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Abstract

The motion of weights attached to a chain or string moving on a frictionless pulley is a
classic problem of introductory physics used to understand the relationship between force and
acceleration. Here, we consider the dynamics of the chain when one of the weights is removed
and, thus, one end is pulled with constant acceleration. This simple change has dramatic
consequences for the ensuing motion: at a finite time, the chain ‘lifts off’ from the pulley and
the free end subsequently accelerates faster than the end that is pulled. Eventually, the chain
undergoes a dramatic reversal of curvature reminiscent of the crack, or snap, of a whip. We
combine experiments, numerical simulations, and theoretical arguments to explain key aspects
of this dynamical problem.

1 Introduction

When publishing the design of his machine in 1784, little could Atwood have known that, more
than two centuries later, students would be asked to predict the outcome of his experiment. The
problem, traditionally offered as an illustration of the principles of Newtonian mechanics, consists
in deriving the acceleration a of two masses M > m subject to the action of gravity g while
attached to a massless and inextensible chain passing over a frictionless pulley. The well-known
result is that

a =
M −m
M +m

g (1)

for the heavier of the two, with the second having the opposite acceleration. Little attention has
been paid to the seemingly trivial case in which both m = 0 and the chain has a finite linear density.
If the mass of the chain nevertheless remains small compared to M , then equation (1) immediately
gives that the remaining mass falls with acceleration a = g. However, a simple experiment (see,
for example, figure 1b) reveals that this apparent simplification actually has a dramatic effect on
the resulting motion: the chain ‘lifts off’ from the pulley in a complex motion. This lift-off has
some surprising features that we explore in detail in this paper. In particular, we show that the
free end accelerates faster than the end that is being pulled by the mass: in this sense, the free
end ‘beats’ the free fall of the mass. We also show that the chain eventually ‘snaps’ in a manner
that is reminiscent of the crack of a whip[1, 2].
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Thin filamentary structures are as important in applications as they are ubiquitous in nature
and industry; examples range from macromolecules such as DNA [3] to the kilometric transoceanic
cables laid on the ocean bed from telecommunication vessels [4]. On a human scale, textiles, hair
and ropes are other examples of thin elongated structures in which one dimension greatly exceeds
the two others (so that the objects may be modeled as one-dimensional). The thinness of such rod-
like structures also makes them flexible so that they are frequently subject to large deformations
in the three dimensional environment in which they evolve. This flexibility in shape in turn leads
to rich bifurcation landscapes [5], striking pattern formation [6], and intricate dynamical behavior.

Despite the range of length scales and materials encountered, many filamentary structures are
well modeled by the Kirchhoff equations for elastic rods [7]. A particularly interesting limit of these
equations is the case of inextensible strings in which inextensible rods have negligible resistance to
bending and twisting: their behaviour is dictated to a large extent by the geometric constraint of
inextensibility. In fact, this constraint by itself is enough to give rise to complicated dynamics: while
the simplest case of a straight string accelerating along its length may be understood by a simple
application of Newton’s second law, any closed shape is a solution of the governing equations with
any constant tangential velocity [8]. It is therefore the combination of acceleration and ‘turning a
corner’ that gives rise to the most interesting dynamics. In particular, moving inextensible strings
form surprisingly complicated shapes including arches [9] and the mesmerising ‘chain fountain’ [10,
11].

In this paper we consider the planar motion of a chain moving around a pulley subject to a
constant acceleration at one end and free at the other end. We model the chain as an inextensible
string in partial contact with a disk (the pulley) and investigate key features of the motion. This
setup is perhaps the simplest geometry in which one can study how a string or chain ‘turns a
corner’ since the curvature of this corner is simply that of the pulley. We first describe in some
detail the different phenomena that are observed experimentally and then analyze the lift-off in
detail by combining theoretical arguments with numerical simulations. Finally, we describe the
snapping that is associated with the reversal of curvature that ultimately occurs close to the free
end.

2 Statement of the problem and experimental observations

In the idealized setup of our problem, a mass M is attached to the end of a chain of linear density
(mass per unit length) ρ` placed around a circular pulley of radius R. The mass M is released at
time t = 0 and subject to a constant acceleration a. The chain is initially held on the pulley with a
known length of chain, L, hanging free from the first point of contact C (see Fig 1a). In a typical
experiment the total length of the chain is Lend = 2L+ πR.

The realization of this thought-experiment was carried out by using conventional ball and link
chains purchased from the local do-it-yourself shop and hung over horizontal Pyrex beakers (Fisher
Scientific) that were used as the frictionless pulley (the surface of the beaker being smooth, the
chain slides over the surface with very little friction). The mass M� ρ`L is released at time t = 0
resulting in an acceleration a ≈ g. Although not restricted in any other way than by a frictionless
contact with the pulley, the motion of the chain was observed to be planar, i.e. the motion remains
in the xy−plane normal to the axis of the pulley and containing the chain at t = 0. In the
subsequent modelling, we therefore assume that the motion remains planar throughout.

