
Hollow Heaps

Thomas Dueholm Hansen∗ Haim Kaplan† Robert E. Tarjan‡ Uri Zwick§

Abstract

We introduce the hollow heap, a very simple data structure with the same amortized efficiency
as the classical Fibonacci heap. All heap operations except delete and delete-min take O(1) time,
worst case as well as amortized; delete and delete-min take O(log n) amortized time. Hollow
heaps are by far the simplest structure to achieve this. Hollow heaps combine two novel ideas:
the use of lazy deletion and re-insertion to do decrease-key operations, and the use of a dag
(directed acyclic graph) instead of a tree or set of trees to represent a heap. Lazy deletion
produces hollow nodes (nodes without items), giving the data structure its name.

∗Department of Computer Science, Aarhus University, Denmark. Supported by The Danish Council for Indepen-
dent Research | Natural Sciences (grant no. 12-126512); and the Sino-Danish Center for the Theory of Interactive
Computation, funded by the Danish National Research Foundation and the National Science Foundation of China
(under the grant 61061130540). E-mail: tdh@cs.au.dk.
†Blavatnik School of Computer Science, Tel Aviv University, Israel. Research supported by the Israel Science

Foundation grants no. 822-10 and 1841/14, the German-Israeli Foundation for Scientific Research and Development
(GIF) grant no. 1161/2011, and the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11).
E-mail: haimk@post.tau.ac.il.
‡Department of Computer Science, Princeton University, Princeton, NJ 08540, USA and Intertrust Technologies,

Sunnyvale, CA 94085, USA.
§Blavatnik School of Computer Science, Tel Aviv University, Israel. Research supported by BSF grant no. 2012338

and by The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11). E-mail: zwick@tau.ac.il.



1 Introduction

A heap is a data structure consisting of a set of items, each with a key selected from a totally
ordered universe. Heaps support the following operations:

make-heap(): Return a new, empty heap.

find-min(h) : Return an item of minimum key in heap h, or null if h is empty.

insert(e, k, h): Return a heap formed from heap h by inserting item e, with key k. Item e must be
in no heap.

delete-min(h): Return a heap formed from non-empty heap h by deleting the item returned by
find-min(h).

meld(h1, h2): Return a heap containing all items in item-disjoint heaps h1 and h2.

decrease-key(e, k, h): Given that e is an item in heap h with key greater than k, return a heap
formed from h by changing the key of e to k.

delete(e, h) : Return a heap formed by deleting e, assumed to be in h, from h.

The original heap h passed to insert, delete-min, decrease-key, and delete, and the heaps h1 and h2
passed to meld, are destroyed by the operations. Heaps do not support search by key; operations
decrease-key and delete are given the location of item e in heap h. The parameter h can be
omitted from decrease-key and delete, but then to make decrease-key operations efficient if there
are intermixed meld operations, a separate disjoint set data structure is needed to keep track of the
partition of items into heaps. (See the discussion in [13].)

Fredman and Tarjan [9] invented the Fibonacci heap, an implementation of heaps that supports
delete-min and delete on an n-item heap in O(log n) amortized time and each of the other operations
in O(1) amortized time. Applications of Fibonacci heaps include a fast implementation of Dijkstra’s
shortest path algorithm [5, 9] and fast algorithms for undirected and directed minimum spanning
trees [7, 10]. Since the invention of Fibonacci heaps, a number of other heap implementations
with the same amortized time bounds have been proposed [1, 2, 4, 8, 11, 12, 14, 17, 19]. Notably,
Brodal [1] invented a very complicated heap implementation that achieves the time bounds of
Fibonacci heaps in the worst case. Brodal et al. [2] later simplified this data structure, but it is still
significantly more complicated than any of the amortized-efficient structures. For further discussion
of these and related results, see [11]. We focus here on the amortized efficiency of heaps.

In spite of its many competitors, Fibonacci heaps remain one of the simplest heap implementations
to describe and code, and are taught in numerous undergraduate and graduate data structures
courses. We present Hollow heaps, a data structure that we believe surpasses Fibonacci heaps in its
simplicity. Our data structure has two novelties: it uses lazy deletion to do decrease-key operations
in a simple and natural way, avoiding the cascading cut process used by Fibonacci heaps, and it
represents a heap by a dag (directed acyclic graph) instead of a tree or a set of trees. The amortized
analysis of hollow heaps is simple, yet non-trivial. We believe that simplifying fundamental data
structures, while retaining their performance, is an important endeavor.

In a Fibonacci heap, a decrease-key produces a heap-order violation if the new key is less than that
of the parent node. This causes a cut of the violating node and its subtree from its parent. Such
cuts can eventually destroy the “balance” of the data structure. To maintain balance, each such cut
may trigger a cascade of cuts at ancestors of the originally cut node. The cutting process results in
loss of information about the outcomes of previous comparisons. It also makes the worst-case time

1



of a decrease-key operation Θ(n) (although modifying the data structure reduces this to Θ(log n);
see e.g., [15]). In a hollow heap, the item whose key decreases is merely moved to a new node,
preserving the existing structure. Doing such lazy deletions carefully is what makes hollow heaps
simple but efficient.

The remainder of our paper consists of eight sections. Section 2 describes hollow heaps at a high
level. Section 3 analyzes them. Section 4 presents an alternative version of hollow heaps that
uses a tree representation instead of a dag representation. Section 5 describes a rebuilding process
that can be used to improve the time and space efficiency of hollow heaps. Sections 6 and 7 give
implementation details for the data structures in Sections 2 and 4, respectively. Section 8 explores
the design space of the data structures in Sections 2 and 4, identifying variants that are efficient
and variants that are not. Section 9 contains final remarks.

2 Hollow Heaps

Our data structure extends and refines a well-known generic representation of heaps. The structure
is exogenous rather than endogenous [20]: nodes hold items rather than being items. Moving items
among nodes precludes the possibility of making the data structure endogenous.

Many previous heap implementations, including Fibonacci heaps, represent a heap by a set of heap-
ordered trees: each node holds an item, with each child holding an item having key no less than
that of the item in its parent. We extend this idea from trees to dags, and to dags whose nodes
may or may not hold items. Since the data structure is an extension of a tree, we extend standard
tree terminology to describe it. If (u, v) is a dag arc, we say v is a parent of u and u is a child of v.
A node that is not a child of any other node is a root.

We represent a non-empty heap by a dag whose nodes hold the heap items, at most one per node.
If e is an item, e.node is the node holding e. We call a node full if it holds an item and hollow if
not. If u is a full node, u.item is the item u holds. Thus if e is an item, e.node.item = e. A node is
full when created but can later become hollow, by having its item moved to a newly created node
or deleted. A hollow node remains hollow until it is destroyed. Each node, full or hollow, has a
key. The key of a full node is the key of the item it holds. The key of a hollow node is the key of
the item it once held, just before that item was moved to another node or deleted. A full node is
a child of at most one other node; a hollow node is a child of at most two other nodes.

The dag is topologically ordered by key: if u is a child of v, then u.key ≥ v.key. Henceforth we
call this heap order. Except in the middle of a delete operation, the dag has one full root and no
hollow roots. Heap order guarantees that the root holds an item of minimum key. We access the
dag via its root. We call the item in the root the root item.

We do the heap operations with the help of the link primitive. Given two full roots v and w,
link(v, w) compares the keys of v and w and makes the root of larger key a child of the other; if
the keys are equal, it makes v a child of w. The new child is the loser of the link, its new parent
is the winner. Linking eliminates one full root, preserves heap order, and gives the loser a parent,
its first parent.

