whereas the

majority of the VE-cadherin-GFP negative junctions showed

overlappingmembrane contacts under these conditions (Figures

6B–6B0). The ability of the overexpressed VE-cadherin to induce

mature junctions in the LECs is in agreement with previous

studies using blood endothelial cells, which have established

a key role for VE-cadherin in controlling the stability and matura-

tion of AJs. In contrast to the overexpressed protein, en-

dogenous VE-cadherin localized to membrane protrusions in

subconfluent LECs. However, in the presence of Celsr1 VE-cad-

herin levels at the junctions were reduced (Figures 6D–6G). The

C-terminal domain of Celsr1 was not required for VE-cadherin

regulation (Figures 6H and 6H0).
To test if VE-cadherin regulation by Celsr1 was mediated via

increased internalization, cells were treated with chloroquine,

which inhibits protein degradation and recycling to the mem-

brane and thus allows the visualization of internalized VE-cad-

herin. The level of VE-cadherin internalization in the LECs was

low, and this was not affected by the presence of Celsr1 at the

cell-cell contacts (Figure S7). Next we addressed the possibility

that Celsr1 affects the initial recruitment of VE-cadherin to the

junctions. After transfection, LECs were cultured in the presence

of EGTA to inhibit calcium-dependent junction formation until

Celsr1-GFP expression was detected (Figures 6I and 6I0).
Following the removal of EGTA, synchronized formation of junc-

tions that were positive for VE-cadherin was observed (Figures

6J and 6J0). However, Celsr1-positive contacts lacked VE-cad-

herin (Figures 6J and 6J0).
Our data demonstrate that Celsr1 does not disrupt established

VE-cadherin positive junctions in vitro and is not required for their

maintenance in vivo (see Figure 4G). Instead, the recruitment of

Celsr1 to newly established immature junctions leads to a

delay in the recruitment of VE-cadherin, thereby inhibiting the

formation of stabilized AJs. Together, our data show a specific

requirement for PCP signaling in directing rearrangements of

valve-forming endothelial cells through regulation of endothelial

AJ formation and stabilization (Figure 7).

DISCUSSION

Dysfunction of intraluminal valves interferes with the ability of the

lymphatic system to collect and drain protein-rich fluid from the

tissues, which can result in swelling called lymphedema (Alitalo,

2011). In this study, we describe a morphogenic process that in-

volves reorientation and collective migration of valve-forming

endothelial cells as they initiate valve leaflet formation. We

further demonstrate an unexpected function for the component
r Celsr1-Flag (red, G). Note the recruitment of Vangl2-GFP to cell-cell contacts

l images of the boxed areas are shown. Note the specific recruitment of PAR6 to

nctions whereas weak PAR3 signal is observed at both junctions (arrow and

arrival of VE-cadherin (J–J00).
nd J00), and 2.5 mm (C0).
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Figure 6. Celsr1 Regulates Lymphatic Endothelial Adherens Junctions

(A–B00) Localization of Celsr1-GFP (A, arrowhead) and VE-cadherin-GFP (B, arrowhead) in the LECs, costained for PECAM-1. Single channel images are shown on

the right. Note the presence of membrane protrusions (arrows) except in the VE-cadherin-GFP-positive junctions.

(C) Quantification of VE-cadherin-GFP and Celsr1-GFP positive cell contacts (n = 174 junctions for Celsr1-GFP and n = 88 for VE-cad-GFP) showing protrusions

(immature) or linear junctions (mature).

(D and D0) VE-cadherin immunostaining in Celsr1-GFP expressing cells. Note the reduction of VE-cadherin at the junction in between two Celsr1-GFP expressing

cells (arrows) compared to control cells.

(E) Intensity scan profile showing pixel intensity values for Celsr1-GFP (green) and VE-cadherin (red) measured across cell junctions. The position of the scan line

is shown in (D).

(F) VE-cadherin positive junction area measured at overlapping membrane contacts in control and Celsr1-GFP positive junctions. Data represent mean ± SEM

(n = 3 experiments) *p < 0.0001 (Student’s t test).

(G) VE-cadherin levels, measured as fluorescence intensity of VE-cadherin positive area, in control and Celsr1-GFP positive junctions. Data represent mean ±

SEM (n = 63 junctions) of a representative experiment of three independent experiments *p < 0.0001 (Student’s t test).
(legend continued on next page)
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Figure 7. PCP Signaling in Lymphatic Valve

Formation

Schematic model showing the elongation and re-

orientation of Prox1high valve-forming cells (gray

cells with dark blue nuclei) at early stages of valve

formation and recruitment of Celsr1 (red) from

endothelial filopodia and membrane protrusions

to cell-cell contacts during this process. Yellow =

extracellular matrix of the valve leaflet. Stages of

development (E, embryonic day) are based on

mouse mesenteric lymphatic vessels.
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of the conserved PCP signaling pathway, Celsr1, in controlling

endothelial AJ formation and directed cell rearrangements dur-

ing valve formation.

