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We undertake the task of studying the non-linear dynamics of quantum gravity motivated alterna-
tives to black holes that in the classical limit appear as ultra-compact shells of matter. We develop
a formalism that should be amenable to numerical solution in generic situations. For a concrete
model we focus on the spherically symmetric AdS black bubble — a shell of matter at the Buchdahl
radius separating a Schwarzschild exterior from an AdS interior. We construct a numerical code to
study the radial dynamics of and accretion onto AdS black bubbles, with exterior matter provided
by scalar fields. In doing so we develop numerical methods that could be extended to future studies
beyond spherical symmetry. Regarding AdS black bubbles in particular, we find that the original
prescription for the internal matter fluxes needed to stabilize the black bubble is inadequate in
dynamical settings, and we propose a two parameter generalization of the flux model to fix this. To
allow for more efficient surveys of parameter space, we develop a simpler numerical model adapted
to spherically symmetric bubble dynamics. We identify regions of parameter space that do allow for
stable black bubbles, and moreover allow control to a desired end-state after an accretion episode.
Based on these results, and evolution of scalar fields on black bubble backgrounds, we speculate on
some observational consequences if what are currently presumed to be black holes in the universe
were actually black bubbles.
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I. INTRODUCTION

Since the recognition of black hole entropy and for-
mulation of the black hole information paradox, many
efforts have focused on interpreting and reconciling such
puzzling aspects of black holes. These, and related at-
tempts to tame the singularities inside black holes, moti-
vated consideration of “extensions” to black holes, alter-
ing their structure in the vicinity of the classical horizon
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and its interior. This has resulted in proposals for ob-
jects like fuzz balls [1], gravastars [2], black bubbles [3],
etc. — see [4] for a review, which also describes many
other exotic compact object (ECO) alternatives to black
holes not necessarily motivated by quantum gravity con-
siderations.

Recently, the ability to detect gravitational waves from
merging stellar-mass compact object binaries (e.g. [5, 6]),
as well as to observe horizon scale physics of supermassive
black holes ([7]), has tremendously energized this field,
motivating the search for observational consequences of
ECO alternatives to Kerr black holes. However, the ma-
jority of existing models of ECOs have not been studied
in dynamical, nonlinear settings, and for some it is even
uncertain how that might be done in theory. This is
clearly an unfortunate state of affairs, even beyond the
obvious need for predicting waveforms in mergers, as un-
derstanding the dynamical stability of isolated objects,
or lack thereof, could eliminate some models, and guide
refinements to more viable ones.

Here, we focus on a sub-class of ECO modelled as an
ultra-compact thin-shell; a 2-sphere surface layer of mat-
ter close to the would-be horizon of the analogous black
hole, but still at a macroscopic distance outside, that
separates a non-singular interior spacetime from the ex-
terior, asymptotically flat spacetime. To realize the ul-
timate goal of studying the merger of two such objects,
one must resort to numerical simulations. This requires
the introduction of novel ideas and methods to deal with
the new ingredients such an ECO would bring to a tradi-
tional numerical general relativity code : singular surface
layers, matter fields (including a cosmological constant)
confined to the surface and or exterior/interior space-
times, new interactions between traditional matter fields
and the surface, etc.

Before such novel techniques can be investigated, it is
essential to begin with a viable ECO model. This re-
quires both a classically well-posed problem of the space-
time and matter system at hand1, and that the ECO
solutions are dynamically stable. A promising candidate
in this regard, that we will adopt2, are the Anti de-Sitter
(AdS) black bubbles proposed by Danielsson, Dibitetto
and Giri [3]. This model has so far only been developed
for non-rotating or slowly rotating spacetimes[8]. In the
non-rotating case, a thin shell of matter in equilibrium at
the Buchdahl radius separates an interior AdS spacetime
from the exterior Schwarzschild spacetime. The matter,
inspired by string theory constructions, consists of a rel-
ativistic gas attached to a membrane, with internal in-
teractions between the components designed to react to
external perturbations so as to keep the bubble stable.
Another goal of this work then is to explore the stabil-

1 Requiring mathematically sound equations together with suit-
able initial and boundary conditions.

2 This is a convenient choice, though lessons derived in our studies
are applicable to other models as well.

ity of these bubbles beyond the quasi-stationary, linear
regime investigated in [3].

As a first step toward an ultimate goal of exploring
black bubble mergers, we will restrict attention to single,
spherically symmetric black bubbles. In spherical sym-
metry one can adapt the problem to the symmetry, avoid-
ing many complications one would need to address in a
generic scenario. However, we have intentionally tried
to not do that as much as possible, often complicating
the problem simply for the sake of introducing a feature
that would be present in a non-symmetric case. This
includes not explicitly imposing the Israel junction con-
ditions [9] (that in spherical symmetry by themselves can
uniquely determine the shell dynamics and map between
interior/exterior spacetimes), choosing a metric ansatz
where we have gauge waves that propagate at the speed
of light, and using a scalar field as a proxy for gravita-
tional wave interactions with the shell.

In a sense, we have been successfull in implement-
ing this Einstein-Klein-Gordon-Hydrodynamic (EKGH)
model. However, when first applying it to AdS black
bubbles, we found it failed to address the question of
physical stability in the large-bubble limit, of interest for
astrophysical applications. This turns out in part to be
due to some of these “complicating” choices we made
for the EKGH code, but also in part due to the physics
of black bubbles in the large mass limit. To answer the
stability question, which would be crucial to do before ei-
ther improving the EKGH code, or to go beyond spherical
symmetry, we here also introduce a simpler, spherically-
symmetric adapted model that can investigate some as-
pects of the non-linear, dynamical stability of large black
bubbles.

The rest of the introduction outlines the remainder of
the paper, and summarizes the main results.

In Sec. II we review aspects of AdS black bubbles, and
give a general formalism to describe such 2+1D matter
embedded in a dynamical 3+1D spacetime. For surface
matter we consider the combination of fluids proposed
in [3], though allow for the possibility of viscosity to
be present. For external matter, we consider two scalar
fields: the first does not directly interact with the matter
intrinsic to the shell, and can freely propagate across its
surface (i.e., the proxy for gravitational waves), while the
second can be absorbed by the shell to model accretion.

In Sec. III we specialize to spherical symmetry. First,
in Sec. III A, we describe the full EKHG version of the
equations, including our ansatz for the metric, the re-
sultant evolution equations, constraint equations, initial
conditions and boundary conditions. In Sec. III E we de-
scribe the simplified model that can explore the dynamics
of an AdS black bubble perturbed by an unspecified ex-
ternal source (i.e. it does not include the gravitational
wave proxy scalar field, and cannot relate the perturbing
source to a particular external scalar field profile).

Stability in the AdS black bubble model is achieved via
an internal flux between the gas and brane components.
In Sec. IV we discuss this in more detail, including the ex-
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tensions beyond that of the original model we introduce
here. As outlined there, with more details and analysis
given in Appendices A and B, the flux prescription of
[3] does not result in stable bubbles if the full dynamical
problem is considered, and one demands the internal flux
can only react to local changes in the environment. The
modifications we have introduced here are somewhat ad
hoc, though our reasoning is if we can identify flux pre-
scriptions that lead to stable bubbles it will help guide
searches for more fundamental physical mechanisms that
can achieve similar effects.

In Sec. V we discuss numerical implementation details
of the spherically symmetric equations given in Sec. III.
We focus on novel aspects pertaining to this problem, in-
cluding a weak-form integration procedure to deal with
the singular surface, and a dual coordinate scheme to
keep the bubble at a fixed location within the computa-
tional grid. More technical details of this are relegated
to Appendices C and D.

In Sec. VI we give results from evolution of perturbed
black bubbles. In Sec. VI A we focus on the physics of
AdS black bubble dynamics, giving examples using flux
parameters (guided by the linear analysis presented in
Appendix B) that allow for stable, large black bubbles.
In Sec. VI B we discuss the limitations of the EKGH code
in this regard; in particular, the two (likely related) prob-
lems are the challenge to achieve sufficient accuracy over
multiple light-crossing times, and a “mass amplification”
effect that occurs due to the purely gravitational inter-
action of scalar field energy crossing from the exterior to
interior spacetimes. However, the EKGH code is capable
of modeling the long term interactions of the scalar field
on a fixed black bubble background; in this section then
we also present some results for the case of the gravita-
tional wave proxy field that can freely cross the bubble
surface. This suggests some remarkable potential obser-
vational consequences following black bubble formation,
in particular a slow, nearly monochromatic release of the
energy at the fundamental oscillation frequency of the
interior AdS spacetime, redshifted to near the character-
istic frequency of the exterior black bubble spacetime.
However, as estimated in Appendix E, if the AdS length-
scale is set by Planck scale physics, the energy release will
be much too slow to be of relevance for astrophysical sized
(stellar and supermassive) black holes. Discriminating
between black bubble and black hole mergers would then
seem to require understanding the prompt signal follow-
ing a collision, or unusual interior physics/anomalously
large lengthscales; we speculate on these topics, as well
as give directions for future work in Sec. VII.

II. ADS BLACK BUBBLES AND GENERAL
CONSIDERATIONS

Among suggested alternatives to black holes resulting
from gravitational collapse are “black bubbles”, first pro-
posed in [3]. Though their creation is argued to come

from a quantum tunneling process, and their surface
structure to be composed of string-theory inspired mat-
ter and higher dimensional geometric constructions, once
formed, astrophysically large black bubbles can to good
approximation be described by classical physics. In this
limit they are solutions to 4 dimensional Einstein grav-
ity coupled to matter— an electromagnetic gas, a mem-
brane, and a subleading stiff gas —confined to a thin
shell. For the non-rotating case, the interior is AdS space-
time with a cosmological constant Λ ≡ −`2, the exterior
is Schwarzschild with a gravitational (ADM) mass m.
For both stability and to possess an equation of state
that “naturally” follows from the string theory construc-
tion, the shell is required to be at the Buchdahl radius
r = 9m/4.

Of particular interest is to assess whether a black bub-
ble can be regarded as a viable candidate for an “exotic”
alternative to a black hole. Notably, this would mean
confronting the behavior of merging black bubbles with
gravitational wave observations of what are currently in-
terpreted as merging black holes [10, 11], and whether
accretion onto supermassive black bubbles is distinguish-
able from that onto supermassive black holes as observed
by the Event Horizon Telescope [12].

Here, we focus on working toward the goal of using
gravitational wave observations to study the viability
of black bubbles. This requires that the classical sys-
tem admits a well-posed initial value problem outside of
the static, spherically symmetric spacetime ansatz where
they were first analyzed, and that single black bubbles are
dynamically stable to generic perturbations. From the
classical perspective this would include non-linear pertur-
bations, at least as long as the energy of the perturbation
is not large enough to require considering it a “creation
event”, rather than a perturbation3. In [3] a first step to-
ward addressing the stability question was taken, where
it was argued that several ingredients are necessary for
black bubbles to be stable under radial perturbations.
The primary ones are that the gas comprising the bubble
must be at the local Unruh (acceleration) temperature as
measured by a comoving observer just outside the shell,
and that an internal flux between the relativistic gas and
membrane components of the shell operates to react to
perturbations to instantaneously maintain this tempera-
ture.

In this work, we take a couple of additional steps to-
ward the goal of assessing the ultimate (classical) viabil-
ity of black bubbles. The first is to study the stability of
spherically symmetric bubbles undergoing dynamical ra-
dial perturbations, not necessarily small, excited by some
external agent. As we show in Appendices A and B, the

3 That also begs the question of whether classical physics can even
approximately address the coalescence phase of bubble mergers,
especially in the comparable mass case where there would be a
significant change in the mass of the final bubble compared to
either progenitor. We leave that to future work to contemplate.
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original kinematic stability analysis of [3] missed a dy-
namical component of the 4-acceleration that feeds into
the flux, the latter part of which has a destabilizing effect
on the black bubble. Thus the original flux prescription
does not leat to stability, and in Sec. IV we offer exten-
sions to it that can lead to radially stable bubbles.

The second step is to formulate the problem in a
manner that does not rely on spherical symmetry, even
though our example implementation is restricted to it.
The technical issue here is how to deal with singular
(delta function) distributions of matter coupled to the
Einstein equations in a situation without symmetries.
In particular, in general the shell world tube cannot be
considered a spacetime boundary in a mathematical (or
physical) sense where boundary conditions need to be ap-
plied; for example, gravitational waves can freely cross
this location, and any influence the matter might ex-
ert on the gravitational waves is governed by the Ein-
stein equations, not any “boundary condition” one places
there. Of course, this is exactly where the Israel (some-
times also referred to as the Lanczos-Darmois-Israel-Sen)
junction conditions come from, but in spherical symme-
try one can effectively employ them as boundary condi-
tions for the spacetime on either side of the world tube
(essentially because there are no gravitational waves in
spherical symmetry). However, it is difficult to envision
how such an approach could be extended to spacetimes
without symmetries, in particular where the surface layer
might not be the dominant source of curvature (for ex-
ample, it would have to work in the limit of a “fictitious
surface” where the stress-energy of the surface goes to
zero). Instead, as described next, we adopt a first princi-
ples approach, adding a distributional source for the shell
matter to the Einstein equations, arriving at the junction
conditions as a consequence rather than a condition put
in a priori.

A. Formulation

For our target model, there are 3 distinct regions. An
interior region, with a non-zero (negative) cosmological
constant, an exterior region with Λ = 0, and a shell
that separates them. The shell, with a non-trivial stress
energy tensor composed of several matter components
outlined below, provides the physical mechanism that
can, in principle, stabilize the shell. In addition, we add
bulk scalar fields to model dynamical scenarios, both to
perturb the black bubble via a gravitational interaction,
and a direct interaction where the black bubble accretes
scalar field energy. To account for all these ingredients,
on a rather general footing, we proceed as follows. We
consider the Einstein equations in the full spacetime (us-
ing units where Newton’s constant G = 1 and the speed
of light c = 1)

Gab = 8πTab, (1)

with a stress-energy tensor of the form

Tab =(ρ) Tab δ(s) +(ψ) Tab +(ξ) Tab Θ(s)− Λ

8π
gab Θ(−s).

