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Abstract

Knowing the subcellular compartments of human proteins is essential to shed light on the mechanisms of a broad range of human

diseases. In computational methods for protein subcellular localization, knowledge-based methods (especially gene ontology (GO)

based methods) are known to perform better than sequence-based methods. However, existing GO-based predictors often lack

interpretability and suffer from overfitting due to the high dimensionality of feature vectors. To address these problems, this

paper proposes an interpretable multi-label predictor, namely mLASSO-Hum, which can yield sparse and interpretable solutions

for large-scale prediction of human protein subcellular localization. By using the one-vs-rest LASSO-based classifiers, 87 out of

more than 8,000 GO terms are found to play more significant roles in determining the subcellular localization. Based on these 87

essential GO terms, we can decide not only where a protein resides within a cell, but also why it is located there. To further exploit

information from the remaining GO terms, a method based on the GO hierarchical information derived from the depth distance of

GO terms is proposed. Experimental results show that mLASSO-Hum performs significantly better than state-of-the-art predictors.

We also found that in addition to the GO terms from the cellular component category, GO terms from the other two categories also

play important roles in the final classification decisions. For readers’ convenience, the mLASSO-Hum server is available online at

http://bioinfo.eie.polyu.edu.hk/mLASSOHumServer/.
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1. Introduction

Proteins, which abundantly exist in the human body, exert

their biological functions in virtually every process within hu-

man cells provided that they are located in the correct spa-

tiotemporal cellular contexts. Knowing the subcellular com-

partments of homo sapiens proteins helps biologists elucidate

the functions of proteins and identify drug targets [1]. It is

also essential to shed light on the mechanisms of a broad range

of human diseases due to protein subcellular mislocalization,

such as primary human liver tumors [2], Alzheimer’s disease

[3], breast cancer [4], pre-eclampsia [5], Bartter syndrome [6]

and kidney stone [7]. Conventional high quality localization

database such as the Human Protein Atlas1 are obtained via

wet-lab experiments such as electron microscopy, cell frac-

tionation and fluorescent microscopy imaging. These methods,

however, are time-consuming, costly and laborious, especially

with the advent of the avalanche of newly discovered protein se-

quences after large-scale sequencing projects. Therefore, com-

putational methods are developed for fast and large-scale pro-

tein subcellular localization (PSCL).

∗Corresponding author

Email addresses: shibiao.wan@connect.polyu.hk (Shibiao Wan),

enmwmak@polyu.edu.hk (Man-Wai Mak), kung@princeton.edu

(Sun-Yuan Kung)
1http://www.proteinatlas.org/

Computationally, conventional PSCL approaches are classi-

fied as sequence-based and knowledge-based. Sequence-based

approaches include: (1) amino-acid composition-based meth-

ods [8, 9, 10, 11]; (2) homology-based methods [12, 13, 14];

(3) sorting-signals based methods [15, 16, 17]. Knowledge-

based methods use information from knowledge databases,

such as Gene Ontology (GO)2 terms [18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28], Swiss-Prot keywords [29, 30], or PubMed

abstracts [31, 32]. Among them, GO-based methods have

demonstrated to be superior to methods based on other features

[33, 34, 23, 35]. Actually, GO-based methods have been widely

used in many bioinformatics domains, including enzyme class

prediction [36, 37], membrane protein type prediction [38] and

protein subcellular localization [39, 40, 41, 42, 34].

Conventional predictors specializing for human proteins,

such as HSLPred [43] and Hum-PLoc [44], can only deal

with single-location proteins. Recent studies have been focus-

ing on predicting both single- and multi-location proteins due

to the prevalence of multi-location proteins [45, 46]. These

multi-label proteins are found to play important roles in var-

ious metabolic activities in more than one cellular compart-

ment. For example, the glucose transporter GLUT4 has been

found in both the intracellular vesicles of adipocytes and the

plasma membrane [47]; fatty acid β-oxidation has been found

2http://www.geneontology.org/
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in the peroxisome and mitochondria, and antioxidant defense

is known to reside in the cytosol, mitochondria and peroxi-

some [48]. Recently, a review [49] has also demonstrated the

importance of multi-label protein subcellular localization on

medical science and drug development. As pointed in [49],

there are two series of subcellular-localization web-servers,

namely ‘PLoc’ series [50, 51, 52, 53, 54, 55] and ‘iLoc’ se-

ries [56, 57, 58, 27, 59, 60, 19], both of which can predict six

or seven species, including eukaryote, human, plant, Gram pos-

itive bacteria, Gram negative bacteria, virus and animal.

