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Summary

In developing organisms, spatially prescribed cell identities are thought to be determined by the 

expression levels of multiple genes. Quantitative tests of this idea, however, require a theoretical 

framework capable of exposing the rules and precision of cell specification over developmental 

time. Using the gap gene network in the early fly embryo as an example, we use such a framework 

to show how expression levels of the four gap genes can be jointly decoded into an optimal 

specification of position with 1% accuracy. The decoder correctly predicts, with no free 

parameters, the dynamics of pair-rule expression patterns at different developmental time points 

and in various mutant backgrounds. Precise cellular identities are thus available at the earliest 

stages of development, contrasting the prevailing view of positional information being slowly 

refined across successive layers of the patterning network. Our results suggest that developmental 

enhancers closely approximate a mathematically optimal decoding strategy.
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In brief:

The information to specify precise cellular identities is present and decoded at the earliest stages 

of Drosophila development, contrasting with the view that positional information is slowly refined 

across successive patterning layers.

Introduction

Biological networks transform input signals into outputs that capture information of 

functional importance to the organism. One path to understanding these transformations is to 

“read out,” or decode this relevant information directly from the network activity 

(Georgopoulos et al., 1986; Haynes and Rees, 2006). In neural networks, for example, 

features of the organism’s sensory inputs and motor outputs have been decoded from 

observed action potential sequences, sometimes with very high accuracy (Hatsopoulos and 

Donoghue, 2009; Marre et al., 2015; Rieke et al., 1997). Decoding provides an explicit test 

of hypotheses about how biologically meaningful information is represented in the network.

The gap genes involved in patterning the early embryo of the fruit fly Drosophila 
melanogaster provide an alternative example of the decoding problem (Briscoe and Small, 

2015; Jaeger, 2011; Nüsslein-Volhard and Wieschaus, 1980). Individually, the gap genes 

form a network with strong, bidirectional couplings among themselves. But, taken together, 
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the gap genes form a single layer in an otherwise feed-forward flow of information, where 

they take inputs from the primary maternal morphogens and drive the expression of pair-rule 

genes (Carroll, 1990; Rivera-Pomar and Jäckle, 1996) (Figure 1A). Pair-rule expression 

occurs in stripes that are precisely and reproducibly positioned within the embryo, forming 

an outline for the segmented body plan of the fully developed organism (Lawrence, 1992).

The emergence of a precise and reproducible body plan requires each cell in the developing 

embryo to take actions that are appropriate to its position. Previous work has shown that a 

snapshot of gap gene expression levels contains enough information to position each cell 

with ~ 1% precision along the embryo’s anterior-posterior (AP) axis (Dubuis et al., 2013a; 

Tkačik et al., 2015). This is comparable to the precision with which pair-rule patterns and 

other morphological markers are specified. The fact that this information is available, 

however, does not mean that it is used by the organism. Here we take the pair-rule stripes as 

a measure of the embryo’s own readout of positional information, and test this idea 

explicitly: we decode the positional information conveyed by gap gene expression levels, 

and use this decoder to predict the dynamics of pair-rule stripes in wild-type (WT) and their 

distortions in mutant embryos (Figure 1).

We can imagine many different ways of decoding gene expression levels to estimate 

position, but there is a unique optimal decoding scheme. More specifically, if the embryo 

makes use of all the available information then the statistical structure of gap gene 

expression patterns determines the form of the decoding algorithm (Figure 1B), without the 

need for an explicit model or for any additional parameters; decoded positions then predict 

the occurrence of pair-rule stripes (Figure 1C). To construct the optimal decoder, we 

measured all gap gene expression levels simultaneously and with sufficient accuracy to 

characterize the noise in the system. This allows us to give a good description of the joint 

distribution of gap gene expression levels at each position along the AP axis, and these 

distributions in turn determine the form of the optimal decoder.

To test the optimal decoder, we employ seven distinct genetic variants that alter primary 

maternal inputs. We show that a single optimal decoder constructed from WT data accounts, 

quantitatively, for the altered locations of pair-rule stripes in mutant embryos, for the 

dynamical shifts of the pair-rule stripes in WT embryos, and even predicts when the 

occurrence of these stripes should be variable. These results fit into a broader picture of 

early embryonic patterning in Drosophila as a system in which 1) noise levels are as low as 

possible given the limited number of molecules involved (Gregor et al., 2007), 2) the 

reproducibility of developmental patterning can be traced back to reproducible maternal 

inputs (Petkova et al., 2014), and 3) network interactions are selected to extract the 

maximum amount of information from these inputs (Sokolowski and Tkačik, 2015; Tkačik 

et al., 2008, 2012; Walczak et al., 2010). Stated in more mechanistic terms, our results 

suggest that the complex regulatory logic of the pair-rule gene enhancers (Levine, 2010; 

Small et al., 1991) implements nearly optimal decoding of gap gene network activity, and 

thus provides access to precise and potentially unique cellular identities already at the 

earliest stages of development; i.e. four genes are sufficient to uniquely predict the fates of 

~60 cells along the central 80% of the dorsal line in the early fly embryo (Dubuis et al., 

2013a).
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Results

Dictionaries, maps, and optimality

There is a clear advantage to organisms that can construct a rich and precise body plan, 

specifying the detailed pattern of structures at different positions. It is less clear when this 

positional information needs to be available, or whether evolutionary pressures have been 

strong enough to drive mechanisms that extract as much positional information as possible 

given the physical constraints. Here we test the hypothesis that the fly embryo achieves an 

optimal decoding of position given access to the gap gene expression levels in each 

individual nucleus, at a single moment in time. While optimality is a controversial 

hypothesis (Bialek, 2012), we emphasize that, in the present context, it makes unambiguous, 

quantitative predictions, which we test.

Let {gi} = {g1, g2, g3, 94} be the expression levels of the gap genes hunchback (hb), krüppel 
(Kr), knirps (kni), and giant (gt). At each point x along the embryo’s AP axis, gap gene 

expression levels take on average values, gi(x), but also exhibit fluctuations around this mean 

that can be summarized with a 4×4 covariance matrix, Cij(x). Exploiting our ability to make 

precise, quantitative measurements of the expression of all four gap genes simultaneously 

across many embryos (Dubuis et al., 2013b), we construct {gi(x)} and Cij(x) (Star Methods 

and Figures S1A and S1B), initially focusing on a small time window, centered 42 min into 

nuclear cycle (n.c.) 14, in which mutual information about position carried by the gap gene 

expression profiles is highest (Dubuis et al., 2013a).

If the fluctuations are Gaussian (an approximation tested previously (Dubuis et al., 2013a)), 

then the mean expression level and the covariance matrix determine the joint probability 

distribution of gap gene expression levels given position. Explicitly, for the simultaneous 

expression levels of K genes:

P({gi} ∣ x) = 1
(2π)K det[C(x)]

e
− χK

2 ({gi}, x) ∕ 2
, (1)

where χK
2  measures the similarity of the gene expression pattern to the mean pattern {gi(x)}

expected at x,

χK
2 ({gi}, x) = ∑

i,j = 1

K
(gi − gi(x)) C−1(x)

ij
gj − gj(x) , (2)

and C(x) is the covariance matrix. We previously estimated the information that individual 

gap gene expression levels provide about position assuming only that the underlying 

probability distribution is smooth, and this agrees within error bars with the information 

calculated in the Gaussian approximation (Dubuis et al., 2013a; Tkačik et al., 2015). Thus 

this approximation is not a model of the system, but a compact summary of its behavior that 
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captures the relevant information. From this summary, and the hypothesis of optimality, we 

will make predictions for the results of very different measurements, with no additional 

parameters that need to be fit.

To construct the optimal decoder, we apply Bayes’ rule (Star Methods):

P(x∗ ∣ {gi}) = 1
Z({gi})P({gi} ∣ x∗)PX(x∗), (3)

where the left-hand side, called the posterior, is a distribution over positions x* that are 

implied by some combination of gap gene expression levels {gi}. Implied because the 

decoder has no access to the actual position of a cell; it can only use the four gap gene 

expression levels {gi}, which provide varying amounts of evidence for different possible 

positions. PX(x*) is the (prior) probability that a cell is at position x*, independent of gene 

expression level, and is in our case uniform along the AP axis; Z serves to normalize the 

distribution, and is independent of x*.