(2)
The net stress-energy tensor of the material comprising
the shell is (ρ)Tab,

(ψ)Tab is that of a bulk scalar field
that does not directly interact with shell material (but
can cross the shell location from the outside to inside and
vice-versa), while (ξ)Tab is that of an exterior-only scalar
field that interacts with the shell via appropriately chosen
boundary conditions, discussed below. The shell world
tube is described by the level set scalar function s(xa) =
0, with δ(s) the Dirac delta distribution, and Θ(s) is the
Heaviside step function. Immediately adjacent to any
point on the shell we will normalize s to measure proper
distance orthogonal to the shell at that point, with s > 0
(s < 0) on the outside (inside). The gradient sa ≡ s,a,
dual to the vector sa = gabsb normal to the world tube,
will thus be unit (sasa = 1), and defines the projection
tensor hab = gab − sasb onto the shell, as well as the
extrinsic curvature

Kab = −hcahdb∇csd (3)

evaluated on either side of the shell as used in the Israel
junction conditions.

B. Scalar field and shell material

The stress energy tensors for the scalar fields are

(ψ)Tab = ∇aψ∇bψ −
1

2
gab|∇ψ|2, (4)

(ξ)Tab = ∇aξ∇bξ −
1

2
gab|∇ξ|2. (5)

Following [3] we will build the shell from three fluid com-
ponents : a relativistic gas, a brane and a subleading
stiff gas. There, all the fluids were modeled as perfect
(ideal) fluids; here we allow for viscosity to model dissi-
pative effects. The latter is important to account for the
entropy growth of the bubble as it interacts with its envi-
ronment. Since the gas dominates the entropy of the bub-
ble, for simplicity then we only add dissipation to that
component of the shell. To do so we employ the formu-
lation of viscous relativistic hydrodynamics which only
modifies the fluid description to first order in a gradient
expansion [13–15]. Under certain conditions (including
spherical symmetry) we can consider a single 4-velocity
ua to characterize the flow of all fluid elements, and for
simplicity of notation we will do that here. The resulting
stress energy tensor for the shell is

(ρ)Tab ≡ (ρg)Tab +(ρs) Tab +(ρτ ) Tab, (6)
(ρg)Tab = (ρg +A)uaub + (pg + Π)∆ab, (7)
(ρs)Tab = ρsuaub + ps∆ab, (8)
(ρτ )Tab = ρτuaub + pτ∆ab, (9)
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where ∆ab = hab + uaub, ρg, ρs and ρτ are the (equi-
librium) rest-frame energy densities of the gas, string
and brane components, with corresponding pressures
pg = ρg/2, ps = ρs and pτ = −ρτ , respectively. The vis-
cous modifications to the gas stress energy are captured
by A and Π, defined as

A = τe [uaDaρg + (ρg + pg)Dau
a] , (10)

Π = −ζDau
a + τp [uaDaρg + (ρg + pg)Dau

a] , (11)

where τe, τp and ζ are transport coefficients that are func-
tions of ρg, and Da ≡ hba∇b. In general there are ad-
ditional terms proportional to the shear tensor πab and
heat flux Qa, but these vanish in spherical symmetry, so
we drop them here for simplicity. ζ is the bulk viscosity
coefficient; (τe, τp) are often ignored in relativistic hydro-
dynamics, though are required in the first order theory
for causality and to allow for defining (locally at least)
well-posed problems4 [13–15].

C. Matter equations of motion

For the scalar fields, we impose the usual massless wave
equations

2ψ = 0, (12)

2ξ = 0. (13)

For the shell, the equations of motion stem from net
stress energy conservation. We will further demand that
each component of the shell individually satisfies conser-
vation of its respective stress energy tensor, except for
an external source term Ja to the gas component to al-
low for energy exchange with the scalar field ξ, and an
internal flux ja between the gas and brane components
(discussed more in Sec. IV):

Db
(ρg)T ab = Ja − ja, (14)

Db
(ρs)T ab = 0, (15)

Db
(ρτ )T ab = ja. (16)

Note that we do not explicitly add a source term to ξ′s
equation of motion (13), as at the location of the shell
we do not impose (13), but rather must specify boundary
conditions for ξ there, and this will effectively compen-
sate for Ja. In spherical symmetry, the only gradients
that will be relevant for these boundary conditions are
those in the ua and sa directions, and Ja, being intrinsic
to the shell, can then only have a component in the ua

direction. So to simplify the expressions below, we define

JU ≡ ucJc, (17)

ξS ≡ sa∇aξ, (18)

ξU ≡ ua∇aξ. (19)

4 Though this well-posedness result is obtained in a somewhat
weaker sense than the traditional Sobolev criteria and with a
non-unique entropy current, it has shown promising results in
incipient applications [16].

For consistency with the Einstein equations the net
stress energy tensor must satisfy

T ab;b = 0. (20)

Evaluating this at the shell, substituting in the equations
of motion wherever possible, and averaging ∇asb,∇aub
related terms that are discontinuous across the shell5, we
can split the result into a piece tangent to the shell

T ab;b ua = ξUξS + JU = 0, (21)

and one orthogonal to the shell

T ab;b sa =
ξ2
U + ξ2

S

2
+
[
(ρ+ P )ã+ PK̃

]
+

Λ

8π
= 0. (22)

In the above, a tilde (̃ ) denotes the averaging, we have
defined

ρ ≡ ρg +A+ ρτ + ρs, (23)

P ≡ pg + Π + pτ + ps, (24)

K is the trace of the extrinsic curvature (3), and a is the
radial acceleration of ua:

a ≡ ∇aubuasb. (25)

The orthogonal piece (22) gives the equation of motion
for the shell, while the tangential piece (21) constrains
the interaction between the gas and scalar field:

JU = −ξUξS . (26)

With this relation in hand, one immediately sees that a
pure Dirichlet (ξU = 0) or Neumann (ξS = 0) boundary
condition forces JU = 0. These options effectively im-
plement a reflection with no direct energy exchange to
the gas (though kinetic energy will still be exchanged via
(22)). To have the black bubble mimic a black hole and
always absorb energy, one can demand JU < 0 (see (34)
below). An obvious choice for this, that we will use in
the results presented later, is

ξU = ξS . (27)

This is the analog of an ingoing radiation condition at
the shell, assuming ξ takes the form ξ ∼ ξ(t + r) there.
Note in this case, the energy associated to the field ξ is
absorbed by the gas.

III. RESTRICTING TO SPHERICAL
SYMMETRY

So far, we have kept the presentation general, dis-
cussing in broad strokes the governing equations from

5 The averaging can be justified by integrating the equations in a
small volume about the shell, and taking the limit of the volume
to zero; see [9].
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a global spacetime point of view. To simplify the form of
the equations, in a couple of instances we already im-
posed restrictions consistent with spherical symmetry,
though this did not change the basic structure of the
equations (in particular using a single 4-velocity ua to
describe the shell trajectory and all local fluid velocities,
and only considering energy exchange with the scalar
field in this same direction). Here, we do specialize the
equations to spherical symmetry.

First, in Sec. III A, we consider the full Einstein-Klein-
Gordon-Hydrodynamic (EKGH) system of equations in
spherical symmetry, giving a set of 1+1D partial differ-
ential equations (PDEs) to solve for the spacetime metric
and scalar fields, and a set of ordinary differential equa-
tions (ODEs) for the position and fluid properties of the
shell. However, as discussed in Sec. VI B, in the large
mass limit of relevance for astrophysical black holes, the
corresponding code for this system of equations is not
adequate to study black bubble evolutions for the time
needed to ascertain their stability. This is in part due to
the large disparity of scales in the problem in that limit,
as well as decisions we made toward the longer term goal
of extending the code beyond spherical symmetry (i.e.,
if going beyond spherical symmetry was not of interest,
choices better adapted to the problem could be made, in
particular with regards to the interior and exterior coor-
dinate charts).

Though just as crucial as having the correct tools to
go beyond spherical symmetry, is knowing that this is
a sensible endeavor in the first place. Early cases ex-
amined with the EKGH code indicated that the original
black bubble prescription is not dynamically stable, lead-
ing us to consider the additional ingredients added to the
model described in this paper. However, a linear stabil-
ity analysis including the new flux options and dissipa-
tion (Appendix B) shows that the stability properties can
be very different for small bubbles (relative to the AdS
lengthscale 1/`) versus large bubbles. Thus it would be
suspect to use any conclusions of non-linear stability ob-
tained with the EKGH code in the small bubble case to
decide whether it would be worth the considerable effort
needed to first resolve its problems with large bubbles,
and then extend beyond spherical symmetry. Therefore,
we implemented a simplified ODE model, described in
Sec. III E, that allows us to explore non-linear stability
in the large mass limit, albeit without completely general
scalar-field interactions as allowed by the EKGH system.

A. Einstein-Klein-Gordon-Hydrodynamic system

The formalism described above does not require a co-
ordinate chart that gives a continuous metric across the
shell. Discontinuous charts are convenient in certain re-
spects, and would be simple to implement in a code in
spherical symmetry. Though again we want to use meth-
ods that could be extended beyond spherical symmetry
in a straightforward manner; to that end, we will use a

metric ansatz which is continuous across the shell. More-
over, we will adopt the following “light-like” ansatz for
the metric so that the equations of motion bear close re-
semblance to the typical structure encountered in 3+1D
scenarios:

ds2 = e2B(r,t)(−dt2 + dr2) + r2e2C(r,t)dΩ2. (28)

Beyond the obvious structure of the r − t sector of the
metric, what this light-like ansatz does is allow one to
write the Einstein evolution equations for B and C so
that the principal parts of each are wave equations.

B. Evolution equations

Let f(xa) = r − R(t), so the shell is at f = 0, i.e.
at r = R(t). Then sa = ∇af/|∇f |, the coordinate ve-
locity of the shell is V ≡ dR/dt, ua = γ(1, V, 0, 0) and

sa = γ(V, 1, 0, 0), with γ = e−B/
√

1− V 2. To deal with
the distributional matter of the shell in the numerical
code, we will integrate the equations at the location of
the shell in “weak-form”, as described in more detail in
Sec. V A 1. This involves integrating over a volume in
the coordinate r. In the covariant form of the stress ten-
sor (2), the shell is a distribution in s, and to adapt to
the integration in r we use

∫
δ(s)dr =

∫
δ(s)(dr/ds)ds

= dr/ds|s=0. So in anticipation of that, in the equa-
tions below δ(s) has been replaced with δ(f)dr/ds, where

dr/ds = e−B
√

1− V 2, and defining
∫
δ(f)dr = 1. We

will write the Einstein and scalar field equations in first
order form, defining zt ≡ z,t and zr ≡ z,r for a variable
z(t, r). Then, evolution equations for B,C from the Ein-
stein equations (1), the wave equations for ψ (31) and ξ
(32), conservation equations (14-16) for the shell fluids,
and evolution equation for the shell location (22) are:

Ċt − Cr ′ = 4πρ e2Bδ(f)
dr

ds
− e2B`2 Θ(−f)

+ 2(C2
r − C2

t ) +
4Cr
r

+
1− e2(B−C)

r2
, (29)

Ḃt −Br ′ = −4π(ρ+ 2P ) e2Bδ(f)
dr

ds

+ 4π
[
ψ2
r − ψ2

t + (ξ2
r − ξ2

t )Θ(f)
]

+ C2
t − C2

r −
2Cr
r
− 1− e2(B−C)

r2
, (30)

ψ̇t − ψ′r = 2(ψtCr − ψtCt) +
2ψr
r
, (31)

ξ̇t − ξ′r = 2(ξtCr − ξtCt) +
2ξr
r
, (32)
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ρ̈g = − (ρ̇g + F (ρg + pg)) ·(
F (1 + τp/τe)− ˆ̇B +

V V̇

1− V 2
+
τ̇e
τe

)

− F (ρ̇g + ṗg)− (ρg + pg)
ˆ̇F +

ζF 2

τe
− eB

√
1− V 2

τe
·[

ρ̇g + F (ρg + pg) + JUe
B
√

1− V 2 − j
]

(33)

= −
(
ρ̇g +

3Fρg
2

)(
3F

2
− ˆ̇B +

V V̇

1− V 2
+
τ̇e
τe

)

− 3

2
(F ρ̇g + ˆ̇Fρg) +

ζF 2

τe
− eB

√
1− V 2

τe
·[

ρ̇g +
3Fρg

2
+ JUe

B
√

1− V 2 − j
]
, (34)

ρ̇s = −(ρs + ps)F

= −2ρsF , (35)

ρ̇τ = −(ρτ + pτ )F − j
= −j, (36)

V̇ = (1− V 2)

[
2P (V C̃t + C̃r + 1/r)

ρ
− (V B̃t + B̃r)

+
eB
√

1− V 2(`2 − 4π[ξ2
U + ξ2

S ])

8πρ

]
. (37)

In the above, an overdot (˙) denotes the derivative with
respect to t and prime (′) the derivative with respect
to r. These equations are supplemented with “trivial”
evolution equations for first order gradient variables, i.e.
żr = zt

′ and ż = zt. The second equality in each of the
fluid evolution equations is after the given equation of
state has been substituted in, and for the viscous fluid a
similar relationship for one of the transport coefficients:
τp = τe/2. The variable j denotes the component of the
internal flux ja in the direction of ua. The fluid evolution
requires derivatives of the metric intrinsic to the shell
(which in spherical symmetry will only be along the ua

direction); for simplicity we denote such gradients with
hatted-dots, and can be computed with the 4D metric

using appropriate combinations of r, t gradients, e.g. ˆ̇B =
Bt + V Br (and the combination is continuous across the
shell despite the individual terms having jumps). We also
introduced

F ≡ Ȧ/A = 2( ˆ̇C + V/r) (38)

representing the fractional change in proper area A(t)
along the shell. Note that in first order hydrodynamics,
the evolution equation for ρg is a second order PDE (sec-
ond order ODE in spherical symmetry). If all the viscous
transport coefficients are zero, it reduces to the first or-
der, ideal equations (the term in the square brackets on
the last line of (34)), and in that case we directly inte-
grate the latter for ρg. Recall that ρ and P in the metric
and shell evolution equations are given by (23) and (24)

respectively, and here

A = τe
F (ρg + pg) + ρ̇g

eB
√

1− V 2

= τe
3Fρg/2 + ρ̇g

eB
√

1− V 2
, (39)

Π = τp
F (ρg + pg − ζ/τp) + ρ̇g

eB
√

1− V 2

= τe
F (3ρg/2− 2ζ/τe) + ρ̇g

2eB
√

1− V 2
, (40)

where after the second equalities we have again substi-
tuted in pg = ρg/2, τp = τe/2.