Recently, several state-of-the-art multi-label predictors have

been proposed, such as Hum-mPLoc 2.0 [51], iLoc-Hum [27],

mGOASVM [61], HybridGO-Loc [62], R3P-Loc [63], mPLR-

Loc [64] and other predictors [65, 66, 67]. They all use the GO

information as the features and apply different multi-label clas-

sifiers to tackle the multi-label classification problem. How-

ever, these GO-based predictors lack interpretability and suf-

fer from overfitting due to the high dimensionality of feature

vectors. These predictors can only predict where a query pro-

tein is located, but they cannot provide biological reasons on

why it resides there. This is possibly a common problem for

machine-learning based approaches because it is usually diffi-

cult to correlate mathematical mechanism of machine-learning

approaches with biological phenomena. As far as we know,

there is only one subcellular-location predictor called YLoc

[68] that is interpretable. However, YLoc requires heteroge-

neous biological features such as sorting signals, PROSITE3

patterns and GO terms, which are not always available for ev-

ery protein. Moreover, except for R3P-Loc, these predictors use

feature vectors with dimensions as high as several thousand.

In such high-dimensional space, it is likely that many feature

components contain irrelevant or redundant information, caus-

ing overfitting problems and thus degrading prediction perfor-

mance.

To tackle the problems mentioned above, this paper pro-

poses an interpretable multi-label predictor, namely mLASSO-

Hum, which can yield sparse and interpretable solutions for

large-scale prediction of both single-label and multi-label hu-

man proteins. Given a query protein sequence, a set of GO

terms are retrieved by using the procedures described in [63].

The frequencies of GO occurrences are used to formulate fre-

quency vectors with dimensionality of more than 8000. By us-

ing the one-vs-rest LASSO-based (least absolute shrinkage and

selection operator-based) classifiers, 87 out of these 8,000+GO

terms are selected. Based on these 87 GO terms, the feature

vectors are converted to 87-dim vectors by a novel transferring

method based on the depth-dependent GO hierarchical infor-

mation. Subsequently, the dimension-reduced feature vectors

are classified by a multi-label LASSO classifier. Experimental

results based on a stringent human benchmark dataset demon-

strate that mLASSO-Hum outperforms other existing state-of-

the-art predictors. More importantly, based on the selected es-

sential GO terms, users of mLASSO-Hum can not only deter-

mine where a protein resides, but also explain why it is located

3http://prosite.expasy.org/

there. In other words, the selected essential GO terms are inter-

pretable for the final prediction results. We also found that in

addition to the GO terms from the cellular component category,

GO terms from the other two categories also play important

roles in the final classification decisions.

As demonstrated by a series of recent publications [69, 70,

71, 72, 73] in compliance with Chou’s 5-step rule [74], the es-

tablishment of a statistical protein predictor involves the fol-

lowing five steps: (a) construction of a valid dataset for training

and testing the predictor; (b) formulation of effective mathemat-

ical expressions for converting proteins’ characteristics to fea-

ture vectors that are relevant to the prediction task; (c) develop-

ment of classification algorithm for discriminating the feature

vectors; (d) evaluation of cross-validation tests for measuring

the performance of the predictor; and (e) deployment of a user-

friendly, publicly accessible web-server for other researchers to

use and validate the prediction method. These steps are further

elaborated below.

2. Legitimacy of Using GO Information

In terms of using GO information for PSCL, some re-

searchers may have the following concerns. (1) Because the

cellular component GO terms have already been annotated with

cellular component categories, can the GO-based methods be

replaced by a lookup table using the cellular component GO

terms as the keys and the component categories as the hashed

values? (2) Are cellular component GO terms the only informa-

tion for PSCL? (3) Are GO-based methods equivalent to trans-

ferring annotations from BLAST homologs? The answers for

these concerns are all ‘no’. The reasons are given as follows.

1. For the first concern, the GO comprises three orthogo-

nal categories whose terms describe the cellular compo-

nents, biological processes, and molecular functions of

gene products. Some researchers argue that the only thing

that needs to be done is to create a lookup table using the

cellular component GO terms as the keys and the com-

ponent categories as the hashed values. Such a naive so-

lution, however, is undesirable and will lead to poor per-

formance, as shown and explained in our previous studies

[61, 34].

2. The second concern has been explicitly addressed by [75],

who demonstrated that GO terms from the molecular func-

tion category are also predictive of subcellular localiza-

tion, particularly for nucleus, extracellular space, mem-

brane, mitochondrion, endoplasmic reticulum and Golgi

apparatus. The in-depth analyses of the correlation be-

tween the molecular-function GO terms and localization

in Lu and Hunter’s study provide an explanation of why

GO-based methods outperform sequence-based methods.

The results in this paper have also refuted this claim.