Typically, the time evolution of the chain passes through three, qualitatively different, phases
shown in figure 1b:

• For 0 ≤ t < tLO the chain follows the dynamics that might naively be expected: it moves
around the pulley at the speed that is imposed by the accelerating mass.
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Figure 1: Experiments using ball chains. (a) Experimental setup: the free fall of a mass M
forces a chain with initial hanging length L = 54 cm to slide around a glass cylinder of radius
R = 4 cm. The initial length L of the hanging part denotes the section of chain from the free end
s = 0 to the first contact point with the cylinder C before the mass is dropped (which occurs at
t = 0). The vectors (t,n) denote the tangent and the normal of the chain, respectively. (b) Time
sequence (∆t = 2.5 ms) of the chain dynamics successively lifting up from pulley (from t = tLO
onwards) showing that a ballooning arch develops before the chain eventually ‘snaps’ at a time
t = t∗ (reverses its curvature dramatically).
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• At a time t = tLO the chain starts to partially lose contact with the pulley, lifting off so that
for t > tLO the hanging part of the chain goes faster than the rest of the chain. Due to the
excess length of the chain, an arch forms between points C and C∗(t) defining an angle θ∗(t)
(see figure 1b).

• After the free end goes past the last contact point C (first image of the last row in figure 1b)
the arch flares up, its curvature increasing rapidly until the free end eventually snaps at time
t = t∗ (the curvature there changes sign).

To complement our experiments, numerical simulations were carried out using the Discrete
Elastic Rod method, which provides a discretization of the equations of motion for thin elastic rods
using a Lagrangian formulation [12]. This method, and its counterpart for thin viscous threads,
have been used and validated previously [13, 14]. In the simulations, we use a string model, i.e. the
bending and twisting stiffnesses are both set to zero so that the Kirchhoff equations [7] simplify to
the conservation of linear momentum:

∂(T t)

∂s
+ ρ`g + Pn = ρ`

∂v

∂t
, (2)

and inextensibility ∣∣∣∣∂x(s, t)

∂s

∣∣∣∣ = 1, (3)

where x(s, t) is the centre-line of the chain as a function of the arc length s and time t, t(s, t) =
∂x(s,t)
∂s and n(s, t) are the unit tangent and normal vectors to the chain axis, respectively (see

Figure 1a). Further, the variables T (s, t) and v(s, t) = ∂x(s,t)
∂t denote the tension and velocity

of the chain, and P (s, t) represents the (frictionless) reaction from the pulley on the chain, such
that P = 0 whenever there is no contact. This frictionless contact with the pulley is implemented
numerically using a geometrical method, i.e. by alternating dynamic steps that ignore contact
forces, with projection steps in which the configuration is projected onto the manifold of admissible
configurations.

We close the differential problem (2)-(3) using the boundary conditions at the two ends of the
chain. Namely, the free end of the string is stress free and we prescribe the acceleration a of the
chain’s end attached to the mass in our experiments, that is:

T (0, t) = 0 (4)

v̇(Lend, t) = −a ey (5)

where ey is in the vertical direction and Lend = 2L + πR is the arc-length corresponding to the
point where the mass is attached. Figure 2 shows a direct comparison between experiments and
numerical simulations without any adjustable parameter. The favorable agreement between the
two validates the approximations made in modelling the chain as a string that is driven at constant
acceleration (our experiments are in fact conducted with a constant force Mg but the two methods
are approximately equivalent since ρ`L � M). Of particular interest is the possibility offered by
the simulations to access the successive space derivatives of the basic physical variables (such as
curvature) with controllable time resolution covering long periods of time. Additionally, physical
quantities that are otherwise challenging to measure experimentally, such as the tension within the
chain, are readily available from simulations.

At any given time before the chain snaps (0 < t < t∗), the chain may be divided into four
regions: (I) and (IV) denote the two straight, vertical parts, respectively, (II) denotes the part
of the chain not in contact with the pulley and (III) the contact region. For example, in figure

4



(I) (II) (III) (IV)

(I)

(I)

(II)

(II) (III) (IV)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

(a) (b) (c)

(d)

(III)

(IV)

(a))

Figure 2: Numerical simulations: (a) Comparison between the chain shape observed experimentally
(images in the background) and the prediction of numerical simulations (overlaid dashed curve).
Here there are no adjustable parameters (L = 54 cm, R = 4 cm, time between two frames ∆t =
0.9 ms). (b) At each instant before snapping, the chain may be divided into four zones. (c) Plot of
the curvature κ (dashed curve) and the chain speed v (solid curve) as functions of the arc length.
(d) A numerical reconstruction of the tension T within the chain shows that it varies linearly with
arc length in regions (I), (III) & (IV). Region (II) bridges regions (I) and (III), each of which is
characterized by a different acceleration. For comparison, the dashed line shows the tension as
a function of arc length in the idealized solution with uniform and constant acceleration a where
lift-off is prevented (this artificial solution would give rise to a negative contact pressure).

5



2b-d, only a small portion of the chain (III) remains in contact with the pulley. In this region
the chain’s speed is prescribed by the free fall of the mass, as in region (IV). In region (I), the
chain moves significantly faster than the imposed acceleration, while remaining perfectly straight
and tangential to the pulley. In addition, the tension in the chain is larger than if the lift-off were
artificially suppressed (shown as a dashed line in figure 2d). The area (II) bridges the areas (I) and
(III)-(IV) and their corresponding physical quantities, resulting in a ballooning shape (see figure
2).

