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Data 
We assembled biweekly time series of measles incidence in US cities using the Project 
Tycho database [26] and took biweekly measles incidence and demographic data for 
cities from England and Wales from previous work [11,27]. For US cities we took 
estimates of population size for each city over the period of the study from census data 
[28] and estimated effective birth rates by differencing biweekly time series of the 
number of children under one year old [29], adjusting for the rate at which children age 
out of this class.  For total and infant population sizes in the US, biweekly time series 
were obtained by evaluating at each biweek a spline function fitted to the decennial 
data.    Variations in the approach to reconstructing US recruitment rate, including 
varying background infant mortality, and changing the degrees of freedom in spline 
fitting, did not affect the results. 
 
We used data for the 40 US cities in the Project Tycho database with the most records of 
measles incidence, which included most major US cities.  While the Project Tycho 
database has measles incidence data from 1903 to 1953, data coverage was uniformly 
high for these 40 cities between 1920 and 1940, so we used that period in the analysis.  
For the England and Wales measles data we used the city of London plus the largest 39 
cities that were more than 50km from London (Table S1), to prevent a “borough effect” 
where UK cities in the greater London area are entrained to its dynamics.  Whereas the 
US measles data we used extends from 1920-1940, the England and Wales measles data 
extends from 1944 to 1964. 
 
Our analysis accounts for demographic differences associated with the changing time 
window between the US and the England and Wales data, including differences in birth 
rates over time among cities and countries, as detailed below.  The temporal mismatch 
between the US and UK data does not drive the observed epidemic patterns—evidence 
from other sources clearly shows that measles epidemics in London, UK and other major 
UK cities remained predominantly biennial in the period covered by the US data (1920-
1940; see SI)[15,30].  
 
 
Mean periodicity 
Mean periodicity in our analysis is defined as ∫𝜋𝜋𝜋𝜋(𝜋𝜋)𝑑𝑑𝜋𝜋, where 𝜋𝜋(𝜋𝜋) is the power 
spectral density of the biweekly time series as a function of period. 
 



 
Susceptible reconstruction and parameter estimation for the TSIR model 
On a log scale the dynamics of the infected class in the TSIR model are given by 
 

log𝐸𝐸[𝐼𝐼𝑡𝑡+1] = log𝛽𝛽𝑡𝑡 + αlog 𝐼𝐼𝑡𝑡 + log 𝑆𝑆𝑡𝑡 − log𝑁𝑁𝑡𝑡 
(S1) 
 
which, once St and It are reconstructed from case data and birth data (see below), allows 
parameter estimation within the framework of generalized linear models[11].  
 
Susceptible and infected reconstruction follows standard methods[5].  The equation for 
the dynamics of the susceptible class is 
 

𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 + 𝐵𝐵𝑡𝑡 −
𝐶𝐶𝑡𝑡+1
𝜌𝜌𝑡𝑡+1

 

(S2) 
 
where Bt represents births, Ct represents reported cases, and ρt is the time-varying 
reporting rate.  Summing both sides, 
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(S3) 
 
shifting indices on the left, 
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(S4) 
 
subtracting ∑ ���

�=1  from both sides, 
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(S5) 
 
and writing the number of susceptible individuals over time in terms of deviations from 
the long term average 
 

𝑆𝑆𝑡𝑡 = 𝜎𝜎𝑁𝑁𝑡𝑡 + 𝐷𝐷𝑡𝑡 
(S6) 
 
where σ is the mean proportion susceptible in the population, yields the relation 
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(S7) 
 
from which ρt can be estimated by fitting an appropriately smooth monotonic curve to 
cumulative cases as a function of cumulative births [5]. Mean reporting rate for UK 
cities was 0.55 (0.06 s.d.) and for US cities was 0.37 (0.13 s.d).   
 
The last two terms in equation S7 have expected value of zero under repeated instances 
of the analysis in independent stationary populations, meaning it is reasonable to 
recover Dt from the residual values of the fitted curve.  We found that the analysis was 
more reliable with cases on the left hand side of equation S7 and births on the right, as 
opposed to the other way around.  As cases fluctuate more violently than birth rates, 
particularly in the US, fitting a curve to cumulative births as a function of cumulative 
cases resulted in oversmoothing. 
 
The last step to reconstructing susceptible dynamics requires the mean proportion 
susceptible σ, which has previously been estimated for the England and Wales data 
by profile likelihood [11].  In order to facilitate comparison across cities we fixed σ 
at 0.035, to match the proportion susceptible in London, UK.  Demonstrably, fixing σ 
does not damage the analysis.  Twenty year forward simulations using the 
parameterized models yield close fits to the observed data in both deterministic and 
stochastic simulations (Figure 3).  Moreover, σ does not appear in these simulations, 
which significantly support our most important conclusions (Figures 2-4)—in the 
forward simulations the number of susceptible individuals is updated iteratively 
from equation S1, starting from a wide range of initial conditions. 
 
 
Lyapunov exponents 
 
The finite-time dominant Lyapunov exponent for the fitted TSIR model, 
parameterized from the time series of incidence for a specific city, is given by[6] 
 

 (S8) 
 
 
where T is the number of biweeks used in the calculation, Jt is the Jacobian of the 
deterministic skeleton of the epidemic model (as parameterized for a certain city) 
and U0 = (1,0) is a unit vector.  We calculated LEs for each city using 100 years (2600 
biweekly timesteps) of forward simulations of the deterministic skeleton of the 



model for each city, following 100 years of “burn-in” to remove the effects of 
transient dynamics.  



Routes to chaos 
 
We demonstrate alternate routes to chaos by simulating the TSIR model using synthetic 
seasonal transmission rate functions for the seasonal transmission rate function βt.  

These synthetic functions are qualitatively similar to those empirically observed in US 
and UK (see Fig 2A), but they vary systematically in amplitude or duration, while 
maintaining constant mean (the global mean of the transmission rates across all cities.) 
 
The synthetic transmission functions are given by 
 

 
  (S9) 
 
 
where β- and β+ are the minimum and maximum values attained by the transmission 
function, t measures time in biweeks from January 1 of the current year, and a and b 
represent the time of onset and end of the period of low transmission.   We then choose 
a, b, β- and β+  so the resulting seasonal transmission function has the desired amplitude 
(β+ - β-) and duration of low (b-a), while preserving the mean by adding a scalar 
constant, once the amplitude and duration are set.  Similar to the data, the low period 
of transmission is always centered at the temporal midpoint of the year. 
 



Measles epidemics in London, UK and other major UK cities remained predominantly 
biennial in the period covered by the US data (1920-1940) 
 

 
 
Figure A.  Annual data (interpolated with a smooth curve) on measles deaths in selected 
cities in England and Wales[15], showing biennial dynamics in the period covered by the 
US data. 
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Figure B. (A) Measles incidence patterns across the 20 largest cities in the US and UK 
respectively.  (B) Spatial cross correlations in measles incidence across UK (red) and US 
(blue) cities.  Outer lines enclose bootstrapped 95% confidence intervals on a non-
parametric spatial cross correlation function.  
  



 
 
 
Figure C:  Observed mean periodicity for cities in the UK (crosses) and US (circles) 
compared to that predicted using the TSIR model parameterized with city-specific fitted 
seasonal transmission patterns, demonstrating that variation in the shape of the 
seasonal transmission function can explain a significant portion of the variation in mean 
periodicity among cities and countries.  Colors correspond to mean observed periodicity, 
as in figures 1 and 4.  Simulations were run for 100 years following 100 years of burnin 
to remove transient dynamics. 
 