3. The third concern is explicitly addressed in our previous

study [34], which demonstrates that GO-based methods

remarkably outperform methods that only use BLAST and

homologous transfer. Besides, [76] also suggest that using

BLAST alone is not sufficient for reliable prediction.
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A recent review [77] (in Section VI of [77]) and some other

studies [78, 42] also provide strong arguments supporting the

legitimacy of using GO information for subcellular localization.

In particular, as suggested by [42], the good performance of

GO-based methods is due to the fact that the feature vectors

in the GO space can better reflect their subcellular locations

than those in the Euclidean space or any other simple geometric

space.

3. Creation of Compact Databases

A challenge for existing GO-based approaches is that GO

information is not always available for every protein. While

the GOA database4 allows us to associate the accession number

(AC) of a protein with a set of GO terms, for some novel pro-

teins, neither their ACs nor the ACs of their top homologs have

any entries in the GOA database; in other words, no GO terms

can be retrieved by their ACs or the ACs of their top homologs.

In such case, some predictors use back-up methods that rely on

other features such as pseudo-amino-acid composition [9] and

sorting signals [79]; some predictors [34, 61] use a successive-

search strategy to avoid null GO vectors. However, these strate-

gies may lead to poor performance and increase computation

and storage complexity.

To address this problem, similar to our earlier work [63], we

created two small yet efficient databases: ProSeq and ProSeq-

GO. The former is a sequence database and the latter is a

GO-term database, which are extracted from Swiss-Prot and

GOA databases, respectively. The procedures of creating these

databases are shown in Part (A) of Fig. 1. Detailed descriptions

of the procedures can be found in [63]. By using ProSeq and

ProSeq-GO, we not only guarantee that every query protein can

associate with at least one GO term, but also reduce memory

consumption.

For BLAST [80], we use the default parameter setting. With

the rapid progress of the Swiss-Prot database, in most cases we

can always find a homolog for a query protein. In case no close

homolog is found for a query protein, we will increase the E-

value until we can find homologs. Because the size of ProSeq

database is slightly smaller than that of Swiss-Prot [63], the

same reason above also applies to ProSeq. Essentially speak-

ing, we use BLAST as a tool to find ‘the most similar’ protein

sequence from the database, where ‘the most similar’ protein

is determined by the score and the E-value [80]. In the ex-

treme but very rare cases, this most similar protein can be an

extremely remote homolog of the query protein. Therefore, we

can always find a candidate protein sequence by BLAST. In

our experiments, by using the default parameter setting, we can

find homologs for all of the proteins in the benchmark dataset

detailed in Section 7.1.

4. Construction of Conventional GO-Based Vectors

Constructing conventional GO vectors includes two steps:

(1) retrieval of GO terms; and (2) construction of GO vectors.

4http://www.ebi.ac.uk/GOA

The procedures are shown in Part (B) of Fig. 1. For Step 1,

given a query protein, its amino acid sequence is presented

to BLAST to find its homologs against the ProSeq database,

whose ACs are then used as keys to search against the ProSeq-

GO database. Compared to our previous works [61, 34, 62], one

of the differences is that instead of using Swiss-Prot and GOA

databases, mLASSO-Hum uses ProSeq and ProSeq-GO to re-

trieve GO terms, which can guarantee that GO terms can always

be found for a query protein given its amino acid sequence.

For Step 2, given a dataset, the GO terms of all of its proteins

are retrieved by the procedures described above. Similar to our

earlier works [34, 61], the GO frequency information is used to

construct GO feature vectors. Specifically, the GO vector qi of

the i-th protein Qi is defined as:

qi = [bi,1, · · · , bi, j, · · · , bi,W ]T, bi, j =

{

fi, j , GO hit

0 , otherwise
(1)

where T is a transpose operator, W is the number of distinct

GO terms found for the benchmark dataset (see Section 7.1),

and fi, j is the number of occurrences of the j-th GO term (term-

frequency) in the i-th protein sequence. Detailed information

can be found in [61, 34].

5. Multi-label LASSO

LASSO [81], short for Least Absolute Shrinkage and Se-

lection Operator, is an L1-regularized linear regression model.

It has been applied to many bioinformatics domains, such as

gene regulation network analysis [82] and microRNA-target

regulatory network construction [83]. The L1 constraint forces

the weights of some features to exactly zero [82], and hence

LASSO can automatically selects relevant features. Here we

apply LASSO to both feature selection and classification, as

shown in Part (C) and (D) of Fig. 1.

5.1. Objective Function of LASSO

Suppose for a two-class single-label problem, we are given a

set of training data {xi, yi}
N
i=1

, where xi ∈ R
W and yi ∈ {−1, 1}.