Lymphatic valves develop through a complex morphogenetic

process during which endothelial cells receive multiple

signals from different sources, including those generated by

flow-induced shear stress as well as cell-cell and cell-matrix

communication (reviewed in Bazigou and Makinen, 2012).

During valve initiation, endothelial cells at specific vessel loca-

tions acquire a unique identity. For example, valve-forming

endothelial cells express elevated levels of Prox1 and Foxc2

transcription factors and activate Calcineurin/NFATc1 signaling

(Norrmén et al., 2009; Sabine et al., 2012). It was recently

shown that mechanosensory responses to shear stress,

caused by the initiation of lymph flow, play an important role

in inducing the valve endothelial cell phenotype (Sabine et al.,

2012). In particular, acquisition of cuboidal cell shape was

shown to be a hallmark of a lymphatic valve endothelial cell

phenotype that was induced in cultured cells by cooperative

function of Prox1 and oscillatory shear stress (Sabine et al.,

2012). We show that in vivo, the Prox1high valve-forming endo-

thelial cells adopted a highly elongated, rather than cuboidal,

morphology.
(H and H0) VE-cadherin immunostaining in Celsr1DC-GFP expressing cells showing reduction of VE-cadherin at the Celsr1-positive junction (arrow) compared to

control cells.

(I–J0) VE-cadherin (red) and DAPI (blue) staining in Celsr1-GFP (green) expressing cells in the presence (I) or 5 hr after the removal of EGTA (J). Note reduced VE

cadherin recruitment to a Celsr1 positive (arrow) when compared to a Celsr1 negative junction (arrowhead in J0).
Scales bars represent 40 mm.

See also Figure S7.
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Our study further revealed a process

of collective migration of endothelial cells

as they initiate valve leaflet formation.

The elongated Prox1high cells first reorient

by 90�, which resulted in their alignment

perpendicular to the flow direction and

the formation of transverse ridges on the

vessel wall (Bazigou et al., 2009, 2011;

and present study). These ridges subse-

quently extend into the vessel lumen to

form a disc-like structure composed of

multilayered endothelium displaying an

organization of cell-cell junctions with

multiple intercellular gaps. In contrast to

mature valves, no apparent layer of extra-

cellular matrix was detected in between
cells of developing valve leaflets. These features are highly unex-

pected in view of our understanding of the organization of endo-

thelium as a monolayer of endothelial cells that are firmly

attached to each other and the underlying basement membrane

Interestingly, the collective cell migration properties of valve-

forming endothelial cells during the cell reorientation process

are reminiscent of mammary epithelial cells at the invading termi-

nal end buds, which also show downregulation of adherens junc-

tions, formation of intercellular gaps, and loose cell-cell contacts

characterized by interdigitating membrane protrusions (Ewald

et al., 2012).

The dynamic process of reorientation and collective migration

of valve-forming cells is likely to require active remodeling o

junctions to allow cells to move in respect to each other. We

found that lymphatic valve formation required the core PCP

proteins, Celsr1 and Vangl2, which have previously been impli-

cated in regulating cell rearrangements and collective cel

movements in other tissues (Bastock and Strutt, 2007; Car-

reira-Barbosa et al., 2009; Ciruna et al., 2006). Celsr1 function

was specifically required for valve-endothelial cell reorientation

its deletion did not affect valve initiation, elongation of valve-

forming endothelial cells, valve matrix assembly, or valve main-

tenance. Similar mechanisms were recently shown to contro
-
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valve morphogenesis in lymphatic vessels and veins (Bazigou

et al., 2011). However, our preliminary investigations have, for

technical reasons due to difficulties in achieving efficient gene

deletion in venous endothelia prior to valve initiation, failed to

reveal a function for PCP signaling during venous valve formation

(E. Bazigou and T.M., unpublished data). Efficiently targeted

conditional approaches will be needed to address this question.