To make a heap, return an empty dag. To do find-min, return the item in the root. To meld two
heaps, if one is empty return the other; if both are non-empty, link the roots of their dags and
return the winner. To insert an item into a heap, create a new node, store the item in it (making
the node full), and meld the resulting one-node heap with the existing heap.

We do decrease-key and delete operations using lazy deletion. To decrease the key of item e in
heap h to k, let u = e.node. If u = h (u is the root of the dag), merely set u.key = k. Otherwise
(u is a child), proceed as follows. Create a new node v; move e from u to v, making u hollow; set

2



v.key = k; do link(h, v); and, if v is the loser of this link, make u a child of v. If u becomes a child
of v, then v is the second parent of u, in contrast to its first parent, previously acquired via a link
with a full node. A node only becomes hollow once, so it acquires a second parent at most once.

To do a delete-min, do a find-min followed by a deletion of the returned item. To delete an item e,
remove e from the node holding it, say u, making u hollow. A node u made hollow in this way
never acquires a second parent. If u is not the root of the dag, the deletion is complete. Otherwise,
repeatedly destroy hollow roots and link full roots until there are no hollow roots and at most one
full root.

Theorem 2.1 The hollow heap operations perform the heap operations correctly and maintain the
invariants that the graph representing a heap is a heap-ordered dag; each full node has at most one
parent; each hollow node has at most two parents; and, except in the middle of a delete operation,
the dag representing a heap has no hollow roots and at most one full root.

Proof: Immediate. 2

The only flexibility in this implementation is the choice of which links to do in deletions of root
items. To keep the number of links small, we give each node u a non-negative integer rank u.rank.
We use ranks in a special kind of link called a ranked link. A ranked link of two roots is allowed
only if they have the same rank; it links them and increases the rank of the winner (the remaining
root) by 1. In contrast to a ranked link, an unranked link links any two roots and changes no
ranks. We call a child ranked or unranked if it most recently acquired a first parent via a ranked
or unranked link, respectively.

When linking two roots of equal rank, we can do either a ranked or an unranked link. We do
ranked links only when needed to guarantee efficiency. Specifically, links in meld and decrease-key
are unranked. Each delete-min operation destroys hollow roots and does ranked links until none
are possible (there are no hollow roots and all full roots have different ranks); then it does unranked
links until there is at most one root.

The last design choice is the initial node ranks. We give a node created by an insert a rank
of 0. In a decrease-key that moves an item from a node u to a new node v, we give v a rank of
max{0, u.rank− 2}. The latter choice is what makes hollow heaps efficient.

Figure 1 shows a sequence of operations on a hollow heap.

We conclude this section by mentioning some benefits of using hollow nodes and a dag representa-
tion. Hollow nodes allow us to treat decrease-key as a special kind of insertion, allowing us to avoid
cutting subtrees as in Fibonacci heaps. As a consequence, decrease-key takes O(1) time worst case:
there are no cascading cuts as in [9], no cascading rank changes as in [11, 15], and no restructuring
steps to eliminate heap-order violations as in [2, 6, 14]. The dag representation explicitly maintains
all key comparisons between undeleted items, allowing us to avoid restructuring altogether: links
are cut only when hollow roots are destroyed.

3 Analysis

The most mysterious detail of hollow heaps is the way ranks are updated in decrease-key operations.
Our analysis reveals the reason for this choice. We need to show that the rank of a heap node is at
most logarithmic in the number of nodes in the dag representing the heap, and that the amortized
number of ranked children per node is also at most logarithmic.

3



0

4 13 12 6 3 10 8 5

9 11

14

33

4 5 102 1

6 13 8 9 111

12 14

1

33

4 5 102 1

6 13 8 9 111

12 14

(a) (b) (c)

1

7 21

33

4 5 102 1

6 13 8 9 111

12 14

7

21

33

4 5 102 1

6 13 8 9 111

12 14

43

7 6 132 1

9 10 8 121

11

14

(d) (e) (f)

Figure 1: Operations on a hollow heap. Numbers in nodes are keys; black nodes are hollow. Bold
gray, solid, and dashed lines denote ranked links, unranked links, and second parents, respectively.
Numbers next to nodes are non-zero ranks. (a) Successive insertions of items with keys 14, 11, 5,
9, 0, 8, 10, 3, 6, 12, 13, 4 into an initially empty heap. (b) After a delete-min operation. All links
during the delete-min are ranked. (c) After a decrease of key 5 to 1. (d) After a decrease of key 3
to 2 followed by a decrease of key 8 to 7. The two new hollow nodes both have two parents. (e)
After a second delete-min. The only hollow node that becomes a root is the original root. One
unranked link, between the nodes holding keys 2 and 7 occurs. (f) After a third delete-min. Two
hollow nodes become roots; the other loses one parent. All links are ranked.

To do both, we assign virtual parents to certain nodes. We use virtual parents in the analysis only;
they are not part of the data structure in Section 2. (Section 4 presents a version of hollow heaps
that does use them.)

A node has at most one virtual parent at a time. A node may acquire a virtual parent, have its
virtual parent changed, or lose its virtual parent. As we shall see, virtual parents define a virtual
forest. If v is a virtual parent of u, we say that u is a virtual child of v. A node u is a virtual
descendant of a node v if there is a path from u to v via virtual parents.

When a node is created, it has no virtual parent. When a root u loses a link to a node v, v becomes
the virtual parent of u (as well as its first parent). If u already has a virtual parent, v replaces it.
(By Lemma 3.1 below, a root cannot have a virtual parent, so such a replacement never happens.)
When a decrease-key moves an item from a node u to a new node v, if u has more than two ranked
virtual children, two of its ranked virtual children of highest ranks remain virtual children of u,
and the rest of its virtual children become virtual children of v. (By Lemma 3.3 below, the ranked
virtual children of a node have distinct ranks, so the two that remain virtual children of u are
uniquely defined.) If the virtual parent of a node u is destroyed, u loses its virtual parent. If u is
full it can subsequently acquire a new virtual parent by losing a link.

4



Lemma 3.1 If w is a virtual child of u, there is a path in the dag from w to u.

Proof: We prove the lemma for a given node w by induction on time. When w is created it has
no virtual parent. It may acquire a virtual parent only by losing a link to a node u, which then
becomes both its parent and its virtual parent, so the lemma holds after the link. Suppose that u
is currently the virtual parent of w. By the induction hypothesis, there is a path from w to u in
the dag, so w is not a root and cannot participate in link operations. The virtual parent of w
can change only as a result of a decrease-key operation on the item e = u.item. If u 6= h, such a
decrease-key operation creates a new node v, moves e to v, and then links v and h. The operation
may also make v the new virtual parent of w. If v wins the link, it becomes the unique root and
there is clearly a path from w to v in the dag. If v loses the link, the arc (u, v) is added to the dag,
making v the second parent of u. Since there was a path in the dag from w to u, there is now also a
path from w to v. Finally, note that dag arcs are only destroyed when hollow roots are destroyed.
Thus a path from w to its virtual parent u in the dag, present when u becomes the virtual parent
of w, cannot be destroyed unless u is destroyed, in which case w loses its virtual parent, so the
lemma holds vacuously. 2

The arc (u, v) added to the dag by decrease-key represents the inequality u.key > v.key. If this arc
is not redundant and decrease-key fails to add it, our analysis breaks down. Indeed, the resulting
algorithm does not have the desired efficiency, as we show in Section 8. Adding the arc only when
v loses the link to h is an optimization: if v wins the link, the dag has a path from u to v without
it.