In our case, xi = qi, where qi is defined in Eq. 1. Generally

speaking, LASSO imposes an L1-style regularization to ordi-

nary least squares (OLS). More specifically, LASSO minimizes

the empirical L2-norm loss l(β):

l(β) =

N
∑

i=1

(yi − f (xi))
2 =

N
∑

i=1

















yi − ε0 −

W
∑

j=1

β jxi, j

















2

, (2)

subject to
∑W

j=1|β j|≤ t, where t > 0 is a parameter controlling

the shrinkage level to be applied to β, ε0 is the bias, xi, j is the

j-th element of xi and β = [β1, . . . , β j, . . . , βW ]T is the LASSO

estimate vector to be optimized. Eq. 2 is equivalent to minimiz-

ing the following equation:

l(β) =

N
∑

i=1

(yi − ε0 − β
Txi)

2 + λ

W
∑

j=1

|β j|, (3)
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Figure 1: Flowchart of mLASSO-Hum. It consists of four parts: (A) creation of compact databases (ProSeq and ProSeq-GO); (B) Conventional GO-based

vectors construction; (C) LASSO-based feature selection and sparse GO hierarchical information based (HIB) vectors construction; and (D) multi-label LASSO

classification. Qi: the i-th query protein.

where λ > 0 is a penalized parameter to control the degree of

regularization. In our experiments, λ was determined by five-

fold cross-validation. Eq. 3 is a convex optimization problem,

which can be efficiently solved by the least angle regression

(LARS) method [84].

5.2. Multi-label LASSO for Feature Selection

In an M-class multi-label problem, the training data set is

written as {xi,Yi}
N
i=1

, where xi ∈ R
W and Yi ⊂ {1, 2, . . . ,M}

is a set containing one or more labels. M independent binary

one-vs-rest LASSOs are trained, one for each class. The labels

{Yi}
N
i=1

are converted to transformed labels [61] yi,m ∈ {−1, 1},

where i = 1, . . . ,N, and m = 1, . . . ,M. Then, the LASSO

estimated vector for the m-th class is given by:

β̂m = arg min
βm



















N
∑

i=1

(yi,m − ε0,m − β
T

mxi)
2 + λm

W
∑

j=1

|β j,m|



















, (4)

where m = 1, . . . ,M, {yi,m}
N
i=1
∈ {−1, 1}, ε0,m and λm are the bias

and the penalized parameter for the m-th class, respectively.

Note that β̂m is solely based on the training data set.

Since L1 regularization tends to force some of the weights

in {β j,m}
W
j=1

for the m-th class to exactly zero, LASSO can be

used for feature selection. Specifically, the conventional GO

vectors obtained from Eq. 1 are used for training multi-label

one-vs-rest LASSO classifiers. For an M-class problem (here

M is the number of subcellular locations), M independent bi-

nary LASSO classifiers are trained, one for each class. Af-

ter training, the union of those GO terms whose weights are

nonzero in any one of the M classes constitutes the selected fea-

tures. Using LASSO can impressively remove those irrelevant

features (or GO terms). Suppose S out of the W weights are

nonzero, their corresponding GO terms are called essential GO

terms. In fact, using the benchmark dataset described in Sec-

tion 7.1, we found 8110 distinct GO terms from ProSeq-GO.

Then, through the proposed multi-label LASSO feature selec-

tor, 87 out of 8110 GO terms are selected. Therefore, we have

S = 87 and T = 8110. This means that only around 1% of the

GO terms are essential GO terms and that the weights for about

99% of the 8110 GO terms are exactly zero.

6. Multi-label LASSO Human Protein Predictor

6.1. Construction of GO-HIB Vectors

After feature selection by LASSO, the original W-dim fea-

ture vectors become S -dim vectors and the remaining GO terms

have been removed. However, because the GO terms in each

taxonomy (cellular components, molecular functions or biolog-

ical processes) are organized within a directed acyclic graph

(DAG), it is conducive to make full use of the relations between

4



the essential and the remaining GO terms. Second, because of

the structural relationships among the essential GO terms, the

essential GO terms are not independent with each other, and

hence taking the hierarchical relationships of GO terms into

consideration is helpful for the prediction. More importantly,

it is likely that some novel proteins associate with non-essential

GO terms only; therefore, the relationships between essential

and non-essential GO terms should also be considered.

