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Figure 1: Ghosted frames from the snow collision example (left) and the rabbit fur wind example (right). 

ABSTRACT 
3D animation requires specialized skills and tends to limit cre-
ative expression in favor of physical feasibility, while 2D animation 
does the opposite. Another duality exists between simulated and 
keyframe animation. While simulations provide physical believ-
ability, keyframes give animators fne timing control. This project 
seeks to bridge the gap between these approaches to animation: 
leveraging the expressiveness of 2D animation, the robustness of 
3D environment and camera movement, the physical feasibility of 
simulation, and the control of keyframing. To this end, we present 
a 2.5D animation interface that takes 2D drawn keyframes and 3D 
context (object, environment and camera movement) to generate 
simulated animations that adhere to the user-drawn keyframes. 
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1 INTRODUCTION 
3D animation ofers countless exciting opportunities. However, it 
requires signifcant specialized skill and can limit artists’ expres-
sion in order to adhere to physics principles and object consistency. 
On the other hand, 2D animation allows full artistic expression 
including view-dependent inconsistencies and physics-defying mo-
tion, but requires arduous frame-by-frame drawing and mastery of 
principles of motion. 

Simulation-based techniques tend to yield realistic movements 
in animation, but sacrifce users’ fne control, especially on timing. 
Keyframe animation returns this timing control to the animator 
while producing less physically compelling movements than those 
grounded in simulation [4]. 

Our animation interface produces 2.5D simulated keyframe ani-
mation. It works by distorting 2D strokes within 3D space given 
camera movement. Furthermore, it supports collision and wind 
simulations working with guidance from keyframes, thus allowing 
animators to exercise timing control while also taking advantage 
of simulation-based movement enhancement. We present a system 
that takes input from users through drawn 2D keyframes, (optional) 
3D environment objects and (optional) camera control in 3D space. 
Given the keyframes and camera movement, our system utilizes a 
novel algorithm to propose stroke correspondences, then collabo-
rates with the user to construct a fnal stroke matching. For each 
pair of adjacent keyframes, our system then runs physical simula-
tions to enhance the inbetweened animation. Finally, the system 
outputs an animation that adheres to physical principles as well as 
the motion described by the user-drawn input. 

2 APPROACH 
Above is an overview of how users interact with our system. First, 
they draw 2D keyframes and create a 3D environment. The sys-
tem then proposes a matching of the 2D strokes to the user, which 
the user can examine and revise with additional customization. 
This portion of the process can happen however many times, un-
til the user is satisfed with the proposed matching. The system 
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Figure 2: Overview of UI workfow. 

executes the linear interpolation and (optional) physical simula-
tion, outputting the fnal animation inbetweening the original 2D 
keyframes while colliding with the 3D environment. 

3 ALGORITHMS 

3.1 Stroke Correspondence 
To determine stroke correspondence, we defned an energy value 
for each potential stroke pairing for strokes A and B: 

energyA, B = dist(centroidA, centroidB ) 

+dist(shape contextA, shape contextB )

where shape context was calculated using the method from Belongie 
et al. [1, 3]. 

These energy values were used to create a global ranking of all 
potential stroke pairings. After processing user-specifed stroke 
pairings, we paired strokes based on a greedy algorithm. Using 
this method, our system can generate emitters and handle input 
involving: keyframes with diferent numbers of strokes, more than 
two keyframes, keyframes with diferent stroke lengths (paired 
strokes containing diferent numbers of points), and keyframes 
with signifcantly difering content (e.g., two diferent poses within 
a walk cycle or two diferent angles of a character). 

3.2 Simulation 
Collision physics were simulated by modeling the scene compo-
nents using bodies with diferent motion levels and shape types. 
Bodies were either static or dynamic in motion: bodies that were 
unafected by physics were modeled as static, while those that were 
meant to react to physics were modeled as dynamic. Furthermore, 
bodies were modeled with diferent shape arrangements: circles, 
polygons, and chains (a connected series of circle bodies). 

Wind forces were applied to each individual dynamic body in 
the scene and altered over time using a modifed sine function to 
mimic wind "gusts". In chains, the wind force magnitudes were also 
adjusted quadratically to more strongly afect particles farther from 
the roots. 

4 RESULTS 
Results are presented in the form of side by side ghosted frames 
(before physics on the left, physics on the right), with the keyframes 
shown solidly and color-coded (frst keyframe in red, second in 
blue). To view the full animations, please see our accompanying 
video. 

In the snow example, we modeled the dog house (3D object) 
as a static polygon shape and the snowfakes as dynamic circle 
shapes positioned at the calculated stroke centroids (Figure 3). After 

running collision simulations using Box2D, we outputted the fnal 
simulated animation [2]. 

Figure 3: Snow example. 

In the rabbit fur example, we simulated an upward wind on the 
forehead fur using dynamic chains (Figure 4). We ofset frames 
horizontally for additional visual clarity. 

Figure 4: Rabbit fur example. 

5 CONCLUSION 
We present a 2.5D animation interface that automatically generates 
keyframed and simulated inbetweenings. Potential future work 
includes improving time performance of the algorithms, expanding 
the interpolation and simulation repertoire (i.e., providing users 
the option to ease in/out rather than just interpolate linearly and 
simulate more forces than just wind and collisions), further refning 
the stroke correspondence algorithm, and incorporating simulated 
emitters. 
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