Corollary 3.2 Virtual parents define a forest. If w is a root of the dag, it has no virtual parent.
If w is a virtual child of u, then w stops being a virtual child of u only when u is destroyed or when
a decrease-key operation is applied to the item residing in u.

Lemma 3.3 Let u be a node of rank r. If u is full, or u is a node made hollow by a delete, u has
exactly one ranked virtual child of each rank from 0 to r−1 inclusive, and none of rank r or greater.
If u was made hollow by a decrease-key and r > 1, u has exactly two ranked virtual children, of
ranks r− 1 and r− 2. If u was made hollow by a decrease-key and r = 1, u has exactly one ranked
virtual child, of rank 0. If u was made hollow by a decrease-key and r = 0, u has no ranked virtual
children.

Proof: The proof is by induction on the number of operations. The lemma is immediate for nodes
created by insertions. Both ranked and unranked links preserve the truth of the lemma, as does
the removal of an item from a node by a delete. By Corollary 3.2, a node loses virtual children
only as a result of a decrease-key operation. Suppose the lemma is true before a decrease-key on
the item in a node u of rank r. By the induction hypothesis, u has exactly one ranked virtual child
of rank i for 0 ≤ i < r, and none of rank r or greater. If the decrease-key makes u hollow, the
new node v created by the decrease-key has rank max{0, u.rank− 2}, and v acquires all the virtual
children of u except the two ranked virtual children of ranks r − 1 and r − 2 if r > 1, or the one
ranked virtual child of rank 0 if r = 1. Thus the lemma holds after the decrease-key. 2

Recall the definition of the Fibonacci numbers: F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2 for i ≥ 2. These
numbers satisfy Fi+2 ≥ φi, where φ = (1 +

√
5)/2 is the golden ratio [16].

Corollary 3.4 A node of rank r has at least Fr+3 − 1 virtual descendants.

5



Proof: The proof is by induction on r using Lemma 3.3. The corollary is immediate for r = 0
and r = 1. If r > 1, the virtual descendants of a node u of rank r include itself and all virtual
descendants of its virtual children v and w of ranks r − 1 and r − 2, which it has by Lemma 3.3.
By Corollary 3.2, virtual parents define a forest, so the sets of virtual descendants of v and w are
disjoint. By the induction hypothesis, u has at least 1 + Fr+2 − 1 + Fr+1 − 1 = Fr+3 − 1 virtual
descendants. 2

Theorem 3.5 The maximum rank of a node in a hollow heap of N nodes is at most logφN .

Proof: Immediate from Corollary 3.4 since Fr+3 − 1 ≥ Fr+2 ≥ φr for r ≥ 0. 2

To complete our analysis, we need to bound the time of an arbitrary sequence of heap operations
that starts with no heaps. It is straightforward to implement the operations so that the worst-case
time per operation other than delete-min and delete is O(1), and that of a delete on a heap of N
nodes is O(1) plus O(1) per hollow node that loses a parent plus O(1) per link plus O(logN). In
Section 6 we give an implementation that satisfies these bounds and is space-efficient. We shall
show that the amortized time for a delete on a heap of N nodes is O(logN) by charging the parent
losses of hollow nodes and some of the links to other operations, O(1) per operation.

Suppose a hollow node u loses a parent in a delete. This either makes u a root, in which case u is
destroyed by the same delete, or it reduces the number of parents of u from two to one. We charge
the former case to the insert or decrease-key that created u, and the latter case to the decrease-key
that gave u its second parent. Since an insert or decrease-key can create at most one node, and
a decrease-key can give at most one node a second parent, the total charge, and hence the total
number of parent losses of hollow nodes, is at most 1 per insert and 2 per decrease-key.

A delete does unranked links only once there is at most one root per rank. Thus the number
of unranked links is at most the maximum node rank, which is at most logφN by Theorem 3.5.
To bound the number of ranked links, we use a potential argument. We give each root and each
unranked child a potential of 1. We give a ranked child a potential of 0 if it has a full virtual
parent, 1 otherwise (its virtual parent is hollow or has been deleted). We define the potential of a
set of dags to be the sum of the potentials of their nodes. With this definition the initial potential
is 0 (there are no nodes), and the potential is always non-negative. Each ranked link reduces the
potential by 1: a root becomes a ranked child of a full node. It follows that the total number of
ranked links over a sequence of operations is at most the sum of the increases in potential produced
by the operations.

An unranked link does not change the potential: a root becomes an unranked child. An insert
increases the potential by 1: it creates a new root (+1) and does an unranked link (+0). A
decrease-key increases the potential by at most 3: it creates a new root (+1), it creates a hollow
node that has at most two ranked virtual children by Lemma 3.3 (+2), and it does an unranked
link (+0). Removing the item in a node u during a delete increases the potential by u.rank, also by
Lemma 3.3: each ranked virtual child of u gains 1 in potential. By Theorem 3.5, u.rank = O(logN).
We conclude that the total number of ranked links is at most 1 per insert plus 3 per decrease-key
plus O(logN) per delete on a heap with N nodes. Combining our bounds gives the following
theorem:

Theorem 3.6 The amortized time per hollow heap operation is O(1) for each operation other than
a delete, and O(logN) per delete on a heap of N nodes.

6



4 Eager Hollow Heaps

It is natural to ask whether there is a way to represent a hollow heap by a tree instead of a dag.
The answer is yes: we maintain the structure defined by the virtual parents instead of that defined
by the parents. We call this the eager version of hollow heaps: it moves children among nodes,
which the lazy version in Section 2 does not do. As a result it can do different links than the lazy
version, but it has the same amortized efficiency.

To obtain eager hollow heaps, we modify decrease-key as follows: When a new node v is created to
hold the item previously in a node u, if u.rank > 2, make v the parent of all but the two ranked
children of u of highest ranks; optionally, make v the parent of some or all of the unranked children
of u. Do not make u a child of v.

In an eager hollow heap, each node has at most one parent. Thus each heap is represented by a
tree, accessed via its root. The analysis of eager hollow heaps differs from that of lazy hollow heaps
only in using parents instead of virtual parents. Only the parents of ranked children matter in the
analysis.

The proofs of the following results are essentially identical to the proofs of the results in Section 2,
with the word “virtual” deleted.

Lemma 4.1 Let u be a node of rank r in an eager hollow heap. If u is full, or u is a node made
hollow by a delete, u has exactly one ranked child of each rank from 0 to r− 1 inclusive, and none
of rank r or greater. If u was made hollow by a decrease-key and r > 1, u has exactly two ranked
children, of ranks r− 1 and r− 2. If u was made hollow by a decrease-key and r = 1, u has exactly
one ranked child, of rank 0. If u was made hollow by a decrease-key and r = 0, u has no ranked
children.

Corollary 4.2 A node of rank r in an eager hollow heap has at least Fr+3 − 1 descendants.

Theorem 4.3 The maximum rank of a node in an eager hollow heap of N nodes is at most logφN .

Theorem 4.4 The amortized time per eager hollow heap operation is O(1) for each operation other
than a delete, and O(logN) per delete on a heap of N nodes.

An alternative way to think about eager hollow heaps is as a variant of Fibonacci heaps. In a
Fibonacci heap, the cascading cuts that occur during a decrease-key prune the tree in a way that
guarantees that ranks remain logarithmic in subtree sizes. Eager hollow heaps guarantee logarithmic
ranks by leaving (at least) two children and a hollow node behind at the site of the cut. This avoids
the need for cascading cuts or rank changes, and makes the decrease-key operation O(1) time in
the worst case.

