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A B S T R A C T

Sub-resolution porosity (SRP) is a ubiquitous, yet often ignored, feature in Digital Rock Physics. It embodies
the trade-off between image resolution and field-of-view, and it is a direct result of choosing an imaging
resolution that is larger than the smallest pores in a heterogeneous rock sample. In this study, we investigate
the impacts of SRP on multiphase flow in porous rocks. To do so, we use our newly developed Multiphase
Micro-Continuum model to perform first-of-a-kind direct numerical simulations of two-phase flow in porous
samples containing SRP. We show that SRP properties (porosity, permeability, wettability) can impact predicted
absolute permeabilities, fluid breakthrough times, residual saturations, and relative permeabilities by factors of
2, 1.5, 3, and 20, respectively. In particular, our results reveal that SRP can function as a persistent connector
preventing the formation of isolated wetting fluid domains during drainage, thus dramatically increasing
relative permeabilities to both fluids at low saturations. Overall, our study confirms previous evidence that
flow within the SRP cannot be disregarded without incurring significant errors in numerical predictions or
experimental analyses of multiphase flow in heterogeneous porous media.
1. Introduction

The emergence of Digital Rock Physics (DRP) has revolutionized the
way we study porous media. It is now possible to directly characterize
the pore structure of subsurface systems and perform three-dimensional
direct numerical simulations of fluid flow in digital models of rock
samples that approach the size of a Representative Elementary Volume
(REV). As such, DRP has transformed our capacity to characterize and
predict fluid flow in soils, sedimentary rocks, hydrocarbon reservoirs,
and engineered porous systems (Mehmani et al., 2020; Han et al.,
2020). The computation of rock transport parameters including abso-
lute permeability (Spanne et al., 1994), dispersion coefficients (Bijeljic
et al., 2013; Soulaine et al., 2021a), relative permeabilities, and cap-
illary pressures (Raeini et al., 2014; Prodanović et al., 2014) has had
direct impacts in the fields of reservoir engineering, hydrology, and CO2
sequestration (Blunt et al., 2013; Soulaine et al., 2021b).

1.1. Rock imaging techniques and sub-resolution porosity

DRP is made possible by advances in high resolution imaging tech-
niques, notably X-ray Microtomography (XCT) (Baker et al., 2012;
Singh et al., 2018; Kohanpur and Valocchi, 2020) and focused ion
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beam scanning electron microscopy (FIB-SEM) (Cnudde and Boone,
2013; Kelly et al., 2016; Welch et al., 2017; Ruspini et al., 2021).
The first method, XCT, involves recording hundreds or thousands of
two-dimensional (2-D) X-ray projections through a sample that are
then computationally reconstructed to create a 3-D image. This method
enables detailed volumetric representations of rock core samples span-
ning several cubic millimeters with a resolution of about 1 𝑥 1 𝑥 1
micrometers (Wildenschild and Sheppard, 2013; Blunt et al., 2013).
The second method, FIB-SEM, involves repeated etching and imaging
of a sample through alternating application of focused ion beams and
scanning electron microscopy at considerably smaller scales. It yields
images spanning ∼5 cubic micrometers with an associated resolution of
∼5 𝑥 5 𝑥 5 nanometers (Dewers et al., 2012). However, the associated
repeated etching procedure means that FIB-SEM is a destructive imag-
ing technique. These two techniques highlight an important limitation
of current imaging techniques: the existence of an unavoidable trade-off
between image resolution and field-of-view.

The inherent complexity of most natural rocks further complicates
the imaging and characterization process. More often than not, rocks
such as sandstones, carbonates, and shales exhibit heterogeneities that
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Fig. 1. (A) Conceptual representation of the Multiphase Micro-Continuum approach. The image shows an advancing fluid–fluid interface in a system that contains impermeable
rock (top), free fluid (center), and a permeable porous medium (bottom). The two immiscible fluids are shown in different shades of blue (left and right) and the inset shows a
sample REV over which the model’s equations are averaged. (B) SEM image of a shaly sandstone obtained from Peters (2009) showing the distribution of its components: porous
clay (dark gray), non-porous sand (light gray), and open pore space (black).
span several length scales (Bear, 1988; Mousavi et al., 2013; Ak-
barabadi et al., 2017; Beckingham et al., 2017), some of which cannot
be properly resolved by the aforementioned imaging techniques. A
common way to simplify the imaging process while accounting for
these heterogeneities is to designate a ‘‘cutoff’’ voxel size that re-
solves the largest pores within a given rock sample (or other features
of interest such as cracks or fractures) while simultaneously acting
as a ‘‘filter’’ for any pores smaller than that particular size. These
small pores, which are not individually resolved, are then designated
‘‘sub-resolution porosity’’ (SRP) and labeled as a third phase in the rock-
pore-SRP system during the eventual segmentation of sample images.
The final result is a reconstructed image with an acceptable trade-off
between resolution and field of view (Scheibe et al., 2015).

Until recently, and despite its abundance in reconstructed natural
rock samples, SRP was generally assumed to have little influence
on rock hydraulic properties predicted from flow simulations. Most
computational models were based on the simplifying assumption that
transport within the SRP is dominated by diffusion and thus contributes
negligibly to fluid flow (Haggerty and Gorelick, 1995; Carrera et al.,
1998; Gouze et al., 2008; Shabro et al., 2011; Gjetvaj et al., 2015).
However, recent studies have shown that this assumption breaks down
whenever SRP contributes significantly to the rock’s percolating path by
forming bridges between resolved pore spaces (Churcher et al., 1991;
Tanino and Blunt, 2012; Wu et al., 2019). In these cases, SRP can
impact permeability by a factor larger than 2 even when contributing
only ∼2% of the total porosity (Soulaine et al., 2016). In addition,
recent evidence suggests that SRP also can have important impacts
on multiphase flow, as shown by observations of dramatic changes in
relative permeability curves and overall flow behavior associated with
differences in SRP wetting properties in mixed-wet or strongly-wetting
rocks (Zou et al., 2018; Rücker et al., 2019; Fan et al., 2020; Garfi et al.,
2020).

