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ABSTRACT

Inferring interior properties of the Sun from photospheric measurements of

the seismic wavefield constitutes the helioseismic inverse problem. Deviations

in seismic measurements (such as wave travel times) from their fiducial values

estimated for a given model of the solar interior imply that the model is inaccu-

rate. Contemporary inversions in local helioseismology assume that properties

of the solar interior are linearly related to measured travel-time deviations. It is

widely known, however, that this assumption is invalid for sunspots and active

regions, and likely for supergranular flows as well.

Here, we introduce nonlinear optimization, executed iteratively, as a means

of inverting for the sub-surface structure of large-amplitude perturbations.

Defining the penalty functional as the L2 norm of wave travel-time deviations,

we compute the the total misfit gradient of this functional with respect to the

relevant model parameters at each iteration around the corresponding model.

The model is successively improved using either steepest descent, conjugate

gradient, or quasi-Newton limited-memory BFGS. Performing nonlinear itera-

tions requires privileging pixels (such as those in the near-field of the scatterer),

a practice not compliant with the standard assumption of translational invari-

ance. Measurements for these inversions, although similar in principle to those

used in time-distance helioseismology, require some retooling. For the sake of

simplicity in illustrating the method, we consider a 2-D inverse problem with

only a sound-speed perturbation.
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1. Introduction

Imaging the non-axisymmetric interior structure and dynamics of the Sun requires

interpreting measurements of the photospheric seismic wavefield (see reviews by, e.g.,

Gizon & Birch 2005; Gizon et al. 2010). There exist a number of techniques to process

observations of the seismic wavefield; in this article we focus on time-distance helioseismol-

ogy (Duvall et al. 1993), in which travel times of waves are the primary measurements.

Full waveform inversion is a label for set of techniques widely used in terrestrial and

exploration seismology to infer the structure of the highly heterogeneous Earth. “Full wave-

form” refers to the use of the entire seismic measurement (which in the case of helioseis-

mology is the cross correlation) in the inversion. A waveform can broken up into frequency

bands, and every part of the waveform can be characterized by parameters such as phase

and amplitude. The full-waveform approach involves assimilating all of these measure-

ments into the inversion in the to maximally leverage seismic data. A number of inversion

methods already adopt aspects of this approach (e.g., Švanda et al. 2011; Jackiewicz et al.

2012; Dombroski et al. 2013), strictly assuming however that seismic measurements depend

linearly on interior properties. In the present formulation, we compare waveforms solely

in the sense of travel times. Further, because we only consider sound-speed perturbations

here, the primary impact on waveforms is to shift their phases and to a lesser degree, am-

plitude. In principle, we may also include amplitudes, instantaneous phase, or even raw

waveform differences (e.g., Dahlen & Baig 2002; Bozdaǧ et al. 2011; Rickers et al. 2013).

The basic goal in seismology is to relate properties of the interior to wavefield measure-

ments at the bounding surface. The first step involves defining a misfit or cost functional

that comprises some measure of the difference between measurement and prediction. An

example of a misfit function (χ) in the case of time-distance helioseismology is the L2 norm

of the difference between measurement (τo) and prediction (τ) at some set of locations i

(Hanasoge et al. 2011)

χ =
1

2

∑

i

(τi − τoi )
2. (1)

A more general formulation to include a noise-covariance matrix in the definition of the

misfit is discussed by Hanasoge et al. (2011). Here, we study a simpler problem where the
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data are known exactly. The next step is to determine how to change the model so that

the predicted travel times τi are closer to the measurements τo in the sense of norm (1).

This is a high-dimensional inverse problem, since we seek to alter various properties such

as flows, sound speed and density of the 3-D interior, thereby introducing a large number

of parameters, in order to appropriately alter the travel times measured at the bounding

surface of the Sun.