5 Rebuilding

The number of nodes N in a heap is at most the number of items n plus the number of decrease-key
operations on items that were ever in the heap or in heaps melded into it. If the number of
decrease-key operations is polynomial in the number of insertions, logN = O(log n), so the amor-
tized time per delete is O(log n), the same as for Fibonacci heaps. In applications in which the
storage required for the problem input is at least linear in the number of heap operations, the extra
space needed for hollow nodes is linear in the problem size. Both of these conditions hold for the
heaps used in many graph algorithms, including Dijkstra’s shortest path algorithm [5, 9], various

7



minimum spanning tree algorithms [5, 9, 10, 18], and Edmonds’ optimum branching algorithm
[7, 10]. In these applications there is at most one insert per vertex and one or two decrease-key
operations per edge or arc, and the number of edges or arcs is at most quadratic in the number of
vertices. In such applications hollow heaps are asymptotically as efficient as Fibonacci heaps.

For applications in which the number of decrease-key operations is huge compared to the heap sizes,
we can use periodic rebuilding to guarantee that N = O(n) for every heap. To do this, keep track
of N and n for every heap. When N > cn for a suitable constant c > 1, rebuild. We offer two
ways to do the rebuilding. The first is to completely disassemble the dag and build a new one
containing only the full nodes, as follows: Destroy every hollow node. Make each full node into a
root of rank 0. Repeatedly link roots until only one is left. When linking, one can either do ranked
links when possible or just do unranked links. A second method that does no key comparisons is
to convert the dag into a tree containing only full nodes, as follows: For each node that has two
parents, eliminate the second parent, making the dag a tree. Give each full child a rank of 0 and a
parent equal to its nearest full proper ancestor. Delete all the hollow nodes. To extend the analysis
in Sections 3 and 4 to cover the second rebuilding method, we define every child to be unranked
after rebuilding. Either way of rebuilding can be done in a single traversal of the dag, taking O(N)
time. Since N > cn and c > 1, O(N) = O(N − n). That is, the rebuilding time is O(1) per hollow
node. By charging the rebuilding time to the decrease-key and delete operations that created the
hollow nodes, O(1) per operation, we obtain the following theorem:

Theorem 5.1 With rebuilding, the amortized time per hollow heap operation is O(1) for each
operation other than a delete-min or delete, and O(log n) per delete-min or delete on a heap of n
items. These bounds hold for both lazy and eager hollow heaps.

By making c sufficiently large, we can arbitrarily reduce the rebuilding overhead, at a constant factor
cost in space and an additive constant cost in the amortized time of delete. Whether rebuilding is
actually a good idea in any particular application is a question to be answered by experiments.

6 Implementation of Hollow Heaps

In this section we develop an implementation of the data structure in Section 2 that satisfies the
time bounds in Section 3 and that is tuned to reduce space. We store each set of children in a list.
Each new child of a node v is added to the front of the list of children of v. Since hollow nodes can
be in two lists of children, it might seem that we need to make the lists of children exogenous. But
we can make them endogenous by observing that only hollow nodes can have two parents, and a
hollow node with two parents is last on the list of children of its second parent. This allows us to
use two pointers per node u to represent lists of children: u.child is the first child of u, null if u has
no children; u.next is the next sibling of u on the list of children of its first parent.

With this representation, given a child u of a node v, we need ways to answer three questions: (i)
Is u last on the list of children of v? (ii) Does u have two parents? (iii) Is v the first or the second
parent of u? If u has only one parent, the first question is easy to answer: u is the last child of v
if and only if u.next = null. There are several ways to answer the second two questions in O(1)
time. We develop a detailed implementation using one method and discuss alternatives below.

Each node u stores a pointer u.item to the item it holds if it is full; if u is hollow, u.item = null.
Each hollow node u stores a pointer to its second parent u.sp; if u is hollow but has at most one
parent, u.sp = null. A decrease-key operation makes a newly hollow node u a child of a new node
v by setting v.child = u but not changing u.next: u.next is the next sibling of u on the list of
children of the first parent of u. We answer the three questions as follows: (i) A child u of v is last

8



on the list of children of v if and only if u.next = null (u is last on any list of children containing
it) or u.sp = v (u is hollow with two parents and v is its second parent); (ii) u has two parents if
and only if u.sp 6= null; (iii) v is the second parent of u if and only if u.sp = v.

Each node u also stores its key and rank, and each item e stores the node e.node holding it. The
total space needed is four pointers, a key, and a rank per node, and one pointer per item. Ranks
are small integers, each requiring lg lgN +O(1) bits of space.

Implementation of all the heap operations except delete is straightforward. Figure 2 gives such
implementations in pseudocode; Figure 3 gives implementations of auxiliary methods used in Figure
2.

make-heap():
return null

insert(e, k, h):
return meld(make-node(e, k), h)

meld(g, h):
{ if g = null: return h

if h = null: return g
return link(g, h) }

find-min(h):
if h = null: return null
else: return h.item

decrease-key(e, k, h) :
{ u = e.node

if u = h:
{ u.key = k

return h }
v = make-node(e, k)
u.item = null
if u.rank > 2: v.rank = u.rank− 2
if k > h.key:
{ v.child = u

u.sp = v }
else: u.sp = null
return link(v, h) }

delete-min(h):
return delete(h.item, h)

Figure 2: Implementations of all lazy hollow heap operations except delete.

make-node(e, k):
{ u = new-node()

u.item = e
e.node = u
u.child = null
u.key = k
u.rank = 0
return u }

link(v, w):
if v.key ≥ w.key:
{ add-child(v, w)

return w }
else:
{ add-child(w, v)

return v }

add-child(v, w):
{ v.next = w.child

w.child = v }

Figure 3: Implementations of auxiliary methods used in Figure 2. Rank updates during ranked
links are done in delete. See Figure 4.

Implementation of delete requires keeping track of roots as they are deleted and linked. To do this,
we maintain a list L of hollow roots, singly linked by next pointers. We also maintain an array A
of full roots, indexed by rank, at most one per rank.

9



delete(e, h):
{ e.node.item = null

e.node.sp = null
e.node = null
if h.item 6= null: return h /* Non-minimum deletion */
max -rank = 0
h.next = null
while h 6= null: /* While L not empty */
{ w = h.child

x = h
h = h.next
while w 6= null:
{ u = w

w = w.next
if u.item = null:
{ if u.sp = null:
{ u.next = h

h = u } }
else:
{ if u.sp = x: w = null

else: u.next = null
u.sp = null }

else:
{ while A[u.rank] 6= null:
{ u = link(u,A[u.rank])

A[u.rank] = null
u.rank = u.rank + 1 }

A[u.rank] = u
if u.rank > max -rank: max -rank = u.rank } }

destroy x }
for i = 0 to max -rank:
{ if A[i] 6= null:
{ if h = null: h = A[i]

else: h = link(h,A[i])
A[i] = null } }

return h }

Figure 4: Implementation of delete in lazy hollow heaps.

10



When a delete makes a root hollow, do the following. First, initialize L to contain the hollow root
and A to be empty. Second, repeat the following until L is empty: Delete a node x from L, apply
the appropriate one of the following cases to each child u of x, and then destroy x:

(i) u is hollow and v is its only parent: Add u to L: deletion of x makes u a root.

(ii) u has two parents and v is the second: Set u.sp = null and stop processing children of x: u
is the last child of x.