Note that (29) and (30) essentially contain the Israel
junction conditions, but directly in terms of our metric
variables. I.e., demanding a coordinate system where the
variables are continuous at the shell, but can have dis-
continuities in gradients, then it is only the latter terms
above that can balance the delta function terms. These
conditions give:

∆Cr = −4πρeB/
√

1− V 2, (41)

∆Ct = −V∆Cr, (42)

∆Br = 4π(ρ+ 2P )eB/
√

1− V 2, (43)

∆Bt = −V∆Br, (44)

where ∆ refers to the jump in the respective quantity at
the shell (one can be check that the above expressions
do coincide with the results computed directly using the
Israel formalism.)

C. Constraint Equations and Initial Data

Initial data for the metric evolution is subject to the
usual constraint equations of general relativity. The tt
component of the Einstein equations can be considered a
constraint equation for C :

C ′r +
3

2
C2
r + Cr

(
3

r
−Br

)
− Br

r

+2π

(
ψ2
r + ξ2

r +
2ρeBδ(f)√

1− V 2

)
+

1− `2r2e2B − e2(B−C)

2r2

=
C2
t

2
+BtCt − 2π(ψ2

t + ξ2
t ). (45)

We have placed time-dependent terms on the right hand
side, which for simplicity we will choose to be zero at the
initial time (i.e., a moment of time-symmetry). The tr
component of the Einstein equations can then be consid-
ered a constraint equation for B:

Ċr + Ct

(
Cr −Br +

1

r

)
−Bt

(
Cr +

1

r

)
+4π

(
ξΠ− V ρeBδ(f)√

1− V 2

)
= 0. (46)
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Interestingly, at a moment of time symmetry this is triv-
ially satisfied and B is arbitrary. At first glance then a
simple choice is B = const. (with an appropriate jump at
the shell location), however then the evolution equation
implies there will be dynamics in B, even for a static
shell. Instead then, we will use the evolution equation
with all time derivatives set to zero to define our choice
for B(r, t = 0), as then the static case will be reflected
as such in the solution. Specifically, we will solve the
following for B(r, t = 0):

Br
′ − 4π(ρ+ 2P ) e2Bδ(f)

dr

ds
+ 4π(ξ2

r + ψ2
r)

−C2
r −

2Cr
r
− 1− e2(B−C)

r2
= 0. (47)

For the shell, a moment of time symmetry requires
V (t = 0) = 0, but the initial position and matter energy
densities are arbitrary. For the latter, we will choose ini-
tial conditions to give a static shell when unperturbed,
initializing the matter components following [3]. For the
scalar fields, we set ψt(r, t = 0) = 0 = ξt(r, t = 0), and
freely choose ψr(r, t = 0), ξr(r, t = 0), with the particular
profiles discussed in Sec. V A 3.

D. Boundary conditions

For the inner boundary (origin of the AdS region) one
can impose regularity through L’Hopital’s rule and re-
quiring C = C0(t) + C2(t)r2, and similarly for B and ψ
(ξ does not extend into the interior). With this, the Ein-
stein equations require B0(t) = C0(t), together with the
following conditions at r = 0:

Ċt − 6Cr
′ +Br

′ = −e2B`2 − 2C2
t , (48)

Ḃt − 2Br
′ + 3Cr

′ = −4πψ2
t + C2

t , (49)

ψ̇t − 3ψ′r = −2ψtCt. (50)

For the outer boundary (in the AF region), one can
use maximally dissipative boundary conditions (e.g. [17]).
For instance, for the scalar field Ψ, its equation of motion
when written in first order form (with Π ≡ Ψ,t, Φ = Ψ,r)
is given by

Π̇ = Φ′ +RΠ, (51)

Φ̇ = Π′ +RΦ, (52)

with RΠ, RΦ the remaining terms of the corresponding
equations not belonging to the principal part. The in-
coming (outgoing mode) at r = Rout is Π + Φ (Π − Φ).
Maximally dissipative boundary conditions define incom-
ing mode(s) as related to (and bounded by) the outgoing
ones. For simplicity we can do this at the level of the
time derivatives of the modes; that is,

Π̇ + Φ̇ = a (−(Π′ − Φ′) +RΠ −RΦ) , (53)

Π̇− Φ̇ = −(Π′ − Φ′) +RΠ −RΦ. (54)

The first line states that the incoming mode is propor-
tional (with proportionality constant a) to the outgoing
mode. If |a| < 1, the condition is said to be maximally
dissipative, with a = 0 describing purely outgoing modes.
The special case |a| = 1 corresponds to the reflecting
case.

Now, solving for the time derivatives in (53-54) we de-
rive what we should impose at the outer boundary point
r = Rout:

Π̇ =
(a+ 1)

2
(−(Π′ − Φ′) +RΠ −RΦ) , (55)

Φ̇ =
(1− a)

2
((Π′ − Φ′)−RΠ +RΦ) . (56)

In the code, we implement the above with a = 0 for
the scalar field. For simplicity we do the same with the
metric variables, as they also obey wave equations. How-
ever, such maximally dissipative conditions are not fully
consistent with the constraints, introducing an error that
scales as 1/Rout. To mitigate this problem, as described
in Appendix C, we control the mapping between radial
and code coordinates to push the outer boundary to be
out of causal contact with the bubble for the duration of
a given simulation.

E. Simplified Shell Dynamics with an External
Source

As discussed above, one of our goals motivating the
particular choice of metric, coordinate conditions, etc.,
is to have a scheme that could eventually be generalized
beyond spherical symmetry. Also, before taking on such
an endeavor, we want to get some indication on how a
gravitational wave might interact with the bubble, us-
ing a scalar field that can freely propagate across the
bubble as a proxy for a gravitational wave. However,
even in spherical symmetry, with these particular choices
there are various complications that arise, discussed in
the Sec. VI B, that make it challenging to extract useful
results on the physics of black bubbles in the large mass
limit of interest. Here then we introduce a simplified
model that allows us to explore black bubble stability in
this regime, but it is only applicable to spherically sym-
metric systems, and cannot model interaction with a bulk
scalar field.

For this simplified model of the black bubble, consider
a shell enclosing an AdS spacetime, with a Schwarzschild
exterior that can contain unspecified matter. Here, we
parameterize all shell quantities with proper time τ on
the shell. We will model interaction with the exterior
matter via a flux function JU (τ). We also only consider
a vacuum AdS interior, though in the linear analysis in
Appendix B we will allow a small internal mass to model
some prior interaction that led to interior energy.

Thanks to spherical symmetry we can solve such a
model by integrating the Einstein and shell fluid equa-
tions purely at the shell location, making sure we self-
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consistently incorporate the back-reaction of the external
flux on the gravitational mass of the bubble. A straight-
forward way to compute the latter is to assume the ex-
ternal flux is coming from the scalar field ξ as in the full
spacetime model, and imposing the Einstein equations
for this system just exterior to the shell, then taking the
limit onto the shell (again, keeping the interior spacetime
fixed). The effect of the scalar field can then simply be
modeled as some freely specifiable JU (τ) = −ξS(τ)ξU (τ);
i.e. we do not need to know what particular external
scalar field profile would be needed to lead to such a flux
at the shell.

We impose the following ansatz for the spacetime:

ds2 = −g(t, r)dt2 +
dr2

f(r, t)
+ r2dΩ2. (57)

Exterior to the shell we set f(r, t) = 1 − 2m(t, r)/r, so
m(t, r = R) will represent the exterior Schwarzschild
mass of the spacetime. We still have coordinate freedom
with this ansatz to rescale t by an arbitrary function of
itself, and do so to impose g(t, r = R) = f(t, r = R),
i.e. evaluated at the shell the exterior metric looks ex-
actly like the Schwarzschild solution but with a time-
dependent mass. Interior to the shell we use the follow-
ing static form for the AdS spacetime: f(r) = g(r) =
1 + r2`2/3. Below, metric quantities that are discontinu-
ous across the shell are labeled with a subscript L when
evaluated just to the left (interior) of the shell, and with
a subscript R just to the right (exterior) of the shell.

In this section we will use the over-dot to denote change
with respect to proper time, e.g. ḟ ≡ df(τ)/dτ . With
that notation, the evolution equations for the shell, its
internal energy components, and m(τ) are

Ṙ = V, (58)

V̇ = QLQR

[
2P

ρR
+

1

QL +QR

(
`2
[

1

4πρ
− R

2QL

]
−(ξ2

S + ξ2
U )

[
2πR

QR
+

1

ρ

])]
+
QLQR − 1− V 2

2R
, (59)

=
R`2QR − 4πQL

[
R(ξ2

S + ξ2
U )− 4PQR

]
2(QL −QR)

+
QLQR − 1− V 2

2R
, (60)

ρ̈g = −3ρg(RV̇ + V 2)

R2
− 5V

R
ρ̇g −

τp
τe

[
2V

R2
(3V ρg + ρ̇gR)

]
− 1

τe

[
(τ̇e + 1)

(
3V

R
ρg + ρ̇g

)
− 4ζV 2

R2
− j − ξUξS

]
,(61)

ρ̇s = −4V ρs
R

, (62)

ρ̇τ = −j, (63)

ṁ =
4πR2QR(QRξU − V ξS)(QRξS − V ξU )

fR
, (64)

where fR ≡ 1− 2m(τ)/R(τ), fL ≡ 1+R(τ)2`2/3, QR ≡√
fR + V 2, QL ≡

√
fL + V 2, and

P = pg + pτ + ps + τp

[
ρ̇g +

2V (ρg + pg)

R

]
−2V ζ

R
, (65)

ρ = ρg + ρτ + ρs + τe

[
ρ̇g +

2V (ρg + pg)

R

]
. (66)

The first equation for V̇ (59) stems from (22), and for
reference below that in (60) we also include a form com-
ing directly from the junction condition proportional to
the net pressure (or equivalently eliminating ρ from the
previous equation using the junction condition propor-
tional to ρ). Again, the external source functions ξU (τ)
and ξS(τ) can be considered freely specifiable; setting
ξU (τ) = ξS(τ) models the perfectly absorbing conditions.

For reference, as this will be needed for the flux j as
described in Sec. IV, the exterior proper acceleration is

aR =
4πR2(ξ2

U + ξ2
S) + 2V̇ R+ 1− fR
2QRR

, (67)

where gradients of f and g appearing in its definition (25)
have been eliminated using the Einstein equations.

F. Simplified dissipation

In the above equation for ρg (61) we have included
all the three relevant transport coefficients, τe, τp and ζ,
which in general are all dependent on ρg (hence τ), and
need to be non-zero to give a well-defined, hyperbolic
theory. However, experimentation suggested τe, τp have
little effect on the dynamics of the bubble. This can be
understood by rewriting (61) as follows. Let I ≡ 2V (ρg+
pg)/R + ρ̇g; i.e. I = 0 is just the flux-free perfect fluid
equation of motion. Then in terms of I, (61) becomes

İ = −I
[
τ̇e + 1

τe
+

2V

R

(
1 +

τp
τe

)]
+

4ζV 2

τeR2
+
j + ξUξS

τe
.

(68)
This suggests that in spherical symmetry the parame-
ters τe, τp essentially only control return to hydrodynamic
evolution when starting from beyond-ideal conditions;
i.e. ignoring the fluxes, if ζ = 0 as with a conformal
fluid, and we begin in equilibrium where I = 0, then
I will remain zero for all time, and ρg will always be-
have like an ideal fluid. The ζ term, being proportional
to V 2, becomes important with nonlinear perturbations,
and since it is always positive it is consistent with the
intuition that this must come from dissipation removing
kinetic energy from the motion of the bubble and de-
positing it in the gas. This is likewise consistent with
the equation of motion for the bubble (59) : if I = 0,
the τe, τp terms drop out from the expressions for the net
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pressure and energy density (65-66), and ζ controls the
damping of the shell

V̇ ≈ −V 4ζQLQR
R2ρ

+ ..., (69)

where ... denote terms that do not depend on any of the
dissipation parameters.

Motivated by these observations, we set τe = τP = 0
(starting from (61) one needs to first multiply by τe, then
take the limit). With that, (61) becomes

ρ̇g = −3V

R
ρg +

4ζV 2

R2
+ j + ξUξS , (70)

with

P =
ρg
2
− ρτ + ρs −

2V ζ

R
, (71)

ρ = ρg + ρτ + ρs. (72)

Note that it would be trivial to add ζ-dissipation to the
other shell components (with their sum then appearing
in the expression for P above), or to split the energy
flux ξUξS in some prescribed manner to the other matter
components.

IV. ADS BLACK BUBBLE MATTER

In the preceding sections we have described all of the
components of the black bubble we study here, with the
exception of the key property essential for it to be an as-
trophysically viable compact object candidate: stability.
This, in principle, is achieved via an appropriate choice
of internal flux j between the gas and brane components.
We begin by reviewing the original suggestion for this
given in [3], then describe its short coming and novel
suggestions to overcome it.