Celsr1 showed a subcellular localization pattern in lymphatic

endothelial cells that is different from its localization to the apico-

lateral plasma membrane in epithelial cells. During early stages

of valve development, Celsr1 and Vangl2 localized primarily to

the tips of Claudin-5 and VE-cadherin-positive endothelial cell

protrusions. Concomitant with the reorientation of the valve-

forming endothelial cells Celsr1 was recruited to discrete mem-

brane domains within cell-cell contacts, however, it showed a

mutually exclusive localization with components of adherens/

tight junctions and actomyosin. This is in contrast to epithelial

cells where PCP core proteins were reported to localize to and

regulate actomyosin-dependent contraction of AJs (Nishimura

et al., 2012). Interestingly, however, analysis in Drosophila of

the turnover rates of the PCP core proteins Fmi/Fz/Stbm

(Celsr1/Frizzled/Vangl) revealed their presence in punctuate

structures, representing stable asymmetric protein complexes

that did not localize to epithelial AJs (Strutt et al., 2011).

Celsr1 also did not show an apparent planar polarized distri-

bution in lymphatic endothelia, in contrast to its asymmetric

localization along anterior-posterior sides of the epithelial cell

plasma membrane (Devenport and Fuchs, 2008). It appears

that the PCP complex, as we best understand it in polarized

epithelium, has different composition and functions in nonepi-

thelial tissues. For instance, Vangl2 is enriched in the filopodia

of axon growth cones (Shafer et al., 2011) andmediates neuronal

migration independent of Dishevelled, the key downstream

component of the PCP pathway (Glasco et al., 2012), but through

interaction with several non-PCP genes (Nambiar et al., 2007;

Sittaramane et al., 2009). PCP signaling was also shown to con-

trol the formation of cellular protrusions and collective migration

of Drosophila border cells during oogenesis (Bastock and Strutt,

2007). Interestingly, we found specific recruitment of PAR6 to

Celsr1-positive lymphatic endothelial cell junctions. The lack of

other components of the PAR polarity complex, PAR3/aPKC,

and the lack of association of the Celsr1-positive junctions with

actin or microtubules suggest that PAR6 may have an indepen-

dent function in regulating AJs, different from its role in cell

polarization (Bose and Wrana, 2006).

How does Celsr1 regulate the specific cellular processes that

valve-forming endothelial cells undergo upon initiation of valve

leaflet formation? Homophilic interaction between Celsr1

(Chen and Clandinin, 2008; Devenport and Fuchs, 2008; Usui

et al., 1999) could increase the adhesive properties of Celsr1+/

Prox1high cells and thus enable the valve-forming cells to recog-

nize, cluster, and maintain specific cell-cell contacts with each

other. Consistent with homophilic binding, our in vitro analyses

showed recruitment of Celsr1 to endothelial cell-cell contacts,

however, they also showed lack of stable adhesion between

Celsr1 expressing cells. Instead, we found that the rapid recruit-

ment of Celsr1 to newly established cell-cell contacts delayed

recruitment of VE-cadherin, the major adhesive component of

the endothelial AJs. The recruitment and stability of VE-cadherin
42 Developmental Cell 26, 31–44, July 15, 2013 ª2013 The Authors
at the junctions is strictly regulated to maintain endothelial integ-

rity and barrier function, but also to enable cell migration and

vessel sprouting (Dejana and Giampietro, 2012; Gaengel et al.,

2012). In particular, VE-cadherin flow at membrane protrusions

was shown to facilitate the sliding of one cell underneath another

contacting cell in order to promote active cell migration (Kame-

tani and Takeichi, 2007). Although further studies are required

to understand how Celsr1 regulates VE-cadherin, our in vivo

and in vitro data indicate that this regulation provides an impor-

tant mechanism that enables dynamic organization of junctions

and rearrangements of cells during valve formation.

In summary, we show a specific requirement for the PCP

proteins, Celsr1 and Vangl2, in controlling directed cell rear-

rangements during lymphatic valve formation. Celsr1-mediated

VE-cadherin regulation further indicates an important role for

PCP signaling in the control of endothelial adherens junctions,

which may have implications for diverse PCP-regulated cellular

processes in other tissues.

EXPERIMENTAL PROCEDURES

Mice

Mouse strains (Prox1-CreERT2, R26-mTmG, Celsr2�/� and conditional

Celsr1flox and Celsr3flox; see Supplemental Experimental Procedures for de-

tails) were backcrossed to C57BL/6J for at least three generations. Looptail

was analyzed onmixed Le/C57BL/6J background.Crshmutant embryos (Cur-

tin et al., 2003) were provided by Dr. J. Murdoch, MRCHarwell. Themorning of

vaginal plug detection was considered as embryonic stage E0. For gene dele-

tion at embryonic stages, three consecutive intraperitoneal (i.p.) injections of

2 mg of 4-OHT, dissolved in peanut oil, were administered to pregnant

Celsr1/3;Prox1-CreERT2 females at E15.5, E16.5, and E17.5 and the embryos

were analyzed at E18.5. Mosaic GFP labeling of endothelial cells in R26-

mTmG;Prox1-CreERT2 embryos was induced by a single i.p. injection of

0.5 mg of 4-OHT. Alternatively, 3-week-old mice were fed with tamoxifen con-

taining diet (Harlan Teklad CRD TAM400) for 2 weeks. All mouse experiments

were approved by the United Kingdom Home Office.