(iii) u has two parents and v is the first: Set u.sp = null and u.next = null.

(iv) u is full: Add u to A unless A contains a root of the same rank. If it does, link u with this
root via a ranked link and repeat this with the winner until A does not contain a root of the
same rank; then add the final winner to A.

Third and finally (once L is empty), empty A and link full roots via unranked links until there is
at most one.

Figure 4 gives pseudocode that implements delete. Since cases (ii) and (iii) both set u.sp = null,
this assignment is factored out of these cases.

With this implementation, the worst-case time per operation is O(1) except for delete operations
that remove root items. A delete that removes a root item takes O(1) time plus O(1) time per
hollow node that loses a parent plus O(1) time per link plus O(logφN) time, where N is the number
of nodes in the tree just before the delete, since max -rank = O(logφN) by Theorem 3.5. These are
the bounds claimed in Section 3.

We conclude this section by mentioning some possible optimizations that may save space and/or
time. We can reduce the number of pointers per node from four to three by using the same field to
hold u.item and u.sp, since only a full node needs an item pointer and only a hollow node needs
a second parent pointer. This requires adding a bit per node to indicate whether the node is full,
trading a bit per node for a pointer per node. We can avoid the extra bit per node by using the rank
field to indicate hollow nodes, for example by setting the rank of a hollow node equal to −1. This
method has the disadvantage that the shared field for item and sp must be able to store pointers
to two different types of objects.

An alternative that achieves the same space efficiency but has a different drawback is to drop the sp
pointer but store a bit u.two with each node u that is true if u has two parents and false otherwise,
and to modify the item field for a hollow node u to store the item that u once held. This alternative
requires that each deleted item e has e.node = null; otherwise, hollow nodes can have dangling
item pointers. With this method, a node u is full if and only if u.item.node = u, a child u of v is
last on the list of children of v if and only if u.next = null or u.item = v.item, u has two parents
if and only if u.two = true, and v is the second parent of u if and only if u.item = v.item. Since
item pointers replace sp pointers, an item should not be destroyed until all its hollow nodes have
been deleted. When there is no automatic garbage collection, manual garbage collection can be
performed before rebuilding the heap as described in Section 5.

One can save additional space and possibly time by storing keys and ranks with items instead of
nodes. Combining this choice with the removal of sp pointers also makes it possible to implement
decrease-key without accessing the node u holding the item e whose key is decreased. Indeed, creat-
ing a new node v and making e.item = v automatically makes u hollow since then u.item.node = v.

Finally we note that the performance is significantly affected by the way nodes are allocated in
memory. Since new nodes are likely to be linked with each other, it works better to allocate nodes
sequentially than to reuse freed space, thereby spreading the nodes more. Freed space can be reused
after rebuilding the heap.

11



7 Implementation of Eager Hollow Heaps

Now we turn to the implementation of eager hollow heaps (the data structure of Section 4). To
support the movement of children, we need to maintain the set of children of a vertex in an
appropriate order. We store each set of children in a singly linked circular list, with the ranked
children first, in decreasing order by rank, followed by the unranked children, in any order. This
takes two pointers per node: u.child is the last child of u, null if u has no children; u.next is the
next sibling of u, null if u has no siblings. This representation allows us to add a child to the front
or back of a list of children, and to catenate a list of children to another list. Each node u also has
a pointer u.item to the item it holds, null if u is hollow, and each item e has a pointer e.node to
the node holding it. The total space needed is three pointers, a key, and a rank per node, and one
pointer per item.

Except for delete, all the heap operations have straightforward implementations. Only that of
decrease-key differs significantly from its implementation in lazy hollow heaps. We implement both
ranked and unranked links by one method, link(ranked, x, y), where ranked is a bit that is true
if the link is a ranked link and false otherwise. As in the implementation of hollow heaps, rank
updates are done in delete. The implementations of make-heap, find-min, insert, and delete-min are
identical to those in lazy hollow heaps; that of meld differs only in using link(false, v, w) in place of
link(v, w). Figure 5 gives an implementation of decrease-key in eager hollow heaps; Figure 6 gives
implementations of the auxiliary methods make-node, link, and add-child.

The implementation of delete uses only a single list of roots, instead of a list of hollow roots and a
list of the children of a hollow root, since circular linking of lists of children allows their catenation
in O(1) time. Whereas decrease-key is more complicated in eager hollow heaps than in lazy ones,
delete is simpler, since each node has only one parent at a time. Figure 7 gives an implementation
of delete.

As in lazy hollow heaps, we can store keys with items instead of nodes. Two alternatives to making
lists of children circular that simplify linking are to make each list of children singly linked, with
pointers to the first and last child, or to maintain separate singly linked lists of ranked and unranked
children for each node. The latter requires implementing delete as in Section 6, keeping track of
two lists of nodes. These alternatives use an extra pointer per node. An alternative that does not
take extra pointers is to avoid unranked links altogether and use a multi-tree representation, as
in the original version of Fibonacci heaps. We represent a heap by a singly linked circular list of
full roots of its trees, with a pointer to a root of minimum key. Details are analogous to those of
Fibonacci heaps.

A final alternative that does not need extra pointers is to use the flexibility of hollow nodes to
maintain the invariant that every root has rank 0, except in the middle of a delete. Once a node
wins a ranked link, it participates only in ranked links, not unranked ones. This guarantees that all
its ranked children are at the front of its list of children, in decreasing order by rank. To maintain
the invariant during decrease-key(e, k, h), if k < h.key, move the item in h into a new node v of
rank 0, make v a child of h, and move e into h. To maintain the invariant during delete, once all
roots are full and have different ranks, if there is more than one, create a new node v of rank 0,
make all the old roots children of v, and move the item in a child of v of smallest key into v. This
takes one extra node per delete.

8 Good and Bad Variants

In this section we explore the design space of hollow heaps. We show that lazy and eager hollow
heaps occupy “sweet spots” in the design space: although small changes to these data structures

12



decrease-key(e, k, h):
{ u = e.node

if u = h:
{ u.key = k

return h }
u.item = null
v = new-node(e, k)
if u.rank > 2:
{ v.rank = u.rank− 2

v.child = u.child
x = u.child.next
v.child.next = x.next.next
x.next.next = x
u.child = x }

return link(false, v, h) }

Figure 5: Implementation of decrease-key in eager hollow heaps.

make-node(e, k):
{ u = new-node()

u.item = e
e.node = u
u.child = null
u.rank = 0
u.key = k
return u }

link(ranked, v, w):
if v.key > w.key:
{ add-child(ranked, v, w)

return w }
else:
{ add-child(ranked, w, v)

return v }

add-child(ranked, v, w):
if w.child = null:
{ w.child = v

v.next = v }
else:
{ v.next = w.child.next

w.child.next = v
if not ranked: w.child = v }

Figure 6: Implementations of auxiliary methods in eager hollow heaps.

13



delete(e, h):
{ e.node.item = null

e.node = null
if h.item 6= null: return h
max -rank = 0
h.next = null
while h 6= null:
{ u = h

h = h.next
if u.item = null:
{ if u.child 6= null:
{ x = u.child.next

u.child.next = h
h = x }

destroy u }
else:
{ while A[u.rank] 6= null:
{ u = link(true, u, A[u.rank])

A[u.rank] = null
u.rank = u.rank + 1 }

A[u.rank] = u
if u.rank > max -rank: max -rank = u.rank } }

for i = 0 to max -rank:
{ if A[i] 6= null:
{ if h = null: h = A[i]

else: h = link(false, h, A[i])
A[i] = null } }

return h }

Figure 7: Implementation of delete in eager hollow heaps.