The length of the chain that is initially hanging freely, L, turns out to play an important role
in the problem and, therefore, we use L as the length scale of the problem. It is then natural to use
the quantity (L/a)1/2 as the time scale of the problem. If the acceleration of the freely hanging part
of the chain were to remain at a throughout the motion, the length of the chain hanging beneath
the point C then shrinks to zero at a time t =

√
2L/a.

From the 6 dimensional quantities of interest, we identify three dimensionless parameters:

π1 = ρ`L/M, π2 = R/L, and π3 = g/a. (6)

In our experiments M is chosen such that π1 � 1; ρ` therefore enters in the problem as a multiplying
factor for forces only. The value of π2 may easily be varied experimentally by varying the radius of
the pulley or, more simply, by varying the length of chain that initially hangs freely. By contrast,
varying π3 is more difficult. Our experiments are always performed with a = g and hence π3 = 1.
However, the inclusion of a body force acting on the chain complicates some of the analysis without
changing the qualitative behaviour, as shown in figure 2. Therefore, in much of the analysis we
shall neglect the acceleration due to gravity, i.e. we assume π3 = 0. Experimentally, this case could
be obtained by placing the chain, pulley and the mass on a smooth horizontal surface: at t = 0,
the mass is then pushed off the table into the air [15] and allowed to fall under gravity so that the
acceleration of the chain is a = g but the effective gravity acting directly on the chain vanishes. In
the simulations, the value of π3 is set to 1 or 0 depending on whether the results are to be compared
with experiments or with our analysis.

3 Prior to lift-off

We consider a pulley of radius R around which a chain with linear density ρ` is hung. We begin by
including gravity as a body force, though later we will neglect it to simplify the ensuing calculations.
Initially, the length of chain between the free end (at arc-length position s = 0) and the chain’s
first point of contact with the pulley is L (i.e. the point C in figure 1 has arc-length coordinate
s = L at t = 0−).

At t = 0+, the end at arc length s = Lend is pulled with constant acceleration a. Assuming
that the chain remains in contact with the pulley, v = vt, and projecting (2) onto the tangential
and normal directions, and then using the Frenet formula ∂t/∂s = −κn with κ the curvature, we
find that

∂T

∂s
− ρ`g cosφ = ρ`

∂v

∂t
(7)

−Tκ− ρ`g sinφ+ P = −ρ`v2κ, (8)

where φ is the angle between the local tangent to the chain and the upward pointing vertical and
κ = ∂φ/∂s is the curvature. In particular, while the chain remains in contact with the pulley,
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t < tLO, we know that

φ(s, t) =


0, 0 ≤ s < sC
s−sC
R , sC ≤ s < sC + πR

π, sC + πR ≤ s
(9)

where
sC(t) = L− at2/2 (10)

is the arc-length position of the first contact point between the pulley and the chain (the point
labelled C in figure 1). In the hanging part φ(s, t) = 0, and so, integrating (7) subject to T (0, t) = 0,
we find that the tension T may be written:

T (s, t) = ρ`(a+ g)s, s ∈ [0, sC ] (11)

In the region where the chain is in contact with the pulley, (7) leads to

T (s, t) = ρ`as+ ρ`gR sinφ+ C1, s ∈ [sC , sC + πR] (12)

where the constant of integration C1 = ρ`g sC is found by requiring the tension to be continuous
at s = sC .

In the freely hanging portion of the chain, (8) is identically satisfied by P = 0. Elsewhere, (8)
can be viewed as an equation for the reaction of the pulley on the chain required for this motion
to occur. From a simple rearrangement, we find that

P = −ρ`
v2

R
+ 2ρ`g sinφ+

1

R
ρ`(as+ gsC), s ∈ [sC , sC + πR]. (13)

Note that P is a function of arc length s and time t through the angle φ and arc length of the
contact point, sC(t), in addition to the explicit dependence on s. The minimum value of P at any
particular time t < tLO is attained at s = sC :

Pmin(t) = ρ`
[
sC(a+ g)− v2

]
/R = ρ`

[
(a+ g)L− 1

2at
2(3a+ g)

]
/R. (14)

The key to understanding why lift-off occurs is held by the expression for the smallest reaction
force Pmin(t) (14). At sufficiently early times Pmin > 0, and the contact pressure is everywhere
positive (it prevents the chain from penetrating the pulley). However, Pmin vanishes at a time
t = tLO given by

tLO =

√
2L(a+ g)

a(3a+ g)
=

√
2L

a

√
1 + π3
3 + π3

, (15)

and then becomes negative. For time t > tLO, the assumption (9) that the string is in contact with
the pulley over half a circle breaks down, as it predicts a negative pressure (an adhesive force would
be required to maintain contact). The negative values of P are first attained in the neighbourhood
of C, which suggests that lift-off takes place there. At time t = tLO, the length of the hanging
chain is

sLOC = sC(tLO) =
2a

3a+ g
L =

2

3 + π3
L. (16)

In (15), tLO is less than the time
√

2L/a when the hanging part (I) shrinks to a point the
mathematical solution (9) ignoring the lift-off. This confirms that the hanging part (I) has a finite
length when the lift-off takes place. This is also consistent with sLOC = sC(tLO) > 0.
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Figure 3: Experimental values of the time at which lift off occurs, tLO, plotted as a function
of the chain length L. This data, gathered with pulleys of radius ranging from R = 2.5 cm to
R = 7.5 cm and two types of chain, collapses on a single master curve. The prediction derived in
§3 (see eq. (15)) is verified within 10% (the solid curve corresponds to tLO ' 1.1

√
L/g) . In these

experiments, a = g, i.e. π3 = 1.