As already mentioned, the shell is composed of three
constituents, a brane with EOS pτ = −ρτ , a gas of mass-
less particles with EOS pg = ρg/2, and a stiff fluid with
EOS ps = ρs, which are required based on physical and
kinematic grounds. Let us review how this can be moti-
vated from string theory. Inside of the shell there is an
AdS space with a negative cosmological constant. The
main idea behind this scenario is that space time is unsta-
ble against decay to an AdS space. Usually, such a decay
is heavily suppressed, but when matter threatens to col-
lapse and form a black hole, the nucleation is enhanced
for entropic reasons. If a bubble forms, the infalling mat-
ter can turn into massless open strings, attached to the
shell, carrying an entropy close to the one carried by a
genuine black hole. This is similar to what is argued
to happen in the case of fuzz balls. From string the-
ory, it is expected that the scales associated with the
negative cosmological constant, as well as the tension of
the brane, are high energy. Certainly beyond what is
presently accessible through accelerator experiments and
possibly close to the Planck scale.

The positive energy of the brane is supposed to closely
match the negative energy of the vacuum inside of the
shell. The mass of the system is then carried by the
matter on top of the shell. If the shell has a radius given
by 9Rs

8 , where Rs is the Schwarzschild radius, then the
Israel-Darmois junction conditions forces matter to have
the equation of state of a gas of massless particles. This
special radius is often referred to as the Buchdahl radius.
Such a matter component, composed of massless open
strings attached to the brane, is natural from a string
theoretical point of view. In order for the gas to be able
to carry an entropy comparable to the one of a black hole,
the number of degrees of freedom needs to be large. This
can be accomplished if the endpoints of the strings are
supported, not by the 2+1 dimensional brane itself, but
by a huge number of lower dimensional branes dissolved
in it. The need for such dissolved branes can also be seen
by examining the junction conditions. This is where the
stiff gas enters.

In string theory, 4D supersymmetric black holes can
be constructed using 3-branes wrapping internal 3-cycles.
Such branes will be point like from the 4D space time
point of view. As suggested in [3], black bubbles in 4D
can be obtained as 3-branes polarized into a 5-brane,
still wrapping the internal 3-cycles. This 5-brane can
still carry 3-brane charges represented by magnetic fluxes
inside of the 5-brane. Ignoring the internal three dimen-
sions, this is captured by the DBI action given by:

S =

∫
d3σT2

√
−det(hµν + Fµν), (73)

where T2 = ρτ is the tension of the shell, and Fµν is
the magnetic flux inside of the brane. The flux is quan-
tized, and the energy density is schematically given by
4πT2

√
r4 +N2, where N is an integer counting the num-

ber of dissolved branes. Note that if we formally take the
radius of the shell to zero, the contribution of the shell
goes away and the energy is dominated by the mass of
the D-particles. For a large shell, the contribution from
the magnetic flux will be suppressed and, as explained
in [3], have an energy density of order N2/r4 with the
equation of state of a stiff gas. On top of this, there are
massless fluctuations of the gauge fields. The number of
such modes is order N2 and they give rise to the ρg that
will carry the entropy.

In this way, one can solve the junction conditions, at
the Buchdahl radius, using components motivated from
string theory. For this setup to be a viable alternative
to an ordinary black hole, it is not enough to find a crit-
ical point, it must also be stable. Unfortunately, this is
not the case unless there is nontrivial dynamics involving
energy exchange between the various components. The
challenge is to find out what kind of dynamics is neces-
sary, and whether this is what to expect from string the-
ory. An argument for how stability could be obtained,
based on thermalization at the local Unruh temperature,
was given in [3]. Let us elaborate a bit on the argument
presented there.
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The shell will be heated through a non-zero Un-
ruh temperature from the outside due to its non-zero
proper acceleration sitting at a constant radius in the
Schwarzschild metric. 6 (There will be no such heat-
ing from the inside AdS region since there is a thresh-
old for the acceleration[18]). If the temperature of the
shell is a bit lower than the Unruh temperature, the
gas will absorb Unruh quanta. Each mode will act as
a little antenna. Thus, the shell will absorb at a rate of
N2 × R2 × T 4. Since N ∼ R and T ∼ 1/R, the total
power of absorption will be of order one. That is, the gas
can absorb a mass of order M in light crossing time R.

This suggests a term Ṫ
T ρg, with no further suppression,

contributing to the source term j. The Unruh quanta
are not real, so energy needs to be supplied from the sys-
tem itself for them to be created. In our model, it is the
tension of the brane that is reduced in order to power
the increased energy density of the gas. Note that the
probability for energy to radiate off the system into the
surrounding space, reducing the total energy, is heavily
suppressed. Heuristically, the rate would not be order
one but reduced by a factor 1/N2 due to self-absorption
into the other modes. The resulting loss of energy is
therefore of the same order as Hawking radiation and
can be ignored in our analysis. The fact that the large
number of degrees of freedom make it so entropically fa-
vorable for energy to get stuck to the brane, is the reason
why the system can so closely mimic a black hole; i.e. ap-
pearing to external observers as a near perfect black body
of similar size and temperature to that of the equivalent
mass black hole.

When the area of the shell changes, the number of
dissolved branes, N , needs to change. Their energy are
subleading, but when N changes one would expect that
the massless perturbations of the gauge field need to
change too. These carry important amounts of energy,
and therefore one expects a contribution of the form Fρg
to j.

We have thus argued, from a microscopic point of view,
for the presence of the two terms in our ansatz for j :
one proportional to changes in the temperature T , the
other to changes in the area F . In the specific model de-
scribed next, these terms are parameterized by constants
α and β respectively. In [3] values for α and β consistent
with a quasi-static approximation were considered. How-
ever, such an approximation is not relevant for any real
physical process where the shell is perturbed by infalling
matter. In the discussion that follows, we will perform
a more careful analysis constraining the parameters so
that we obtain a self stabilizing shell. We will also verify

6 Note that if the shell were brought towards the horizon, the Un-
ruh temperature would increase towards infinity. As observed
from infinity the temperature will, when the redshift is taken
into account, approach the Hawking temperature TH . The tem-
perature of the Buchdahl shell will be slightly lower and given
by 64

81
TH .

the results using numerical methods. Interestingly, the
constraint we find has a very simple and suggestive form.

A. Specific flux model

The total energy density ρ and pressure P sourcing
Einstein’s equations at the bubble location are the sum
of the distributional matter terms

ρ = ρg + ρs + ρτ , (74)

P = pg + ps + pτ =
1

2
ρg + ρs − ρτ , (75)

where here we ignore any viscous corrections A and Π
to these quantities. As mentioned, we will require that
the gas has a thermal component at the instantaneous
local Unruh temperature of an observer on, but outside
the shell:

T =
a
R

2π
, (76)

where the subscript ()
R

denotes the quantity is evaluated
to the right (outside) of the shell. The vectors ua and sa

are the same vectors on either side of the shell, as are
their coordinate representations in our coordinate sys-
tem, however their gradients orthogonal to the shell are
generally discontinuous across it; in particular, the mag-
nitude of the 4-acceleration evaluated using the EKGH
metric is

a ≡ ∇aubuasb =
Br + V Bt + V̇ /(1− V 2)

eB
√

1− V 2
, (77)

and from (44) one can see how a will jump across the
shell.

The continuity equation (20) is only required to be
satisfied by the net fluid quantities ρ and P , and it is
up to us to specify any internal interactions between the
fluid constituents. As discussed in the previous section,
the brane will provide the energy for heating/cooling,
and any response to changes in the area of the shell.
Since the stiff fluid component is subleading, we only
consider a flux j between the brane and gas, leading to
the individual continuity equations given in (34-36) and
(61-63), which we repeat here for convenience (without
dissipative terms):

ρ̇g = −(ρg + pg)F + j = −3

2
ρgF + j, (78)

ρ̇τ = −(ρτ + pτ )F − j = −j, (79)

ρ̇s = −(ρs + ps)F = −2ρsF, (80)

and recall F represents the fractional change in proper
area along the shell trajectory (38).

1. Internal energy exchange and stability

To obtain guidance leading to a concrete prescription
for the internal flux, we begin by assuming the gas com-
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ponent ρg is purely thermal, namely

ρg ∝ N2T 3, (81)

pg = ρg/2, (82)

where again N is the number of particles. With the as-
sumption that N is fixed

ρ̇g = 3ρgṪ /T. (83)

The continuity equation (78) gives an evolution equa-
tion for ρg; therefore if there was no source j then (83)
would simply tell us how the temperature evolves. On
the other hand, as discussed above, it is assumed that
locally the brane can interact with the gas on timescales
much smaller than any macroscopic dynamical timescale
to always keep the temperature fixed at the Unruh tem-
perature (76). In that case the continuity equation can
be viewed as the definition of the flux of energy j coming
from the brane required to enforce this; i.e. we want

ȧ
R
/a

R
= Ṫ /T, (84)

which requires the flux to be

j ≡ 3ρg (ȧ
R
/a

R
+ F/2) . (85)

The appearance of the term F , representing the frac-
tional change in area as the shell moves (38), exactly
cancels the “usual” response of energy density to such a
change in area (78). This comes from us assuming that
the internal interaction in the shell is entirely driven by
changes in the local proper acceleration, and moreover
that the interaction forces (81) to always be satisfied.
The quasi-stationary analysis given in [3] suggested this
was adequate for stability of the black bubble. However
as we show in appendices A and B, [3] ignored a dy-
namical component to changes in the 4-acceleration that
has a destabilizing effect. Motivated by this observation,
and the string theory considerations discussed above, we
propose the following modification of (85) to model a
broader class of internal interaction

j ≡ 3ρg (α ȧ
R
/a

R
+ β F/2) . (86)

Here, α is a constant controlling changes to the internal
state of the shell in response to changes in the Unruh tem-
perature, while β is a constant controlling corresponding
changes when the material compresses (F < 0) or ex-
pands (F > 0). This model is clearly ad-hoc, though
at least can be used to illustrate what kind of internal
flux may be needed to stabilize the black bubbles, and
serve as a guidepost for future investigation of bubble
constructions within a self-consistent theory.

2. Alternative flux model

We can also consider the gas temperature does not
instantaneously adjust to the local Unruh temperature

Tu = aR/2π, but instead relaxes to it on a characteristic
timescale τu via

Ṫ =
1

τu

(a
R

2π
− T

)
. (87)

Carrying this through a similar calculation as above, and
again generalizing with parameters α and β, defines an
alternative flux option given by:

j ≡ 3ρg

(
α

τu

( a
R

2πT
− 1
)

+ β F/2

)
. (88)

With this prescription for the flux, T is evolved as an
independent variable.

V. IMPLEMENTATION SPECIFICS

With the goal of studying the dynamical behavior of
the AdS black bubble and potential observable conse-
quences, we wrote two different codes for an efficient
exploration. These implement the EKGH system in
Sec. V A which we employ to assess the full spacetime
dynamics, and the shell model in Sec. V B to efficiently
scrutinize the bubble’s behavior.

A. Einstein-Klein-Gordon-Hydrodynamic system

For the most part, our discretization and solution of
the EKGH system outlined in Sec. III A is straight-
forward and follows standard finite difference techniques.
Specially, for the PDEs away from the shell location we
use second order accurate stencils for spatial gradients,
add Kreiss-Oliger style dissipation [19], and for the time
integration use a second order accurate explicit Runge-
Kutta (method of lines) scheme.

Special treatment is needed at the location of the shell,
where even with our choice of a continuous metric across
it, there are discontinuities in gradients there, hence fi-
nite difference methods are not applicable. As discussed
before, in spherical symmetry, where there are no prop-
agating gravitational wave degrees of freedom, one can
treat the shell location as a “boundary” of both the in-
terior and exterior spacetime, connecting them via the
Israel junction conditions. However, this is not possible
in general, as the shell location is not a boundary of the
spacetime, and gravitational waves can freely propagate
across it. We therefore want to implement a scheme that
can integrate the field equations self-consistently across
singular surface layers. Here we do so via a weak-form,
finite volumed inspired strategy, described in Sec. V A 1.
In spherical symmetry in our chosen coordinates this al-
lows the gauge waves present in the metric variables B
and C to freely propagate across the shell location, as
well as our ψ scalar field proxy for gravitational waves,
without imposing any boundary conditions. For simplic-
ity, we have only implemented this to first order accu-
racy at present, hence even though everywhere else the
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discretization is second order accurate, we only expect
global first order convergence in the continuum limit.

It would be complicated to perform these weak-form
integrations over a layer that moved on the coordinate
grid. Therefore, as described in Sec. V A 2, we define a
separate spatial code coordinate x, and dynamically ad-
just the mapping to the metric coordinate r so that the
bubble location is always at a fixed x coordinate. Of
course this is easy to do in spherical symmetry, and one
might worry that generalizing this would be very chal-
lenging. However, we note that much more sophisticated
“dual frame” schemes have already been successfully im-
plemented in binary black hole merger simulations in full
3+1D [20] (see also [21]). There, the black hole excision
surfaces are kept at fixed code locations, and it should be
possible to adapt those techniques to bubble spacetimes,
at least prior to any bubble collisions.

Note that in spherical symmetry one can also solve the
constraint equations in lieu of one or both of the evolution
equations during evolution, as effectively the scalar field
drives all the non-trivial dynamics then. Empirically we
have found solving (46) for C instead of the evolution
equation (29) makes it easier to achieve stable evolution
near the origin. Solving constraints instead of evolution
equations is not easy to generalize to spacetimes without
any symmetry; however, here the origin difficulties are
entirely because of spherical symmetry, and would not
be present in, for example, a Cartesian based coordinate
system.

In Sec. V A 3 we list particular initial conditions we use
for the shell matter and scalar fields.

1. Weak form integration

Here we outline the idea behind a weak form integra-
tion, leaving the description of the particular stencil used
in our implementation in the code to Appendix D.