The misfit function (1) depends on the model, i.e., χ = χ(m), where m = m(x) is

the model of the Sun and x is the spatial coordinate. To vary the misfit, we consider the

Taylor expansion of equation (1) around model m,

δχ =
∑

i

(τi − τoi )
∂τi
∂m

δm, (2)

and it is seen that to reduce the misfit, i.e., to induce δχ < 0, we first need access to

the gradient of the misfit function ∂τi/∂m. Gradient-based optimization methods are

designed to address this question, specifically to minimize penalty (1), an inherently non-

linear function of the 3-D model parameters. The gradient of misfit (1) with respect to

model parameters is the so-called ‘sensitivity kernel’, alternately known as the Fréchet

derivative,
∂τi
∂m

= K(x,xi;m), (3)

where K is the sensitivity of travel time τi to changes in the model m = m(x), and

is therefore a function of the model and space. Equation (3) along with (2) gives us a

prescription to compute a model that minimizes the misfit for the quiet Sun,

δχ =

∫

⊙

dxKc δ ln c+Kρ δ ln ρ+Kv · δv, (4)

where c is sound speed, ρ is density and v are flows, Kc,Kρ, and Kv are kernels for sound

speed, density and flows respectively (Hanasoge et al. 2011, 2012). We use log quantities

for variations in c and ρ since they are positive definite.

This article aims to introduce the basic concepts of this inverse methodology and is

not exhaustive in its scope. We therefore limit ourselves to the study of a sound-speed

inversion, described thus

δχ =

∫

⊙

dxKc δ ln c. (5)

To compute the misfit gradientKc, we apply the adjoint method described by Hanasoge et al.

(2011), used to simultaneously construct kernels Kc,Kρ, and Kv (also see e.g., Tarantola

1984; Tromp et al. 2005). However, we only retain Kc for this problem.
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Seismic inversions are matrix-inverse problems of the form

Aδm = {δτ}, (6)

where A = A(m) is a fat matrix of dimension N ×M , and where the M unknown model

parameters are substantially larger than the N measurements, δm is the model update

vector, of size M × 1 and {δτ} is an N × 1 vector composed of the travel times. The

matrix A comprises the sensitivity of the travel time to model parameters, i.e., it is com-

posed of sensitivity kernels. At present, inverse problems in local helioseismology focus

on constructing sensitivity kernels using only 1-D vertical stratification, leading to lateral

(horizontal) translation invariance. Although likely erroneous for certain problems, this

approach is generally invoked regardless because a viable methodology to fully account for

the three-dimensionality and non-linearity of the inverse problem has only recently been

introduced (Hanasoge et al. 2011). Inverse approaches that rely on translation invariance

possess the additional feature that the computational cost scales very weakly with the num-

ber of measurement points, unlike in the adjoint method. On the other hand, it is possible

to mitigate the computational cost of adjoint-method based approaches by choosing a set

of observation points such that coverage and resolution are maximized.

Matrix A can be very big (with 1012 elements or more), and will possess a high

condition number, and therefore inverting it is not an option. Consequently, we use an

iterative procedure to arrive at some appropriate inverse of A and therefore, δm. To

perform iterations, a local linear approximation is invoked, much as in the style of the

Taylor expansion in equation (2), and methods such as steepest descent, conjugate gradient

or the quasi-Newton limited-memory BFGS are applied.

The adjoint method, a means of obtaining gradients of the misfit function χ, is well

studied in the regime of relatively strong heterogeneities, as demonstrated by the suc-

cessful application to terrestrial seismic inversions of, e.g., the Southern-California crust

(Tape et al. 2009), European structure (Zhu et al. 2013) and Australia (Fichtner et al.

2009). This technique is applied to constrained optimization problems in which we seek

to minimize the misfit with the constraint that the wavefield satisfy the partial differential

equation that governs wave propagation in the Sun. We define the helioseismic operator,

ρ∂2
t ξ = ∇(ρc2∇ · ξ + ρgξz) + g∇ · (ρξ) + S, (7)

where density is denoted by ρ = ρ(x), sound speed by c = c(x), gravity by g = −g(z) ẑ,

the vector acoustic wave displacement by ξ = ξ(x, t), whose vertical component is ξz,

the source by S = S(x, t) and time by t. The covariant spatial derivative is denoted

by ∇ and the partial derivative with respect to time is ∂t. The adjoint method relies