Apart from factors obviously required by dimensional analysis, both (15) and (16) appear to
depend only on the ratio π3 = g/a of the acceleration due to gravity to the imposed acceleration.
They do not depend on the dimensionless group π2 = R/L involving the size of the pulley. Fur-
thermore, we note that in the limit of zero gravity, π3 = 0, one third of the original hanging chain
has passed around the pulley with two-thirds still hanging; when pulling the chain using a heavy
mass in free fall, i.e. imposing π3 = 1, then one-half of the original hanging chain has passed around
the pulley with one-half still hanging. Here, incorporating gravity makes a quantitative, but not
qualitative, difference; either way, an appreciable fraction of the initially hanging chain remains
below the first contact point C.

From the above argument, we also gain some intuition into why the chain lifts off: the tension at
the contact point sC(t) is decreasing with time (because the length of hanging chain is decreasing)
while the tension required to turn the chain around the pulley increases (because the chain is
moving faster and faster). Lift-off occurs when the excess tension in the chain due to the hanging
length is ‘used up’.

4 Lift-off

The prediction for the lift-off time, (15), presents a natural test of the model assumptions, in
particular with regard to our neglect of the bending stiffness of the chain and the assumption of a
frictionless contact between chain and pulley. Experiments were performed with a = g (i.e. π3 = 1)
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and a number of different pulley sizes and initial hanging lengths (i.e. varying π2). As shown in
figure 3, we find reasonable agreement between the theoretical prediction for tLO and that measured
experimentally. In particular, experiments confirm the result that the size ratio π2 = R/L does not
affect the onset of lift-off. We also found that the value of tLO is insensitive to the type of chain
used (ball chains and link chains give the same results).

However, we note that the onset of lift-off is difficult to assess accurately in experiments owing
to its slow initial dynamics (to be discussed in detail in § 5); it is therefore natural that experimental
values of tLO are slightly larger that theoretically predicted (though they remain within 10% of
the theoretical value). Furthermore, the favorable agreement between experiments and numerical
solution of the full model, which neglects any source of dissipation, shown in figure 2a suggests
friction cannot be the cause of the discrepancy.

5 Behaviour just after lift-off

We now turn our attention to the early phase of the motion, just after lift-off. In this phase, our
experiments and numerical simulations show that the chain ‘balloons’ off the pulley (see figure 1b).
For simplicity, we shall henceforth neglect the role of gravity, i.e. we set π3 = 0. This analysis is
conducted hand in hand with numerical simulations for π3 = 0, but these results should not be
compared with experiments (for which π3 = 1). In Appendix A we consider how the results of this
section change when π3 6= 0; this analysis shows that the presence of gravity makes quantitative,
rather than qualitative, changes to the motion around lift-off.

5.1 Velocity after lift-off

The numerical simulations of the complete theoretical model (eqs 2-5) and experiments both suggest
that the portion of the chain that is freely hanging at the instant of first lift-off (i.e. 0 ≤ s < sC(tLO))
remains straight (within numerical accuracy) in the immediate aftermath of lift-off. We therefore
attempt to repeat the calculation of §3 but this time we treat the acceleration in this straight
portion, v̇hang(t), as an unknown. Motivated by numerical observations, we assume that the length
of the straight portion of the chain is precisely the hanging length of the chain at tLO, namely
sC(tLO), which we denote by sLOC as in (16).

Setting g = 0 in (2), and focusing on the straight, hanging part (zero curvature), and integrating
we find that:

T = ρ`v̇hangs, 0 ≤ s ≤ sLOC (17)

where the length of the straight portion sLOC = L − 1
2at

2
LO. To close the problem, we note that

at the end of this straight portion, the radius of curvature must change to some finite value (by
construction), and further that there is no reaction force (since at this point the chain is no longer in
contact with the pulley). Substituting these results into (8), we then have that T (sLOC , t) = ρ`v

2
hang

and hence, after combining with (17), that

v̇hang(t) =
v2hang(t)

sLOC
. (18)

Integrating (18) subject to the initial condition vhang(tLO) = atLO, we find that

vhang(t) =
2

3

L

2tLO − t
= a tLO

(
2− t

tLO

)−1
. (19)

This simple approximation predicts that the velocity of the hanging portion of the chain diverges
as t → 2tLO. However, the argument above only holds in the immediate aftermath of lift-off,