The posterior P(x*∣{gi}) contains all the information that any mechanism, cellular or 

computational, could extract from expression levels {gi}. If the posterior has a single, 

reasonably sharp peak at x* = X*({gi}), then we can translate expression levels back into 

positions unambiguously, using a dictionary {gi} → X*; this is known as the maximum a 

posteriori (MAP) decoder (David J. C. MacKay, 2003). The width of the distribution P(x*∣
{gi}) around its peak quantifies the positional error, i.e., the uncertainty in implied position 

due to the variability in gap gene expression levels (Tkačik et al., 2015). But if the posterior 

has multiple peaks, or broad plateaus, then genuine ambiguities in decoding exist and the 

MAP decoder is misleading. We keep track of the entire posterior distribution of implied 

positions and visualize it as a decoding map (Figure 2).

To construct the decoding map for a single embryo α, we take the measured expression 

levels {gi
α(x)} in that embryo at actual position x and insert them into Equation (3). This 

yields a map of implied positions vs actual positions,

Pmap
α (x∗ ∣ x) = P(x ∣ {gi}) ∣

{gi} = {gi
α(x)}

. (4)

If the considered genes provide enough information to specify position accurately and 

unambiguously, then Pmap
α (x∗ ∣ x) will be a narrow ridge of density along the diagonal where 

the implied position is equal to the actual position, x* = x. Figure 2 walks through the steps 

in the construction of the decoding map Pmap
α (x∗ ∣ x) in the case where we have access to the 

expression level of only one gene, in this case Kr.

Using a data set of 38 WT embryos, we construct decoding maps based on the information 

carried by one, two, three, or all four gap genes (Figure 3). Note that although we always 

decode the gene expression levels from single embryos, as in Equation (4), it is convenient 
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to show maps that are averaged over all the embryos α in our data. For most locations in the 

embryo, decoding based on a single gene provides little information (Figures 2 and 3a and 

S1c). In small regions of the embryo, decoding can be more precise, but substantial 

ambiguities remain where one expression level is equally consistent with two different 

implied positions. Decoding based on two (Figures 3B and S1D) or three (Figures 3C and 

S1E) genes results in less ambiguity and more precision.

We report the decoding maps in units of probability density, because the x coordinate is 

treated as continuous, which lets us construct mathematical objects independent of the 

choice of binning scheme for positions. The increase in precision corresponds to the 

sharpening of the posterior distribution, whose peaks get higher and narrower as we include 

increasing numbers of gap genes. This increase is reflected in the dynamic range of 

grayscales for each map, since by normalization narrower distributions Pmap
α (x∗ ∣ x) have 

higher density at their peaks. We also quantify this sharpening by computing the standard 

deviation of these distributions and finding the median over x as summarized in Figure S1I.

With all four genes, the distribution Pmap
α (x∗ ∣ x) is approximately Gaussian, with a width σx 

~ 0.01L for nearly all points along the embryo’s AP-axis (Figures 3D and S5A). This is also 

the precision with which subsequent developmental markers, including the pair-rule gene 

stripes and the cephalic furrow, are generated (Dubuis et al., 2013a; Liu et al., 2013). 

Remarkably, one percent is less than the distance between two adjacent cells, suggesting that 

the gap genes could specify every cell along the AP-axis (Dubuis et al., 2013b, 2013a). Thus 

multiple expression levels combine to synthesize an unambiguous code for position that 

reaches extraordinary precision (Figure 3).

We emphasize that we decode positions based on graded expression levels of the gap genes 

(Dubuis et al., 2013a; Gaul and Jackle, 1989), which contrasts with the traditional 

interpretation of the gap genes as forming “expression domains” that are either on or off 
(Albert and Othmer, 2003; B Alberts, A Johnson, J Lewis, M Raff, K Roberts, 2002; 

Meinhardt, 1986), or with the use of binary switch-like or boolean networks to describe 

genetic circuits more generally (Kauffman et al., 1978; Sánchez and Thieffry, 2001). If we 

collapse the continuous profiles into on/off domains, then decoding maps are ambiguous 

even in WT embryos (Figures S1F and S1G), and meaningful predictions for stripe positions 

in the mutant embryos are impossible. Thus, rather than forming a set of four binary 

switches, the gap gene expression levels represent a more continuous, analog coordinate 

system that specifies position for individual cells.

Decoding in mutant embryos

The fact that the four gap genes carry precise, unambiguous information about position does 

not mean that the embryo uses this information to determine cellular identities. To test 

whether this is the case, we exploit the powerful genetic tools that have been established in 

Drosophila. We perturbed the maternal signals Bicoid (bcd), Nanos (nos), and Torso-like 

(tsl), which strongly affect the gap gene network (Figure S2 and Movie M1). Importantly, 

because we have perturbed only the inputs to the gap gene network, we expect that decoding 

is carried out with the same mechanism in WT and mutant embryos. If the optimal readout 
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strategy is used by the embryo, our decoder should generate meaningful position estimates 

in mutant backgrounds (Equation 4), and these estimates can be compared directly to actual 

position readouts in mutant embryos, using locations of pair-rule expression stripes as 

positional markers.

We have analyzed embryos from lines in which we delete the three maternal signals 

individually, in pairs, and all together. The latter is a control, which confirms that all 

information about position indeed is provided by the three maternal signals (Figure S2K). 

For each of the remaining six combinations, we measured expression levels for all four gap 

genes simultaneously (Figure S2A-H). In every case, we construct the posterior distribution 

P(x*∣{gi}) from WT gene expression levels in absolute units, and then apply it to individual 

mutant embryos measured in the same batch, thus avoiding variations in staining, imaging, 

normalization, etc., across batches. The results of these analyses are a series of decoding 

maps (Figure 4), which should be compared to the map for WT embryos (Figure 3D).

Before proceeding to analyze these maps and to test our predictions, we emphasize that even 

the possibility of decoding the expression patterns in mutant backgrounds is non-trivial. The 

optimal decoder is built out of the distribution of expression levels that we see in WT 

embryos, and these fill only a very small region of the full four dimensional space of 

possibilities. If the expression levels in mutant embryos fell far outside this region, then we 

would have no reason to trust our description of the distributions P({gi}∣x), and hence no 

basis from which to make reliable inferences. To test whether this could be the case, we 

compared χ2 in Equation (2) between the mean WT and the mutant gap gene expression 

(see Star Methods, Exploring mutant embryos). We found a surprising degree of overlap: the 

largest χ2 in the WT embryos is larger than 98% of the values that we see in mutant 

embryos (Figure S2I); extreme values of χ2 in the mutant backgrounds are confined to small 

regions of the embryo. Deleting maternal signals introduces large perturbations, yet the gap 

gene network responds in a way that is not far outside the distribution of possible responses 

under WT conditions. This fact is what makes decoding positional information in mutant 

embryos feasible.

Many features of the decoding maps in Figure 4 are expected from previous, qualitative 

characterizations of these mutant backgrounds. Thus, when we delete tsl the distortions are 

largely at the embryo’s poles (Figure 4A), to which tsl expression is confined (Martin et al., 

1994); and when we delete osk (which controls the localization of the nos signal), we see 

major distortions in the posterior (Figure 4C), consistent with nos being a posterior 

determinant (Wang and Lehmann, 1991). When we delete bcd there are major distortions in 

the anterior portion of the map (Figure 4B), where the concentration of Bcd protein is 

highest, but distortions of the map extend along the entire length of the embryo, in contrast 

to the more local effects of removing tsl or nos.

To further characterize the maternal patterning inputs, we examined double mutant 

backgrounds, in which the positional information is supplied by a single remaining maternal 

input (Figures 4D-F). When the only spatial information is supplied by tsl or nos (in 

embryos from mothers doubly mutant for bcd nos or bcd tsl, respectively), the resultant 
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embryos lack much of the WT gap gene pattern. Inferred positions based on the levels of the 

remaining gap genes at no point match the diagonal defined by the WT pattern.