– 5 –

on making predictions and using the difference with observations to drive changes in the

solar model. Thus, we require a technique to solve equation (7). The pseudo-spectral

solver SPARC developed by Hanasoge & Duvall (2007); Hanasoge et al. (2008), fulfills the

purpose of solving equation (7) in Cartesian geometry. Lateral (horizontal) derivatives are

computed using Fourier transforms and the radial (vertical) derivative using a sixth-order

accurate compact-finite-difference scheme (Lele 1992). Time stepping is achieved through

the repeated application of an optimized second-order five-stage Runge-Kutta technique

(Hu et al. 1996). We line the side and vertical boundaries with perfectly matched layers

(Hanasoge et al. 2010) that effect high fidelity wave absorption.

The adjoint method consists of computing forward and adjoint wavefields. The forward

calculation is a predictor step, making a prediction on the photospheric cross correlation

(or some other measurement) along with the attendant 3-D seismic wavefield in the in-

terior. This calculation captures the connection between the interior sensitivity of the

wavefield and the surface seismic signature. The adjoint calculation consists of performing

a 3-D wavefield simulation driven by the difference between prediction and observation, as

measured by equation (1). Roughly speaking, this captures the connection between the

interior and the measurement misfit as recorded at the surface. Finally, the time-domain

convolution of forward and adjoint wavefields gives the total misfit gradient, i.e., all the

desired sensitivity kernels (Eq. [4]). Because this formulation of the adjoint method is

numerical, forward and adjoint simulations may be carried out for arbitrary backgrounds.

Further, with a few calculations, all relevant kernels may be simultaneously obtained. The

analysis, kernel expressions and algorithm are outlined in sections 4, 5 and 6 respectively of

Hanasoge et al. (2011). Finally, we note that the extension to a variety of other measure-

ments such as resonant frequencies closely follows the analysis in section 4 of Hanasoge et al.

(2011), with the relevant measurement framed in a manner so as to connect it to Green’s

functions of the medium.

Waves in the Sun are excited in a thin near-surface radial envelope (e.g., Stein & Nordlund

2000) but uniformly in the lateral (horizontal) direction. Thus the helioseismic wavefield

is excited by distributed sources, which, together with the stochastic nature of the excita-

tion, makes the calculation of sensitivity kernels complicated (Hanasoge et al. 2011). This

is because the wavefield measured at a given point consists of contributions from a wide

range of sources and the cross-correlation of the wavefield measured at a point pair thus

averages these contributions. However, in the case where the distribution of sources is

uniform, the cross-correlation can be shown to be closely related to Green’s function of

the medium (e.g., Snieder 2004). This correspondence allows for treating the second-order

cross-correlation measured between a point pair as arising from a deterministic, single
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source-receiver configuration, greatly reducing the complexity of the problem (the point

pair map on to the source and receiver). While it may appear that the solar wavefield is

an ideal fit for this correspondence (owing to the lateral uniformity of sources), the damp-

ing mechanism and the line-of-sight nature of observations diminish the accuracy of the

relationship (e.g., Gizon et al. 2010). However, it still serves as a very useful first approxi-

mation to study the simplified deterministic source-receiver problem since it allows for the

appreciation and development of inverse methodology prior to comprehensive modeling.

Kernels in this limit treat each branch of the cross correlation measured between a pair of

points as the wave displacement due to a deterministic single source.

2. The inversion

The road to obtaining consistent inversions is long, requiring a number of important

steps to be implemented. Here we discuss practical issues and the choices we have made.

We do not start from a vacuum, and indeed, there exists significant geophysical seismic

literature on these topics, and the choices from these articles guide our thinking. How-

ever, the helioseismic inverse problem possesses its own idiosyncrasies and to optimize our

methodology, an exhaustive survey of these choices will be necessary. This is especially the

case when including more parameters such as flows and magnetic fields.