14



preserve their efficiency, larger changes destroy it. We consider three classes of data structures:
lazy-k, eager -k, and näıve-k. Here k is an integer parameter specifying the rank of the new node v
in a decrease-key operation. In specifying k we use r to denote the rank of the node u made hollow
by the decrease-key operation. Data structure lazy-k is the data structure of Section 2, except that
it sets the rank of v in decrease-key to be max{k, 0}. Thus lazy-(r−2) is exactly the data structure
of Section 2. Data structure eager -k is the data structure of Section 4, except that it sets the rank
of v in decrease-key to be max{k, 0}, and, if r > k, it moves to v all but the r − k highest-ranked
ranked children of u, as well as the unranked children of u. Thus eager -(r − 2) is exactly the data
structure of Section 4. Finally, näıve-k is the data structure of Section 2, except that it sets the
rank of v in decrease-key to be max{k, 0} and it never assigns second parents: when a hollow node u
becomes a root, u is deleted and all its children become roots. We consider two regimes for k: large,
in which k = r − j for some fixed non-negative integer j; and small, in which k = r − f(r), where
f(r) is a positive non-decreasing integer function that tends to infinity as r tends to infinity.

We begin with a positive result: for any fixed integer j ≥ 2, both lazy-(r − j) and eager -(r − j)
have the efficiency of Fibonacci heaps. It is straightforward to prove this by adapting the analysis
in Sections 3 and 4. As j increases, the rank bound (Theorems 3.5 and 4.3) decreases by a constant
factor, approaching lgN or lg n, respectively, as j grows, where lg is the base-2 logarithm. The
trade-off is that the amortized time bound for decrease-key is O(j + 1), increasing linearly with j.

All other variants are inefficient. Specifically, if the amortized time per delete-min is O(logm),
where m is the total number of operations, and the amortized time per make-heap and insert is
O(1), then the amortized time per decrease-key is ω(1). We demonstrate this by constructing
costly sequences of operations for each variant. We content ourselves merely with showing that
the amortized time per decrease-key is ω(1); for at least some variants, there are asymptotically
worse sequences than ours. Our results are summarized in the following theorem. The individual
constructions appear in Sections 8.1, 8.2, and 8.3.

Theorem 8.1 Variants lazy-(r − j) and eager-(r − j) are efficient for any choice of j > 1 fixed
independent of r. All other variants, namely näıve-k for all k, eager-r, lazy-r, eager-(r − 1),
lazy-(r − 1), and eager-k and lazy-k for k in the small regime are inefficient.

8.1 Eager-k for k in the small regime and näıve-k for all k

We first consider eager -k for k in the small regime, i.e., k = r − f(r) where f is a positive non-
decreasing function that tends to infinity. We obtain an expensive sequence of operations as follows.
We define the binomial tree Bn [3, 21] inductively: B0 is a one-node tree; Bn+1 is formed by linking
the roots of two copies of Bn. Tree Bn consists of a root whose children are the roots of copies of
B0, B1, . . . , Bn−1 [3, 21]. For any n, build a Bn by beginning with an empty tree and doing 2n + 1
insertions of items in increasing order by key followed by one delete-min. After the insertions, the
tree will consist of a root with 2n children of rank 0. In the delete-min, all the links will be ranked,
and they will produce a copy of Bn in which each node that is the root of a copy of Bj has rank j.
The tree Bn is shown at the top of Figure 8.

Now repeat the following n+ 2 operations 2n times: do n decrease-key operations on the items in
the children of the root of Bn, making the new keys greater than that of the key of the item in the
root. This makes the n previous children of the root hollow, and gives the root n new children.
Insert a new item whose key is greater than that of the item in the root. Finally, do a delete-min.
The delete-min deletes the root and its n hollow children, leaving the children of the hollow nodes
to be linked. Since a hollow node of rank r has f(r) children, the total number of nodes linked

15



new child

︸ ︷︷ ︸︸ ︷︷ ︸
n− 1

︸ ︷︷ ︸
n− 2

︸ ︷︷ ︸
n− 3

decrease-key

Bn

Bn−1 Bn−2 Bn−3 · · · B0

new child

︸ ︷︷ ︸ ︸ ︷︷ ︸
f(n− 1)

︸ ︷︷ ︸
f(n− 2) · · ·︸ ︷︷ ︸∑n−1
j=0 f(j)

︸ ︷︷ ︸
` = n− 1− f(n− 1)

︸ ︷︷ ︸
n

hollowcreated by decrease-keynew child

· · ·B` · · · B0B0

Figure 8: The construction for eager -k. Roots of binomial trees are labeled, and black nodes are
hollow. Solid and squiggly lines denote edges formed by ranked and unranked links, respectively.
(Top) The initial configuration - a binomial tree Bn. The shaded region shows nodes on whose
items decrease-key operations are performed. (Bottom) The heap after performing decrease-key
operations and inserting a new child. The keys of the items in the newly hollow nodes were
decreased, resulting in the middle nodes being linked with the root. The number of children of
each node is shown at the bottom.

after the delete-min is 1+n+
∑n−1

j=0 f(j) > (n/2)f(n/2).1 Each node involved in linking is the root
of a binomial tree. Since the total number of nodes remains 2n, the binomial trees are linked using
only ranked links to form a new copy of Bn, and the process is then repeated.

After Bn is formed, each round of n + 2 consecutive subsequent operations contains only one
delete-min but takes Θ(nf(n/2)) time. The total number of operations is m = O(n2n), of which
2n+1 are delete-min operations. The total time for the operations is Θ(n2nf(n/2)) = Θ(mf(n/2)),
but the desired time is O(n2n) = O(m). In particular, if the amortized time per delete-min is O(n)
and the amortized time per make-heap and insert is O(1), then the amortized time per decrease-key
is Ω(f(n/2)), which tends to infinity with n.

We next consider näıve-k. Note that näıve-0 is identical to eager -0, so the two methods do exactly
the same thing for the example described above. An extension of the construction shows that
näıve-k is inefficient for every value of k, provided that we let the adversary choose which ranked

1Assume for simplicity that n is even.

16



link to do when more than one is possible. Method näıve-k is identical to näıve-0 except that
nodes created by decrease-key may not have rank 0. The construction for näıve-k deals with this
issue by inserting new nodes with rank 0 that serve the function of nodes created by decrease-key
for näıve-0. The additional nodes with non-zero rank are linked so that they do not affect the
construction.

We build an initial Bn as before. Then we do n decrease-key operations on the items in the children
of the root, followed by n + 1 insert operations of items with keys greater than that of the root,
followed by one delete-min operation, and repeat these operations 2n times. When doing the linking
during the delete-min, the adversary preferentially links newly inserted nodes and grandchildren
of the deleted root, avoiding links involving the new nodes created by the decrease-key operations
until these are the only choices. Furthermore, it chooses keys for the newly inserted items so that
one of them is the new minimum. Then the tree resulting from all the links will be a copy of Bn
with one or more additional children of the root, whose descendants are the nodes created by the
decrease-key operations. After the construction of the initial Bn, each round of 2n+ 2 subsequent
operations maintains the invariant that the tree consists of a copy of Bn with additional children
of its root, whose descendants are all the nodes added by decrease-key operations.