Cell Culture and Transfection

Human lymphatic endothelial cells (LEC) were obtained from PromoCell. Cells

were seeded in Fibronectin-coated dishes with ECGMV2 medium (PromoCell)

supplemented with 25 ng/ml of VEGF-C (R&D Systems). LEC were transfected

by electroporation using Amaxa Nucleofector kit and protocol optimized for hu-

man umbilical vein endothelial cells with plasmids encoding Celsr1-GFP,

Celsr1DC-GFP, Celsr1-Flag, Vangl2-GFP (Devenport and Fuchs, 2008), or VE-

cadherin-GFP (cDNAencodinghumanVE-cadherin cloned into pEGFP-N1vec-

tor [Clontech Biosciences]). For pEYFP-CAAX vector, the C-terminal CAAX

domain of human K-Ras was cloned in pEYFP-N1. Subconfluent and confluent

LECs monolayers were obtained by culturing cells on 24-well plates and Ibidi

culture-inserts, respectively, and thecellswereanalyzed24hrafter transfection.

Image Acquisition and Quantitative Analyses

Immunofluorescence staining was performed as previously described (Bazi-

gou et al., 2009) (see Supplemental Experimental Procedures for details of an-

tibodies). Confocal images of tissue whole-mounts were acquired using Zeiss

LSM 510, 710, or 780 microscopes with Plan Apochromat DIC 403/1.3 NA or

Plan Apochromat DIC 633/1.4 NA oil objective. All images represent

maximum intensity projections of confocal z stacks that were generated using

Imaris Bitplane software. Quantitative analysis of valve numbers and the shape

and orientation of Prox1high nuclei were done using Image J software (see de-

tails in Supplemental Experimental Procedures).

For the measurement of VE-cadherin at LEC junctions, thresholding, and

quantification of the images were performed using MetaMorph Imaging

software (Molecular Devices). An inclusive threshold was applied to the

VE-cadherin channel in the entire tile scan image such that minimum inten-

sity threshold values do not include background signal. Quantification of
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VE-cadherin intensity for each junction area was performed from three inde-

pendent experiments (in total 116 junctions for control and 134 for Celsr1-pos-

itive junctions were analyzed). PECAM-1 staining was used as reference of

overlapping membrane contacts.

Serial Section Light Microscopy

The intestines of E17.5 Prox1-CreERT2;R26-mTmG mice were dissected and

immediately fixed in 4% PFA/2.5% glutaraldehyde in 0.1 M phosphate buffer

(pH 7.4). Samples were analyzed under a fluorescence stereomicroscope

(LeicaMZ16F) to localize ring-shaped valves and postfixed in reduced osmium

tetroxide for 1 hr, followed by 1% tannic acid in 0.05 M sodium cacodylate for

45min. Samples were then dehydrated through a graded series of ethanol and

embedded in either Araldite or Epon resin. The same processing was used for

mesenteric lymphatic vessels of P6 mice. Semi-thin sections (400 nm) were

cut on a UCT ultramicrotome (Leica Microsystems UK), stained with 1% tolu-

idine blue in 1% Borax, and viewed under a III RS light microscope (Carl Zeiss

UK) to locate the area of interest. For 3D reconstruction, images of serial semi-

thin sections (400 nm) through the developing valve were aligned, segmented,

and rendered in Amira software (Visage Imaging).

Electron Microscopy

Ultrathin sections of 70–80 nmwere cut from araldite or Epon-embedded sam-

ples (prepared as described above) and poststained with lead citrate. Images

were obtained with a JEOL 1010 transmission electron microscope and

Bioscan CCD camera (Gatan UK), or a Tecnai G2 Spirit transmission electron

microscope (FEI Company) and Orius CCD camera (Gatan UK).

Statistical Analysis

Statistical analysis was done using two-tailed unpaired Student’s t test or

Mann-Whitney test as indicated in the legends for Figures 3F, 4E, 4K, 6F,

and 6G.

SUPPLEMENTAL INFORMATION
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