
2.5D Simulated Keyframe Animation in Blender
Ilene E Nora S. Willett Adam Finkelstein

ilene.e.1129@gmail.edu noraw@pixar.com af@cs.princeton.edu
Princeton University Pixar Animation Studios Princeton University

Princeton, New Jersey, USA Emeryville, California, USA Princeton, New Jersey, USA

Figure 1: Ghosted frames from the snow collision example (left) and the rabbit fur wind example (right).

ABSTRACT
3D animation requires specialized skills and tends to limit cre-
ative expression in favor of physical feasibility, while 2D animation
does the opposite. Another duality exists between simulated and
keyframe animation. While simulations provide physical believ-
ability, keyframes give animators fne timing control. This project
seeks to bridge the gap between these approaches to animation:
leveraging the expressiveness of 2D animation, the robustness of
3D environment and camera movement, the physical feasibility of
simulation, and the control of keyframing. To this end, we present
a 2.5D animation interface that takes 2D drawn keyframes and 3D
context (object, environment and camera movement) to generate
simulated animations that adhere to the user-drawn keyframes.

CCS CONCEPTS
• Human-centered computing → User interface programming.

KEYWORDS
2D animation, inbetweening, keyframe animation, physical simula-
tion

ACM Reference Format:
Ilene E, Nora S. Willett, and Adam Finkelstein. 2021. 2.5D Simulated Keyframe
Animation in Blender. In The Adjunct Publication of the 34th Annual ACM
Symposium on User Interface Software and Technology (UIST ’21 Adjunct),
October 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3474349.3480222

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8655-5/21/10. . . $15.00
https://doi.org/10.1145/3474349.3480222

1 INTRODUCTION
3D animation ofers countless exciting opportunities. However, it
requires signifcant specialized skill and can limit artists’ expres-
sion in order to adhere to physics principles and object consistency.
On the other hand, 2D animation allows full artistic expression
including view-dependent inconsistencies and physics-defying mo-
tion, but requires arduous frame-by-frame drawing and mastery of
principles of motion.

Simulation-based techniques tend to yield realistic movements
in animation, but sacrifce users’ fne control, especially on timing.
Keyframe animation returns this timing control to the animator
while producing less physically compelling movements than those
grounded in simulation [4].

Our animation interface produces 2.5D simulated keyframe ani-
mation. It works by distorting 2D strokes within 3D space given
camera movement. Furthermore, it supports collision and wind
simulations working with guidance from keyframes, thus allowing
animators to exercise timing control while also taking advantage
of simulation-based movement enhancement. We present a system
that takes input from users through drawn 2D keyframes, (optional)
3D environment objects and (optional) camera control in 3D space.
Given the keyframes and camera movement, our system utilizes a
novel algorithm to propose stroke correspondences, then collabo-
rates with the user to construct a fnal stroke matching. For each
pair of adjacent keyframes, our system then runs physical simula-
tions to enhance the inbetweened animation. Finally, the system
outputs an animation that adheres to physical principles as well as
the motion described by the user-drawn input.

2 APPROACH
Above is an overview of how users interact with our system. First,
they draw 2D keyframes and create a 3D environment. The sys-
tem then proposes a matching of the 2D strokes to the user, which
the user can examine and revise with additional customization.
This portion of the process can happen however many times, un-
til the user is satisfed with the proposed matching. The system

35

https://doi.org/10.1145/3474349.3480222
https://doi.org/10.1145/3474349.3480222
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3474349.3480222&domain=pdf&date_stamp=2021-10-10

UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA Ilene E, Nora S. Willet, and Adam Finkelstein

Figure 2: Overview of UI workfow.

executes the linear interpolation and (optional) physical simula-
tion, outputting the fnal animation inbetweening the original 2D
keyframes while colliding with the 3D environment.