1.2. Multiscale models

A potential path towards resolving the influence of SRP on hydro-
logic processes is provided by sustained efforts to develop numerical
techniques designed to account for this feature combined with steady
advances in high-performance parallel computing (Arbogast, 1993a,b;
Moctezuma-Berthier et al., 2004; Javadpour, 2009; Bauer et al., 2011;
Jiang et al., 2013b). In particular, the development of multiscale/dual-
porosity pore network models (D-PNM) has allowed for relatively
fast and accurate assessment of the permeability of rocks containing
multiscale heterogeneity (Békri et al., 1995). Classical PNMs rely on
approximating the 3-dimensional resolved pore space through a series
2

of ideally-shaped pore ‘‘nodes’’ and ‘‘throats’’ (Fatt, 1956). The result
is a system where the relevant fluid dynamics can be readily solved
through idealized equations for flow (Dong and Blunt, 2009; Joekar-
Niasar and Hassanizadeh, 2012; Jiang et al., 2012; Blunt et al., 2013;
Huang et al., 2016; Suo et al., 2020). In D-PNMs, the presence of SRP
is accounted for through the implementation of an additional fine-scale
pore network (Ioannidis and Chatzis, 2000; Jiang et al., 2013; Pro-
danović et al., 2014; Sadeghnejad and Gostick, 2020; Moslemipour and
Sadeghnejad, 2020) or through the creation of ‘‘micro-links’’ forming
percolation paths between large pores (Bultreys et al., 2015; Xu et al.,
2021). Accurate definition of SRP connectivity within these networks
remains a challenge (Zhao et al., 2017; Petrovskyy et al., 2020) as,
by definition, there are no discernible features from which to inform
assignments of pore network topology within the SRP.

The expansion of multiscale models into multiphase flow further
complicates matters, as the effects of capillarity and wettability need to
be modeled through representative relative permeability and capillary
pressure models in order to obtain accurate flow representations within
the SRP (Carrillo et al., 2020). For this reason, the few studies that
implemented multiphase D-PNMs have relied on the assumption of
quasi-static fluid displacement, an assumption valid for simulating flow
at low capillary numbers (Mehmani et al., 2013; Bultreys et al., 2015;
Xu et al., 2021) and where both phases are effectively set at a given
saturation. These studies have leveraged D-PNMs to study how the
amount and distribution of SRP affects the relative permeability behav-
ior of artificial rock samples (Mehmani and Prodanović, 2014) and how
SRP characterization and connectivity affect the wetting properties of
natural rocks (Bultreys et al., 2016; Song et al., 2021; Isah et al., 2020).
Unfortunately, due to the simplifying assumptions of D-PNMs outlined
above, extension of these studies to dynamic systems with mixed-wet
SRP or systems with viscously-dominated flow remains impossible.

The Micro-Continuum approach presents an alternative route to
simulating dynamic flow processes in systems with SRP. This approach
relies on locally-averaged Navier–Stokes equations that asymptotically
approach Darcy’s law in regions with SRP and the Navier–Stokes equa-
tions in fully resolved pores. This model has proven fairly flexible
and has been used to evaluate the effects of static (Knackstedt et al.,
2006; Apourvari and Arns, 2014; Scheibe et al., 2015; Soulaine and
Tchelepi, 2016; Kang et al., 2019; Singh, 2019), reactive (Soulaine
et al., 2017; Noiriel and Soulaine, 2021; Trinchero et al., 2021), and
deformable (Carrillo and Bourg, 2019) SRP on the permeability of het-
erogeneous porous media. Furthermore, through careful consideration
of capillary and viscous effects within the SRP (i.e., fluid mobility,
relative permeabilities, and capillary pressures), recent investigations
have successfully expanded and validated the Micro-Continuum Ap-
proach for situations involving the flow of multiple fluids in multiscale



Advances in Water Resources 161 (2022) 104094F.J. Carrillo et al.

h
i
n
h
a
s
e
o

2

2

m
p
p
t
e
f

w
f
d
c
f
t
d
g
v
b

t
w
t
(
t
f
t

N
l

r
s
r

𝜇

w

𝒏

t

w
F
s
D

p
F
G

𝑘

𝑘

𝑝

porous media (Soulaine et al., 2018; Carrillo et al., 2020; Carrillo and
Bourg, 2021b,a). In this approach, the impact of simplifying model
assumptions is greatly reduced relative to the D-PNM approach at the
expense of relatively high computational costs. As such, this approach
allows for the simulation of dynamic multiscale systems in domain sizes
that approach that of an REV.

1.3. Objective of this paper

In this study, we leverage the capabilities of the Multiphase Micro-
Continuum Approach to systematically examine the influence of SRP
properties (permeability, porosity, wettability) on Direct Numerical
Simulation predictions of multiphase flow in a digital model of a
carbonate rock. In particular, we characterize the rock’s absolute per-
meability, relative permeability curves, residual permeabilities, and
fluid breakthrough times on the ∼30 mm3 scale of an XCT image. We
ypothesize that the SRP properties outlined above have even greater
mpacts on multiphase flow than on single phase flow, such that their
eglect or misrepresentation leads to inaccurate predictions of rock
ydraulic properties. To the best of our knowledge, this is the first
pplication of Direct Numerical Simulations to multiphase flow in rock
amples containing unresolved porosity and the first computational
ffort to systematically examine the impacts of SRP wetting properties
n the aforementioned rock flow properties.