9
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Figure 4: Behavior just after lift-off for π3 = 0 (imposed acceleration at endpoint is a = 0.5, g = 0,
R = 1 and L = 4π; the simulation timestep is ∆t = 15×10−4 and the mesh size is ∆s = 6.3×10−3).
(a) The speed of the hanging part of the chain for g = 0 from numerical simulations (dotted blue
curve) compared to the imposed velocity at the pulling end, v = at, (dashed line) and the prediction
of eq. 19 (solid orange curve). Inset: Error δ between the estimate (19) for vhang and the numerical
data, shows that the expansion for t− tLO � tLO in (20) is correct at O(t− tLO)2. (b) ∆s denotes
the length of chain that has lost contact with the pulley for t > tLO. The corresponding angle
is θ∗ representing a region on the pulley of length Rθ∗. The excess length ∆L is defined as the
difference between these two quantities ∆L = ∆− Rθ∗ (c) The value of the relative excess length
∆L/L (solid) as predicted by equation (22) compares favourably with numerical data (dots); in
particular the scaling prediction ∆L/L ∼ (t− tLO)3 is borne out by the data.
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t − tLO � tLO. In the simulations, the reversal of curvature actually occurs at a time t∗ ≈
1.365

√
L/a ≈ 1.67tLO (see figure 7b-c), which is earlier than that predicted by (19).

The Taylor expansion of (19) for t− tLO � tLO reads

vhang(t) = a tLO

[
1 +

t− tLO
tLO

+

(
t− tLO
tLO

)2

+O

(
t− tLO
tLO

)3
]
. (20)

The first two terms in in the square bracket combine to give at, which is the imposed pulling
velocity: the correction to the imposed constant acceleration is given by the following term and
occurs at order (t− tLO)2. In figure 4a, we observe that our numerical results for the velocity are
in good agreement with the prediction of eq. (19) for times close to tLO but then deviate with an
error δ that is cubic in t− tLO. This cubic error confirms that the first correction to the constant
acceleration motion, namely the term of order (t− tLO)2 in (20), is correct.

By differentiating (19) with respect to time, we obtain an expression for the excess acceleration
of the free part of the chain

∆a = v̇hang − a = a

[
t2LO

(2tLO − t)2
− 1

]
, (21)

which is positive for all t > tLO. Thus, even though the free end is not subject to external forces,
it accelerates faster than the end that is actually subject to the imposed (constant) acceleration.

A quantity of interest is the arc-length of the region over which the chain has lost contact with
the pulley for t > tLO, which we denote by ∆s (see figure 4b). The above calculation does not give
us enough information to determine this quantity. However, the result for vhang, (19), can be used
to determine the excess length of chain that has lost contact with the pulley, i.e. the difference
between the length of chain that has lifted off the pulley, ∆s(t), and the arc length of the pulley
from which it has lifted off, Rθ∗(t), with θ∗(t) the angle subtended between the two contact points
C and C∗ (see figure 4b). Denoting this quantity by ∆L(t) = ∆s(t)−Rθ∗(t) we find that

∆L(t) =

∫ t

tLO

[
vhang(t′)− at′

]
dt′ =

2L

3
log

(
tLO

2tLO − t

)
− a

2
(t2 − t2LO). (22)

We emphasize that this calculation does not allow us to determine ∆s and Rθ∗ separately, but only
their difference. The Taylor series of ∆L(t) for t− tLO � tLO reveals that

∆L(t) ≈ a(t− tLO)3

3tLO
, (23)

i.e. the excess length grows only relatively slowly after the start of lift-off. Note that the appearance
of a leading-order behaviour at order (t− tLO)3 here is consistent with our earlier finding that the
correction to the speed of motion is at order (t−tLO)2 in (20), since we have integrated this quantity
in time.

Comparison of the predictions of this analysis, (19) and (23), with the numerical solution of
the fully nonlinear problem (see figure 4) shows that these expressions are asymptotically correct
immediately after lift-off, t−tLO � tLO, and validates the underlying assumption (that the hanging
portion of the chain simply accelerates vertically upwards).

5.2 Characteristics

We now proceed to explain the size of the region of lift-off as a function of time. We show that the
point of contact C∗(t), as defined in fig 4b, follows a characteristic of the wave equation describing
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Figure 5: The parameter space (t
√
a/L, s/L) is mapped with the characteristics of the system,

color coded as functions of the direction of propagation (given by the sign of ds/dt in this plot).
The time evolution of the position of the contact point C, obtained analytically before tLO and
numerically for t > tLO, is shown by solid blue curve. The envelope of characteristics emitted from
C at t = tLO is highlighted by the shaded area. (The simulation timestep is ∆t = 15 × 10−4 and
the mesh size is ∆s = 6.3 × 10−3. Imposed acceleration at endpoint is a = 0.5, g = 0, R = 1 and
L = 4π).
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the evolution of the small perturbations to the motion of the string. In other words, the motion of
C∗(t) can be viewed as a traveling front produced by the initial lift-off at tLO. To do so, we now
consider the length of chain ∆s that makes up the ‘ballooning’ arch forming after lift-off. This
length is defined to be ∆s(t) = s∗c − sc, where sc and s∗c correspond to the arc-length coordinate of
the contact points C and C∗, respectively (see figure 4b).