The analysis is the same as for eager -0, i.e. for the case f(r) = r. The total number of operations is
m = O(n2n), and the desired time is O(n2n) = O(m). The total time for the operations is however
Θ(n22n) = Θ(mn). Thus, the construction shows that näıve-k for any value of k takes at least
logarithmic amortized time per decrease-key.

8.2 Lazy-r, eager-r, lazy-(r − 1), and eager-(r − 1)

Next we consider lazy-r, eager -r, lazy-(r− 1), and eager -(r− 1). To get a bad example for each of
these methods, we construct a tree Tn with a full root, having full children of ranks 0, 1, . . . , n− 1,
and in which all other nodes, if any, are hollow. Then we repeatedly do an insert followed by a
delete-min, each repetition taking Ω(n) time.

In these constructions, all the decrease-key operations are on nodes having only hollow descendants,
so the operations maintain the invariant that every hollow node has only hollow descendants. If
this is true, the only effect of manipulating hollow nodes is to increase the cost of the operations,
so we can ignore hollow nodes; or, equivalently, regard them as being deleted as soon as they are
created. Furthermore, with this restriction lazy-k and eager -k have the same behavior, so one bad
example suffices for both lazy-r and eager -r, and one for lazy-(r − 1) and eager -(r − 1).

Consider lazy-r and eager -r. Given a copy of Tn in which the root has rank n, we can build a copy
of Tn+1 in which the root has rank n + 1 as follows: First, insert an item whose key is less than
that of the root, such that the new node becomes the root. Second, do a decrease-key on each item
in a full child of the old root (a full grandchild of the new root), making each new key greater than
that of the new root. Third, insert an item whose key is greater than that of the new root. Finally,
do a delete-min. Just before the delete-min, the new root has one full child of each rank from 1
to n, inclusive, and two full children of rank 0. In particular one of these children is the old root,
which has rank n. The delete-min produces a copy of Tn+1. (The decrease-key operations produce
hollow nodes, but no full node is a descendant of a hollow node.) It follows by induction that one
can build a copy of Tn for an arbitrary value of n in O(n2) operations. These operations followed
by n2 repetitions of an insert followed by a delete-min form a sequence of m = O(n2) operations
that take Ω(n3) = Ω(m3/2) time.

A similar but more elaborate example is bad for lazy-(r − 1) and eager -(r − 1). Let Tn(i) be Tn
with the child of rank i replaced by a child of rank 0. In particular, Tn(0) is Tn, and Tn+1(n + 1)
is Tn with the root having a second child of rank 0. Tn(i) is shown at the top of Figure 9.

17



Tn(i)

· · · · · ·

n− 1 n− 2 i+ 1 0 i− 1 0

· · · x

n− 1 n− 2 i+ 1 i

· · ·

i− 1 i− 2 0

Figure 9: The construction for lazy-(r−1) and eager -(r−1). Only full nodes are shown. Solid and
squiggly lines denote edges formed by ranked and unranked links, respectively. Ranks are shown
beneath nodes. (Top) The tree Tn(i). (Bottom) The tree obtained from Tn(i) by inserting an item
and performing a delete-min operation.

Given a copy of Tn(i) with i > 0, we can build a copy of Tn(i− 1) as follows: First, insert an item
whose key is greater than that of the root but less than that of all other items. Now the root has
three children of rank 0. Second, do a delete-min. The just-inserted node will become the root, the
other children of the old root having rank less than i will be linked by ranked links to form a tree
whose root x has rank i and is a child of the new root, and the remaining children of the old root
will become children of the new root. Node x has exactly one full proper descendant of each rank
from 0 to i− 1, inclusive. The tree obtained after performing the delete-min operation is shown at
the bottom of Figure 9. (In the figure we assume that the key of the child of the old root of rank
j < i is smaller than the key of the child of the old root of rank j − 1 for every 1 ≤ j < i. In this
case x is the child of rank i− 1 of the old root and its children after the delete-min are the children
of the old root of rank ≤ i − 2. But unlike the situation shown in the figure, the descendants of
x can in general be linked arbitrarily.) Finally, do a decrease-key on each of the items in the full
proper descendants of x in a bottom-up order (so that each decrease-key is on an item in a node
with only hollow descendants), making each new key greater than that of the root. The rank of
each new node created this way is 1 smaller than the rank of the node it came from, except for the
node that already has rank 0. The root thus gets two new children of rank 0 and one new child of
each rank from 1 to i− 2. The result is a copy of Tn(i− 1), with some extra hollow nodes, which
we ignore. We can convert a copy of Tn(0) = Tn into a copy of Tn+1(n + 1) by inserting a new
item with key greater than that of the root. It follows by induction that one can build a copy of Tn
in m = O(n3) operations. These operations followed by n3 repetitions of an insert followed by a
delete-min take a total of Ω(n4) = Ω(m4/3) time but the desired time is O(n3 log n) = O(m logm).

18



8.3 Lazy-k

Finally, we consider lazy-k for any k in the small regime. We again construct a tree for which we
can repeat an expensive sequence of operations. We first give a construction for lazy-0 and then
show how to generalize the construction to all choices of k in the small regime.

Define the tree Sn inductively as follows. Tree S0 is a single node. For n > 0, Sn is a tree with
a full root of rank n, having one hollow child that is the root of Sn−1 and having full children of
ranks 0, 1, . . . , n − 1, with the i-th full child being the root of a copy of Bi. The tree Sn is shown
at the top of Figure 10. Let Rn be a tree obtained by linking copies of S0, S1, . . . , Sn−1 to Sn, with
the root of Sn winning every link. The tree Rn is shown at the bottom of Figure 10. We show
how to build a copy of Rn for any n. Then we show how to do an expensive sequence of operations
that starts with a copy of Rn and produces a new one. By building one Rn and then doing enough
repetitions of the expensive sequence of operations, we get a bad example.

To build a copy of Rn for arbitrary n, we build a related tree Qn that consists of a root whose
children are the roots of copies of S0, S1, . . . , Sn, with the root of Sn having the smallest key among
the children of the root of Qn. We obtain Rn from Qn by doing a delete-min.

We build Q0, Q1, . . . , Qn in succession. Tree Q0 is just a node with one full child of rank 0,
obtainable by a make-heap and two insert operations. Given Qj , we obtain Qj+1 by a variant
of the construction for eager -0. Let xi be the root of the existing copy of Si for i = 0, . . . , j.
In the following, all new keys are greater than the key of the root, so that the root remains the
same throughout the sequence of operations. First we do decrease-key operations on the roots
x0, x1, . . . , xj of the existing copies of S0, S1, . . . , Sj . For i = 0, . . . , j, the node xi is thus made
hollow and becomes a child of a new node yi of rank 0. Note that a copy of Si+1 can be obtained
from repeated, ranked linking of yi and 2i+1 − 1 nodes of rank 0 where yi wins every link in which
it participate. We next do enough insert operations to provide the nodes to build S1, S2, . . . , Sj+1

in this way. The total number of nodes needed is
∑j

i=0(2
i+1 − 1). Finally, we do two additional

insert operations, followed by a delete-min. The two extra nodes are for a copy of S0 and for a new
root when the old root is deleted.

Deletion of hollow roots by delete-min makes yi the only parent of xi for all i = 0, . . . , j. We are
left with a collection of 1 +

∑j+1
i=0 2i roots of rank 0. We do ranked links to build the needed copies

of S0, S1, . . . , Sj+1 in decreasing order. Finally, we link the new root with each of the roots of the
new copies of Si.