. Materials and methods

.1. Mathematical model

The Multiphase Micro-Continuum framework for incompressible im-
iscible flow in rigid porous media consists of three volume-averaged
artial differential equations. They describe the conservation and trans-
ort of fluid mass (Eq. (1)), fluid saturation (Eq. (2)), and fluid momen-
um (Eq. (3)). Once implemented in a suitable numerical solver, these
quations are used to solve for the single-field pressure (𝑝), the single-
ield fluid velocity (𝑼 ), and the wetting-fluid saturation (𝛼𝑤). A full

description of the model can be found in Carrillo et al. (2020). Here,
we have:

∇ ⋅ 𝑼 = 0, (1)

𝜕𝜙𝛼𝑤
𝜕𝑡

+ ∇ ⋅
(

𝛼𝑤𝑼
)

+ ∇ ⋅
(

𝜙𝛼𝑤𝛼𝑛𝑼 𝑟
)

= 0, (2)

1
𝜙

(

𝜕𝜌𝑼
𝜕𝑡

+ ∇ ⋅
(

𝜌
𝜙
𝑼𝑼

))

= −∇𝑝 + ∇ ⋅ 𝑺 − 𝜇𝑘−1𝑼 + 𝑭 𝑐 , (3)

here the subscripts 𝑤 and 𝑛 refer to the wetting and non-wetting
luids, 𝜙 is the cell porosity, 𝜌 is the single-field density, 𝜇𝑘−1 is the
rag coefficient of the unresolved porous media (a function of the
ell permeability, saturation, and fluid viscosities), 𝑭 𝑐 are the capillary
orces, and 𝑺 = 𝜇(∇𝑼 + (∇𝑼 )𝑇 ) is the averaged single-field shear stress
ensor. Lastly, 𝑼 𝑟 is the fluid relative velocity, i.e. the cell-averaged
ifference in velocity between the wetting and non-wetting fluids. Here,
ravity is neglected and the phrase ‘‘single-field’’ refers to averaged
ariables that depend on the local saturation, density, and viscosity of
oth fluids within a given cell (Maes and Soulaine, 2019).

A key feature of Eqs. (1)–(3) is that they are valid in control volumes
hat contain any combination of the three relevant phases (porous solid,
etting fluid, non-wetting fluid), meaning that they can be applied

o systems that contain both solid-free (𝜙 = 1) and porous regions
𝜙 < 1). Due to the scale separation hypothesis (Whitaker, 1986),
his unique set of equations tends towards distinct solutions in solid-
ree and porous regions. Notably, the single-field momentum equation
ends to a solution that can be asymptotically matched to the two-phase
3

avier–Stokes equations in solid-free regions and two-phase Darcy’s
aw in porous regions (Carrillo et al., 2020):
{ 𝜕𝜌𝑼

𝜕𝑡 + ∇ ⋅ (𝜌𝑼𝑼 ) = −∇𝑝 + ∇ ⋅ 𝑺 + 𝑭 𝑐 , if 𝜙 = 1,
𝑼 = − 𝑘

𝜇

(

∇𝑝 − 𝑭 𝑐
)

, if 𝜙 < 1.
(4)

As such, the Multiphase Micro-Continuum model is ideally suited for
simulating multiphase flow in XCT images that contain SRP, as illus-
trated schematically in Fig. 1.

The asymptotic matching noted above requires appropriate defini-
tions of the relative velocity 𝑼 𝑟, drag force 𝜇𝑘−1𝑼 , and capillary forces
𝑭 𝑐 . These variables reflect the influence of sub-grid-scale structure and
dynamics, including the fluid distribution and the impact of porous
micro-structure on flow within the SRP. For this reason, these parame-
ters are defined differently in the solid-free region (𝜙 = 1) and porous
egions (𝜙 < 1). In particular, the single-field drag force is negligible in
olid-free regions and, in porous regions, depends on absolute (𝑘0) and
elative permeabilities (𝑘𝑟,𝑖) within the SRP:

𝑘−1 =

⎧

⎪

⎨

⎪

⎩

0, if 𝜙 = 1,

𝑘−10
( 𝑘𝑟,𝑤

𝜇𝑤
+ 𝑘𝑟,𝑛

𝜇𝑛

)−1
, if 𝜙 < 1.

(5)

The capillary forces within the solid-free region are proportional to
the surface tension 𝛾 and the curvature of the fluid–fluid interface as
described by the Continuum Surface Force formulation (Brackbill et al.,
1992). In the porous region, capillary forces are a function of the fluid
mobilities (𝑀𝑖 = 𝑘0𝑘𝑖,𝑟∕𝜇𝑖; 𝑀 = 𝑀𝑤 + 𝑀𝑛) and the average capillary
pressure 𝑝𝑐 :

𝑭 𝑐 =

⎧

⎪

⎨

⎪

⎩

−𝛾∇.
(

�̂�𝑤,𝑛
)

∇𝛼𝑤, if 𝜙 = 1,
[

𝑀−1 (𝑀𝑤𝛼𝑛 −𝑀𝑛𝛼𝑤
)

(

𝜕𝑝𝑐
𝜕𝛼𝑤

)

− 𝑝𝑐
]

∇𝛼𝑤, 𝜙 < 1,
(6)

here the normal at the fluid–fluid interface, �̂�𝑤,𝑛, is given by

̂𝑤,𝑛 =

{

− ∇𝛼𝑤
|∇𝛼𝑤|

, if 𝜙 = 1,

cos 𝜃𝑝𝒏𝑤𝑎𝑙𝑙 + sin 𝜃𝑝𝒕𝑤𝑎𝑙𝑙 , at the SRP surface.
(7)

Eq. (7) imposes a contact angle 𝜃𝑝 at the SRP surface following
he approach developed by Horgue et al. (2014), where 𝒕𝑤𝑎𝑙𝑙 and 𝒏𝑤𝑎𝑙𝑙

are the tangential and normal directions relative to the SRP surface.
The specification of the contact angle at non-porous rock surfaces, 𝜃𝑟,
follows a similar implementation.

The relative fluid velocity is given by:

𝑼 𝑟 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐶𝛼 max (|𝑼 |) ∇𝛼𝑤
|∇𝛼𝑤|

, if 𝜙 = 1,

𝜙−1

⎡

⎢

⎢

⎢

⎢

⎣

−
(

𝑀𝑤
𝛼𝑤

− 𝑀𝑛
𝛼𝑛

)

∇𝑝

+
(

𝑀𝑤𝛼𝑛
𝛼𝑤

+ 𝑀𝑛𝛼𝑤
𝛼𝑛

)

∇𝑝𝑐
−
(

𝑀𝑤
𝛼𝑤

− 𝑀𝑛
𝛼𝑛

)

𝑝𝑐∇𝛼𝑤

⎤

⎥

⎥

⎥

⎥

⎦

, if 𝜙 < 1,
(8)

here 𝐶𝛼 is an interface compression parameter used in the Volume-of-
luid method (typically set to values between 1 and 4), and the expres-
ion within the SRP is imposed by asymptotic matching to two-phase
arcy’s law (Carrillo et al., 2020).