One challenge in analyzing embryos with patterning information only from Bcd is that 

removal of nos and tsl results in uniformly high ectopic levels of maternal Hb (Hulskamp et 

al., 1989; Struhl, 1989). These uniform levels confer no positional information but the 

repressive activity of Hb as a transcription factor blocks expression of gap genes and thus all 

patterning in the abdomen (Gavis et al., 2008; Irish et al., 1989). As an alternative, we have 

generated germline clones (Hannon et al., 2017), which lack maternal hb activity, as well as 

positional cues from nos and tsl. These mutant backgrounds have a rich collection of pair-

rule stripes, providing a more detailed test of our theory. Surprisingly, decoding maps in 

these mutant embryos (Figure 4E) have a nearly continuous ridge of density, with a width 

close to that in WT, that runs nearly from x/L = 0.3 to x/L = 0.8. This is qualitatively 

consistent with the observation that these embryos show WT patterns between the gnathal 

and 6th abdominal segments (Hannon et al., 2017). It is also surprising that we can achieve 

precise (if distorted) decoding at x/L ~ 0.8, where the only source of positional information 

is the Bcd protein, which is present at very low concentrations (Little et al., 2011 and 2013).

Testing the dictionary, quantitatively

While the predictions of optimal decoding are in qualitative agreement with expectations 

from previous work, it is crucial that this theoretical framework makes detailed quantitative 

predictions about positions. The peaks of pair-rule expression are positional markers that 

predict features of the final body plan, and thus we take these peaks as a measure of the 

embryo’s own readout of positional information (Figure S5B–D). Independent of our work, 

it is much less clear how levels of pair-rule expression relate to development; therefore, the 

units of pair-rule gene expression are normalized within each genotype, and we make no 

attempt to compare these levels across genotypes.

As a first example, when we delete bcd (Figure 4B), quantitative distortions of the map 

extend even into the posterior half of the embryo, so that the map is shifted, and the plot of 

x* vs x (following the ridge of high probability in the map) does not have unit slope. In 

particular, expression levels found at x/L = 0.7 (or at x/L = 0.55) have their most likely 

decoded values at x*/L = 0.75 (or x*/L = 0.67). But in the WT embryo, positions x/L = 0.75 

and x/L = 0.67 are associated with the stripes vii and vi of expression for the pair-rule gene 

eve, as shown at left in Figure 4. If the machinery for interpreting gap gene expression is 

using the same dictionary that we have constructed mathematically, then we predict that the 

bcd deletion mutants should shift these two eve stripes to x/L = 0.7 and x/L = 0.55, which is 

what we see (Figure 4B). More dramatically, expression levels at x/L = 0.23 in the bcd 
mutant background are decoded as x*/L = 0.75 with high probability, and correspondingly 

there is an eve expression pattern at this anomalously anterior location. This is predicted to 

be not a displacement of the first (nearest) eve stripe, but rather a duplication of the seventh 

stripe, which is consistent with classical observations on cuticle morphology in these mutant 

backgrounds (Driever and Nüsslein-Volhard, 1988), and with recent RNAi/reporter 

experiments (Staller et al., 2015).
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The quantitative agreement between the decoding maps and the locations of the eve stripes 

extends to all six examples of single and double maternal mutants shown in Figure 4, as well 

as to the prediction of stripe locations for the pair-rule genes paired (prd) and runt (run) 

(Figures S3 and S4). Notably, there is good agreement both when the shifts are small, as 

with the deletion of tsl (Figure 4A), and when the shifts are much larger, resulting in the 

deletion of several stripes, as with the bcd osk and bcd tsl double mutants (Figures 4D and 

4F). In cases where the implied position of a stripe crosses a diffuse band of probability 

density in the decoding map, as in the anterior of the bcd tsl mutant, we might expect that 

there would be expression of eve but not a sharp stripe, and this is what we see (Figure 4F).

For simplicity Figure 4 shows decoding maps that are averaged over all embryos for each 

mutant line. If we focus instead on decoding maps for individual embryos, their variability 

predicts the embryo-to-embryo variability in pair-rule gene expression. In particular, for bcd 
tsl mutants the positions that map to the WT locations of eve stripes iv and v (x*/L = 0.56 

and x*/L = 0.62) vary substantially in the window 0.4 < x/L < 0.6. If we look at the eve 
expression patterns in individual embryos (thin lines at bottom of Figure 4F; for detailed 

analysis see Figure S6A-C), we see two peaks with variable positions, as predicted. For the 

bcd mutant, the average decoding map again has density at x*/L = 0.56 and x*/L = 0.62 

(Figures 4B and S6D-F), but when we decode the gap gene expression patterns from 

individual mutant embryos we find that these features vary not only in their position but 

even in their presence or absence, so that individual embryos are predicted to have a variable 

number of eve stripes, and this is again what we see.

There are a small number of errors in our predictions. In the osk mutants a posterior Eve 

stripe is observed where none is predicted (Figure 4C), and in bcd osk mutants we predict a 

variable number of Prd stripes (Figure S3D). A Run stripe is predicted at x/L ~ 0.6 where 

none is observed (Figure S4C); and we have no prediction for the very blurred band of Run 

expression at x/L > 0.7 (Figure S4C). In addition, in the bcd tsl mutant a Run stripe is 

predicted at x/L ~ 0.45 where none is observed (Figure S4F). Another failure occurs at a rare 

point where the combinations of gap gene expression are outside the range sampled in the 

WT embryos (Figure S2J), and thus we may be simply extrapolating the probability 

distributions too far.

In the WT embryo, local decoding of gap gene expression levels always leads to smooth 

maps, so that spatial averaging would not result in any systematic changes. Further, 

fluctuations in the expression level are correlated over significant distances (Krotov et al., 

2014), so that spatial averaging also would not reduce the noise or enhance the reliability of 

decoded positions. These arguments fail at a small number of locations in the mutants where 

the decoding map has a dramatic discontinuity, as in the osk mutants (Figure 4C). In this 

case, any spatial averaging would involve combining vastly different signals, and the 

outcome would depend on the details of the averaging process, so we lose predictive power 

based on the maps alone.

Finally, a more quantitative survey compares how well the predictions of pair-rule stripe 

positions based on the decoding maps correspond to the actual measured positions in the six 

mutants for all eve, run, and prd stripes (Figure 5). For nearly all of the 70 identifiable pair-
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rule stripes, the predicted position agrees with the measured position within the measured 

embryo-to-embryo variability. Further, direct comparison of the horizontal and vertical error 

bars in Figure 5 reveals that also the measured variability in stripe positions is in good 

agreement with the predicted variability (Figure S6G), again a highly nontrivial connection 

between the decoding map and embryo-to-embryo fluctuations in mutant gap gene 

expression. This rich and tight correspondence between measurements and predictions for 

stripe positions (and even their variability) implies that developmental enhancers in the 

Drosophila embryo implement a close analogue of the mathematically optimal decoding 

scheme, efficiently reading out gap gene expression levels and transforming them into a 

positional specification with 1% accuracy, sufficient for precise assignment of cellular 

identities along the AP axis.

Dynamics in wild-type embryos

Gap gene expression levels vary in time, even within n.c. 14 (Jaeger, 2011). In principle we 

could ask about the information contained in these expression levels, moment by moment, 

allowing for the possibility that the best decoding of this information also varies in time. If, 

on the other hand, we imagine that the embryo implements a single decoder, optimized—as 

in the discussion above—to extract maximum positional information at the moment when 

this information itself is maximal (Dubuis et al., 2013b, 2013a), then we necessarily predict 

that the map of implied vs actual position will change over time. Thus, following the same 

logic as in our analysis of mutants, the stripes of pair-rule gene expression should shift over 

time, which is known to happen. The question is whether our optimal decoder predicts the 

correct quantitative pattern of stripe dynamics.

The possibility of using dynamics as a test of optimal decoding hinges on our ability to stage 

the developmental time of fixed embryos with one minute precision during n.c. 14 (Dubuis 

et al., 2013b). Gap gene expression shows large temporal changes, with Kr, Gt, and Kni 

increasing in expression, and Hb concentration showing a complex non-monotonic change 

in the anterior with a concomitant increase in the posterior (top panels in Figure 6A–C and 

Movie M1). Simultaneous to these radical gap gene expression changes between hours 2–3 

of the embryo’s development, the posterior Eve stripes (especially stripes v–vii) undergo 

subtle but significant shifts towards the anterior (Figure 6D), consistent with previous 

reports (DiNardo and O’Farrell, 1987; Frasch and Levine, 1987).