2.1. True and starting models

The goal is to invert for the true anomaly in sound speed shown in Figure 1. Also shown

in Figure 1 is the starting model, which is a solely vertically stratified, convectively stabi-

lized form of model S (Christensen-Dalsgaard et al. 1996; Hanasoge 2007; Hanasoge et al.

2008). Sound-speed perturbations shown in Figure are measured as deviations from this

‘quiet Sun’ stratification, i.e., [c(x, z) − cq(z)]/cq(z), where cq is the nominal sound-speed

in the quiet Sun and c(x, z) is the sound speed of the current model. To accelerate con-

vergence, we may also constrain the surface layers in the starting model to be identical

to those of the true model, the argument being that the surface layers of the true model

would be ‘observable’ (which we do in Section 2.10). For now, we choose the starting

model, c(x, z) = cq(z). In the subsequent discussion and in various Figures and attendant

captions, we will make use of the following definition

δ ln c = ln
c(x, z)

cq(z)
. (8)
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2.2. Master and slave pixels

Recalling the discussion on source-receiver pairs in the preceding section, we term

sources as master pixels and receivers as slaves. Tromp et al. (2010) and Hanasoge et al.

(2011) showed that the cost of inversion scales with the number of master pixels and hence

the nomenclature. Thus having selected points at which to place sources (master pixels),

we may increase the number of receivers (slaves) arbitrarily without accruing additional

computational cost. Choices for master pixels are therefore crucial since we would like to

maximize seismic information. There are likely more formal and rigorous ways to make this

choice but in the effort here, we have discovered through the process of trial and error that

placing master pixels in the near field of the perturbation leads to faster convergence. We

thus choose 7 master pixels placed at points along the sound-speed perturbation as shown

in Figure 1. In order to introduce more seismic information, we perform a few iterations

for a given set of master pixels and replace these by another set. In the inversion presented

here, the master pixels change from the originally chosen set (indicated by triangles in

Figure 1) to another set of 7 pixels at iteration 7, indicated by asterisks. The new set of

pixels is more sparsely distributed and is spread out over a larger horizontal distance, to

improve the imaging aperture. We do not introduce further changes to the set of masters

because seismic information is concentrated in the vicinity of the perturbation, which we

explore thoroughly with the overall set of pixels. Slave pixels may also be changed from

iteration to iteration, but here, we have maintained the same set of receivers throughout

the inversion.

2.3. Measurements

We measure wave travel times between point pairs. Using the definition of the linear

travel time as set out by Gizon & Birch (2002), we formulate the adjoint method for this

measurement (Hanasoge et al. 2011). In practice, the relative travel time between two

waveforms is measured by actually cross correlating them and extracting the time lag

associated with the peak correlation coefficient. For instance, if waves appear at point B

at a positive time lag in relation to point A, then point B acts as the receiver (slave) to

source A (master). In Figure 2, we show the time-distance diagram for a source at x = −15

Mm. We measure travel times for p modes over a range of point-pair distances for the first,

second and third bounces over specified frequency bands.
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Fig. 1.— True model (upper panel), where δ ln c is defined in equation (8), and the quiet-

Sun sound-speed, cq(z) in the lower panel. The triangles denote the first set of master pixels

(sources) and the asterisks the second set. The master pixels are switched at iteration 7,

to introduce new seismic information. Because wave excitation occurs in the very near-

surface layers of the Sun (z = −50 km), we fix the location in depth but are free to vary

the horizontal location.
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Fig. 2.— Time-distance diagram. The master pixel (source) in this case is placed at

x = −15 Mm. Travel time shifts measured at slave pixels (receivers) for a given bounce

(first, second, or third) are used in the inversion. In order to distinguish between the

various arrivals, we select receivers that are at a minimum distance of 15 Mm away from

the source for the first and second bounces and 30 Mm for the third bounce.