Closure of the system of equations presented above requires ap-
ropriate constitutive models to solve for 𝑝𝑐 and 𝑘𝑟,𝑖 within the SRP.
or simplicity, we use the well-known Van Genuchten model (van
enuchten, 1980):

𝑟,𝑛 = (1 − 𝛼𝑤)1∕2(1 − 𝛼1∕𝑚𝑤 )2𝑚, (9)

𝑟,𝑤 = 𝛼1∕2𝑤 (1 − (1 − 𝛼1∕𝑚𝑤 )𝑚)2, (10)

𝑐 = 𝑝𝑐,0

(

(

𝛼𝑤
)− 1

𝑚 − 1
)1−𝑚

, (11)
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where 𝑚 is a wetting parameter that controls the internal wettability of
the SRP and 𝑝𝑐,0 is the entry capillary pressure of the SRP. The SRP is
internally water-wet if 𝑚 > 1, intermediate wet at 𝑚 = 1, and oil-wet if
𝑚 < 1. Note that the sign of the entry capillary pressure was changed
for values of 𝑚 > 1 to prevent unphysical parameterizations where the
SRP is both water-wet and oil-wet at the same time.

Finally, we note that the formulation of an accurate interfacial
condition between a solid-free region and an unsaturated porous region
(see Fig. 1) is still an active area of research. Our formulation proposes
a suitable approximation of said condition by: 1) Ensuring mass and
stress continuity across the porous interface, and 2) upscaling the
relevant capillary forces and surface tension force discontinuity into
an apparent contact angle 𝜃𝑝. The effects of pore surface roughness,
aperture, interfacial energies, thin-films and adsorption dynamics can
be potentially included and upscaled into 𝜃𝑝 by using the theory de-
veloped in Wenzel (1936), Whyman et al. (2008), Cassie and Baxter
(1944), Zou et al. (2015) and/or (AlRatrout et al., 2018). However,
the integration of such models is outside the scope of this investigation.
Further discussion on the multiphase interfacial condition at the porous
interface can be found in Carrillo et al. (2020), Soulaine et al. (2018),
Carrillo and Bourg (2021b).

2.2. Numerical implementation

The mathematical model presented in Section 2.1 was numerically
implemented in OpenFOAM®, a free, parallel, C++ simulation plat-
form that uses the Finite Volume Method to discretize and solve partial
differential equations in three-dimensional grids. Mass conservation
and incompressibility (Eqs. (1) and (3)) were ensured through the
Pressure Implicit Splitting-Operator (PISO) algorithm (Issa, 1986). The
evolution of the fluid–fluid interface (Eq. (2)) was solved using the
Multidimensional Universal Limiter of Explicit Solution (MULES) al-
gorithm (Márquez and Fich, 2013) and a Piecewise-Linear Interface
Calculation (PLIC) compression scheme, both which help sharpen the
interface and keep the simulation numerically stable. Numerical sta-
bility was also ensured by limiting the global Courant number to a
maximum of 0.15 in all our simulations and by using a second order
linear-upwind scheme to discretize the remaining equations. Grid con-
vergence analysis results are shown in the Supplemental Information.
Extensive validation of the modeling framework is presented in Carrillo
et al. (2020) and the open-source implementation is available from the
author’s GitHub repository (Carrillo, 2020).

2.3. Studied rock sample

Simulations were performed on a reconstructed 3-D XCT sample of
an Estaillades Carbonate rock obtained from Bultreys (2016) through
the DigitalRockPortal. This sample was 7 mm in diameter and was
scanned with a UGCT’s HECTOR micro-CT scanner. This set of images
has been used in several previous D-PNM studies (Bultreys et al., 2015,
2016). The sample (1000 by 1000 by 1000 voxels, 3.1 μm per voxel) is
ideally suited for our purposes, as it is a mono-mineralic calcite rock
containing both intergranular macropores and unresolved intragranular
micropores (i.e., SRP). Voxels containing solid rock, resolved pores,
and unresolved pores were identified through a 3-phase segmentation
procedure following the steps outlined in Bultreys et al. (2015). This
yielded a sample with 56.2% solid rock voxels, 11.8% porous voxels,
and 32% microporous voxels (Fig. 2).

Due to the computational cost associated with performing direct
numerical simulations on such a large physical space, we extracted
a 200 by 200 by 200 voxel sub-sample from the original sample in
order to perform our simulations. This representative sub-sample was
extracted from the Cartesian center of the sample, starting in projection
number 750 and ending in projection 950. The computational cost
was further reduced by removing all grid cells corresponding to solid
rock voxels in the resulting computational mesh, yielding a sample of
4

Fig. 2. Representative cross-section of the XCT projection of Estaillades carbonate rock
used in this study (Bultreys, 2016). (A) Full 2-D view of the sample, which is 7 mm in
diameter with a resolution of 3.1 μm per voxel. (B) 500 by 500 pixels cropped sample.
(C) Corresponding segmented image. For all figures, black is open pore space, dark
gray corresponds to domains that contain SRP, and the lightest color is solid calcite.

Fig. 3. Spatial distribution of the SRP (red), pore space (blue), and solid rock
(transparent) within the extracted 3-D rock representation (200 by 200 by 200 cells).
A) The complete computational mesh. B) The corresponding SRP, which accounts for
21% of the voxels. C) The associated open pore space, which accounts for 40% of the
voxels.

about 3.2 million cells (see Fig. 3). In order to maintain adequate mesh
resolution while properly representing the mobile fluid–fluid interface
within the open pore space, we implemented a dynamic mesh refine-
ment algorithm that allowed the mesh to become up to 16 times finer
at said interface. No mesh refinement was carried out within the SRP.
Lastly, as is customary for these types of simulations and to properly
control the flow rate into the sample, we added two ‘‘buffer’’ regions
at the inlet (top) and outlet (bottom) boundaries of our samples. The
other 4 sample sides were defined with no-flow boundary conditions.