To analyze these data, we use the same decoder as discussed above, which is constructed 

from data taken during a single 5-min time interval (40–44 min into n.c. 14). This decoder 

translates the changes in gap gene expression to a temporal sequence of decoding maps, 

visualized in an animation of successive probability distributions (Supp. Movie M2). Three 

selected snapshots at 15, 30, and 50 min into n.c. 14 highlight initially radical changes 

(Figure 6A vs 6B), followed by subtle refinements (Figure 6B vs 6C).

Fifteen minutes into n.c. 14, the decoding map has clear structure in the central region of the 

embryo, but pair-rule gene expression does not show indications of its final striped pattern. 

This delay in activation of pair-rule genes may reflect specific timing mechanisms, and the 

initial broad profiles of pair-rule gene expression may be controlled by different pathways, 

such as direct activation of Eve by Bcd (Small et al., 1992).
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Thirty minutes into n.c. 14, the situation is very different. Using the same decoder, gap gene 

expression now provides a nearly unambiguous map of implied positions for locations x/L > 

0.4 (Figure 6B). Six of the seven Eve stripes are now detectable at locations that are 

quantitatively consistent with the decoding map’s predictions. Stripe i occurs at a position 

where optimal decoding is ambiguous, and its position may reflect details of its activation 

mechanism that led to its early expression already 15 min into n.c. 14. Alternatively, this 

could be a “misprediction” of stripe ii, which is subsequently resolved.

While the decoding map at this time point exhibits relatively low positional errors, it also 

displays a small but significant systematic error, visible as a slight tilt and bend of the 

probability density away from the diagonal (Figure 6B). Posterior positions thus are decoded 

to be slightly further posterior, and the most posterior positions correspond to a broad smear 

of probability density at x*/L ~ 0.75. If the embryo is using this decoder, then Eve stripes ii-
vi should occur at positions slightly posterior to their locations at 40 min (when our decoder 

is constructed), and this agrees with experiment. The inferred position x*/L ~ 0.75 is the 

position at which Eve stripe vii should occur, and the smear in the decoding map then 

predicts that this stripe should be more diffuse and variable, as well as shifted on average to 

the posterior, all in agreement with the data.

As developmental time progresses, the ridge of high probability in the decoding map rotates 

counter-clockwise and sharpens in the posterior, predicting shifts of Eve stripes towards the 

anterior and a sharpening of Eve stripes i and vii, again consistent with our measurements 

(Figure 6C). The quantitative success of these predictions for the subtle dynamic shifts of 

Eve stripes in WT embryos is summarized in Figure 6E. Thus, using the single optimal 

decoder to instantaneously decode gap gene expression throughout n.c. 14 is nearly 

sufficient to account for the dynamics of Eve stripes, without making an explicit model for 

these dynamics.

Finally, we return to the question of how much information could be extracted from the gap 

gene expression patterns if we allow ourselves to build a different decoder at each moment 

in time (see Supp. Movie M3). Perhaps surprisingly, this adaptive decoding is largely 

unambiguous throughout the entire hour of n.c. 14, and improvements in the precision of 

decoding are quantitative rather than qualitative. Importantly this means that our prediction, 

e.g., of variability in Eve stripe vii arises not because there is no information available to 

define this position precisely, but rather because the decoder which is tuned to extract 

maximal information late in n.c. 14 fails to do so at earlier times. In this way, the dynamics 

of the stripes provide a deep if subtle test of the idea that the enhancers controlling pair-rule 

expression implement the optimal decoder that we have constructed theoretically.

Discussion

We have focused here on just one step in the flow of information through a genetic network, 

the transformation from broad patterns of gap gene expression to the sharp stripes of pair-

rule gene expression. But even this one step is complex. The approach we have taken is to 

use an optimization principle as a way of circumventing this complexity. This approach is 

common in neuroscience, where there is a productive distinction between what a neural 
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circuit is computing and how it is being computed (Marr, 1982), and is gaining traction in 

other biological contexts. We emphasize that, in the version considered here, optimality is 

not a matter of opinion or aesthetics, but rather a well defined theory that makes quantitative 

predictions (Bialek, 2012).

Quantitative tests of optimality.

We pursued the hypothesis that cells make use of all the information available from local 

measurements of gap gene expression levels at a single moment in time. If the embryo 

makes optimal use of this information, then the theory predicts a parameter-free connection 

between two different classes of experimental data: decoding maps built from gap gene 

expression and the embryo’s own readout of positional information, via pair-rule expression 

patterns. If, on the other hand, the system makes sub-optimal use of the gap gene signals, 

and restores precision by appeal to other signals, then the optimal decoding algorithm will 

not predict the observed map distortions. This is a detailed and stringent test of the theory: as 

summarized in Figure 5, we have seventy pair-rule gene stripes across six different mutants 

where theory and experiment agree quantitatively, plus more than a dozen instances in which 

theory correctly predicts diffuse or variable stripes.

Constraints.

Arguments from optimality often are suspect because they ignore many details. We pose 

optimization as an abstract mathematical problem, independent of the biological hardware 

that implements the functions we are optimizing, and independent of the ancestral 

mechanisms from which this hardware evolved. Thus, optimization is equivalent to the 

hypothesis that real molecular mechanisms are sufficiently flexible to interpret transcription 

factor concentrations precisely, and that evolutionary pressures have been strong enough to 

drive these mechanisms close to a mathematically-defined optimum. It is surprising that 

such an abstract principle makes successful quantitative predictions without reference to 

molecular mechanisms. Indeed, for many years, detailed models of genetic networks have 

been tested by making predictions of mutant phenotypes, but we are unaware of any 

example in which comparably detailed quantitative agreement has been achieved.

Spatial and temporal averaging.

The hypothesis that cells make optimal use of local gap gene expression levels at a single 

moment in time raises the question of whether noise levels could be reduced by spatial and 

temporal averaging, so that the system in fact fails to reach its true optimal performance. 

However, the protein concentrations that we analyze accumulate in time, which means that 

signals at one moment already reflect substantial temporal averaging, as can be seen by 

comparing noise levels in mRNA and protein (Little et al., 2013). The success of optimal 

decoding based on a single moment in time to capture the dynamics of Eve stripes in WT 

embryos also speaks against extra time averaging. Further, we have argued that the precision 

of the gap gene response to maternal inputs depends on some degree of spatial averaging 

(Little et al., 2013), and this is reflected in spatial correlations of the noise (Erdmann et al., 

2009; Gregor et al., 2007), which may be enhanced by other network interactions (Krotov et 

al., 2014); a consequence of these correlations is that further spatial averaging will not result 

in substantially improved estimates of absolute position.
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The above arguments suggest that there is no extra information that can be extracted by 

further averaging, and that dynamics at the level of pair-rule genes may just be a reflection 

of dynamics at the level of gap genes. This does not mean that no such averaging occurs: in 

the same way that spatiotemporal dynamics within the gap gene network may be essential in 

extracting maximal information from the maternal inputs (Sokolowski and Tkačik, 2015; 

Tkačik et al., 2008, 2012; Walczak et al., 2010), such dynamics may be important for 

implementing the optimal decoding algorithm that we have identified here, and for 

insulating it from spurious noise sources. Small amounts of spatial averaging would change 

our predictions only in those places where the mutant maps have sharp discontinuities, and 

indeed the few incorrect predictions of the theory are at such discontinuities (e.g., Figure 

4C).

Further tests of the theory.

Simultaneous measurements of pair-rule expression with all of the gap genes would allow us 

to test directly whether, for example, the predicted variations in stripe number are correct, 

embryo by embryo, rather than just in aggregate. More subtly, since there are spatial 

correlations in the fluctuations of gap gene expression levels (Krotov et al., 2014), our 

decoding predicts that there should be correlations in the small positional errors that occur in 

WT and mutant embryos, and hence the fluctuations in position of the pair-rule stripes must 

also be correlated. We note that while we have measured expression patterns along the 

dorsal side at the mid-saggittal plane of the embryo, the spatial patterns of gap and pair-rule 

expression vary along its dorso-vental (DV) axis. If the decoding map changes with DV 

positions, this would imply that the pair-rule genes read simultaneously AP and DV 

positional information.