Suppose we are given a copy of Rn. Let xj , for j = 0, 1, . . . , n, be the root of the copy of Sn. In
particular, xn is the root of Rn. We can do an expensive sequence of operations that produces a
new copy of Rn as follows: Do decrease-key operations on xj for j = 0, 1, . . . , n− 1, giving each xj
a second parent yj . Make all the new keys larger than that of xn and smaller than those of all
children of xn; among them, make the key of yn−1 the smallest. Next, insert a new item with
key greater than that of yn−1; let z be the new node holding the new item. Figure 11 shows the
resulting situation. Next, do a delete-min. This makes yj the only parent of xj for j = 0, . . . , n− 1.
Once the hollow roots are deleted, the remaining roots are z, the yj , and the roots of n− i copies
of Bi for i = 0, 1, . . . , n− 1. Finish the delete-min by doing ranked links of each yj with the roots
of copies of Bi for i = 0, 1, . . . , j, forming new copies of S0, S1, . . . , Sn (z is the root of a copy of S0;
yj is the root of a copy of Sj+1), and link the roots of these copies by unranked links. The result
is a new copy of Rn. The sequence of operations consists of one insert, n decrease-key operations,
and one delete-min and takes O(n2) time.

The number of nodes in Rn is O(2n), as is the number of operations needed to build it and the
time these operations take. Having built Rn, if we then do 2n repetitions of the expensive sequence
of operations described above, the total number of operations is m = O(n2n). The operations take

19



Sn

Bn−1 Bn−2 · · · B0 Sn−1

Bn−2 · · · B0 Sn−2

· · · · · ·B0

S0

Rn

Bn−1 Bn−2 · · · B0 Sn−1 Sn−1 Sn−2 · · · S0

Bn−2 · · · B0 Sn−2

· · · · · ·B0

S0

Figure 10: The trees Sn (top) and Rn (bottom). Every node is labeled by the type of its subtree.
The triangles denote such subtrees. Black nodes are hollow. Solid and squiggly lines denote edges
formed by ranked and unranked links, respectively. Dashed lines denote second parents.

Θ(n22n) = Θ(mn) time, whereas the desired time is O(m).

20



link

delete

xn

Bn−1 Bn−2 · · · B0 Sn−1 yn−1 yn−2 · · · y0 z

Sn−1 Sn−2 S0Bn−2 · · · B0 Sn−2

· · · · · ·B0

S0

Figure 11: The tree obtained from Rn by performing n decrease-key operations and one insert.
Every node is labeled by its name or the type of its subtree. The triangles denote such subtrees.
Black nodes are hollow. Solid and squiggly lines denote edges formed by ranked and unranked
links, respectively. Dashed lines denote second parents. Edges connecting xn to the children of yi
for i = 0, . . . , n− 1 have been omitted.

An extension of the same construction shows the inefficiency of lazy-k for k in the small regime:
instead of doing one decrease-key on each appropriate item, we do enough to reduce to 0 the rank
of the full node holding the item. Suppose k = r − f(r), where f(r) is a positive non-decreasing
function tending to infinity. Then the number of decrease-key operations needed to reduce the rank
of the node holding an item to 0, given that the rank of the initial node holding the item is k, is
at most k/f(

√
k) +

√
k. It follows that the extended construction does at most n2/f(

√
n) + n3/2

decrease-key operations per round, and the amortized time per decrease-key is Ω(f(
√
n)) = ω(1),

assuming that the amortized time per delete is O(n) and that of make-heap and insert is O(1).

9 Remarks

We have presented the hollow heap, a new data structure with the same amortized efficiency as
Fibonacci heaps but with several advantages, including fewer pointers per node and O(1)-time
decrease-key operations in the worst case. Hollow heaps obtain their efficiency by careful use of
lazy deletion.

There are several ways to change the implementation of hollow heaps, as we outlined in Sections 6
and 7. We mention below a few additional possible changes. Whether any of these changes are
useful is a question for experiments.

In the implementation of delete-min it is not necessary to do as many ranked links as possible. It

21



suffices to find a maximum matching of roots of the same rank, link the matched roots by ranked
links, and link the remaining roots by unranked links. See [11].

As in Fibonacci heaps, it suffices to do ranked links only. A heap is represented by a set of trees
instead of a single tree, with a pointer to a root of minimum key. When deleting the item in a root,
ranked links are done until no more are possible; then the remaining roots are scanned to find one
of minimum key. As mentioned in Section 7, using this idea in eager hollow heaps allows one to
represent each set of children by a non-circular singly linked list, which simplifies linking.

An extension of this idea is to do all the links in find-min instead of in delete. Again a heap is
represented by a set of trees rather than a single tree, but with no pointer to a root of minimum
key. A delete operation merely deletes the appropriate item, making the node holding it hollow. A
find-min deletes hollow roots and does links until there is only one root, a full one, or does ranked
links until none is possible.

References

[1] G.S. Brodal. Worst-case efficient priority queues. In Proceedings of the 7th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 52–58, 1996.

[2] G.S. Brodal, G. Lagogiannis, and R.E. Tarjan. Strict Fibonacci heaps. In Proceedings of the
44th ACM Symposium on Theory of Computing (STOC), pages 1177–1184, 2012.

[3] M.R. Brown. Implementation and analysis of binomial queue algorithms. SIAM Journal on
Computing, 7(3):298–319, 1978.

[4] T.M. Chan. Quake heaps: A simple alternative to Fibonacci heaps. In Space-Efficient Data
Structures, Streams, and Algorithms, pages 27–32, 2013.

[5] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[6] J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan. Relaxed heaps: an alternative
to Fibonacci heaps with applications to parallel computation. Communications of the ACM,
31(11):1343–1354, 1988.

[7] J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards, 71B:233–240, 1967.

[8] A. Elmasry. The violation heap: a relaxed Fibonacci-like heap. Discrete Math., Alg. and Appl.,
2(4):493–504, 2010.

[9] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[10] H.N. Gabow, Z. Galil, T.H. Spencer, and R.E. Tarjan. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica, 6:109–122, 1986.

[11] B. Haeupler, S. Sen, and R.E. Tarjan. Rank-pairing heaps. SIAM Journal on Computing,
40(6):1463–1485, 2011.

[12] P. Høyer. A general technique for implementation of efficient priority queues. In Proceedings
of the 3rd Israeli Symposium on the Theory of Computing and Systems (ISTCS), pages 57–66,
1995.

22



[13] H. Kaplan, N. Shafrir, and R.E. Tarjan. Meldable heaps and boolean union-find. In Proceedings
of the 34th ACM Symposium on Theory of Computing (STOC), pages 573–582, 2002.

[14] H. Kaplan and R.E. Tarjan. Thin heaps, thick heaps. ACM Transactions on Algorithms,
4(1):1–14, 2008.

[15] H. Kaplan, R.E. Tarjan, and U. Zwick. Fibonacci heaps revisited. CoRR, abs/1407.5750, 2014.

[16] D.E. Knuth. Sorting and searching, volume 3 of The art of computer programming. Addison-
Wesley, second edition, 1998.

[17] G.L. Peterson. A balanced tree scheme for meldable heaps with updates. Technical Report
GIT-ICS-87-23, School of Informatics and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1987.

[18] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957.

[19] T. Takaoka. Theory of 2-3 heaps. Discrete Applied Mathematics, 126(1):115–128, 2003.

[20] R.E. Tarjan. Data structures and network algorithms. SIAM, 1983.

[21] J. Vuillemin. A data structure for manipulating priority queues. Communications of the ACM,
21:309–314, 1978.

23