3. Base simulation setup and upscaling

3.1. Base simulation parameterization

The main purpose of our simulations is to perform a sensitivity
analysis of the impact of SRP properties on single and multiphase flow
at the scale of the full digital rock image, hereafter referred to as the
macroscopic scale. For this, we first introduce a ‘‘base’’ simulation that
will be parameterized using experimental values and then used as a
template for the systematic variation of SRP properties. This workflow
is conceptually similar to the one performed in Hashemi et al. (2021).

Our base simulation involves the injection of oil into a fully-water-
saturated rock sample at a constant rate of 0.1 μL s−1 until the simula-
tion reaches a steady-state. The choice of the labels ‘‘oil’’ and ‘‘water’’
is arbitrary: our main goal is to examine the flow of two immiscible
and incompressible fluids. The advancing fluid is non-wetting (𝜃𝑝 and
𝜃𝑟 > 90◦) in our base simulation, but the wettability of the solid
by the two fluids is reversed in some of our simulations. The rock
and fluid properties are summarized in Tables 1–2. The subsequent

https://github.com/Franjcf
https://www.digitalrocksportal.org/
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Table 1
Simulated fluid properties. These were kept
constant for all simulations.
Property Value

𝜌𝑤 1000 kgm−3

𝜇𝑤 0.001 Pa s
𝜌𝑛 800 kgm−3

𝜇𝑛 0.1 Pa s
𝛾 0.03 kg s−2

Table 2
Simulated rock and SRP parameters. The second column represents each parameter
value used in the base simulation and the third column shows the range over which
each parameter was varied. These ranges where chosen to create representative samples
of the associated parameter space: from strongly hydrophobic to strongly hydrophilic
systems, and from systems with permeable (or impermeable) SRP to systems with no
SRP.

Property Base Value Range

𝜙 0.5 0 − 1
𝑘0 10−13 m2 10−12− 10−17 m2

𝜃𝑟 30◦ 30 − 150◦

𝜃𝑝 30◦ 30 − 150◦

𝑚 1 0.2 − 1.5
𝑝𝑐,0 ± 1.35 × 104 Pa n/a

sensitivity analysis was performed by independently modifying the
SRP’s porosity (𝜙 = 0 to 1), absolute permeability (𝑘0 = 10−12 to
10−17 𝑚2), internal wetting properties (𝑚 = 0.2 to 1.5 in Eqs. (9)
and (11)), and the contact angles formed by fluid–fluid interfaces on
the external surface of SRP and impermeable rock domains (𝜃𝑝 and
𝜃𝑟 = 30◦ to 150◦). The decoupling of the contact angle at the SRP
and impermeable rock surfaces allows the investigation of mixed-wet
systems (Song and Kovscek, 2015; Huang et al., 2016; Akbarabadi
et al., 2017) and establishes the possibility of defining a roughness-
or saturation-dependent contact angle in future studies (Wenzel, 1936;
Whyman et al., 2008). The decoupling of internal (𝑚) and surface (𝜃)
wetting properties allows us to differentiate between macroscopic and
microscopic wetting effects, where 𝜃 impacts multiphase flow in the
solid-free domain and 𝑚 impacts multiphase flow within the SRP.

Lastly, we carried out additional single-phase flow simulations for
each case where we varied the SRP porosity and permeability. This was
necessary to calculate each case’s absolute permeability and relative
permeability curves (see Section 3.2). On average, each multiphase
simulation ran for approximately 120 h on ten 28-core Broadwell Xeon
nodes.

3.2. Calculation of absolute permeability and relative permeability curves

Relative permeabilities were calculated through modification of the
upscaling approach presented in Raeini et al. (2014), where macro-
scopic relative permeability 𝐾𝑟,𝑖 is defined as the ratio between the
apparent permeability 𝐾𝑖 calculated from transient, multi-phase flow
experiments and the upscaled absolute permeability 𝐾0 calculated from
steady-state, single-phase flow experiments:

𝐾𝑟,𝑖 =
𝐾𝑖
𝐾0

=
𝑄𝑖∕𝛥𝑃𝑖

𝑄𝑖,𝑠∕𝛥𝑃𝑖,𝑠
. (12)

In Eq. (12), the subscript 𝑖 identifies properties pertaining to either
fluid and the subscript 𝑠 refers to quantities obtained from single-phase
experiments. Furthermore, 𝑄𝑖 = ∫ 𝑼 ⋅𝒏𝛼𝑖𝑑𝐴 is the volumetric fluid flow
rate of phase 𝑖 passing through an area 𝐴 into the porous medium, and
𝛥𝑃𝑖 is the pressure drop in phase 𝑖 across said medium. The latter is
defined as follows:

𝛥𝑃𝑖 ≡ − 1 (

−∇𝑝 + 𝑭 𝑐
)

⋅ 𝑼𝑑𝑉𝑓,𝑖, (13)
5

𝑄𝑖 ∫𝑉𝑓
Fig. 4. Sample absolute permeability as a function of SRP properties. Each label shows
the parameter that was modified relative to the base simulation. Values indicated to
the right of each bar show the percent change in absolute permeability relative to the
base simulation described in Section 3.1.

= − 1
𝑄𝑖 ∫𝑉𝑓

( D
D𝑡

(𝜌𝑼 ) − ∇ ⋅ 𝑺 + 𝜇𝑘−1𝑼
)

⋅ 𝑼𝑑𝑉𝑓,𝑖,

where 𝑉𝑓 is the fluid volume of the sample excluding the buffer zones.
A drag term (𝜇𝑘−1𝑼 ) is included Eq. (13) to account for the momentum
dissipation (i.e. pressure drop) induced by the presence of SRP in the
sample. The calculation of 𝛥𝑃𝑖,𝑠 follows Eq. (13) sans the capillary force
term.

Relative permeability curves were constructed by matching each
𝐾𝑟,𝑖 value to the corresponding saturation in the porous medium at
a specific point in time. This so-called ‘‘unsteady’’ approach, where
𝐾𝑟,𝑖 values are not calculated at steady state (Amaefule and Handy,
1982; Johnson et al., 1959), enables calculating relative permeability
curves without needing to carry out a distinct steady-state multiphase
simulation for each data point, a current necessity across numerical
frameworks for rock models with realistically complex pore struc-
tures given current computational capabilities. However, this comes
at the expense of accuracy or, more precisely, at a risk that the
resulting relative permeability curves may be sensitive to fluid flow
rate (Diamantopoulos and Durner, 2012). To minimize the impact of
this approximation, we focus on characterizing the sensitivity of 𝐾𝑟,𝑖 to
different SRP properties, as opposed to absolute values of 𝐾𝑟,𝑖.