Most fundamentally, the molecular mechanisms that lead from gap gene product 

concentrations to pair-rule expression must implement the dictionary that we have 

developed. Thus, we should be able to predict the functional logic of these developmental 

enhancers by asking that they provide an optimal decoding of positional information, rather 

than fitting to data. More generally, the approach presented here is directly applicable to any 

system where positional information is encoded through spatially distributed molecular 

concentrations (Gregor et al., 2014). One such example is the decoding of position in the 

developing vertebrate neural tube, where an optimal decoding from antiparallel morphogen 

gradients makes similar quantitative predictions (Zagorski et al., 2017).

Connections to classical ideas.

Our maps of implied position as a function of actual position provide a quantitative, 

probabilistic version of the older idea that one can plot cell fate vs position—a fate map-

even in mutants (Schüpbach and Wieschaus, 1986). In its original form, this depends on the 

fact that what we see in the mutant are rearrangements, deletions, and duplications, but no 

new pattern elements. It usually is assumed that this arises from canalization (Siegal and 

Bergman, 2002; Waddinton, 1942): although the early stages of pattern formation might 

generate new and different signals in response to the mutation, subsequent stages of 

processing force these signals back into a limited set of possibilities. What we see here is 

that even signals that are responding immediately to the primary maternal inputs can be 
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decoded to recapitulate the patterns seen in the WT. There is no need for subsequent steps to 

drive the pattern back to something built from WT elements, since it already is in this form.

Implications for development.

In the prevailing view of Drosophila development, positional information is “refined” across 

successive layers of the patterning network (DiNardo and O’Farrell, 1987; Surkova et al., 

2008). The gap genes process noisy and variable maternal signals to establish sharp domain 

boundaries. These serve then as anchors for the even more refined patterns of pair-rule 

genes. This refinement process suggests that the gap gene outputs should not suffice for 

precise and unique positional specification. In contrast, what we see here is that precise 

positional information is available and this precision is implemented in the Drosophila 
patterning system as early as during the 14th interphase (Kauffman, 1980). This surprising 

finding raises the question about the role of pair-rule and subsequent regulatory layers. 

While beyond the scope of this work, one interesting possibility is that subsequent layers 

serve to transform the positional information, fully available already at the gap gene layer, 

into an explicit commitment to repeated but discrete cell types, arranged in a segmental 

pattern (Lawrence, 1981; Martinez Arias et al., 1988; Simcox and Sang, 1983).

Coda.

Perhaps the most important qualitative conclusion from our results is that precision matters. 

We are struck by the ability of embryos to generate a body plan that is reproducible on the 

scale of single cells, corresponding to positional variations ~ 1% of the length of the egg. As 

with other examples of extreme precision in biological function, from molecule counting in 

bacterial chemotaxis to photon counting in human vision (Rieke and Baylor, 1998; Segall et 

al., 1986), we suspect that this developmental precision is a fundamental observation, and to 

the extent that precision approaches basic physical limits it can even provide the starting 

point for a theory of how the system works (Bialek, 2012; Tkačik and Bialek, 2014). But 

precision in the final result of development could arise from many paths. We have a 

theoretical framework that suggests how such precision could arise from the very earliest 

stages in the control of gene expression, if this control itself is very precise, and this has 

motivated experiments to measure gene expression levels with correspondingly high 

precision. What we have done here is to bring theory and experiment together, predicting 

how quantitative variations in gap gene expression levels should influence the developmental 

process on the hypothesis that the embryo makes optimal use of the available information, in 

effect maximizing precision at every step. Genetics then gives us a powerful tool to test these 

predictions, manipulating maternal inputs and observing pair-rule outputs. These rich data 

are in detailed agreement with theory, providing strong support for this precisionist view.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Thomas Gregor (tg2@princeton.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains—Embryos lacking single maternal patterning systems were obtained from 

females homozygous for bcdE1, osk166 or tsl4. For embryos with positional information only 

from the Osk patterning system, we used females homozygous for bcdE1 etsl1. To generate 

Bcd-only germline clones lacking WT maternal contributions from hb, nos and tsl, FRT – 

hbFB — nosBNetsl1/TM3 females were crossed to y w p[ry+FLP]22 ; p{ry[+t7.2] = 

neoFRT}82B etsl4 p{w[+mC] = ovoD1 – 18} / TM3 males and the resultant larvae subjected 

to three hour-long heat shocks at 37° C. To obtain embryos with input only from the Torso 

patterning system, we used bcdE2 osk166 females for gap gene measurements and bcdE1 

nosBN females for pair-rule embryos. The segmentation phenotypes of osk166 and nosBN are 

equivalent (Wang et al., 1994). Embryos lacking all maternal patterning systems were 

obtained from triply mutant bcdE1 nosBN etsl1 females. All stocks were balanced with TM3, 

Sb.

METHOD DETAILS

Measuring gap gene expression—Gap protein levels were measured as previously 

described (Dubuis et al., 2013b). We draw particular attention to the discussion of 

experimental error as it is especially important for the present analysis, which includes 

estimates of the covariance matrix. As before, most of our analysis is focused on a narrow 

time window, 40–44 min into n.c. 14. Expression levels were normalized such that the mean 

expression levels of WT embryos ranged between 0 (assigned to the minimal value across 

the AP axis of the mean spatial profile, separately for each gap gene) and 1 (similarly 

assigned to the maximal value across the AP axis). In detail, gene expression profile gi
α of 

any embryo α was calculated as:

gi
α =

Igi
α − Imin, gi

wt

Imax, gi
wt − Imin, gi

wt ,

where Imin
wt  and Imax

wt  are the lowest and highest raw fluorescence intensity values of the mean 

WT embryo fluorescence profile; Igi
α  is the raw fluorescence profile of the particular embryo, 

which can be either mutant or WT. Note that this normalization simply assigns a 

conventional unit of measurement to gap gene concentrations; no per-embryo profile 

“alignment” is used to reduce embryo-to-embryo variance. Mean expression levels for the 

four gap genes can be seen at the top of Figure 3D; this figure also shows the standard 

deviation of each expression level as a function of position, in the width of the shaded 

regions. We recall that these standard deviations are the square–root of the diagonal 

elements in the covariance matrix Cij(x). In Figure S1A we show measurements of the six 

independent off–diagonal elements of this matrix, again as a function of position. Analyzing 

the covariance matrix estimates across replicates of WT data sets, Figure S1B compares the 

errors in our estimates of these matrix elements within single experiments to the variability 

across experiments; they are in good agreement.
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Gap gene expression in mutants—To quantify mutant gap protein levels in units of 

WT protein levels, mutants and WT embryos were stained together, and imaged alongside 

on the same microscope slide in a single acquisition cycle. Fluorescence signals from mutant 

embryos were normalized to their WT reference for each gap gene, so absolute changes in 

gap gene concentrations—not only changes in the shape of the gap gene spatial profiles—

were retained in all analyses. Thus, an expression level of g = 0.72 in a mutant means that 

the relevant protein is at the same absolute concentration as when we see g = 0.72 in the WT. 

A summary of results on the mutant gap gene expression profiles (mean ± standard deviation 

across embryos) is given in Figure S2A-H.

Measuring pair-rule gene expression—To image pair-rule proteins, we used guinea 

pig anti-Runt, and rabbit anti-Eve (gift from Mark Biggin) polyclonal antibodies, and 

monoclonal mouse anti-Pax3/7(DP312) antibody (gift from Nipam Patel). Secondary 

antibodies are, respectively, conjugated with Alexa-594 (guinea pig), Alexa-568 (rabbit), and 

Alexa-647 (mouse) from Invitrogen, Grand Island, NY. Embryo fixation, antibody staining, 

imaging and profile extraction were performed as previously described (Dubuis et al., 

2013b). Our goal was to predict features of pair-rule protein concentration profiles, such as 

the locations of expression peaks, for which comparisons between WT and mutant 

expression levels of pair-rule genes were not essential. Pair-rule protein profiles were 

measured in mutant embryos in time widows of 45- to 55-min into n.c. 14; for consistency 

with gap gene analyses and convenience we normalized such that the mean expression levels 

for each gene in each batch of embryos ranged between 0 and 1; individual profiles were 

scaled as described (Dubuis et al., 2013b; Gregor et al., 2007), which does not affect the 

locations of peaks and troughs in the striped profiles. As an exception, we report pair-rule 

expression levels in triple maternal mutants (bcd nos tsl) in WT units, because the pair-rule 

genes are expressed uniformly and therefore lack positional features.