These properties of GO terms inspire us to develop a feature

extraction method that makes use of the depth-dependent GO

hierarchical information. Specifically, given the t-th query pro-

tein Qt, then its hierarchical information based (HIB) feature

vector is constructed as follows:

qHIB
t = [ct,1, . . . , ct,s, . . . , ct,S ]T, (5)

where S is the number of essential GO terms obtained in Sec-

tion 5.2 and

ct,s =
∑

k∈Kt

ft,k[ds,k = 0] +max
k∈Kt

(

ft,k

2ds,k

)

[ds,k 6= 0], (6)

where [·] is the Iverson bracket, i.e., [P] = 1 if P is true and

[P] = 0 otherwise. In Eq. 6, Kt is the set of distinct GO terms

associated with Qt obtained by the procedures detailed in Sec-

tion 4, ft,k is the number of occurrences of the k-th GO term in

the GO-term set Kt, and ds,k is defined as:

ds,k = dep(GOs) − dep(LCA(GOs,GOk)), (7)

where GOs and GOk represent the s-th essential GO term se-

lected in Eq. 4 and the k-th GO term in the GO-term set Kt,

respectively; LCA(GOs,GOk) is the lowest common ancestor

(LCA) of GOs and GOk; dep(GOs) is the depth level of the GO

term GOs and dep(LCA(GOs,GOk)) is the depth level of the

LCA of GOs and GOk. The basic properties of GO depth in-

clude (1) the depth of the root GO term for each taxonomy is

1, (2) the depth of child terms is larger than their ancestors, and

(3) the more specific a GO term, the larger its depth.

Fig. 2 illustrates the working principle of Eq. 6 and Eq. 7. For

ease of reference, we label the GO terms from GO:0044699 to

GO:0006082 as A to F, as shown in Fig. 2. Here, GO term C

(GO:0044281, small molecule metabolic process), which be-

longs to biological processes, is an essential GO term and its

depth is 4 (suppose the depth of the root biological process

is 1). Assume that there is only one GO term, GO term F

(GO:0006082), associated with the t-th protein and this GO

term appears 3 times. Because GO term F is a child term of

GO term C, the LCA of these two terms is GO term C itself.

Then, according to Eq. 7, ds,k = 0; and thus ct,s = 3 + 0 = 3

in Eq. 6. On the other hand, if we only found one GO term,

GO term D (GO:0044763), for the t-th query protein with oc-

currence of frequency 3. From Fig. 2, we can see that the LCA

of GO term D and GO term C is GO term A (GO:0044699),

whose depth is 2. Then, according to Eq. 7, ds,k = 4 − 2 = 2;

and thus ct,s = 0+ 3/22 = 0.75. In this case, we can see that the

ct,s is smaller for GO term D than for GO term F, despite with

the same frequency occurrences. This is also consistent with

GO:0044281 

GO:0006082 GO:0072338 

GO:0044710 

GO:0044763 

GO:0044699 

Essential  

GO term 

dep = 2 

dep = 3 

dep = 5 

dep = 4 

A 

B 

C 

E F 

D 

Figure 2: An example demonstrating the working principle of Eq. 6 and Eq. 7.

dep: the depth of the corresponding GO term. Here, GO:0044281 (in yellow)

is the essential GO term. The blue arrows represent the ‘is-a’ relationship. For

ease of reference, we label the GO terms from GO:0044699 to GO:0006082 as

A to F.

our observation that GO term F has a closer relationship with

GO term C than with GO term D.

The rationale for Eq. 6 and Eq. 7 is that if the k-th GO term

of Qt is a child term of the s-th essential GO term, the for-

mer should be regarded as equivalent to the latter, because the

former contributes as significantly as the latter to the predic-

tions. In this case, LCA(GOs,GOk) in Eq. 7 is GOs and thus

ds,k = 0 in Eq. 6. Therefore, only the first term of Eq. 6 has

contribution to ct,s. If the k-th GO term of Qt is not a child

term of the s-th essential GO term, LCA(GOs,GOk) in Eq. 7

is not GOs and thus ds,k 6= 0 in Eq. 6. Thus, only the second

term of Eq. 6 has contribution. The contribution of the k-th GO

term to the prediction will diminish exponentially fast when the

depth distance between the two GO terms increases. Since our

previous studies [61, 34] have demonstrated the superiority of

term-frequency, we incorporate this information ( ft,k) in Eq. 6.

Because those essential GO terms and their child terms (in

this case ds,k = 0) play far more important roles than the re-

maining GO terms, to highlight the significance of the former

and suppress that of the latter, we fully count the frequency of

the former whereas only selects the maximum weighted fre-

quency of the latter. By accumulating the contributions of ev-

ery GO term of the query protein to each essential GO term, the

depth-dependent GO hierarchical information is incorporated

in our new feature vectors represented in Eq. 5.

6.2. Multi-label LASSO for Classification

Besides feature selection, LASSO can also be used for classi-

fication. Compared to using LASSO for feature selection, one

of the differences is that we use a new method introduced in

Section 6.1 to generate the feature vectors for training multi-

label one-vs-rest LASSO classifiers. Specifically, given the t-th

query protein Qt, the feature vector xHIB
t ∈ RS is defined in

Eq. 5, where S < T is the number of essential GO terms. Simi-

larly, for an M-class problem (here M is the number of subcel-

lular locations), M independent binary LASSO classifiers are
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trained, one for each class. Then, the score of the m-th LASSO

is:

sm(Qt) = β̃
T

mxHIB
t , (8)

where β̃m is given by Eq. 4 with xi replaced by xHIB
i

and with

W replaced by S .