4. Impact of SRP on absolute permeability

In the following three sections, we quantify the effects of SRP
properties on the rock’s overall absolute permeability (this section),
relative permeability curves (Section 5), and time-dependent saturation
profiles (Section 7). For the remainder of this study, each simulation
case is identified by the variable that is changed with respect to the
base simulation established in Section 3.1 and parameterized according
to Tables 1 and 2. We now start by evaluating the effect of SRP on the
rock’s absolute permeability.

Fig. 4 shows that the sample’s absolute permeability is overesti-
mated by 57% if the SRP is neglected and assumed to be open pore
space (𝜙 = 1) and underestimated by 34% if it is ignored and assumed
to be impermeable (𝜙 = 0), where the former’s permeability more
than doubles the latter. The overall trend in Fig. 4 is fairly intuitive:
as the SRP’s porosity and/or permeability increase, so does the rock’s
absolute permeability. This is in line with the findings of Mehmani and
Prodanović (2014), and Soulaine et al. (2016). However, whereas some
previous studies have observed that SRP can have a disproportionately
large impact on permeability, implying that it forms key percolation
pathways for single-phase flow (Soulaine et al., 2016), the factor of
∼2 impact of SRP on absolute permeability observed here is consistent

with the predictions of the well-known Kozeny–Carman (KC) equation,
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Fig. 5. Sensitivity of drainage and imbibition relative permeability curves to different SRP properties. (A) Sensitivity to SRP absolute permeability, from 𝑘0 = 10−17 to 10−12 m2. (B)
Sensitivity to SRP internal wettability, from oil-wetting (𝑚 < 1) to water-wetting (𝑚 > 1). (C) Sensitivity to the external wettability of rock and SRP domains, from water-wetting
(𝜃𝑟 = 30◦ , 𝜃𝑝 = 30◦), to mixed-wetting (𝜃𝑟 = 150, 𝜃𝑝 = 30◦ and 𝜃𝑟 = 30◦ , 𝜃𝑝 = 150◦), to oil-wetting (𝜃𝑟 = 150◦ , 𝜃𝑝 = 150◦). (D) Sensitivity to SRP porosity, from 𝜙 = 0 to 𝜙 = 1. Unless
specified, all parameterized values not indicated in the legend are held constant and equal to the values described in Tables 1 and 2. Each color pair represents the oil (top) and
water (bottom) relative permeability curves for a given simulated case. The base simulation is shown in black for all cases.
where 𝑘𝐾𝐶∕𝑘𝑏𝑎𝑠𝑒 = 0.58, 1, and 1.68 for 𝜙 = 0, 0.5, and 1, respectively.
This implies that the SRP is relatively uniformly distributed in the
studied rock sample (in close agreement with Bultreys et al. (2016)).
As examined in the following sections, greater impacts of SRP are
observed in systems with multiple fluid phases, where SRP wettability
and relative permeability become key factors controlling fluid flow.

5. Impact of SRP on relative permeability curves

Changes in sample relative permeability as a function of SRP poros-
ity, wetting properties, and absolute permeability are not particu-
larly intuitive. These often involve non-linear behaviors brought about
by the combination of capillary forces and the sample’s geometry.
Throughout the following discussion we will see that the SRP has
two primarily competing effects: it can enhance flow by connecting
otherwise-isolated macroscopic flow paths, but it also can reduce flow
by being less permeable than the open pore space. We will show
that the balance between these two roles is strongly dictated by SRP
properties.

The four sets of relative permeability curves present in Fig. 5 exhibit
two distinct behaviors reflecting different responses to changes in SRP
properties. In one observed behavior, the curves for both fluids shift
up (or down) in the same direction with respect to the 𝑦-axis. This
implies that the sample becomes more (or less) permeable to both
phases simultaneously. In the other observed behavior, the water and
oil relative permeability curves shift up or down in opposite directions,
indicating that an increased permeability to one fluid is associated with
a decreased permeability to the other fluid.
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5.1. Sensitivity to SRP absolute permeability

Fig. 5A demonstrates that an increase in SRP absolute permeabil-
ity enhances the relative permeability curves of both oil and water.
This enhancement occurs in addition to the enhancement in absolute
permeability presented in Fig. 4. The enhancement of water relative
permeability is entirely expected as the SRP is water-wet (and mostly
water-saturated) in this scenario, such that greater SRP permeability
naturally facilitates the flow of water. The enhancement of oil per-
meability is less intuitive. Since oil minimally accesses the SRP in
this scenario, this enhancement is likely indirect, i.e., greater SRP
permeability facilitates water drainage from the open pore space, which
in turn facilitates the flow of oil. In other words, displacement of water
from large pores can now occur through the SRP. This process, though
relatively inefficient, is facilitated by a higher SRP permeability.

We note, that both effects essentially disappear at SRP permeabil-
ities below ∼10−17 m2 as shown in Fig. SI1 in the Supporting Infor-
mation. In short, SRP permeability is only important if it is sufficiently
large that flow can actually occur within the SRP.