Equations (29)-(32) are all quasi-linear wave equations
of the form

ḟ(t, r)− g′(t, r) + h(t, r) + δ(r −R)S(t, r) = 0, (89)

as would the full 3+1D Einstein equations in harmonic
form be. As mentioned, we discretize this using stan-
dard finite difference methods everywhere except at the
shell. At that surface, here the point r = R (which for
now we consider to be constant), we apply the following
finite volume, weak-form discretization. First, multiply
the equation by a test function v(r) that only has sup-
port within a cell of width 2∆r about the shell (v(r) = 0
for |r −R| ≥ ∆r), and integrate over the spatial volume
of the cell:∫

(ḟ − g′ + h+ δ(r −R)S)vdr = 0. (90)

For simplicity let v(R) = 1, and integrate the gradient

term by parts, g′v = (gv)′ − gv′, giving∫
([ḟ + h]v + gv′)dr = −S(t, R). (91)

This is an improvement to before, both because we have
been able to evaluate the delta function, and we have
shuffled the spatial gradient from g to v, the former which
has a step at r = R (as it must so that its gradient
can compensate for the delta function in the equation of
motion). I.e., we are free to choose v(r) to be sufficiently
regular so that v′ is finite within the cell, hence gv′ is
well defined and simple to evaluate, whereas before g′v
was not.

If the shell moves, i.e. R = R(t), the above equation
becomes more complicated to regulate, since the time
derivative ḟ(t, r) in (89) is the partial of f(t, r) with re-
spect to t at constant r, not constant R. Hence, in a
typical wave equation where g and f are related, even if
there is no singular behavior in time variation tangent to
the shell, discontinuities in gradients orthogonal to the
shell get spread into both (̇) and (′) discontinuities, as
the t and r coordinates are not aligned with the τ and s
coordinates tangent and orthogonal to the shell, respec-
tively. There are several conceivable ways to deal with
such a situation. One is to extend (90) to an integration
over a space-time volume. Another is to choose coor-
dinates that reduce to (τ, s) along the world line of the
shell. A third, that we have chosen to use, described in
the next section, and detailing its consequences for the
weak-form integration in Appendix D, is to introduce a
map x(t) ↔ r(t) between the metric r and code x coor-
dinates such that the shell is always at a constant x, and
then perform the spatial integration (90) over a cell of
width 2∆x.

2. Mapping between radial metric and code coordinates

We represent the various fields in our EKGH system
on a uniform mesh in a coordinate x ∈ [0..xout], with the
following key properties :

• x(r = R(t), t) = R(0) ≡ x0 (the shell stays at a
constant x = x0)

• x(r = 0, t) = 0 (x = 0 maps to r = 0)

• x(r = Rout, t) = xout (the outer boundary is at a
fixed r and x)

• ∂x(r, t)/∂r|r=R(t) = 1 (the map is at least once-
differentiable at the shell location, and dx and dr
have the same scale there).

We use polynomial functions for the map; the particular
expressions are not too enlightening, so we list them in
Appendix C. Note that this is not a coordinate trans-
formation: we still evolve the metric functions B and C
(28) and their partials Br, Cr and Bt, Ct with respect to
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r and t respectively. Another way then to think of this
map is as a non-uniform, time-dependent discretization
of r. The map will break down if the shell moves too far
from its initial position, though this is only a problem for
unstable bubbles.

3. Initial data

Our typical initial conditions consist of a static black
bubble enclosing empty AdS spacetime, and then some
prescribed external pulse for either of ψ(r, t = 0) or
ξ(r, t = 0) (with ψt(r, t = 0) = ξt(r, t) = 0) that will
subsequently interact with the shell to perturb it (for
unstable bubbles numerical truncation error by itself will
“perturb” the shell, causing it to either accelerate out-
ward or collapse to a black hole, but this is not control-
lable in that the “perturbation” converges away with res-
olution). Specifically, given a desired initial R0 = 9m0/4
for the bubble, we set the shell components following[3]
as 7:

ρg(t = 0) =
`R0 + (`R0 −

√
3)
√

1 + `2R2
0/3

12π`R2
0

√
1 + `2R2

0/3
, (92)

ρs(t = 0) =

√
3

16π`R2
0

, (93)

ρτ (t = 0) =

4`3R3
0 + 8`R0 + (

√
3− 8`R0)

√
1 + `2R2

0/3

48π`R2
0

√
1 + `2R2

0/3
. (94)

We set

ξ(r, t = 0) =
Aξ

(∆ξ)8
(r − (Rξ −∆ξ))

4
(r − (Rξ + ∆ξ))

4
,

Rξ −∆ξ < r < Rξ + ∆ξ, (95)

= 0 elsewhere, (96)

where Aξ, Rξ,∆ξ are constants, and similarly for ψ(r, t =
0).

B. Simplified Shell model

The ODE equations governing the shell model
(58,60,62,63,64,70) can be integrated straightforwardly
with the flux j (86) for the instantaneous adjustment to
the Unruh’s temperature of the gas. If, on the other
hand, we employ the alternative flux prescription, we
augment the evolution equations with (87) and the flux
given instead by (88). The resulting equations are inte-
grated with a standard fourth order Runge Kutta scheme.

7 Note that their analysis only gives a unique decomposition in
the large mass (radius) limit, and there are several conceivable
ways of extrapolating that to m = 0; equations (92-94) is one
particular possibility.

Initial data is given by the static black bubble described
in section V A 3 and we consider its interaction with
a perturbation given by ξS(τ), ξU (τ). We define these
sources via superposition of functions of the form

ξS(τ) = ξU (τ) = Aξ

(
e−((τ−τaξ )/σξ)

2

+ e−((τ−τbξ )/σξ)
2
)
.

(97)
Setting ξS = ξU corresponds to the maximum rate of
absorption of energy by the gas (70). Finally, as we em-
ploy this code to explore the large m regime, given the
disparate length scales involved (bubble mass, perturba-
tion value and timescale of interest) we adopt quadruple
precision.

VI. APPLICATIONS/DYNAMICS

To explore the stability of black bubbles in the large
mass limit, we use the simplified model described in
Sec. III E and V B. These results are presented in
Sec. VI A. In Sec. VI B we show some results from the full
model described in Sec III A and V A, focusing on issues
that would need to be overcome going beyond spherical
symmetry, and results from scalar field evolution on a
fixed bubble background.

A. Numerical results from the shell model

We now focus on the simplified model described in
Sec. III E and investigate a couple of interesting cases
with parameters guided by a linear stability analysis of
the system (Appendix B).

We impart a perturbation of the form (97) to the shell
which effectively imply “hitting” it twice : the first at
τ = τaξ to take it away from the static solution, and a

second one at τ = τ bξ = 15τaξ to further perturb the in-

termediate state before it achieves equilibrium (if stable).
For each perturbation we evolve with two choices for the
parameters {α, β}. The first (Case A) uses the constants
α = 0.4 and β = 0.1. As we show, this yields stable
bubbles, but their final equilibrium states are not at a
new Buchdahl radius. For the second (Case B) then, we
also keep β = −1/3, but now set α via the mass depen-
dent relationship (B29) that the linear analysis identified
as being necessary to keep the asymptotic bubble’s ra-
dius at its Buchdahl value. We adopt the simpler vis-
cous equations (70) with τe = τp = 0, and ζ = 0.1 and,
when employing the alternative flux option, we adopt
τu = 2 × 10−6m. These values of ζ, τu are not special;
the former are sufficiently small to play only a secondary
role in the dynamics; the latter imply a short time for
the gas temperature to approach its corresponding Un-
ruh value and can be chosen up to 100 times larger and
still give essentially the same qualitative behavior8

8 Even larger values produce a solution which is quite sensitive
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Before illustrating the bubble’s behavior when per-
turbed, we note that there is a maximum amplitude
of the perturbing pulse (for reasonable choices of pa-
rameters {τaξ , σξ}), that if exceeded (some of) the equa-
tions become singular. This singular behavior takes place
when ξS ≈ m−1, which induces aR → 0 and ṁ→ 1, sug-
gesting the bubble’s growth approaches the speed of light
and the effectively classical description of the bubble’s in-
ternal dynamics ceases to make sense. As reference, for a
perturbation with σξ ' m, the largest mass change one
can achieve is of ≈ 12% after the two interactions. In
what follows, we restrict to slightly lower values to avoid
this situation. We consider a bubble with initial mass
m = 5000 and choose the amplitude of the perturbation
such that, after two perturbing episodes, the net relative
change of the mass is ∆m/m = 0.2× 10−n with n = 3..5
and. To more clearly illustrate the asymptotic state of
the solution, and its agreement (or lack thereof) with a
Buchdahl state, we normalize each plotted quantity ei-
ther by the (instantaneous) value expected for a Buch-
dahl solution, or by the initial value of that quantity.
Further, we also normalize by the inverse of the relative
change in mass to more clearly compare with different
chosen amplitudes.

First, Fig. 1 shows the behavior of radius and gas den-
sity vs (τ/m). For both curves, we normalize them with
respect to the corresponding quantities evaluated for the
equilibrium solution with mass corresponding to the bub-
ble’s instantaneous mass, and also by the inverse of the
relative mass change (∆m/m). As can be appreciated
from the figure, while the late time solution for both
cases is stationary, for Case A this does not correspond
to a Buchdahl state. On the other hand, Case B shows
both quantities converging to zero (the Buchdahl state)
linearly with ∆m.

Further insights into the dynamical behavior can be
observed in Fig.2 which shows the gas entropy and the
temperature (normalized by the initial temperature).
The entropy shows a net increase from the initial state
to the final stationary solution, but as the interaction
with the perturbation takes place, it shows a transient
non-monotonic behavior. Comparing the net entropy
change (which can be consistently defined as the initial
and final states are stationary) indicates Case B has
a larger final entropy than Case A. Quantitatively, we
find the net change of entropy from the initial state
to the final equilibrium one is ∆S ≈ CSiSg0(∆m/m)
with CSA ≈ 0.85, CSB ≈ 2. Recalling the gas entropy
is Sg = ρgR

2T−1, and that for a state consistent
with Buchdahl ρg ∝ R−1 for large masses, the value
obtained for CSB is the expected one for a Buchdahl
state. We note in passing, that one can choose values
for {α, β} that guarantee a monotonic growth of gas

to this choice; lower ones give the same behavior but if signifi-
cantly smaller leads to a stiff equation requiring a more delicate
numerical treatment.
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FIG. 1. Normalized radius (top panel) and gas density (bot-
tom panel) from evolutions of a black bubble undergoing two
distinct accretion episodes using the relaxation approach (88)
(with m = 5000, ` = 1, τu = 0.01 and ζ = 0.1). In the top
panel, four solutions are presented corresponding to relative
mass changes of ∆m/m = 0.2, 0.002% for each case. Case A
asymptotes to a non-Buchdahl yet stationary solution, while
Case B converges to a Buchdahl state with a subleading cor-
rection that goes to zero with ∆m. In the bottom panel,
results corresponding to a mass change of ∆m/m = 0.2% for
case A, and ∆m/m = 0.2, 0.02, 0.002% for Case B are shown.
Case A asymptotes to a stationary solution distinct from the
Buchdahl one, while Case B converges to a Buchdahl state
in a similar manner with ∆m as the radius. (Note that both
accretion episodes are of the same duration; that the second
looks so abrupt is due to the logarithmic scale used for the
time axis.)

entropy, but unreasonably large values of the dissipation
parameter ζ would be required for stability. Finally,
the temperature indeed shows the expected reduction
in value as the bubble grows, exhibiting a transient
behavior as the interactions take place. Its asymptotic
value denotes a change that can be approximated by
∆T ≈ CTiT0(∆m/m), with CTA ≈ −7.5, CTB ≈ −1;
the latter value corresponds to the expected one for a
Buchdahl final state.
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FIG. 2. Entropy (top panel), and temperature (bot-
tom panel), normalized with respect to their initial values,
from evolutions of a black bubble undergoing two distinct
accretion episodes. Four runs are shown using the relax-
ation approach (88) (with m = 5000, ` = 1, τu = 0.01
and ζ = 0.1) for Case A (with a relative change of mass
∆m/m = 0.2%) and Case B (with a relative change of mass
∆m/m = 0.2%, 0.02%, 0.002%).

B. Numerical results from the
Einstein-Klein-Gordon-Hydrodynamic system

Since the ODE model can quickly and accurately study
the stability of large black bubbles, we have, as demon-
strated with some examples in the previous section, used
that to map out black bubble matter properties that
lead to stable configurations in spherical symmetry. Here
then, in the next two subsections we show a couple of re-
sults from the EKGH system to illustrate some issues
that would need to be addressed in future studies ex-
ploring black bubbles beyond spherical symmetry. In the
last subsection we explore evolution of scalar fields on
a fixed black bubble background, which is possible with
the EKGH code for long time scales and up to modest
values of the internal cosmological scale `.

1. Accuracy and convergence

One of the issues limiting the EKGH code is related to
accuracy : in this first attempt to model singular layers
in a PDE code we have sacrificed higher order conver-
gence for the sake of simplicity. That would not have
been much of an issue if the stability of black bubbles did
not depend so sensitively on the scales in the problem.
With a 1+1D code on a modern, single CPU machine we
can evolve grids of up to 105 points for a similar number
of time steps in about an hour of wall time. For small
black bubbles, i.e. m` ≤ 1, even with a code that is only
first order convergent, we can achieve good accuracy over
many shell light-crossing times. However, for reasons not
entirely clear, though likely related to the “mass ampli-
fication” issue discussed in the following subsection, for
m` ≥ 1 the truncation error at a given resolution rapidly
increases with m`, so much so that by m` ∼ 10 we can-
not evolve for more than of order a light-crossing time
at the highest resolutions before O(1) errors are reached
(in mass conservation for example). Moreover, with cer-
tain flux parameters there is a numerical instability that
seems to set in for large m` (or at least the growth rate
depends on m`, and if present for smaller values is suffi-
ciently mild that we have not noticed any lack of conver-
gence then).