To predict the subcellular locations of datasets containing

both single-label and multi-label proteins, a decision scheme

for multi-label LASSO classifiers should be used. In this paper,

we used the decision scheme described in mGOASVM [61].

In this scheme, the predicted subcellular location(s) of the i-th

query protein are given by:

M∗(Qt) =



















⋃M
m=1 {m : sm(Qt) > 0}, where ∃ sm(Qt) > 0 ;

arg maxM
m=1

sm(Qt), otherwise.
(9)

For ease of presentation, we refer to the proposed predictor

as mLASSO-Hum. The flowchart of mLASSO-Hum is shown

in Fig. 1.

7. Experiments

7.1. Datasets

In this paper, a recent human benchmark dataset [51] was

used to evaluate the performance of mLASSO-Hum. The hu-

man dataset was created from Swiss-Prot 55.3, which is a pub-

licly accessible protein database5. This benchmark dataset is

downloadable from the hyperlink in the mLASSO-Hum server.

The human dataset contains 3106 human proteins distributed in

14 locations. Of the 3106 proteins, 2580 belong to one sub-

cellular location, 480 belong to two locations, 43 belong to

three locations, 3 belong to four locations and none to five or

more locations. This means that the number of locative proteins

[27, 61] is (2580×1+480×2+43×3+3×4+
∑14

m=5 0×m = 3681).

These locative proteins are distributed as follows: 77 in centro-

some, 817 in cytoplasm, 79 in cytoskeleton, 229 in endoplasmic

reticulum, 24 in endosome, 385 in extracellular, 161 in Golgi

apparatus, 77 in lysosome, 24 in microsome, 364 in mitochon-

drion, 1021 in nucleus, 47 in peroxisome, 354 in plasma mem-

brane and 22 in synapse. The sequence identity of the dataset

was cut off at 25%.

The breakdown of the human dataset is listed in Fig. 3. As

can be seen, the majority (79.9%) of the human proteins are lo-

cated in cytoplasm, nucleus, extracellular, mitochondrion and

plasma membrane while proteins located in the rest 9 subcellu-

lar locations totally account only around 20%. This means that

the dataset is multi-class distributed and imbalanced.

7.2. Performance Metrics

Compared to traditional single-label classification, multi-

label classification requires more sophisticated performance

metrics to better reflect the multi-label capabilities of classi-

fiers. These measures include Accuracy, Precision, Recall, F1-

score (F1) and Hamming Loss (HL). Specifically, denote L(Qi)

5http://www.uniprot.org/
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Figure 3: Breakdown of the human dataset. The number of proteins shown

in each subcellular location represents the number of ‘locative proteins’ [27,

61]. Here, 3106 actual proteins have 3681 locative proteins. The plant proteins

are distributed in 14 subcellular locations, including centrosome, cytoplasm,

cytoskeleton, endoplasmic reticulum, endosome, extracellular, Golgi apparatus,

lysosome, microsome, mitochondrion, nucleus, peroxisome, plasma membrane

and synapse.

andM(Qi) as the true label set and the predicted label set for

the i-th protein Qi (i = 1, . . . ,N), respectively.6

Then the five measurements are defined as follows:

Accuracy =
1

N

N
∑

i=1

(

|M(Qi) ∩ L(Qi)|

|M(Qi) ∪ L(Qi)|

)

(10)

Precision =
1

N

N
∑

i=1

(

|M(Qi) ∩ L(Qi)|

|M(Qi)|

)

(11)

Recall =
1

N

N
∑

i=1

(

|M(Qi) ∩ L(Qi)|

|L(Qi)|

)

(12)

F1 =
1

N

N
∑

i=1

(

2|M(Qi) ∩ L(Qi)|

|M(Qi)|+|L(Qi)|

)

(13)

HL =
1

N

N
∑

i=1

(

|M(Qi) ∪ L(Qi)|−|M(Qi) ∩ L(Qi)|

M

)

(14)

where |·| means counting the number of elements in the set

therein and ∩ represents the intersection of sets. An intuitive

description of multi-label metrics can also be found in Eq. 16

of [77].

As can be seen from Eq. 14, when all of the proteins are

correctly predicted, i.e., |M(Qi)∪L(Qi)|= |M(Qi)∩L(Qi)| (i =

1, . . . ,N), then HL = 0; whereas, other metrics will be equal to

1. On the other hand, when the predictions of all proteins are

completely wrong, i.e., |M(Qi) ∪ L(Qi)|= M and |M(Qi) ∩

6In our case, N = 3106 for the human dataset.
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L(Qi)|= 0, then HL = 1; whereas, other metrics will be equal

to 0.