5.2. Sensitivity to SRP’s internal wettability

Fig. 5B shows that an increase in SRP internal wettability, from
oil-wetting (𝑚 < 1) to water-wetting (𝑚 > 1), also enhances the
flow potential of both fluids. This effect is likely analogous to that
observed for SRP absolute permeability: a more hydrophilic SRP should
remain more fully water-saturated, and hence more permeable to water
(because of the impact of saturation on relative permeability within the
SRP, represented using Eqs. (9)–(10)). As in Fig. 5A, this greater ability
of water to flow through the SRP indirectly facilitates oil flow, likely
by aiding water drainage from the open pore space. The reasoning of
this last point is analogous to the one above.
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5.3. Sensitivity to SRP and rock surface contact angles

Fig. 5C shows that the relative permeability curves shift in opposite
directions in response to changes in the external wettability of the
rock or SRP surfaces. Specifically, as the pore walls become more
hydrophobic, permeability to water decreases, while permeability to
oil increases. The impact on oil flow is relatively small, likely because
of the partial cancellation of two competing effects: more hydrophobic
surfaces should inhibit oil flow by causing this flow to occur prefer-
entially in smaller pores or closer to the pore walls; simultaneously,
more hydrophobic surfaces should enhance oil flow by minimizing the
tendency towards trapping of oil droplets through capillary effects.
Therefore, we posit that a decrease in capillary number (Ca) and/or
a decrease in sample homogeneity would likely enhance the trapping
effect and may reverse the order of the oil relative permeability curves.

The impact on water flow is larger, a counter-intuitive observation.
If water flows predominantly within the SRP, the impact of surface
contact angles on water flow should be minimal. Alternatively, if water
flows predominantly in the open pore space, surface contact angles
should have relatively minor impact on relative permeability to water
because of the competing effects noted above in the case of oil. In
fact, an increase in water relative permeability with 𝜃 (opposite to
that observed here) was reported by Fan et al. (2020), Bakhshian and
Hosseini (2019), Zhao et al. (2018). A possible explanation of our
results is that residual water flow in our simulated system relies on the
combination of SRP and residual macropore water flow, whereas the
studies noted above consider systems with no SRP. In such systems,
water retained in the open pore space through capillary forces, such
as in capillary film coatings on rough pore walls (Tokunaga and Wan,
1997; Khishvand et al., 2016), may represent a key residual flow path
that would be eliminated in systems with hydrophobic pore walls.

5.4. Sensitivity to SRP porosity

The effects of modulating SRP internal porosity between 0 to 1 are
shown in Fig. 5D. The overall magnitude of the relative permeability
changes is in close agreement with Mehmani and Prodanović (2014),
where the authors found that the addition of pore-clogging SRP can
modify the relative permeability of the wetting and non-wetting phases
by about a factor of 2. We note, again, that this effect occurs in addition
to the significant impact of SRP porosity on absolute permeability
presented in Fig. 4.

In addition to this significant influence of SRP porosity on relative
permeability, our results also show unexpected complexity. In particu-
lar, the impact of SRP porosity on water flow is non-monotonous, with
minimum water relative permeabilities observed at either 𝜙 = 0 or
1 and larger water relative permeabilities observed at intermediate 𝜙
values. This observation is consistent with the expected trend if residual
water flow relies on a combination of both SRP and residual macropore
water as suggested above: values 𝜙 = 0 or 1 would inhibit water flow
by eliminating the SRP water component of these residual flow paths.

6. Impact of SRP on residual relative permeability

As noted above, our results strongly suggest that the SRP can
function as an efficient and persistent connector between otherwise-
disconnected water bodies, particularly at low water saturations. We
call this increase in permeability the ‘SRP-enhanced relative perme-
ability’. A key manifestation of this is the persistence of significant
relative permeability in the water phase at water saturations below 0.5,
in agreement with experimental observations for rocks with significant
microporosity (Bennion and Bachu, 2010). In contrast, pore network
model simulations of multiphase flow generally predict that relative
permeability to water is nearly zero at water saturations below ∼0.2
to 0.5 (Prodanović et al., 2014; Huang et al., 2016).
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Fig. 6. Steady-state water relative permeability for select cases. Each label shows the
only varied parameter with respect to the base simulation. The percentages to the
right of the bars show the percent change in residual permeability with respect to the
aforementioned base simulation specified in Section 3.1.

A convenient way to characterize this effect is by ranking the
relative permeabilities of water once each system has achieved a steady
state, as seen in Fig. 6. The overarching trend is clear: increasing the
SRP’s permeability to water (increasing absolute permeability or SRP
wettability with higher values of 𝑚) also increases the steady-state
relative permeability of said fluid (up to 20 times). The reason for
this is not obvious, as higher SRP permeability should lead to higher
displacement of the defending fluid, lower residual saturations, and
thus, lower (not higher!) steady-state permeabilities. This leads us to
believe that increasing the flow capability of the SRP also leads to the
creation of enhanced percolation pathways that are persistent and re-
main connected throughout the sample, even at low water saturations.
This enhanced permeability effect is heavily influenced by the SRP pore
size, wettability and the resulting entry capillary pressure, where water-
favorable entry pressures (𝑚 > 1, 𝑝𝑐,0 < 0) increase this effect and
non-favorable capillary pressures (𝑚 < 1, 𝑝𝑐,0 > 0) diminish it. This
phenomenon is consistent with experiments in mixed-wet porous me-
dia (AlRatrout et al., 2018) and somewhat analogous to thin-film flow
in soils, where small amounts of water facilitate transport above the
soil’s water table (Tokunaga and Wan, 1997; Lebeau and Konrad, 2010)
through capillary effects. However, our current simulation setup does
not allow us to comment on what would happen to this effect as a result
of dynamic changes in sample wettability over time. This persistence
of significant residual relative permeability to water has potentially
important implications in the physics of soil drying (Or et al., 2013) and
in hydrocarbon recovery from tight sandstone formations (Tian et al.,
2019).

7. Impact of SRP on dynamic saturation evolution

The presence of SRP has the following competing effects on the
evolution of oil saturation within the sample during oil-flooding: 1) It
increases the residual saturation of its wetting phase (be it oil or water)
by acting as a fluid reservoir that ‘‘defends’’ itself against the non-
wetting phase. 2) It decreases the residual saturation of the defending
fluid phase by adding additional inter-pore connectivity and outflow
routes (Mehmani and Prodanović, 2014). The balance between these
two effects is dictated by the flow properties of the SRP.