For times close to tLO, lift-off takes place but it is mild; as a result, this lift-off can be described
by (i) extending beyond tLO the solution maintaining contact with the upper half of the pulley
(base solution) and (ii) perturbing it to remove any negative contact pressure. The equations
governing the perturbation are obtained by a standard linearization, and are linear wave equations.
In these wave equations, the wave speed c =

√
T/ρ` is both time and space-dependent (recall that

T = T (s, t)). Assuming that the tension remains close to its value prior to lift-off, i.e. T ≈ ρ`as as
derived in eq.(11), we have c =

√
as, and the characteristics of the wave equation satisfy

ds

dt
= ±√as. (24)

yielding the expansion waves depicted in figure 5.
When lift-off occurs, the chain is locally freed from the pulley at the point sLOC and this in-

formation propagates within the envelope formed by the two characteristics that depart from this
point in the (t, s) plot. Within this region, the tension in the chain is altered, i.e. the tension of
the true solution does not match exactly that predicted by the base solution that ignores lift-off;
beyond this region, information can only propagate at the wave speed at the edges, which is, by
construction, given by the tension just before lift off. The limited propagation speed of information
about lift-off results in the formation of an arch from the point C to a second contact point C∗

(see figure 4b). We hypothesize that the length of the arch ∆s(t) = s∗c − sc is simply the width
of the envelope formed by the two characteristics that originate from C at t = tLO (see figure 5).
Deriving ∆s from eq.(24) yields

∆s = 2

√
2

3

√
aL(t− tLO). (25)

We use numerical simulations to test the estimate (25). As shown in figure 6a the agreement
between the two is asymptotically correct immediately after lift-off (with the correct prefactor).
This indicates that the propagation of lift-off front is indeed limited by the rate at which the
perturbations can travel through the string. This argument correctly accounts for the short times
dynamics, ∆s ∼ (t− tLO).

We also note that θ∗, the angle from C to C∗ defined in figure 5b, follows the same scaling law
and agrees well with equation (25). Indeed, recall that ∆L = ∆s− Rθ∗; for t− tLO � 1, we have
shown ∆L ∼ (t − tLO)3 in equation (23) and ∆s ∼ (t − tLO) above, it follows that ∆s and Rθ∗

must be equal to leading order in (t− tLO), i.e. θ∗ ∼ ∆s/R as checked numerically in figure 6b.

6 Snapping

We now describe the kinematics of the free end during snapping. Let φ(s, t) be the angle between
the tangent t and the upward pointing vertical axis. We define the curvature κ(s, t) = ∂φ(s, t)/∂s
(recall that the free end corresponds to s = 0). We define snapping as a sudden change in maximal
curvature of the chain as depicted in figure 7a-b, which shows the time evolution of the largest
curvature of the chain, κM . We observe that the arc-length position sM at which this maximum
curvature is observed travels towards the free end of the chain as snapping approaches, as shown in
figure 7b. During snapping, κM has a singular behavior as well: the curvature strongly increases
and changes sign, as shown in the last three configurations in figure 7a and in figure 7b. Note
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Figure 6: Arch structure for π3 = 0. (a) The evolution of ∆s/L with time following lift-off
determined numerically (blue dots) and compared to the theoretical expression in (25) (orange
solid line). (b) Test of the prediction θ∗ ∼ ∆s/R derived at the end of §5. In both cases the
numerical data corresponds to a simulation with timestep ∆t = 15 × 10−4 and the mesh size
∆s = 6.3× 10−3. Imposed acceleration at endpoint is a = 0.5, g = 0, R = 1 and L = 4π.
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Figure 7: Snapping for π3 = 0: (a) Shapes of the chain right before and after snapping occurs.
The angle φ(s, t) separates the tangent t(s, t) and the the upward pointing vertical axis so that
κ(s, t) = ∂φ(s, t)/∂s, where κ is the curvature of the chain. (b) The maximal curvature of the
chain κM (attained at position sM ) as a function of time and (c) the velocity of the free end of the
chain compared to the constant acceleration that drives the motion. The grey bands indicate the
snapping time. (The simulation timestep is ∆t = 15× 10−4 and the mesh size is ∆s = 6.3× 10−3.
Imposed acceleration at endpoint is a = 0.5, g = 0, R = 1 and L = 4π)
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that for real ropes this singularity will be regularized by their finite bending stiffness 1. Therefore,
the singular behavior predicted by our string model may be seen as the ’outer solution’ of a
regularized model. Note that snapping is associated with a rapid increase of the free end velocity
as illustrated in figure 7c. These features are similar to what occurs in a cracking whip [1] and a
falling chain [16, 17, 18, ?].

Let us denote by t∗ the time of snapping, defined as the time where the curvature diverges
near the free end. For optimal accuracy, we analyze the snapping dynamics based on simulations
having a relatively large value of π2 = R/L = 1

2π . This allows us to use a fine and uniform spatial
discretization of the string. To ease the comparison between this specific simulation and the rest
of our results, we introduce a non-dimensionalisation with respect to the space and time scales
of the problem, namely L and

√
L/a. Dimensionless quantities are denoted by a bar, such as

t
∗

= t∗/
√
L/a. The dimensionless snapping time t

∗
is a function of π2 and π3; in the forthcoming

analysis, we focus on the particular case π2 = 1/(2π) and π3 = 0.
To measure the divergence of curvature from the simulations, we use a curvature norm that is

intended to capture the largest value of curvature,

K(t) =

(∫ 1

0

(
κ(s, t )

)p
ds

) 1
p−1

, (26)

where p ≥ 2 is an integer. The value of the integer p that is used results from a trade-off: one should
use values of p as large as possible, and K will then accurately capture the maximum curvature; on
the other hand, if p is too large then K fluctuates significantly as a result of discretization errors.
In the following, we take p = 6; we have verified that the results are unchanged for p = 8.