Accuracy, Precision, Recall and F1 indicate the classification

performance. The higher the measures, the better the prediction

performance. Among them, Accuracy is the most commonly

used criteria. F1-score is the harmonic mean of Precision and

Recall, which allows us to compare the performance of classi-

fication systems by taking the trade-off between Precision and

Recall into account. The Hamming Loss (HL) [85, 86] is differ-

ent from other metrics. The lower the HL, the better the predic-

tion performance.

Two additional measurements [27, 61] are often used in

multi-label subcellular localization prediction. They are overall

locative accuracy (OLA) and overall actual accuracy (OAA).

Then, OLA is given by:

OLA =
1

∑N
i=1|L(Qi)|

N
∑

i=1

|M(Qi) ∩ L(Qi)|, (15)

and the overall actual accuracy (OLA) is:

OAA =
1

N

N
∑

i=1

∆[M(Qi),L(Qi)] (16)

where

∆[M(Qi),L(Qi)] =

{

1 , ifM(Qi) = L(Qi)

0 , otherwise.
(17)

According to Eq. 15, a locative protein is considered to be

correctly predicted if any of the predicted labels matches any

labels in the true label set. On the other hand, Eq. 16 suggests

that an actual protein is considered to be correctly predicted

only if all of the predicted labels match those in the true label

set exactly. For example, for a protein coexist in, say, three

subcellular locations, if only two of the three are correctly pre-

dicted, or the predicted result contains a location not belonging

to the three, the prediction is considered to be incorrect. In

other words, when and only when all the subcellular locations

of a query protein are exactly predicted without any overpre-

diction or underprediction, can the prediction be considered as

correct. Therefore, OAA is a more stringent measure as com-

pared to OLA. OAA is also more objective than OLA. This is

because locative accuracy is liable to give biased performance

measure when the predictor tends to over-predict, i.e., giving

large |M(Qi)| for manyQi. In the extreme case, if every protein

is predicted to have all of the M subcellular locations, accord-

ing to Eq. 15, the OLA is 100%. But obviously, the predictions

are wrong and meaningless. On the contrary, OAA is 0% in this

extreme case, which definitely reflects the real performance.

Among all the metrics mentioned above, OAA is the most

stringent and objective. This is because if some (but not all) of

the subcellular locations of a query protein are correctly predict,

the numerators of the other five measures (including Accuracy,

Precision, Recall, F1 and OLA) are non-zero, whereas the nu-

merator of OAA in Eq. 16 is 0 (thus contribute nothing to the

frequency count).

In statistical prediction, leave-one-out cross validation

(LOOCV) is considered to be the most rigorous and bias-free

method [87]. Hence, LOOCV was used to examine the perfor-

mance of mLASSO-Hum.

8. Results and Discussions

8.1. Statistical Analysis of the Essential GO Terms

Fig. 4(a) shows the statistics of the 87 essential GO terms

selected by mLASSO-Hum. As can be seen, among the 87 es-

sential GO terms, about half (42) of them belong to the cellular

component category, 25 belong to biological process and the

remaining 20 belong to molecular function. This suggests that

not only GO terms from cellular components contributes to the

prediction of mLASSO-Hum, those from the other categories

also play important roles in determining the subcellular local-

ization of proteins.

Fig. 4(b) shows the the categorical breakdown of essential

GO terms in each subcellular location. As can be seen, for a

particular subcellular location, among the 87 unique essential

GO terms, only around 30∼50 essential GO terms simultane-

ously determine where a protein resides. For example, for cen-

trosome, 37 (= 22 + 7 + 8) essential GO terms are contributive

to the final decisions, while the remaining 50 GO terms have no

roles in determining whether a protein belongs to centrosome

or not. Besides, a large portion (around half) of the essential

GO terms belong to cellular components, e.g., 22 out of 37 in

centrosome, 24 out of 39 in cytoplasm, etc. This is also con-

sistent with the percentage in the statistics of overall essential

GO terms shown in Fig. 4(a). The results indicate that cellu-

lar component GO terms contribute more to the final prediction

than those GO terms from the other two categories. Another

observation is that essential GO terms for one subcellular loca-

tion overlap with those for another subcellular location. This is

because the total sum of the essential GO terms of all the sub-

cellular locations is much larger than 87, the total number of

unique essential GO terms.