2.4. Adjoint source

For a given source point, we measure travel times at receivers located farther than

15 Mm from it. This minimum separation allows for the distinction between the various

bounces of p modes. At distances shorter than 15 Mm, it is no longer possible to clearly

interpret the measurement. We only simulate for 1.5 hrs of solar time, which places a

restriction on a maximum source-receiver distance possible for each bounce. In the adjoint

calculation, the wave equation is forced with adjoint sources placed at all the receiver loca-

tions where measurements are made. The adjoint source at any given measurement point

consists of the travel-time shift multiplied by the time reverse of the temporal derivative of
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the measured waveform from the forward calculation. In Figure 3, the full adjoint source

is shown in the upper panel and a cut at a fixed spatial location is shown in the bottom.

Fig. 3.— Adjoint sources at receivers (upper panel) corresponding to the master pixel

shown in Figure 2. Each adjoint source is the time-reversed temporal derivative of the

waveform measured at that receiver, multiplied by the cross-correlation travel time shift.

The adjoint source at a specific x location is shown in the lower panel. The waveform

multiplied by the travel-time shift is the largest for the first bounce, which, owing to time

reversal, appears at a later time in the adjoint source. The adjoint source suggests that the

most significant travel-time deviations are recorded by the first bounce, thereby playing a

prominent role when constructing the gradient.
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2.5. Discrete adjoint method

In the formulation adopted here, the adjoint method is treated in a continuous sense

(Hanasoge et al. 2011), and expressions for kernels that are computed by convolving the

forward and adjoint wavefields are derived for continuous space. However, numerical sim-

ulations are performed on discrete grids, and indeed, errors are generated when the con-

tinuous adjoint formulation is discretized. The gradient thus obtained is not as accurate

as when the problem is posed consistently in the discrete sense. This slows down conver-

gence and is a well noted issue in these seismic inverse problems (for airfoil design, see e.g.,

Giles & Pierce 2000). Nevertheless, because convergence is observed and because there is

no easy or obvious route to a discrete adjoint formulation, we proceed with the (inaccurate)

continuous analog.

2.6. Preconditioning and Smoothing

While adjoint methods may not explicitly state the role of regularization, it does make

its way into the heart of the problem. At every iteration, the total misfit gradient, summed

over all master pixels, contains non-smooth variations co-spatial with source locations,

which may slow convergence. To mitigate this problem, spatial smoothing must be applied

to the gradient.

The rate of convergence can be improved by ‘preconditioning’ the gradient, which in

practice involves multiplying the gradient by a suitable function termed the preconditioner,

i.e., the gradient is preconditioned first and spatially smoothed next. The sensitivity of the

convergence rate to different types of preconditioners was studied by Luo et al. (2013), who

found that the optimal preconditioner for the problem they were studying was a convolution

of the time derivatives of the forward and adjoint wave fields (see their Eqs. [108] and [109]).

However, we found that preconditioning (based on the methods of Luo et al. 2013) and

smoothing led to slower convergence rate in comparison to just smoothing. The design and

application of preconditioners to helioseismology is deferred to the future and we restrict

ourselves only to smoothing the gradient here. Note that explicit regularization terms

(user prescribed) may indeed be included in the original statement of the problem, since

the adjoint method is designed to address constrained-optimization problems.
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Fig. 4.— The raw sound-speed gradient, shown in the upper panel has sharp variations due

to numerical issues related to the spatially localized forward source. The smoothed kernel

is shown in the lower panel, where a 3-point Gaussian filter was applied to accomplish

smoothing. The update is then computed through c02 = c01(1+ ε ¯Kc01), where the overbar

indicates smoothing, c02 is the sound-speed model for the second iteration and ε is a small

constant.

2.7. Model updates

Given the gradient, the model can be updated using a variety of methods. The first

iteration relies on steepest descent, in which the update is tangent to the gradient direction.

At higher iterations, we may choose between conjugate gradient and L-BFGS to create

updates. Conjugate gradient requires the previous and current gradients to form the update

where L-BFGS can be designed to use the full history of gradients and models to create

an update. Although not shown here, from preliminary testing we find that L-BFGS and

conjugate gradient converge at roughly the same rate. More careful testing may reveal the
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parameter regimes where one method is faster than the other.