We begin by assuming that as the singularity at t = t
∗

is approached, the curvature diverges
according to a power law κ ∼ (t

∗ − t)−α, for some exponent α to be determined, on a region of
size ∼ 1/κ. The region of divergence contributes an amount ∼ (t

∗ − t)−(p−1)α to the integral in
equation (26): as soon as α(p− 1) > 0, this contribution makes the integral diverge at the time of
snapping t

∗
and t

∗
can be identified from a numerical plot of t as a function of time—the condition

α(p − 1) > 0 is indeed satisfied as p = 6 and α > 0, see below. One can check that the quantity
K(t) diverges as K ∼ (t

∗ − t)−α: a numerical plot of K versus t yields the exponent α as well,
independently of the particular value of p chosen in the definition of K.

The snapping time t
∗

and the exponent α entering in the power law K(t) ∼ |t− t∗|−α are best
determined from the simulations by plotting the quantity(

d(lnK)

dt

)−1
∼ t
∗ − t
α

(27)

as a function of t, see figure 8a.
The points collapse onto a straight line, aside from a thin band of width ≈ 15∆t where the

large curvature is not well resolved by the discretization. A linear fit in figure 8a yields both the
snapping time t

∗
(where the fitting line crosses the t-axis) and the exponent α (the reciprocal of

the slope). This fit yields a value of the exponent α = 0.659 which is numerically close to 2/3 (we
do not know whether this is a coincidence) and t

∗
= 1.415. The latter is close to (but less than) the

singular time 2tLO
√
a/L = 2

√
2/3 ≈ 1.63 found by extrapolating the asymptotic behavior in the

immediate aftermath after lift-off, see equation (19). These numerical values of t
∗

and α have been
obtained in the particular case π2 = 1/(2π) and π3 = 0. We suspect, however, that the exponent
α can be explained by a boundary-layer theory and that it is actually independent on π2 and π3.
Unfortunately, we can offer no proof for this statement.

1For chains made up of rigid links, this singularity is regularized too, by the contact between successive chain
links.
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Figure 8: Searching for self-similar solutions in the snapping (for this particular simulation, the
linear mass is ρ` = 5 and the radius of pulley is R = 1 and L = 2π such that π2 = R/L = 1/(2π).
There is no gravity and no bending rigidity. The simulation timestep is ∆t = 2 × 10−4 and the
mesh size is ∆s = 3.14 × 10−3. Imposed acceleration at endpoint is a = 0.5). (a) Identifying the
singularity exponent α for the curvature and the critical time t

∗
using the quantity K(t) defined in

(26). From our numerical simulations we find that (α, t
∗
) = (0.659, 1.41531) (red dashed line). (b)

These values may be checked in a standard log-log plot. The wells are numerical artifacts: they
correspond to values of |t∗ − t| as small as a few simulation steps, implying that the curvature
is very peaked and prone to discretization errors. (c) Configurations right before and after the
snapping time, 1.405 ≤ t ≤ 1.42 (t

∗ ≈ 1.415): darker configurations correspond to times closer to
snapping and reference configurations are denoted by the symbols ( ), ( ) and ( ) (d) Collapse of
the curvature in rescaled variables (s̃, κ/K) using the same shading convention for 1.405 ≤ t ≤ 1.414
(before snapping occurs).
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As observed in the experiments (see §2), the string remains straight in the simulations along
an interval of length `(t) comprising the free end, at all times until t∗. This straight portion of the
string is apparent in figures 7a and 8c. It defines the region denoted by (I), which is adjacent to the
region (II) of large curvature (see Fig 2c). The dimensionless length ` = `/L is found numerically
to scale like ` ∼ (t

∗ − t)β, with β = 1.08 ± 0.2 (fit not shown). The numerical accuracy on this
exponent β is not as good as that of α as the determination of the straight region is sensitive to
numerical noise. It is clear from our numerical data, however, that the exponent β is larger than
α, meaning that the length of the straight region near the free end vanishes more quickly than the
minimum radius of curvature as t→ t

∗
, t < t

∗
.

Next, we proceed to use our analysis to uncover a self-similar behavior in the curvature profile.
Anticipating that the point of maximal curvature plays a central role we introduce a weighing to
capture its position:

〈s〉(t) =

∫ 1
0 s κ

p(s, t) ds∫ 1
0 κ

p(s, t) ds
. (28)

By design, the weighting is concentrated in the region of large curvature: 〈s〉(t) yields the typical
value of s at time t in the region (II) where the curvature diverges.