Figs. 3 and 4 show examples of convergence for two
different mass black bubbles, m` = 0.1 and m` = 10
respectively, perturbed with a non-interacting scalar field
ψ (these are also the two outlier cases shown in Fig.5
below). In both cases, after the ingoing component of the
scalar field propagates across the shell, this perturbation
results in a change of the mass aspect m(r, t), defined via
the following generalization of the Misner-Sharp mass[22]

1− 2m/r̄ + Θ(R− r)`2r̄2/3 ≡ ∇br̄∇br̄, (98)

of ∼ 0.1% evaluated just exterior to the bubble location
R(t) (the net initial energy of the scalar field is roughly
twice this, with the other half propagating outward). In

the above r̄(r, t) ≡
√
A(r, t)/4π is areal radius.

What is shown in Figs. 3-4 are residuals of the con-
straint C11 (45) (i.e. the left hand minus right hand side
of it) evaluated pointwise across the grid using centered,
second order accurate finite difference stencils, at two
times during the evolution. With our mapping of the
shell to a constant location in x = x0, we have also fixed
that location to be at a vertex of the grid. Therefore, a
consistent representation of the delta function appearing
in (45) is to use the piecewise linear function that goes
from 0 at x0 − ∆x to 1/(2∆x) at x0, and back to zero
at x+ ∆x. Then, having evolved with a first order accu-
rate finite volume integration about x0 (see Appendix D),
one only expects a consistent, convergent scheme to show
convergence of a residual to zero in an integrated sense;
specifically, C11(x0, t) will evaluate to a finite function
of time irrespective of resolution, though adjacent points
around it should converge to zero first order in ∆x. This
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can be seen in Figs.3-4, though we do initially have sec-
ond order convergence away from x0, and interestingly
the region around x = x0 that drops to first order with
time grows quite slowly compared to the characteristic
speed of the system.

The main point we want to illustrate with those figures
is how much larger the truncation error is for large (m` =
10 in Fig.4) vs small (m` = 0.1 in Fig.3) mass bubbles.
Note in particular the interior region, which is empty AdS
to begin with, while in the exterior region by τ/m ∼
1 the truncation error has grown to be of comparable
magnitude for the m` = 10 case, and we are beginning
to loose convergence there.

2. Interior energy

The second problem affecting the EKGH system evolu-
tions is related to a physical issue, in that in the m`� 1
limit the bubble is very “close” to what would be the AdS
boundary from the interior spaces’ perspective. One con-
sequence of this is when we perturb the shell with a small,
exterior non-interacting scalar field pulse, as it crosses
the shell it is very strongly “blue shifted”. So in terms of
a geometric mass (98) one can end up with a lot inside
the shell. In fact, it is even possible to perturb the shell
so that the interior mass ends up being larger than the
asymptotic mass, and the shell acquires a negative grav-
itational mass. Such (and more modest cases) typically
form black holes in the interior; considering quantum ef-
fects presumably such states will eventually tunnel to a
larger, encompassing black bubble.

To illustrate this interior geometric-mass amplifica-
tion, in Fig.5 we plot the change in interior mass (98)
δmi, measured just inside the shell, as a fraction of
the change in exterior mass δme, measured just out-
side the shell. The m0` = 0.1, 10 cases are from the
same evolutions shown above with the convergence tests;
the intermediate points are from similar runs with the
perturbing scalar field parameters adjusted to also give
δme ∼ 0.001m0 on a similar local time scale. Note
that the linear analysis shows that for these parame-
ters (α = 0.35, β = 0, τu = 0.1, ζ0 = 1.0) black bub-
bles with m0` . 0.5 are unstable, and this is confirmed
by the code, though for such relatively short interactions
δmi/δme does not depend on the flux parameters (we
have not found a single set of parameters that give sta-
ble bubbles for both small and large masses). Also, since
no energy is directly exchanged with the shell matter, on
these short time scales ρg, ρτ and ρs are roughly constant.
The trend from the figure on the large mass side is that
δmi/δme ≈ m0 (e.g., for a similar 0.1% perturbation,
cases with m0` & 1000 will give negative gravitational
mass bubbles).
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FIG. 3. The residual of (45) at τ/m = 0.01 (top panel)
and τ/m = 1.0 (bottom panel), for an m` = 0.1 black bubble
perturbed with a non-interacting scalar field ψ (using ` =
1, α = 0.35, β = 0, τu = 0.1, ζ0 = 1.0, τe = τp = 0), where
τ is proper time measured at the shell location. The finest
resolution mesh spacing is ∆x = h = 0.5/32768. The shell
is at x ∼ 0.23, corresponding (initially) to a proper radius
r̄ = 0.225m, while the outer boundary x = 0.5 corresponds
to a proper radius 126m. At τ = 0 the scalar field pulse is
centered at x = 0.27, has a coordinate width of 0.04 (95)
and an amplitude so that it adds ∼ 0.002m to the mass of
the spacetime (98). The initial data is time symmetric, so
half falls into the bubble (corresponds to the second set of
peaks out from the origin on the bottom panel—the smaller
first peak is a transient emanating from the shell location at
t = 0). The “noise” in the interior seems to be associated
with the calculation reaching double-precision round-off error
there.
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FIG. 4. The residual of (45) at τ/m = 0.01 (top panel)
and τ/m = 1.0 (bottom panel), similar to the case shown in
Fig.3, but here for an m` = 10 black bubble, and the finest
resolution mesh spacing is ∆x = h = 5.0/32768. The shell
is at x ∼ 2.5, corresponding (initially) to a proper radius
r̄ = 22.5m, while the outer boundary x = 5.0 corresponds
to a proper radius 161m. At τ = 0 the scalar field pulse is
centered at x = 2.8, has a coordinate width of 0.4 (95) and
an amplitude so that it adds ∼ 0.002m to the mass of the
spacetime (98). In comparison to Fig.3, notice the different
magnitudes of the residuals. In particular in this case there is
rapid growth of the residual exterior to the bubble with time,
and moreover it oscillates on a timescale of order τ/m—that
the three higher resolutions seem to be the same at large radii
is mostly coincidence as the oscillations happen to overlap at
τ/m = 1.0 (though there is also some deterioration of the rate
of convergence, which does happen on such short time scales
for these large mass cases).
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FIG. 5. The change in interior mass δmi relative to the
change measured exterior to the shell δme as a function of
initial shell mass m0` (using ` = 1, α = 0.35, β = 0, τu =
0.1, ζ0 = 1.0, τe = τp = 0). From convergence studies es-
timated uncertainties in δmi/δme are less than 1% for all
points (the dashed line between the points is simply to guide
the eye). For all cases the parameters of the perturbing scalar
field were adjusted to give δme ∼ 0.001m0. For larger masses
δmi/δme grows linearly as a function of m0` (note that the
figure has a logarithmic scale for the x-axis).

3. Gradual release of internal energy

For a rough estimate of the effect of internal energy, as-
suming it is not sufficient to collapse to a black hole, nor
trigger a quantum transition to a new black bubble con-
figuration, here we evolve a free, non-interacting scalar
field ψ on a black bubble background. With the PDE
code we can run such cases for many dynamical times,
and up to modest values of ` of O(10). The specific ex-
amples we show here choose an initial scalar field pulse
of the form (95), though use proper radius r̄ to define
it to make for more meaningful comparisons varying `
(the relationship between r and r̄ in the light-metric (28)
coordinates depends strongly on `); we set Rψ = 3.5m,
∆ψ = m (and m = 1 in all cases).

The primary results are summarized in Figs.6 and 7.
First, as shown in Fig.6 the scalar field that crosses into
the bubble is partially trapped there, the more effectively
the larger `. Specifically, what is plotted there is the
integrated energy density interior to the bubble

Einterior(τ0) ≡
∫ r̄=9m/4

r̄=0

TabX
anb
√
hd3x, (99)

as a function of central proper time τ0, where Xa =
(∂/∂t)a is the time-like Killing vector of the static back-
ground, na is the unit vector normal to t = const. hy-
persurfaces, and h is the determinant of the correspond-
ing spatial metric. On the background a similar quantity
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would be conserved if the integral where carried out from
r̄ = 0 to r̄ = ∞. The “blocky” nature of the curves at
early times is associated with the light-crossing time of
the pulse interior to the bubble, which decreases like 1/`
with respect to the proper time at the origin of AdS. Ini-
tially the pulse can be considered to be a superposition
of many AdS scalar field normal modes; the higher har-
monics leak out more quickly, gradually leaving behind
the lower harmonics and a smoother late-time decay.

The reduction of energy within the AdS region can be
understood straightforwardly following the analysis of,
e.g. [23], and in Appendix E we outline such a calcula-
tion. This shows that at late times when the fundamental
mode dominates, and for large `, one expects the interior
energy to leak out via logE ∼ −2π

m2` τ0; this scaling with
` is consistent with the late time slopes of the ` ≥ 10
curves shown in Fig. 6.

In Fig.7 we show the imprint of this on the measured
scalar radiation some distance outside the bubble. A few
interesting features are apparent. Note the redshift be-
tween the oscillations with respect to central proper time
depicted in Fig. 6 and the (near) asymptotic proper time
in Fig.7 (the same run time of τ0 = 54m translates to
τ90 ∼ 2120m, 4160m, 6150m for the ` = 10, 20, 30 cases
respectively, though the corresponding curves stop below
the lower y-axis limits of the figures). This means the ob-
served rate of energy loss scales like 1/`2, as opposed to
the 1/` measured with respect to interior central proper
time (see Appendix E for more details). In terms of the
externally observed frequency, the redshift also almost
exactly compensates for the increasing internal oscilla-
tion frequency with `, and the frequency observed at late
times in the exterior is roughly independent of ` (see the
insets on the bottom panel). Specifically, the late time
fundamental harmonic mode of a scalar field in AdS with
frequency (relative to central proper time) ω0 ∼

√
3` is

observed at large radii redshifted to ω∞ ∼ 4/9/m.
Finally in Fig. 8, for comparison we show two similar

non-backreacting runs, but now using the accreting
scalar with perfectly absorbing boundary conditions.
The first is the usual black bubble case at the Buchdahl
radius, while for the second the radius has been set to
r̄ = 2.001 to mimic a black hole (we cannot set the
boundary at exactly r̄ = 2, as the light-like coordinates
become singular then). The results are qualitatively
similar, though do differ in detail, suggesting that the
early time gravitational wave signal from black bubble
formation will be similar to the black hole case, yet
distinguishable with a precise enough measurement.

We discuss some of the potential observational conse-
quences of this in the next section.

VII. DISCUSSION

In this work, we have taken first steps toward seriously
considering the non-linear classical dynamics of shell-like
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FIG. 6. Logarithm of the integrated energy (99) of the non-
interacting scalar field ψ interior to the bubble, as a function
of central (r̄ = 0) proper time τ0. These are all from runs
without back-reaction; i.e. the scalar field is simply propa-
gating on the black bubble background. Runs using four dif-
ferent values for the cosmological constant scale ` are shown,
each with m = 1, and an initial perturbation of character-
istic width ∆r̄ = 1 centered outside the bubble at a radius
3.5m. The rate at which energy escapes clearly decreases with
increasing `.

black hole mimickers (or ECO’s — Exotic Compact Ob-
jects). We formulated the problem within a fairly gen-
eral framework that does not rely on symmetries of a
single, isolated ECO, though for simplicity in a concrete
example we restricted to spherically symmetry. Similarly,
the novel techniques we introduced to implement this in
a code were designed with application beyond spherical
symmetry in mind.

The particular model ECO we studied are the AdS
black bubbles of [3]. This model is motivated by string
theory, and the initial investigations in [3] suggested they
are stable—a crucial requirement for any astrophysically
viable ECO. An important physical ingredient for sta-
ble black bubbles is an internal interaction between the
matter components of the bubble that causally reacts to
external perturbations (such as accretion), keeping the
bubble in an equilibrium configuration. We found here
that the original quasi-stationary flux prescription of [3]
was inadequate to maintain stability in dynamical situ-
ations, and developed a two parameter generalization of
it. We identified regions of parameter space that do re-
sult in stable black bubbles, at least for sufficiently slow
accretion. Moreover, within the space of stable bubbles
we were able to find parameters that guarantee (at the
linear level for large black bubbles) that after a dynami-
cal episode the bubble relaxes to a new equilibrium black
bubble, i.e. it sits at the Buchdahl radius corresponding



20

100 200 300
τ90

-6

-4

-2

0

lo
g 10

|ψ
|

l=1
l=10
l=20
l=30

1000 2000 3000 4000 5000 6000
τ90

-6

-5

-4

-3

-2

lo
g 10

|ψ
|

l=30
l=20
l=10

1850 1900 1950

-7

-6

-5

-4

5850 5900 5950
-7

-6

FIG. 7. The amplitude of the scalar field measured at r̄ =
90m (m = 1) as a function of proper time τ90 for a static
observer at this location, for the same cases shown in Fig. 6.

to its new mass. Though we argued that the new param-
eters can be considered “natural”, we did not derive the
new flux prescription from fundamental considerations,
which would be an avenue for future research.