Since we only consider sound-speed perturbations, the smoothed sound speed sensi-

tivity kernel is first normalized by its largest absolute value so that it (K̄ci) spans the

range [−1, 1]. We then perform a line search, using 5 different models, ci+1 = ci(1+ ε K̄ci),

where ci is the model at the ith iteration, ε is a small constant that takes on values

[0.01, 0.02, 0.03, 0.04, 0.05]. Every value of ε leads to a model ci+1, and we estimate the

misfit for each. At every iteration, we test for local convexity by performing a line search.

Typically an elegant L-curve is observed, as in Figure 5. We choose the model correspond-

ing to the minimum point of this curve as the model for the next iteration, i.e. the update

corresponds to the valley of the line search curve. The update parameter ε generally de-

creases with iteration, and ε for updates to successive models is smaller in magnitude.

Typically, ε ∼ 0.06 for the very first iteration and then drops to about ε ∼ 0.004 at the

eleventh iteration.

Fig. 5.— Line search at each iteration to determine ε for the update ci+1 = ci(1 + ε K̄ci).

The x axis shows different values of ε and the y axis the misfit associated which the

corresponding model. In this case, we choose the model for which the misfit reaches a

minimum, i.e., for ε = 0.03.

Every few iterations, the L-curve for a non-steepest-descent method is not easily pro-

duced. In such scenarios, we revert to steepest descent as a means of ‘resetting’ the inver-

sion. For instance, we might have the following configuration of updates - 1 - steepest, 2,
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3, 4 - conj. grad., 5 - steepest, 6, 7 - conj. grad, where the numbers indicate the iteration

index. We show 12 iterations of an inversion for the setup discussed in Figure 1 using a

combination the conjugate gradient and steepest descent methods in Figure 6. We also

applied the L-BFGS algorithm after 4 iterations of steepest descent but found the rate of

convergence to be generally unchanged. The performance of the method appears to be less

sensitive to these choices and much more to the introduction of external information (such

as surface constraints, new pixels etc.).

2.8. Uniqueness

In high-dimensional inverse problems, the choice of the starting model and type of

measurements introduced to update the model may be critical to avoiding being trapped

in a local minimum. A standard strategy applied to mitigate the chances of encountering

this undesirable outcome is to first use measurements taken from low frequency modes

and gradually introduce higher frequencies as the model iteratively accrues features. This

particular issue can be very serious when attempting to image reflectors in the interior, as

in exploration geophysics, but it is unlikely to be critical for helioseismology. Because the

frequency range of trapped modes in the Sun is so narrow (2.5 - 5.5 mHz), we choose here

to utilize the entire passband. Indeed, we are aware that this strategy may not be optimum

for all applications but we find it to be successful in the case of sound-speed perturbations

studied here.

2.9. Testing convergence

To verify that misfit is being minimized for all the measurements, we measure the

misfit associated with each model for travel times binned into categories by their bounce

number (first, second or third) and frequency band (2.5 – 4, 2.5 – 5, 2.5 – 5.5). Note that

we could also have measured the misfit using ridge- and phase-filtering to isolate modes in

various parts of the power spectrum but our categories are simpler in this case. Thus we

confirm that the misfit is uniformly reduced in these 9 categories. A similar strategy has

been used successfully in terrestrial applications, e.g., Zhu et al. (2013) although because

terrestrial seismic waves exhibit a larger temporal frequency range, they apply frequency

filters to their data. Fixing the lower frequency cutoff, Zhu et al. (2013) increase the upper

corner of the bandpass with iteration, gradually allowing in more information as the model

grows in complexity. We also calculate the model misfit by computing the L2 norm of the
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difference between the true and inverted models as a function of iteration. Both data and

model misfit are seen to decrease with iteration in Figure 7.

2.10. Including “surface” constraints

The sound-speed anomaly studied here has a ‘surface’ signature and we can include

this as a constraint on the model. It is of relevance because in reality, perturbations such as

supergranules, meridional circulation, sunspots and active regions are optically observed

at the photosphere and these observations can be used to accelerate convergence. For

the inverse problem at hand, p modes are used to image the sound-speed perturbation.