3 ALGORITHMS

3.1 Stroke Correspondence
To determine stroke correspondence, we defned an energy value
for each potential stroke pairing for strokes A and B:

energyA, B = dist(centroidA, centroidB)

+dist(shape contextA, shape contextB)

where shape context was calculated using the method from Belongie
et al. [1, 3].

These energy values were used to create a global ranking of all
potential stroke pairings. After processing user-specifed stroke
pairings, we paired strokes based on a greedy algorithm. Using
this method, our system can generate emitters and handle input
involving: keyframes with diferent numbers of strokes, more than
two keyframes, keyframes with diferent stroke lengths (paired
strokes containing diferent numbers of points), and keyframes
with signifcantly difering content (e.g., two diferent poses within
a walk cycle or two diferent angles of a character).

3.2 Simulation
Collision physics were simulated by modeling the scene compo-
nents using bodies with diferent motion levels and shape types.
Bodies were either static or dynamic in motion: bodies that were
unafected by physics were modeled as static, while those that were
meant to react to physics were modeled as dynamic. Furthermore,
bodies were modeled with diferent shape arrangements: circles,
polygons, and chains (a connected series of circle bodies).

Wind forces were applied to each individual dynamic body in
the scene and altered over time using a modifed sine function to
mimic wind "gusts". In chains, the wind force magnitudes were also
adjusted quadratically to more strongly afect particles farther from
the roots.

4 RESULTS
Results are presented in the form of side by side ghosted frames
(before physics on the left, physics on the right), with the keyframes
shown solidly and color-coded (frst keyframe in red, second in
blue). To view the full animations, please see our accompanying
video.

In the snow example, we modeled the dog house (3D object)
as a static polygon shape and the snowfakes as dynamic circle
shapes positioned at the calculated stroke centroids (Figure 3). After

running collision simulations using Box2D, we outputted the fnal
simulated animation [2].

Figure 3: Snow example.

In the rabbit fur example, we simulated an upward wind on the
forehead fur using dynamic chains (Figure 4). We ofset frames
horizontally for additional visual clarity.

Figure 4: Rabbit fur example.

5 CONCLUSION
We present a 2.5D animation interface that automatically generates
keyframed and simulated inbetweenings. Potential future work
includes improving time performance of the algorithms, expanding
the interpolation and simulation repertoire (i.e., providing users
the option to ease in/out rather than just interpolate linearly and
simulate more forces than just wind and collisions), further refning
the stroke correspondence algorithm, and incorporating simulated
emitters.

REFERENCES
[1] S. Belongie, J. Malik, and J. Puzicha. 2002. Shape Matching and Object Recognition

Using Shape Contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4 (April 2002),
509–522. https://doi.org/10.1109/34.993558

[2] Erin Catto. [n.d.]. pybox2d 2.1.0 manual. https://github.com/pybox2d/pybox2d/
wiki/manual

[3] Andrey Nikishaev. 2019. Shape Context descriptor and fast characters recogni-
tion. https://medium.com/machine-learning-world/shape-context-descriptor-
and-fast-characters-recognition-c031eac726f9

[4] Jovan Popović, Steven M. Seitz, Michael Erdmann, Zoran Popović, and Andrew
Witkin. 2000. Interactive Manipulation of Rigid Body Simulations. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., USA, 209–217. https:
//doi.org/10.1145/344779.344880

36

https://doi.org/10.1109/34.993558
https://github.com/pybox2d/pybox2d/wiki/manual
https://github.com/pybox2d/pybox2d/wiki/manual
https://medium.com/machine-learning-world/shape-context-descriptor-and-fast-characters-recognition-c031eac726f9
https://medium.com/machine-learning-world/shape-context-descriptor-and-fast-characters-recognition-c031eac726f9
https://doi.org/10.1145/344779.344880
https://doi.org/10.1145/344779.344880

	Abstract
	1 Introduction
	2 Approach
	3 Algorithms
	3.1 Stroke Correspondence
	3.2 Simulation

	4 Results
	5 Conclusion
	References