DATA ANALYSIS AND THEORY

Constructing the decoding maps—To construct decoding maps and subsequently 

predict pair-rule expression stripes, Equations (3) and (4) require us to estimate the 

distribution of gap gene expression levels at each position, P({gi∣x), from data. Direct 

sampling might be feasible when we think about one gene, but in thinking about the full gap 

gene network we are trying to describe a (joint) probability distribution in a four 

dimensional space, and now we certainly don’t have enough data to describe the distribution 

by binning and sampling alone. Instead, we approximated the embryo-to-embryo 

fluctuations in gene expression as Gaussian with mean and (co)variance that vary with 

position. In previous work we tested this approximation; while we can see deviations from 

Gaussianity (Krotov et al., 2014), the Gaussian approximation gives very accurate estimates 

of the positional information carried by the expression levels of individual genes (Dubuis et 

al., 2013a; Tkačik et al., 2015), which is most relevant for the decoding that we attempt here.

For a single gene, the Gaussian approximation is
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P(g ∣ x) = 1
2πσg

2(x)
e
− χ1

2(g, x) ∕ 2
,

where χ1
2(g, x) measures the similarity of the gene expression level to the mean, g(x), at 

position x,

χ1
2(g, x) = (g − g(x))2

σg
2(x)

,

and σg(x) is the standard deviation in expression levels at point x. Given measurements of 

gene expression vs position in a large set of embryos, we can compute the mean and 

variance in the standard way, so that these two equations can be applied directly to the data.

The generalization of the Gaussian approximation to the case where coding and decoding 

are based on a combination of K genes simultaneously is given by Equations (1) and (2) in 

the main text, which depend on C(x), the covariance matrix of fluctuations in the expression 

of the different genes at point x. Figures S1A and S1B show the estimation of covariance 

matrix elements of gap gene fluctuations across embryos,

Cij(x) = (gi
α(x) − gi(x))(gj

α(x) − gj(x))
α

,

where ⟨·⟩α denotes averaging over embryos indexed by α. Note that the covariance matrix, 

as well as the mean profiles gi(x) themselves, are a function of position along the AP axis.

Figure 2 shows a step-by-step procedure for constructing a “decoding dictionary” based on a 

single gap gene, Kr, from measured data, and a “decoding map” for a single WT embryo; the 

decoding map presented in Figure 3A is an average over 38 such individual decoding maps. 

Similarly, top panels of Figure S1C show the profiles of all four individual gap genes in the 

WT embryos, while the bottom panels show the corresponding decoding maps. As with the 

case of Krüppel in Figure 2, all of these maps show substantial ambiguities, where the signal 

at one point in the embryo is consistent with a wide range of possible positions. Ambiguity 

arises whenever a vertical slice through these density plots encounters multiple peaks, but in 

the case of decoding based on single genes these ambiguities are so common that they result 

in either vast swaths of grey or in intricate folded patterns. In particular locations—

specifically, at the flanks of mean expression profiles where the slope of the profile is high—

the distributions P(x*∣x) become highly concentrated, indicating that the quantitative 

expression levels of individual genes provide the ingredients for precise inferences of 

position, as suggested previously (Dubuis et al., 2013a; Gregor et al., 2007). Importantly, 

only posteriors for single gap genes (e.g. the distribution P(x∣Kr) in B) can be directly 

visualized (decoding with two genes, for instance, requires a 3-dimensional visual 

representation). Decoding maps P(x*∣x) (Equation 4), however, can be visualized for an 

arbitrary number of genes.
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Figure S1D shows that combining two genes always reduces ambiguity relative to the single 

gene case, but does not eliminate it entirely, and a similar trend is observed in Figure S1E 

with triplets of gap genes. Once we include all four genes (Figure 3D), ambiguity is 

essentially absent and the maps sharpen further. We can see the sharpening as an increase is 

the probability density P(x*∣x), since by normalization narrower distributions have to have 

higher density at their peaks. We can quantify this sharpening by computing the standard 

deviation of these distributions and then finding the median over x; a summary of these 

results is given in Figure S1I.

We emphasize that our decoding of positional information is based on the absolute 

concentrations of the gap gene products. We have chosen units in which the maximal mean 

expression levels are equal to one, but there is no normalization of the individual embryos. 

Further, we use the graded levels of expression explicitly in our calculations, and one can see 

this even in the case of a single gene (e.g. for Kr in Figure 2), where the most precise 

information is conveyed in the region where the expression level is varying. This is in 

contrast to a classical view of gap genes as being expressed in “domains” whose boundaries 

provide the anchors for further refinement of the pattern. In previous work we have shown 

that any attempt to discretize gap gene expression into on/off domains results in a substantial 

loss of positional information (Dubuis et al., 2013a), and in Figure S1F-H we show how this 

loss of information translates into less precise decoding. We can define on/off domains 

either by thresholding simply at the midpoint of the expression range (g = 0.5; Figure S1F), 

or by adjusting thresholds separately for each gap gene to optimize the decoding map 

(Figure S1G). In both cases we use the optimal decoding of the discretized signals, but 

nonetheless there is a dramatic loss of precision.

We further emphasize that the notion of a threshold, which is well defined for a single 

signal, is more ambiguous in the case where multiple concurrent signals drive patterning, as 

with the gap genes. The idea of putting independent, and possibly different, thresholds on 

each of the inputs separately may appear as a natural extension of the single-gene case, but 

this idea already entails a drastic (and untested) independence assumption. It would be 

equally possible that the relevant patterning thresholds act on some unknown, even 

nonlinear, combination of the four gap gene signals. In particular, in biophysical models of 

enhancer function where the gene expression is controlled by the concentrations of multiple 

inputs, and where the threshold is determined by the sigmoid activation function of the 

enhancer, the interpretation of thresholds applying to nonlinear combinations of inputs is 

more realistic than the interpretation of different thresholds independently applying to each 

of the inputs. Furthermore, the picture of independent thresholds acting on individual gap 

genes leaves completely unanswered the question of how binarized gap gene profiles can be 

read out in a biophysically realistic fashion to combinatorially drive the expression of their 

target genes. Thus, graded expression levels carry more information, and it is not more 

“biologically plausible” to assume that only on/off distinctions are relevant.

Exploring mutant embryos—We analyzed patterns of gap gene expression in six mutant 

lines of flies, deficient in one or two of the three maternal inputs to the gap gene network, as 

summarized in Figure S2. To construct decoding maps for mutant embryos, as in Figure 4, 

we first computed posterior distributions P(x∣{gi)) as prescribed by Equation (3) from WT 
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embryo data, and evaluated these distributions at gap gene expression levels measured in 

mutant embryos. But the WT expression levels fill only a very small region of the full four 

dimensional space of possibilities; if the expression levels in mutant embryos fell largely 

outside this region, then we would be extrapolating too far from the WT measurements and 

could not make reliable inferences. To test whether this could be the case, we computed χ2 

(Equation 2) between the observed combinations of expression levels and the mean 

expression levels expected at each position in the WT, and compared that to the χ2 values 

for mutant embryos.

Figure S2I shows the cumulative distribution of χ2 across the entire population of WT 

embryos, from all six experiments. Normalized per gene, the mean of χ2 is one, but the 

distribution has a tail extending to nearly ten times this value. To construct a comparable 

distribution for mutant embryos, we first note that the gene expression values at one point x 
can be decoded to a position x′ that is very far from x. Consequently, in mutant embryos we 

looked for the point x’ in the WT that achieved the minimum of χK
2 ({gi}, x′) over all possible 

x′ (which is the location that the mutant gap gene profiles decode to) and then look at the 

cumulative distribution of χ2 at these decoded locations.