For rapid accretion, namely when a sizeable fraction
of the mass of the bubble accretes within of order the
lightcrossing time, we do find that otherwise stable bub-
bles can collapse to black holes. However, then the in-
ternal fluxes take on values that suggest the evolution
is outside the realm well described by the classical anal-
ysis. Likewise, anticipating what might happen when
two black bubbles merge (assuming our stability results
carry to non-spherical perturbations), a classical analysis
should be valid during the inspiral up to a moment just
before the actual merger. For the analogue black hole
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FIG. 8. The amplitude of the scalar field measured at
r̄ = 10R (m = 1) as a function of proper time there (τ10R),
for similar initial data as depicted for the runs in Fig. 7, but
here with perfectly absorbing boundary conditions so that no
scalar field enters the bubble (hence ` is irrelevant). For the
black curve the bubble is at the canonical Buchdalh radius,
while for the green it is at r̄ = 2.001m, to mimic a black
hole (and of course, such a bubble will be unstable if back-
reaction were included). Since the measurement radii are at
slightly different locations, one curve was shifted in time to
align the profiles at peak amplitude for ease of comparison.
This would likewise affect the relative amplitudes, which has
not been corrected for, though here we more want to empha-
size the slight shift in frequency and number of quasi-normal
oscillations visible before essentially the same power-law de-
cay sets in.

case, in terms of local physics a global apparent horizon
suddenly forms that replaces the apparent horizons of
the two separate black holes. Similarly, there could be
a quantum transition from one to two bubbles occurring
before the two bubbles actually touch. Classically, one
could attempt to model this in the same way by replac-
ing the two bubbles with an encompassing single bubble.
On the other hand, taking guidance from the way event
horizons fuse together, one may be able to engineer the
interaction between two bubbles so that at the instant
of contact they similarly fuse into a single bubble. In
the extreme mass ratio limit where no trapped surfaces
would form as the two bubbles get close and fuse, the
latter approach by itself could be an accurate approxi-
mation of the full quantum system (i.e. it may be that
tunneling only occurs with high probability if a trapped
surface would have otherwise formed).

Based on our results of scalar fields propagating on
black bubble backgrounds, we can make some very spec-
ulative comments on observational consequences of black
bubble formation or mergers. First, regarding the grav-
itational wave analogue where the scalar field is not ab-
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sorbed by the bubble, this is unlikely to have observable
consequences if 1/` is close to the Planck length Lp, or a
similarly small microscopic scale. For then, as estimated
in Appendix E, the internal energy is effectively trapped.
On the other hand, one can take the perspective that we
do not know what this scale is, and one can use black
hole merger data to constrain it, or detect an unexpect-
edly large scale. This would be similar to the recent
analysis in [24], where they assumed there was an ECO
with purely reflecting boundary conditions some distance
ε from the would be Schwarzschild radius, and the ab-
sence of a long-lived, nearly monochromatic postmerger
ringdown signal from GW150914 could constrain ε as a
function of the ringdown timescale. Note that they do
not propose that their ECO can actually reflect gravita-
tional waves (which would require matter that is bizarre
even by the lax standards applied to ECOs), but that
on long timescales the passage through some interior ge-
ometry effectively looks like a reflection. A black bubble
with a large 1/` would similarly produce a monochro-
matic latetime ringdown as illustrated in Sec. VI B, how-
ever at a frequency related to the Buchdahl radius as
opposed to the Schwarzschild radius (and appropriately
modified for rotation, as is necessary for GW150914 and
was done in [24]). This suggests that black bubbles could
offer an interesting counter example to the conclusions
given in [24], namely that the absence of such a signal
can be used to infer that the geometry outside the rem-
nant of GW150914 must be close to that of Kerr down
to some microscopic distance ε close to the horizon. I.e.,
for black bubbles, absence of such a signal constrains the
interior AdS scale, but not macroscopic differences from
Kerr in the exterior geometry. To constrain the latter
would require understanding the prompt emission at the
time of merger.

The comments about a late-time post-merger signal in
the previous paragraph assumed external gravitational
waves with wavelength of order the bubble radius propa-
gate into the interior, and these essentially excite the low-
est wavelength modes of the AdS interior. Such modes
are very efficiently trapped there. However, as suggested
by equation (E10), if there are internal quantum grav-
ity processes that produce gravitational waves on small
scales 1/j ∼ 1/`, they would leak out on observationally
interesting timescales even for 1/` ∼ Lp. Also, if the
mass-amplification effect illustrated in Fig.5 would clas-
sically cause a black hole to form in the interior, this will
instead induce a tunneling event (or interior energy may
induce tunneling to a new bubble regardless of classical
black hole formation), and the arguments for the rate at
which energy leaks out given in Appendix E would be
invalid.

On another observational front, to explore how EHT
images of supermassive black holes would change if they
were supermassive black bubbles, it would be interest-
ing to understand magneto-hydrodynamic (MHD) ac-
cretion from realistic models of accretion disks onto
black bubbles. Back reaction is likely unimportant, and

though black bubble spin would be, a good indication
of whether the EHT could discriminate between black
bubbles and black holes could be made using an exte-
rior Schwarzschild background to begin with, assuming
sufficient control of gastrophysical processes are at hand.
For the black bubble/MHD interaction a conservative ap-
proach would be to model it as perfectly absorbing, as
with the scalar field case studied here.

There are many directions for future numerical stud-
ies of black bubbles. The most crucial would be to re-
lax spherical symmetry to explore stability to non-radial
perturbations, and if stable, accretion of angular momen-
tum to uncover the rotating solutions. The fact that
the bubble surface is within the photon sphere of the
spacetime suggests there may be long timescale secular
instabilities [25–27]. Classically, this might be analo-
gous to the so-called weakly turbulent instability of AdS
spacetime [28], which certainly is also relevant for the
black bubble interior. If so, the consequence of the in-
stability might “merely” be that trapped energy could
eventually form small black bubbles that merge with
the larger one. For rotating black bubbles, similar in-
stabilities could be associated with the presence of an
exterior ergoregion [29–31]. Also, it would be interest-
ing to investigate whether in such cases there could be
superradiant extraction of rotational energy, which may
lead to similar observational signatures as the presence
of ultra-light particles around rotating black holes (see
e.g. [32]). Rotational energy may also be extracted if a
Chandrasekhar-Friedmann-Schutz instability operates in
fluid shells [33, 34] (it is generic for rotating fluid stars
in general relativity).

Regarding the physics of black bubbles, a next step
would be to investigate whether the ad-hoc flux model
prescribed here can be justified with more rigor. To fully
capture the physics of the bubbles when they tunnel and
merge will be challenging. It would require a signifi-
cantly new conceptual understanding of tunneling in a
time-dependent background, as well as the construction
of methods capable to implement this numerically. This
would also be pertinent to understanding how soon after
a merger the current model can be applied, which should
adequately describe the late-time ringdown.

Last, we note that the AdS black bubbles we focused
on are but one of many potential ECO models. In that
context, we hope our study, both in terms of the methods
we have introduced and how we solved issues particular
to black bubbles, can serve as a guide to further develop
related ECO models. Likewise, since the potential ob-
servable features indicated in this work can be traced
back to key aspects of the model’s fundamental building
blocks, other ECOs with similar structure should exhibit
the same qualitative observational characteristics. For
instance, relating the late time quasi-monochromatic ra-
diation frequency to a redshifted fundamental mode of
the interior region, as well as connecting the amplitude of
decay to interior energy loss, should be broadly applica-
ble to any shell-like ECO with a compact, leaky interior.
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Appendix A: Dynamical effects on proper
acceleration

The analysis of [3] found that a black bubble is sta-
ble to what are effectively quasi-stationary perturbations.
Specifically, they considered the proper acceleration of an
exterior, stationary observer,

as =
f ′

2
√
f

(A1)

with f = 1 − 2m/r̄ in Schwarzschild coordinates, r̄ is
areal radius, and here we use ′ ≡ d/dr̄. The fractional
change in acceleration that goes into the expression for
the flux (85) was then defined to be ȧs/as = V a′s/as,

where V = Ṙ(τ) is the shell velocity, and ˙ ≡ d/dτ , with
τ proper time along the shell trajectory.

However, in a dynamical situation there are additional
terms that appear in the expression for the 4-acceleration
aR, and it turns out these can counter the effect of the
quasi-stationary term, and in fact so much so that adding
the corresponding flux j can make the bubbles more un-
stable than without a flux. To see this, we evaluate (77)
in Schwarzschild coordinates for a moving observer with
unit 4-velocity ua = dxa(τ)/dτ :

aR =
1

2

f ′ + 2A√
f + V 2

, (A2)

with A(τ) = V̇ (τ). This already hints at problems, as the
acceleration can have an arbitrary sign irrespective of the
motion of the shell, and the “wrong” sign will hinder the
ability of a flux j based on (85) to return a perturbed
shell to equilibrium. To see this more clearly, and that
the general flux expression (86) with appropriate param-
eters could mitigate this problem, we compute (86) using
(A2). The full expression is lengthy and somewhat ob-
scure; to simplify we evaluate it to leading order in V at
the Buchdahl radius:

jm

ρg

∣∣∣
R̄=9m/4

=
243αJ̄

81Ā+ 16

−V
[

64(6α− β) + 81(4[8α− β] + 81αĀ)Ā

3(81Ā+ 16)

]
+O(V 2), (A3)

where we introduced the jerk J(τ) = Ȧ(τ), and rescaled
the jerk and acceleration to given dimensionless quanti-
ties via J̄ ≡ m2J and Ā ≡ mA. The quasi-stationary
case js is this expression with Ā = J̄ = 0 and α = β = 1

jsm

ρg

∣∣∣
r̄=9m/4

= −20V

3
. (A4)

Thus, for initial data where V is small, but A and J are
zero, the analysis in [3] should hold, and the flux (A3)
should start to counter the motion of the shell. How-
ever, this is not a generic perturbation, and perhaps a
more “realistic” perturbation for a presumed stable shell
would be the opposite case, i.e., we imagine a black bub-
ble has formed and settled down to a stationary space-
time, then we throw in an external perturbation. In that
case the first term in (A3) will dominate the flux, and
this does not generically have the correct sign. Equation
(A3) also suggests that a simple alternative stable pre-
scription for triggering the internal fluxes is one based
entirely on local changes to the area (β 6= 0) and not the
Unruh temperature (α = 0), if β is sufficiently negative.

Appendix B: Linear perturbation analysis

In lieu of a full stability analysis, we will check whether
stability is at least possible by seeking periodic solutions
of the linearized equations for the simplified shell model
presented in Sec. III E. We start with the following ansatz

R(τ) = R0 + δR · eiωτ ,
ρi(τ) = ρi0 + δi · eiωτ , (B1)

where R0 = 9m/4, ρi0 are the equilibrium matter param-
eters for i ∈ (g, s, τ), and δR, δi are the magnitudes of a
small perturbation. Here we do not include any exter-
nal fluxes, but assume they were responsible for creating
these perturbations.

Consider 4 options for the flux term j: j = j0 = 0;
j = js from (85) with aR given by the quasi-stationary
case (A1); j = jd from the dynamical flux (86) with aR
given by the full expression (67); j = ju using the al-
ternative prescription for the dynamical flux (88) that
explicitly introduces the temperate T and a correspond-
ing relaxation to the Unruh temperate via (87). For the
latter, we also adopt a similar ansatz for the temperature
perturbation

T (τ) = T0 + δT · eiωτ , (B2)

with T0 = 8/(27πm). For dissipation, we assume ζ
is a constant ζ0. Plugging the above ansatz and flux
options into the equations of motion, and expanding
to linear order in (δR, δi), a solution consists of con-
straints on the amplitudes of the matter (and tempera-
ture) perturbations δi (δT ) in terms of the radial pertur-
bation δR, and a relation ω(m, `). These are more con-
veniently expressed in terms of dimensionless variables
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m̄ = m`, ω̄ = ω/`, τ̄u = τu`. We obtain for j = 0:

δg,j0 = −δR
4`2

81πm̄3

[
(m̄− 4

√
3/9)

+
4m̄√

16 + 27m̄2

]
, (B3)

δs,j0 = −δR
16
√

3`2

729πm̄3
, (B4)

δτ,j0 = 0; (B5)

for j = js:

δg,js = 6 δg,j0 , (B6)

δs,js = δs,j0 , (B7)

δτ,js = −5 δg,j0 , (B8)

for j = jd:

δg,jd =

[
1 + 6α− β +

729αω̄2m̄2

64

]
δg,j0 , (B9)

δs,jd = δs,j0 , (B10)

δτ,jd = −
[
6α− β +

729αω̄2m̄2

64

]
δg,j0 , (B11)

and for j = ju:

δg,ju =
δg,jd − iτ̄uω̄(β − 1)δg,j0

1 + iτ̄uω̄
, (B12)

δs,ju = δs,j0 , (B13)

δτ,ju =
δτ,jd + iτ̄uω̄βδg,j0

1 + iτ̄uω̄
, (B14)

δT = −δR
(128 + 243m̄2ω̄2)`2

162πm̄2(1 + iτ̄uω̄)
. (B15)

The expressions for ω̄ are lengthy and not too illumi-
nating by themselves, so for simplicity we only show the
more relevant large m̄ limit:

j = 0 : ω̄ ≈ 32πζ0
27m̄

(
i± i

√
1 + 9/32/(πζ0)2

)
,(B16)

j = js : ω̄ ≈ 32πζ0
27m̄

(
i±
√
−1 + 27/(8πζ0)2

)
,(B17)

j= jd, ju : ω̄ ≈ 128πζ0
27(4− 9α)m̄

·(
i±
√
−1 + 9(4− 9α)(6α− β − 2)/(16πζ0)2

)
.(B18)

For j = ju there are 3 solutions if α 6= 0; the first two
are identical in the large mass limit to that of jd (B18),
with the third given by

j = ju : ω̄ ≈ i(4− 9α)

4τ̄u
− iα
m̄

[
1√
3τ̄u

+
64πζ0

3(4− 9α)

]
(α 6= 0).