Finally we rescale the arc-length parameter to

s̃ =
s− 〈s〉(t)
1/K(t)

, (29)

By design, s̃ = 0 lies in the centre of the region with high curvature. In this definition, the
offset 〈s〉(t) allows us to ignore the straight region entirely (which shrinks according to a different
exponent). We consider a set of simulation snapshots such that 1.405 ≤ t ≤ 1.414, i.e. such that
0.001 ≤ t∗ − t ≤ 0.01. This corresponds to the configurations bounded by the symbols ( ) and ( )
in figure 8b-c, with darker plots corresponding to times closer to the snapping time t

∗
.

In figure 8d, we plot the rescaled curvature κ(s, t)/K(t) as a function of the rescaled arc-length
s̃ and obtain a good collapse. Note that the unscaled maximum curvature K varies by a factor
∼ 5, from approximately 65 to 308, between the first and last snapshot in this series. Therefore,
the collapse shows that the curvature distribution is self-similar close to the snapping time t

∗
:

consistently with our initial scaling assumption, the curvature scales like κ ∼ (t
∗− t)−α in a region

of size s − 〈s〉 ∼ (t
∗ − t)α. Note that this analysis focuses on the behavior of the chain prior to

snapping, so that t < t
∗
.

In summary, our analysis shows that the snapping singularity may characterized by a self-similar
solution, whose scaling behaviours have been identified numerically.

7 Conclusions

In this paper, we have considered a degenerate version of Atwood’s machine, in which a single
mass pulls a chain around a pulley. In stark contrast with the apparent simplicity of the setup we
have found that the dynamics is extremely rich, successively displaying a ballooning instability of
the chain and a snapping motion of its free end, reminiscent of what is seen in a cracking whip.
We have shown that the chain dynamics is well captured by a frictionless string model and that
some of its features may be captured by simple arguments. In particular we have shown that the
geometry of the problem, through the imposed rotation of the chain around the pulley, is key to
understanding how the end of the chain is able to ’beat’ the free-fall that drives its motion.

Our observations can be used to speculate on the peculiar hunting techniques of a variety
of amphibians. Indeed, instead of throwing their tongue in a straight motion (as observed in
chameleons [19, 20]), certain species of toads [21] and salamanders [22] adopt an unfurling tongue
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strategy. Of course, the reasons for such a mechanism are many and varied but we believe that the
increase of tip velocity observed in the case of a chain is likely to reappear in problems involving
a finite bending stiffness. It is then natural to wonder whether this geometrical amplification of
acceleration may be used by these amphibians to allow them to maximize their chances of capturing
a prey?

Finally, we note that while we have been able to rationalize some of the observations from
experiment and simulation, others remain elusive. For example, predicting the shape of the bal-
looning region either with simple arguments, or preferably analytically, remains beyond our reach.
Difficulties in doing so arise from the fact that the ‘base solution’ of the problem is unsteady (since
a > 0). An interesting avenue of research would be to explore the case where the chain is pulled
at constant speed thus without any acceleration, potentially allowing for analytical developments.
Similarly, there is hope that the self-similar exponent α and β identified in the previous section can
be explained by some boundary layer theory in future work.
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A The effect of gravity immediately after lift-off

For simplicity, the main portion of the paper focusses on the problem in the absence of gravity. In
this Appendix, we show how the results derived in §55.1 for the behaviour immediately following
lift-off are altered once gravity is included. These results confirm that, in this case at least, gravity
affects the results quantitatively, rather than qualitatively.

A.1 The unknown chain acceleration

Immediately after lift-off, the free end of the chain accelerates at an unknown rate v̇hang. To
determine this acceleration, we repeat the argument of § 55.1 incorporating gravity: the normal
force arising from the tension at the material position that was at C when lift-off started (ρ`(v̇hang+
g)sLOC κ) is equated with the force arising from the centripetal acceleration (ρ`v

2
hangκ) for some

undetermined curvature κ. We then have that (18) becomes

(v̇hang + g)sLOC = v2hang, (30)

which can be solved with initial condition vhang(tLO) = atLO to give

vhang =
√
gsLOC coth

[
α−

√
g

sLOC
(t− tLO)

]
, (31)

where

cothα =
atLO√
gsLOC

. (32)

The form of (31) appears to be substantially different to that in the absence of gravity, (19).
However, the qualitative behaviour is, in fact very similar: vhang(t) is an increasing function of
t > tLO and has a singularity at

t = tLO +

√
sLOC
g
α. (33)
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Furthermore, a Taylor expansion of (31) reveals that

vhang = at+
a2tLO

sLOC
(t− tLO)2 +O(t− tLO)3, (34)

so that the change in the pulling velocity occurs at O(t− tLO)2, as in the case without gravity (see
figure 4a).

A.2 The excess length ∆L

From the expression (31) for the acceleration of the hanging portion of the chain, we find that the
excess length absorbed by the lifted off portion is

∆L = −sLOC log

sinh

[
α−

√
g
sLO
C

(t− tLO)

]
sinhα

+
a

2
(t2LO − t2)

=
(
a+ g

3

) (t− tLO)3

3tLO
+O[(t− tLO)4]. (35)

This cubic growth of the excess length with time following lift-off echoes that found in the absence
of gravity, given by (23). As already seen, the only significant difference is in the prefactor.
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