Surface-gravity f modes, which are very sensitive to the surface, do not register sound-

speed perturbations since the restoring force for these waves is gravity and not pressure.

Consequently, adding a surface constraint to the inversion is likely to accelerate convergence

for this inverse problem.

In Figure 8, we see direct evidence of this, where the bottom-left panel shows a smooth

decline in model misfit with iteration, unlike in Figure 6, which displays a non-monotonic

trajectory. Overall, both data and model misfit are lower in Figure 8 in comparison to

Figure 6. We also over plot all the misfit categories in Figure 9 to highlight the (anticipated)

superiority of surface-constrained inversions.

Finally, we show the improvement between waveforms derived from “data” and the

model in Figure 10. By iteration 11, the waveforms start matching up well.

3. Discussion

Full waveform inversion provides a means of addressing longstanding problems in he-

lioseismology. It directly addresses the major issue of non-linear dependencies of travel

times on properties of the solar medium in structures such as sunspots and supergran-

ules. While iterative inversions are indeed possible using ray theory as the forward model,

wave propagation is demonstrably not well captured in this high-frequency approximation

(Birch et al. 2001). Helioseismology is increasingly a high-precision science and to make

accurate inferences, it is important to model wave effects as fully as possible. Finite fre-

quency forward calculations of the helioseismic wavefield are now routinely performed, and

in this article we have discussed full waveform inversion strategies within this context.

A basic lacuna of current approaches to 3-D helioseismic inversions is that there is
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rarely a consistency check of how much the inverted model reduces the misfit between

seismic prediction and observation. At each iteration in our inversion, we perform a line

search to determine how much to change model, and generally find that beyond 3-5%

the misfit actually rises, suggesting that the linear connection between misfit and model

change is restricted to this regime. Of course, the caveat in drawing this conclusion is

that our inversion method is either quasi-Newton- or conjugate gradient based, whereas

prior helioseismic inversions have relied on Gauss-Newton-based approaches. In general,

Gauss-Newton allows for taking larger steps in model space but it must be emphasized

again that the actual extent to which misfit is reduced has generally not been measured.

The closest to a consistent inversion can be attributed to Cameron et al. (2008), who

attempted to study a set of sunspot models using linear magneto-hydrodynamic numerical

simulations to determine how well observations can be matched. In a purely forward

approach (“probabilistic”), the model space is exhaustively searched, determining the misfit

for each model. However, given the computational expense for full wave modeling codes,

this may be an infeasible approach.

The methodology discussed here still requires development and a more careful explo-

ration of techniques that can enhance convergence. Purely computational test problems,

such as the inversion for flows and magnetic fields, will be the focus of future studies.

However, full waveform inversion provides a firm theoretical foothold for a field that has

long sought a means to accurately interpret helioseismic measurements. The hope is that,

with the simultaneous development of inverse theory and high-fidelity numerical methods

to rapidly simulate wave propagation in a medium that closely mimics the Sun, we may

finally able to settle issues of great relevance to understanding solar dynamics.

S.M.H. acknowledges funding from NASA grant NNX11AB63G. We also thank Hejun

Zhu for his useful insights on FWI methodology.

A. Adjoint source

We use equation (4) from Gizon & Birch (2004) in order to define the weight function

Wi(t) for the travel-time measurement

Wi(t) = −Ċp
i (t)

f(t)

∆t
∑

t′ f(t
′)
[

Ċp
i (t

′)
]2

, (A1)
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where Cp is the predicted waveform (cross correlation), ∆t is the temporal rate at which

the waveform is sampled, f(t) is a window, and the travel-time shift ∆τ is given by

∆τi =

∫

dt Wi(t) (C
p
i − Co

i ). (A2)

The adjoint source is given by

f †(x, t) =
∑

i

∆τiWi(−t) δ(x − xi), (A3)

where xi is the a receiver (slave) and the summation is over all receivers.

B. Steepest descent, Conjugate gradient and L-BFGS

In all the methods described here, the model is updated thus, mk+1 = mk + εpk,

where ε is obtained through a line search, i.e., ε that minimizes χ(mk + εpk). Given the

smoothed gradient at iteration k, gk. The steepest descent update is simply pk = −gk.