As expected, χ2 values in mutant embryos are larger than in the WT, but there is a surprising 

degree of overlap between the two distributions: the largest value of χ2 that we observe in 

the WT embryos is larger than 98% of the values that we see in the mutants, and Figure S2J 

shows that the extreme values of χ2 in the mutants are confined to small regions of the 

embryo, rather than being widely distributed. Although mutant background induces huge 

changes in the inputs of the gap gene network and in the gap gene profiles themselves, the 

gap gene network responds in a way that is not so far outside the distribution of possible 

responses under natural conditions. This fact is what makes decoding positional information 

in mutant embryos feasible.

The mutant fly lines that we analyze involve manipulation of three maternal input signals to 

the gap gene network, and our discussion assumes that these are the source of positional 

information along the AP axis. It thus is an important control to delete all three of the inputs, 

and demonstrate the positional information is absent. This is shown in Figure S2K, where 

we apply our optimal decoding to the patterns of gap gene expression that we observe in this 

triple mutant fly line. The result is clear, in that the decoding map is flat–all cells have gap 

gene expression levels that imply a position near the middle of the embryo. Correspondingly, 

pair-rule gene expression is spatially uniform, rather than striped.

Predicting pair-rule stripe positions—Decoding maps make parameter–free 

predictions for the locations of positional markers in mutant embryos. To test these 

predictions, we compare to the locations of expression peaks for the pair-rule genes. If a cell 

at position x in the mutant embryo has expression levels for the gap genes that lead to a high 

probability of inferring a position x* = xs, where xs is the position of a pair-rule stripe in the 

WT, then we expect that there will be a peak in pair-rule gene expression at the point x in the 

mutant. Mathematically, this process (shown graphically in Figure 4) proceeds as follows: 

we construct Pmap
α (x∗ ∣ x) for a mutant embryo α, and look at the line x* = xs; this gives us a 
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(non–normalized) density ρs
α(x) = Pmap

α (x∗ = xs ∣ x), and there should be pair-rule stripes at 

the local maxima of this density. Because stripes in the WT are driven by different enhancers 

and are thus not identical, it is important that our calculation should predict the occurrence 

of a particular identified stripe s (e.g., s could be eve stripe iv) at x.

The construction of the density ρs
α(x) is shown in Figure S5 for each stripe of Eve, Prd, and 

Run, and for each individual WT embryo. There is an excellent correspondence between the 

average pair-rule gene expression profile and the set of individual embryo densities for all 

stripes. Interestingly, we also observe that the measured width of the pair-rule stripes s 
roughly matches the typical widths of the corresponding density functions, ρs(x), hinting 

that the decoding model may be predictive not only about pair-rule stripe locations but also 

about quantitative pair-rule gene expression levels, an issue to be explored in subsequent 

work.

Predicting pair-rule stripe positions in mutant embryos—Figure 4 shows the 

average decoding maps for six different mutants, and the corresponding predictions for the 

locations of eve stripes. Figures S3 and S4 show the same maps, but with predictions for prd 

and run stripes, respectively. These average maps, Pmap(x∗ ∣ x) = Pmap
α (x∗ ∣ x)

α
, can be 

easily plotted as a single map, and then decoded analogously to the procedure outlined 

above: we looked for the position x where the decoding map peaks if the inferred position x* 

is equal to a known pair-rule stripe location, x* = xs in the WT. Decoding the “mean pair-

rule stripe position” in this manner does not differ from decoding single embryos to predict 

the pair-rule stripe positions individually, and then taking the average prediction. But by 

analyzing the decoding maps from individual embryos we can also predict fluctuations in 

stripe locations, a fact we used in making Figure 5.

Decoding from individual embryos predicts variability in stripe position, shape, and in the 

total number of observed stripes. Figure S6A-F shows examples of individual Eve profiles 

where some of the stripes iii, iv, v were either missing or had a broad, poorly localized 

“diffuse” profile in mutant backgrounds. These phenomena, specific to these stripes, are 

predicted in the correct mutant backgrounds from the individual embryo decoding maps.

A detailed description of individual embryo pair-rule stripe predictions in mutant 

backgrounds, analogous to those for the WT, is shown in Figure S5. In these panels, we 

denote separately diffuse stripes, as well as a small number of observed-but-not-predicted 

and predicted-but-unobserved stripes. All non-diffuse predictions across the three pair-rule 

genes and all mutants are summarized in Figure 5. Figure S6G analogously shows, for the 

same non-diffuse stripe predictions, a summary of observed vs predicted stripe position 

variability across embryos.

The significance of absolute concentrations—We invested substantial experimental 

effort to measure gap gene expression levels in mutant embryos side-by-side with the WT 

controls, so that absolute concentrations can contribute to the decoding. But do they? In 

Figure S6H-K we show the effect of the absolute level on the decoding map, and 

consequently on the pair-rule stripe prediction performance. In the bcd mutant background 
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(Figure S6H), gap gene expression levels are strongly perturbed in shape but also suppressed 

in magnitude by ~ 2 ×. Decoding these profiles gives predictions of pair-rule stripes that 

agree very closely with data (Figure S6I, black symbols). In contrast, when mutant profiles 

are individually normalized so that they span the range of expressions between 0 and 1—in 

essence, keeping the profile shape but undoing the magnitude effect-leads to much worse 

predictions of pair-rule stripes (Figure S6I, red).

In the tsl mutant background, the effect of absolute concentrations is subtler. In these 

mutants, Kr and Kni are overexpressed by ~ 10 – 20% relative to the WT, which leads to a 

slight deformation in the decoding map in the posterior (x > 0.5), and this effect disappears 

if we normalize to keep only relative expression levels. While the effect is smaller than in 

the bcd background, pair-rule stripes at 0.6 < x < 0.7 are consistently predicted better using 

absolute gap gene concentrations. In sum, both for large scale and precision effects on our 

pair-rule predictions, being able to measure gap gene concentrations relative to the WT is 

crucial. This suggests as well that the embryo itself responds to precisely determined, 

absolute concentrations of signaling molecules.

QUANTIFICATION AND STATISTICAL ANALYSIS

We imaged n = 292 WT embryos simultaneously stained fluorescently against the four trunk 

gap genes. We imaged n = 178 WT embryos simultaneously stained fluorescently against 

three pair-rule genes. Analysis on embryos—simultaneously stained against the four trunk 

gap genes—was performed on n = 38 WT embryos in the 40-44 min time window, and n = 

102 WT embryos in the 38-48 min time window. Analysis on embryos—simultaneously 

stained against the three pair-rule genes—was performed on n = 34 WT embryos in the 

45-55 time window. The covariance matrix of fluctuations in gap gene expression levels was 

computed for 7 independent WT data sets (n = 37,29,43,32,29,24, and 102 embryos). Gap 

gene protein expression in mutant backgrounds was analyzed in the 38–48 min time window 

on n = 40 etsl4 embryos, n = 20 bcdE1 embryos, n = 28 osk166 embryos, n = 15 bcdE2 osk166 

embryos, n = 19 Bcd-only germline clone embryos, n = 31 bcdE1 etsl1 embryos, and n = 16 

bcdE1 nosBN tsl1 embryos. Pair-rule gene protein expression in mutant backgrounds was 

analyzed in the 45–55 min time window on n = 14 etsl4 embryos, n = 12 bcdE1 embryos, n = 

11 osk166 embryos, n = 17 bcdE2 nosBN embryos, n = 32 Bcd-only germline clone embryos, 

n = 20 bcdE1 etsl1 embryos, and n = 26 bcdE1 nosBN tsl1 embryos.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Optimal decoding of gene expression levels can be derived from first 

principles

• Applied to Drosophila gap genes it specifies individual cells with 1% 

precision

• Decoder correctly predicts downstream events in wild-type and mutant 

embryos

• Molecular logic of gap gene readout must implement nearly optimal 

computations
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Figure 1: Decoding in a genetic network.
(A) In the early Drosophila embryo, maternally provided morphogens (bcd, nos, tor) 
regulate the expression of gap genes (kni, kr, gt, hb), which is visualized here in a mid-

sagittal slice through an embryo during n.c. 14 (scale bars, 100 μm). Enhancers 

(schematically depicted as circles) respond to combinations of gap protein concentrations to 

drive pair-rule gene expression that occurs in a precise and reproducible striped pattern 