Fig. 7 shows that fluid injection into the sample follows two char-
acteristic behaviors: 1) An initial linear increase in saturation, where
the slope is primarily dictated by the injection rate. 2) A non-linear
plateauing slope dictated by the slow drainage of the defending fluid
through the SRP and flow of the injected fluid into the SRP, which are
influenced by the SRP’s flow properties. The transition point between
these two primary flow mechanisms is dictated by the ‘‘breakthrough
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Fig. 7. The evolution of oil saturation vs time for all studied cases. Each label shows the parameter that was varied with respect to the base simulation. Note that oil breakthrough
occurs when about 1∕2 of the macropore space still contains water, suggesting that much of the later (and slower) increase in oil content corresponds to water drainage from open
pore space. The insets at the top left and bottom right show the final configurations for the cases with the highest and lowest final oil saturations, respectively. In said insets, the
blue phase represents oil within open pore space and red represents the SRP that has been invaded by oil.
time’’, the point at which the injected fluid first reaches the sample’s
outlet boundary. The next two sections will leverage the information
within the oil-flooding saturation curves in Fig. 7 to study the effects
of the SRP on the dynamic and static properties of these experiments.

7.1. Impact on breakthrough time

We now present a general ranking of the breakthrough times for
oil flooding as a function of SRP properties obtained from the results
in Fig. 7 (and Figure SI2). The samples are well distributed around
the standard base case and obey the following trends: The slowest
breakthrough times correspond to cases with oil-wetting surface contact
angles, where the oil explores more of the porous medium before
reaching the outlet, in agreement with experimental observations of
multiphase flow in bead-packs and micromodels with no SRP (Zhao
et al., 2016; Hu et al., 2017). These are followed by the sample case
with no SRP, where the reasoning is the same as above. Sample cases
with a less water-wet SRP (decreasing 𝑚) or with lower SRP permeabil-
ity or porosity further decrease the breakthrough times by limiting the
ability of water to drain through the SRP, such that the oil explores
less of the sample before reaching the outlet. The effects of dynamic
contact angle hysteresis is not evaluated here and will be investigated in
future work. Overall, our results show that oil breakthrough times are
sensitive to SRP parameters (±30%) even though drainage occurs pre-
dominantly in the larger pores, a result that has potentially important
implications in enhanced oil recovery and geologic CO2 sequestration.

7.2. Impact on residual saturations

Finally, we observe in Fig. 8 (and Fig. SI3) that residual water
saturations are highly correlated with oil breakthrough times: samples
with faster breakthrough times generally have higher residual water
saturations at steady state. The reasoning behind this behavior is very
similar to the one developed to explain the difference in oil break-
through times: if more residual defending fluid is present, the invading
fluid explores less of the available space and hence travels through
the sample more rapidly. Overall, this analysis indicates that SRP
has a considerable impact on a sample’s residual saturations (±400%),
strongly implying that it should not be neglected during the design of
subsurface fluid extraction and sequestration processes.
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Fig. 8. Residual water saturations vs breakthrough times for all studied cases. Note
that the longer it takes for oil to break through the sample, the lower the final water
saturation. This trends holds for all cases with an SRP porosity of 𝜙 = 0.5 (blue circles).
Changes in SRP porosity have the additional effect of changing the water storage
capacity of the sample (red stars).

8. Conclusions

In this paper we studied the effects of XCT Sub-Resolution Porosity
(SRP) on a rock’s absolute permeability, relative permeability, residual
saturations, and fluid breakthrough times. Our results quantify how
these four properties react to changes in the porosity, permeability, and
wettability of the SRP. One notable finding is that SRP can function as
a persistent connector between otherwise-isolated fluid clusters during
multiphase flow, even at low saturations. These results were obtained
from numerical simulations performed with our newly-developed Mul-
tiphase Micro-Continuum framework. To the best of our knowledge,
this is the first two-phase flow model and study to take into account
SRP without having to rely on a quasi-static assumption or simplified
pore-network models.

As such, this investigation establishes a framework for performing
two-phase flow simulations in digital rock systems that have two char-
acteristic length-scales. Potential improvements to our methodology
include the simulation of larger and more diverse rock samples, a
very attainable task due to the current continuous and rapid growth
of high-performance computing resources. Finally, our results suggest
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potentially fruitful opportunities for future work aimed at quantifying
the effects of SRP on upscaled capillary pressure curves, and broadening
the investigated parameter space to different types of rocks involving
different geometries, different amounts of SRP, and different SRP-
induced connectivity. These avenues will more extensively test the
conclusions presented in this study and lead the way towards greater
understanding of multiscale rock physics and the development of more
accurate and predictive upscaled permeability models.

Nomenclature

𝜌𝑖 Density of phase 𝑖 (kg∕m3)
𝜌 Single-field fluid density (kg∕m3)
𝑼 Single-field fluid velocity (m∕s)
𝑼 𝑟 Relative fluid velocity (m∕s)
𝑚 Van-Genuchten wettability parameter
𝑝 Single-field fluid pressure (Pa)
𝑝𝑐 Average capillary pressure (Pa)
𝑺 Single-field fluid viscous stress tensor (Pa)
𝑄 Volumetric fluid flow rate (m3∕s)
𝛥𝑃 Macroscopic pressure difference (Pa)
𝛾 Fluid–fluid interfacial tension (Pa.m)
𝜙 Porosity field
𝛼𝑤 Saturation of the wetting phase
𝛼𝑛 Saturation of the non-wetting phase
𝜇𝑖 Viscosity of phase 𝑖 (Pa.s)
𝑘0 SRP absolute permeability (m2)
𝐾0 Sample absolute permeability (m2)
𝑘𝑟,𝑖 SRP relative permeability for fluid 𝑖
𝐾𝑟,𝑖 Sample relative permeability for fluid 𝑖
𝑭 𝑐 Average capillary forces (Pa∕m)
𝐶𝛼 Parameter for the compression velocity model
𝑀𝑖 Mobility of phase 𝑖 (m3∕kg.s)
𝑀 Total mobility (m3∕kg.s)
𝜃𝑟 Rock surface contact angle
𝜃𝑝 SRP surface contact angle
𝒏𝑤𝑎𝑙𝑙 Normal vector to the porous surface
𝒕𝑤𝑎𝑙𝑙 Tangent vector to the porous surface
𝑝𝑐,0 Entry capillary pressure (Pa)
𝑉𝑓 Total volume of fluid in the sample (m3)
𝑉𝑓,𝑖 Total volume of fluid 𝑖 in the sample (m3)
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