The conjugate gradient update is given by

pk = −gk + βk pk−1, βk =
gk · (gk − gk−1)

gk · gk
, (B1)

and because there is a dependence on pk−1, the first iteration cannot also be performed by

conjugate gradient.

The limited-memory BFGS update at iteration N is obtained by manipulating the

prior m gradients and models. The limited-memory aspect of this is accomplished by

sweeping forward and reverse through prior gradients.

k = N h = gk

For k = N− 1,N − 2, ....,N −m

αk =
(mk −mk−1) · h

(mk −mk−1) · (gk − gk−1)

h = h− αk(gk − gk−1), (B2)

For k = N−m,N−m+ 1, ....,N − 1

αk = αk −
(gk − gk−1) · h

(mk −mk−1) · (gk − gk−1)

h = h+ αk(mk −mk−1) (B3)
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The update is given by pN = −h. The rule of thumb is to use between 3 and 7 prior

gradients to construct the update, i.e., 3 ≤ m ≤ 7 in equations (B2) (B3).

REFERENCES

Birch, A. C., Kosovichev, A. G., Price, G. H., & Schlottmann, R. B. 2001, ApJ, 561, L229
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Fig. 6.— Iterations in a conjugate-gradient based inversion. The first iteration is performed

using steepest descent and a combination of conjugate gradient and steepest descent are

used to compute subsequent models. At iteration 7, we change the set of master pixels and

this creates a local jump in the data misfit because more information has been introduced.

It is seen that models approach the true anomaly gradually but the reduction in both data

and model misfits slows down with iteration. The model misfit is the normalized L2 norm

difference between the true and current model whereas the total data misfit is the same as

equation (1). In the first few iterations, the model misfit increases because surface layers

contain significant errors and p modes possess limited sensitivity to these layers. As the

model evolves it overcomes this local hill, appearing to ‘fix’ the surface layers, and a steady

decline is seen in the last few iterations.
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Fig. 7.— Misfit reduction with iteration, broken up based on the frequency bands and

bounces. It is seen that regardless of the band, the misfit decreases uniformly (straying

from monotonic reduction along the way on a few occasion). Note that we do not apply

a frequency filter in our travel-time measurements, so we are not explicitly attempting to

minimize these separate bands. This trend occurs organically, suggesting that the eventual

result will be consistent with the governing wave equation and the measurement technique.

It also adds support to the notion that the adjoint method in conjunction with linear

algebraic inverse methods can be very successful. Note that we could also have used ridge-

and phase-speed filtering to further test for a decreasing misfit with iteration.
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Fig. 8.— Iterations in a conjugate-gradient based inversion. The starting model contains

a ‘surface constraint’, as seen in m00. The rest of the algorithm is unchanged from the

example shown in Figure 6. The first iteration is performed using steepest descent and a

combination of conjugate gradient and steepest descent are used to compute subsequent

models. It is seen that models approach the true but the reduction in the misfit slows down

with iteration. The model misfit is the normalized L2 norm difference between the true and

current model whereas the total data misfit is the same as equation (1). For comparison,

we over plot the misfit evolution for the unconstrained inversion (dot-dashed line with

asterisks). For categories of model and data misfit, it is seen that surface constraints

accelerate convergence.
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Fig. 9.— Comparison of misfit bands between surface-constrained and unconstrained inver-

sions. Systematically, unconstrained inversions show slower convergence, as evidenced by

the curves with higher misfit (dot-dashed lines with asterisk symbols). Smooth lines with

circle symbols show the misfit evolving with iteration for surface-constrained inversions.
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Fig. 10.— Waveform matching as a function of iteration. difference between time-distance

diagrams of modelsm00, m11 and target data (upper panels). At iteration 11, the difference

is substantially smaller (plotted on same scale). Lower panels show waveforms at x = −9

Mm (left) and x = 22 Mm (right). By iteration 11, the waveforms match the data very

well.
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