(Gregor et al., 2014). (B) Schematic depiction of the decoding problem. Positional 

information is supplied by three morphogens primarily acting in the anterior A, posterior P, 

or terminal T domains. The network can be viewed as an input/output device that encodes 

physical location x in the embryo using concentrations {g1, g2, g3, g4} of the gap gene 

proteins. Optimal decoding is a well-posed mathematical problem, whose solution is found 

in the posterior distribution P(x*∣{gi}) (Equation 3); results can be visualized as a decoding 

map, P(x*∣x) (Equation 4 and Figure 2). The posterior distribution is constructed from 

measurements (average gap gene expressions, {g‒i(x)} and their covariability, Cij(x), and 

contains no arbitrary parameters. (C) Testable predictions from optimal decoding. Pair-rule 

stripes are expected wherever decoding a combination of concentrations yields an implied 

position, X*, associated with a pair-rule stripe, Xstr
∗ , in WT.
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Figure 2: Coding and decoding of position in fly embryos.
(A) Optical section through the midsagittal plane of a Drosophila embryo with 

immunofluorescence labelling for Krüppel (Kr) protein (scale bar, 100μm). Raw dorsal 

fluorescence intensity profile of depicted embryo (blue curve, gα(x)) and encoding 

probability distribution P(Kr∣x) (gray) constructed from 38 WT embryos of ages between 

40–44 min into n.c. 14. Position x along the AP axis is normalized by embryo length L, with 

x/L = 0 (1) for the anterior (posterior) poles. Probability distribution of Kr expression levels 

(left). (B) Decoding probability distribution P(x∣Kr) constructed via Bayes’ rule from the 

measured probability distributions P(g) and P(g∣x) in (A), using a uniform prior PX(x) = 1/L. 

P(x∣Kr) is input for the optimal decoder, which maps Kr levels to positions along the AP 

axis. Posterior probability distributions of locations x consistent with observing Kr levels 

0.05, 0.5, or 1 are the conditional probability densities P(x∣Kr) shown in top panels. (C) 

Decoding map Pg
α(x∗ ∣ x) for a single embryo α. Top cartoons display regions of inferred 

positions based on Kr alone. Dynamic range (gray bar, right) applies to all three probability 

panels. See also Figure S1.
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Figure 3: Decoding with increasing number of gap genes in WT embryos.
Top row: dorsal fluorescence intensity profile(s) from simultaneously stained embryos 

(mean ± SD); units scaled so that 0 (1) corresponds to minimum (maximum) mean 

expression. Bottom row: decoding maps, P(x*∣x) from Equation (4), averaged over 38 

embryos. (A) Decoding using single gene (Kr, blue) (also Figures 2 and S1C). (B) Decoding 

using a combination of two genes, Kr (blue) and Hb (red) (also Figure S1D). (C) Decoding 

using three genes, Kr (blue), Hb (red), and Gt (orange) (also Figure S1E). (D) Decoding 

using all four gap genes. See also Figure S1.
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Figure 4: Decoding maps and stripe locations in mutant embryos.
Average decoding maps for six maternal mutant backgrounds (whitened APT symbols above 

the panels signify whether the anterior A, posterior P, or terminal T systems are deficient): 

(A) etsl4; (B) bcdE1; (C) osk166; (D) bcdE2 osk166; (E) Bcd-only germline clone; (F) bcdE 

etsl1; same gray-scale as in Figure 3D. Measured Eve expression profiles in WT embryos 

(left side of A and D), and in mutant embryos (below each corresponding decoding map); 

individual profiles (gray), mean profile (black), and peak locations (black dots), units scaled 

so that 0 (1) corresponds to minimum (maximum) mean Eve expression within each 

genotype. Average locations of WT Eve stripes (horizontal dotted lines) are used to predict 

Eve stripes in the mutant backgrounds: stripes expected at AP locations in mutant embryos 

where horizontal dotted lines intersect peak(s) of the probability density. Open black circles 

mark intersections of horizontal dotted lines and respective average locations of Eve stripes 

in mutant embryos (vertical dotted lines). Variable number of Eve stripes highlighted by 

horizontal starred bars (see B and F; see Figure S6). Red line in C marks observed Eve stripe 

that is not predicted by the decoding map. Red line in E shows a predicted Eve stripe that is 
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not observed in the mutant embryo. When horizontal lines intersect a broad probability 

distribution, we expect to observe diffuse Eve stripes as in F. A shows additional predictions 

for Run (cyan) and Prd (magenta) stripes; the dense collection of markers traces the ridge of 

implied positions in the decoding map with very high accuracy. See also Figures S2, S3, and 

S4 and Movie M1.
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Figure 5: Predicted vs observed locations of 70 pair-rule stripes in mutant embryos.
Horizontal axis: measured pair-rule stripe positions in mutant embryos (mean ± SD across 

embryos of a given genotype). Vertical axis: predictions from decoding the gap gene 

expression levels in mutant embryos (mean ± SD across embryos of a given genotype). 

Color scale indicates the displacement of the observed peak from its WT location (Δx/L). 11 

diffuse stripes are analyzed separately (Figure S5). In addition, we observe, but do not 

predict 3 stripes; and predict, but do not observe 3 stripes. See also Figures S5 and S6.
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Figure 6: Decoding maps from dynamic gap gene expression patterns.
(A–C) A single decoder built from gap gene expression at 40–44 min into n.c. 14 is used to 

decode gap gene expression patterns in embryos from 15 ±2, 30 ± 2, and 50 ± 2 min into n.c. 

14, respectively. Grayscale as Figure 2D. Top panels show the mean gap gene expression ± 

s.d. (shading) across embryos in each decoded time window. Bottom panels show mean 

(black line) and individual (gray lines) profiles of Eve patterns 8 min later (delay accounts 

for time to synthesize Eve proteins (Edgar et al., 1986). Dots in main decoding panels mark 

intersections of average Eve peak locations in time window 45–55 min n.c. 14, with the 

average locations of Eve peaks in the corresponding time window for each panel. Light grey 

open circles in C correspond to locations of Eve peaks in B, to illustrate shift. Note that Eve 

stripe vii shifts by ~ 0.06L during the 20 min separating the two time windows. (D) 

Measured (black dashed line) and predicted (blue dashed line) mean locations of Eve peaks 

throughout n.c. 14 marked at 5 min intervals (triangles), horizontal lines mark three time 

Petkova et al. Page 32

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



windows in A–C. (E) Predicted vs measured Eve stripe locations throughout n.c. 14. Time 

(min) depicted in blue scale bar. See also Movies M1 and M2.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

D. melanogaster: Oregon-R, wild-type laboratory stock Flybase:
FBst1000077

D. melanogaster: bcdE1 mutation laboratory stock Flybase:
FBal0001080

D. melanogaster: osk166 mutation laboratory stock Flybase:
FBal0013308

D. melanogaster: tsl4 mutation laboratory stock Flybase:
FBal0017198

D. melanogaster: bcdE2 osk166 mutation laboratory stock N/A

D. melanogaster: bcdE1 nosBN mutation laboratory stock N/A

D. melanogaster: bcdE1 tsl1 mutation laboratory stock N/A

D. melanogaster: bcdE1 nosBN tsl1 mutation laboratory stock N/A

D. melanogaster: hbFB mutation laboratory stock N/A

Bcd-only germline clones produced in b hsFLP; FRT82B hbFB nosBN tsl4/FRT82B tsl4 
OvoD females

laboratory stock N/A

Antibodies

Gap gene antibodies and secondary antibodies Dubuis et al. (2013) N/A

Pair-rule gene antibodies (guinea pig anti-Runt) Gift M Biggin (Berkeley) N/A

Pair-rule gene antibodies (rabbit anti-Eve) Gift M Biggin (Berkeley) N/A

Pair-rule gene antibodies (mouse anti- Pax3/7(DP312)) Gift N Patel (Berkeley) N/A

Secondary antibodies: Alexa-594 (guinea pig), Alexa-568 (rabbit), and Alexa- 647 (mouse) Invitrogen, Grand Island, NY N/A

Software and Algorithms

Custom Matlab code This paper N/A
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