(B19)
The zero flux (j = 0) and canonical (α = 1, β = 1)
dynamical flux jd,u cases always have at least one grow-
ing mode, while the quasi-stationary flux js is always

damped9. Various parameters can be found for the dy-
namical fluxes jd,u to give damped systems. The third
solution existing for the relaxation-based dynamical flux
ju is always stable for α < 4/9, and m̄ sufficiently large
that the second term in (B19) is subdominant.

a. Particular solution

In the analysis above we did not include any external
flux, assuming it was active prior to (say) τ = 0 to set up
the perturbation, after which one expects the solution to
be given by some superposition of the above modes. In
this regard, one thing missing from the above ansatz (B1)
are the arbitrary small perturbations of the initial con-
ditions that depend on the details of the prior external
flux interaction. It is straightforward to show that in-
cluding such general initial conditions requires adding a
particular solution that simply shifts the final radius and
temperature (for damped, stable cases) by constants de-
pendent on these initial parameters, but otherwise does
not affect any of the linear modes.

Similarly, if the perturbation caused some matter to
flow to the interior, and we model this as a small change
δmi to the interior mass, i.e. letting fL ≡ 1+R(τ)2`2/3−
2δmi/R(τ), we can solve the linear equations if we add
the following constant correction to R0 in (B1)

R0 → R0 +
8

81m̄2
δmi +O(1/m̄4). (B20)

(A corresponding correction to T0 scales like O(1/m̄4)).
This is a tiny correction to R0, however, reversing the
perspective, a perturbation that leaks energy into the in-
terior resulting in a small change δR to the position of
the bubble leads to a comparatively huge interior mass
parameter ∝ m̄2δR. It is not clear that we can combine
this with the result shown in Fig.5 where the increase
in interior mass comes from a scalar field interaction,
and δmi ∝ m̄δme : for small perturbations the scalar
field will eventually escape, and for larger perturbations
where a black hole forms to trap the scalar field, a linear
analysis might not be warranted. Nevertheless, combin-
ing them for the case where an interior black hole does
form, this suggests a change in radius (again for stable,
damped cases) δR ∝ δme/m̄. In other words, this kind
of perturbation, regardless of the flux parameters, will
lead to a new (classical) equilibrium position that is not
exactly at the new Buchdahl radius.

9 One could use the original quasi-stationary flux js and achieve
linearly stable black bubbles, at least in spherical symmetry.
However this is a non-local flux, i.e. a fluid element on the bub-
ble needing to respond to a perturbation cannot, using any local
measurements of matter or spacetime properties, “know” what
js should be. Moreover, it is unclear how A1 could be extended
beyond spherical symmetry even were one eager to adopt non-
local physics.
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b. Impulse response

For stable black bubbles, to determine what (if any) in-
ternal matter fluxes are capable of maintaining the bub-
ble at the Buchdahl radius after an accretion episode
ξU (τ) = ξS(τ) ≡ ξ(τ), we consider the response of a bub-
ble to an impulsive accretion event ξ(τ) = Aδ(τ), with
A a constant amplitude parameter. If flux parameters
can be chosen to maintain such a condition for the im-
pulsive response, then it should likewise be maintained
at the linear level for arbitrary accretion profiles ξ(τ).
Mathematically we can only make sense of a delta func-
tion source using the alternative flux model (87-88); for
simplicity we also only consider the simplified dissipation
model (70).

The first step is to integrate equations (58-60,62-
67,70,87-88) about τ = 0, with ξ(τ) = Aδ(τ), to obtain
the change in bubble properties from the prior static state
(R0 = 9m0/4, V0 = 0, T0 = 8/(27πm0), ρg0, ρs0, ρτ0) (92-
94), to the “initial” conditions (Ri,mi, Vi, Ti, ρgi, ρsi, ρτi)
for the subsequent relaxation to the final equilibrium
state (Rf ,mf , Vf = 0, Tf , ρgf , ρsf , ρτf ) as τ → ∞. We
find

Ri = R0, (B21)

Vi = − 9πQL0

QL0 −QR0
Ā, (B22)

m̄i = m̄0 +
27πm̄

4
Ā, (B23)

T̄i = T̄0 −
9

2(QL0 −QR0)τ̄u
Ā, (B24)

ρgi = ρg0 +

(
`

m̄
− 27αρg0

2T̄0τ̄u(QL0 −QR0)

)
Ā, (B25)

ρτi = ρτ0 +
27αρg0

2T̄0τ̄u(QL0 −QR0)
Ā, (B26)

ρsi = ρs0, (B27)

where Ā ≡ Am̄/` and T̄ ≡ T/`. Next, we assume the
solution for τ > 0 can be written as a superposition of
the three linear modes found in Sec. B, plus a relevant
constant particular solution to fully (in addition to the
amplitudes of the modes) account for the initial condi-
tions. Assuming we choose parameters (α, β, τu) to give
a stable bubble, plus some dissipation ζ0 to give a static
state at τ = ∞, we can then straight-forwardly read off
the final state by evaluating this solution at τ = ∞. Of
particular relevance here is Rf/mf , which in the large
mass limit we find to be

Rf
mf

=
3(15α− 4)/4− 4

√
3/(9m̄)

6α− β − 2
+O(m̄−2). (B28)

The linear mode analysis assumed what we want, namely
that Rf/mf = 9/4, so for consistency here this becomes
a constraint:

α = 2/3 + β − 16
√

3

81m̄
+O(m̄−2). (B29)

Intriguingly, this can be expressed as

α = β + ρτ0
8π

`
√

3
+O(m̄−2). (B30)

Appendix C: x(r,t) map

We define the map between the metric r and code x
coordinate as follows. First define a quadratic map be-
tween x and an intermediate coordinate r̂ via:

x(r̂, t) = a(t)r̂ + b(t)r̂2, r̂ ≤ R(t) (C1)

= c(t) + d(t)r̂ + e(t)r̂2, r̂ ≥ R(t). (C2)

The functions a(t), b(t), c(t), d(t), e(t) are easily solved for
by imposing the list of conditions given in Sec. V A 2, and
that x(r̂, t = 0) = r̂. We then stretch the exterior part
of the map to give r(r̂):

r(r̂) = r̂, r̂ ≤ R(t) (C3)

= r̂ + r̂out(Rs − 1)

[
r̂ −R(t)

r̂out −R(t)

]3

,

r̂ ≥ R(t), (C4)

where the constant parameter Rs controls how far away
in r we want the outer boundary location r̂out = xout
to be. For the back-reacting examples presented in
Sec. VI B we used Rs = 10, and Rs = 40 for the non-
back-reacting cases.

Appendix D: Weak-form integration stencil

We integrate the evolution equations (29-31) about the
location of the singular surface layer using the method
outlined in Sec. V A 1. We use the map described in
the previous section to keep it at a constant coordinate
location x0, and if necessary adjust the initial position of
the shell to make sure x0 coincides exactly with a vertex
i0 of the mesh. We use a two cell wide piecewise linear
test function

v(x) = 1 +
(x− x0)

∆x
, x0 −∆x ≤ x ≤ x0, (D1)

= 1 +
(x0 − x)

∆x
, x0 ≤ x ≤ x0 + ∆x, (D2)

= 0, elsewhere, (D3)

where ∆x is the mesh spacing. Similarly, we decompose
all metric and scalar field functions in a basis of piecewise
linear functions in x, assuming the exact values are stored
at grid vertices. For example,

f(x) = fi−1
xi − x

∆x
+ fi

x− xi−1

∆x
xi−1 ≤ x ≤ xi, (D4)

where the notation fi means f(x = xi), with xi ≡ i∆x.
For a quantity f that is discontinuous, hence multi-valued
at i0, we will use the notation fL (fR) to denote its value
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just to the left (right) of i0. We can then analytically
integrate (91), arriving at an algebraic equation that we
can solve for the time derivative of the quantity of interest
at i0. Note that if one wanted to increase the accuracy
of the scheme at the surface layer one could do so by
using higher degree polynomials (or other, smoother basis
functions) to represent the fields and test function.

Before writing down the resultant stencil, we note a
couple of technical complications to reach the equivalent
of the final integral given in (91), related to our dual r, x
coordinate scheme. The first is we are integrating in x, so
need to include the Jacobian of the coordinate transfor-
mation in the integral (90), and carry it through the sub-
sequent integration by parts. Second, our Runge-Kutta
integration scheme requires ∂f(x, t)/∂t at fixed x, though
all the time derivatives in (29-31) are at fixed r; hence we

also need to transform between ḟ and ∂f(x, t)/∂t (recall

our notation ḟ ≡ ∂f(r, t)/∂t, f ′ ≡ ∂f(r, t)/∂r).

With all that, our first order accurate finite volume
form of (89), which we repeat here for reference:

ḟ(t, r)− g′(t, r) + h(t, r) + δ(r −R)S(t, r) = 0, (D5)

can be written as

d

dt
fi0 =− 1

4
[g′ + f ′ · rt]i0+1 +

1

4
[g′ + f ′ · rt]i0−1

− 1

4
[f · rtr + (f · rt + g)x′′ · rx]i0+1

+
1

4
[f · rtr + (f · rt + g)x′′ · rx]i0−1

− 1

2
(hL + hR)− 1

2
(fL + fR) · rtr

− 1

2
[(fL · rt,i0 + gL) · x′′L
+(fR · rt,i0 + gR) · x′′R] · rx,i0

+
3

4∆x

[
(gR − gL + (fR − fL) · rt) · x′i0

+[(g + f · rt) · x′]i0+1

−[(g + f · rt) · x′]i0−1

−2Si0 · x′i0
]
, (D6)

where rt ≡ ∂r(x, t)/∂t, rx ≡ ∂r(x, t)/∂x, rtr ≡
[∂2r(x, t)/(∂t∂x)] · ∂x(r, t)/∂r. This elevates to a sec-
ond order accurate scheme when Si0 → 0, and all “L”
values equal their “R” value neighbours.

Appendix E: Rate of Energy Loss from AdS interior

In light-like coordinates, the line element for AdS is:

ds2 = cos−2(`r/
√

3)(−dt2 + dr2) + 3/`2 tan2(`r/
√

3)dΩ2

(E1)

which we distinguish from the “standard coordinates”
(r,R) which give

ds2 = −(1 +R2`2/3)dt2 + (1 +R2`2/3)−1dr2 +R2dΩ2

(E2)
General solutions to scalar field propagation in AdS in

light-like coordinates can be expressed as a superposition
of modes given by

Φj(t, x) = dj cos(ωj`t/
√

3) cos3(`r/
√

3)

2F1(−j, 3 + j, 3/2, sin2(`r/
√

3)) ; (E3)

with ω2
j = (3 + 2j)2`2/3 and dj = 4

√
(j + 1)(j + 2)/π

(j ∈ 0, 1, ..). Such modes are orthonormal and complete
as ` → ∞. For our regime of interest then we can use
this (quasi) basis, for large `, to describe the exterior
pulse once it enters the AdS region. In particular, we
are interested in the reduction of (the interior) energy
(E) within the AdS. To this end, we can make use of the
analysis presented in [23] to reach the intuitive result of

E,t = 4π(V 2
+ − V 2

−)R2
o (E4)

with V+,− = ±αua∂aΦ + αD the incoming (outgoing)
modes of the solution at the outer boundary r = Ro; u

a

is the unit timelike normal at Ro, D = γijni∂jΦ, and

α = 1/ cos(`r/
√

3). At such a boundary, the AdS re-
gion looses energy through V− but does not gain energy
through V+ as little “comes back” from the exterior re-
gion. We can thus take it to zero, so energy is lost at a
rate E,t = −4πV 2

−R
2
o. We can then replace Φ in terms

of its normal modes; it is clear higher modes will reduce
the energy more effectively than the lowest one ω0. Said
differently, energy supported by higher frequency modes
leaks out at a faster rate out of the AdS region. The
long-term behavior is given by the lowest mode, and the
energy loss within 1 period of oscillation is, to leading
order in 1/`,

∆E ∝ −A2
0π

2 1

m2`3
(E5)

(with A0 the amplitude of the mode). We can then use a
“quasi-adiabatic” argument to say an amount of energy

∆E ∝ −A2
0π

2 1

m2`2
∆T (E6)

is lost in the interior region over the period ∆T =
(2π)/(`

√
3). Now, the energy within the AdS region

is ∝ A2
0/`, so dE/dt ∝ 2A0/`dA0/dt and we can use

∆E/∆T to approximate the left hand side to arrive at,

dA0

dt
∝ − πA0

m2`2
` (E7)

and so, A0(t) ≈ exp(−pt`) with

p ≈ − π

m2`2
. (E8)
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Thus the energy decays as E(t) ∝ exp(−2pt`)/`, and so
logE ≈ − 2π

m2` t. Notice the above expression is with re-
spect to time measured at the origin of AdS, which is
related to the asymptotic time ta by t ≈ ta/(m`). Con-
sequently, logE ≈ − 2π

m3`2 ta. This behavior is consistent
with the results shown in figures 6 and 7. For ref-
erence, we can now explore the associated timescale for
this energy to leak out of AdS and become an “observable
signature” in the asymptotically flat (AF) region. The
timescale is given by τD ' m3`2; taking ` = 1/L with L
a lengthscale and assuming m = 10qM�, one has

τD = 103q(m/L)2s (E9)

For instance, for L = LPlanck ' 10−35m and q = 1, τD =
1053s ≈ 1056tHubble. Requiring instead that τD ' tHubble

or τD ' 1yr, L should be ' 10−7, 10−4m respectively.

As a last remark, we can employ a similar argument

to explore what takes place at early times. When a pulse
with a given frequency ωAF in the AF region, begins to
fall in the AdS region, its frequency would be blueshifted
to ωi ' ωAFm`, and would be supported, in terms of the
AdS modes, by a spectra of (almost) normal frequencies

given by ωj = ±(3 + 2j)`/
√

3. Thus, the pulse would
be described by the same modes in a way that is largely
insensitive to the scale determined by `. For a mode with
index j the above timescale estimate results in

τD = 103qj−2(m/L)2s (E10)

indicating the AdS could help potentially render micro-
scopic j scales into significantly longer ones for higher
values of j. Of course, this depends on the content of
the pulse in the AF region. Rough estimates however
imply not very high j’s are encountered with significant
strength for the relatively simple frequency content of
waves driven by a quasi-circular merger.
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