8.2. Comprehensive Networks between Essential GO Terms

and SCLs

To understand the relationship between the essential GO

terms and the subcellular locations, we have drawn a network

connecting the 14 subcellular locations and the 87 essential

GO terms in Fig. 5. Small green dots represent the GO terms

and the large dots in different colors represent the 14 subcel-

lular locations. A line connecting an essential GO term and

a subcellular location denotes that the GO term contributes to

the prediction of the subcellular location. For example, the

first 7 GO terms (GO:0007275, GO:0006915, GO:0006355,

GO:0005643, GO:0005524, GO:0048471 and GO:0004674)

are only contributive to cytoplasm, indicating whether a pro-

tein belongs to cytoplasm or not; GO:0005509 can only indi-

cates whether a protein is located in endoplasmic reticulum or

not. On the other hand, GO:0005815 is indicative for both cen-

trosome and cytoskeleton; GO:0005635 contributes to the pre-

diction of both cytoplasm and nucleus. More aggressively, the
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Figure 4: Information of the essential GO terms for the human dataset, including (a) the statistics of essential GO terms and (b) the categorical breakdown of

the essential GO terms in each subcellular location. CEN: centrosome; CYT: cytoplasm; CYK: cytoskeleton; ER: endoplasmic reticulum; END: endosome; EXT:

extracellular; GOL: Golgi apparatus; LYS: lysosome; MIC: microsome; MIT: mitochondrion; NUC: nucleus; PER: peroxisome; PM: plasma membrane; SYN:

synapse.

last several GO terms, such as GO:0016787, GO:0046872 and

GO:0005515, may contribute to the prediction of all of the 14

subcellular locations. On the contrary, if there is no line con-

necting an essential GO term with a particular subcellular loca-

tion, then this GO term cannot indicate any information about

the presence or absence of a protein in this particular subcellu-

lar location.

In summary, these essential GO terms are indicators of

whether a protein resides in one or more subcellular location(s)

or not.

8.3. Location-Specific Significance of Essential GO Terms

To quantitatively demonstrate how and to what extent essen-

tial GO terms contribute to the prediction of subcellular loca-

tions, Fig. 6 shows the distributions of the non-zero weights in

{βs,1}s∈S defined in Eq. 4 for the essential GO terms in centro-

some, where S is a set of indexes corresponding to non-zero

weights. For simplicity, βs,1 is abbreviated as β in the figure.

Specifically, in Fig. 6, there are 37 GO terms whose weights (β)

are nonzero, among which, there are 5 positive weights and 32

negative weights. This means that a majority of the weights are

negative.

According to Eq. 8 and Eq. 9, the presence of a positive

weight provides a piece of evidence that the query protein lo-

cates in the corresponding subcellular location; on the contrary,

the presence of a negative weight adds a piece of evidence that

the query protein does not belongs to the particular subcellu-

lar location. This suggests that the presence of one or more

of GO:0008543, GO:0005815, GO:0005813, GO:0005515 and

GO:0016605 indicates that the query protein belongs to centro-

some; on the other hand, the presence of any of the other 32 GO

terms shown in Fig. 6 suggests that the query protein does not

belong to centrosome. Moreover, the larger the β, the higher the

confidence the query protein belongs to or does not belong to a
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GO:0015031
GO:0016020
GO:0016021
GO:0000166
GO:0016605
GO:0016740
GO:0016787
GO:0030529
GO:0003723
GO:0044281
GO:0046872
GO:0005179
GO:0055114
GO:0005515
GO:0005576
GO:0005578
GO:0005615
GO:0005634
GO:0005654
GO:0005694
GO:0005730
GO:0005737
GO:0005739
GO:0005764
GO:0005777
GO:0005783
GO:0005794
GO:0005813
GO:0005815
GO:0005829
GO:0005840
GO:0005886
GO:0006351
GO:0006810
GO:0007165
GO:0008152
GO:0008543



1

Figure 6: The distributions of non-zero weights {βs,1}s∈S defined in Section 6.2

for the essential GO terms in centrosome, where S is a set of indexes corre-

sponding to non-zero weights. Figures for the rest 13 subcellular locations can

be found in supplementary materials Fig. S1(b)∼Fig. S1(n) in supplementary

materials. For simplicity, βs,1 is abbreviated as β in the figures.

particular subcellular location. For example, both GO:0005815

and GO:0016605 are indicative of centrosome; however, the

former provide higher confidence than the latter for the indi-

cation. On the contrary, the presence of GO:0016020 provides

stronger evidence than that of GO:0005829 for concluding that

the query protein does not belong to centrosome. Similar con-

clusions can be drawn for the remaining 13 subcellular loca-

tions in Fig. S1(b)∼Fig. S1(n).

8.4. Comparing with State-of-the-Art Predictors

Table 1 compares the performance of mLASSO-Hum against

several state-of-the-art multi-label predictors on the human
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Figure 5: A network showing the relationship between the essential GO terms and each subcellular location. Small green dots on the right represent the GO terms

and the large dots in different colors on the left represent the 14 subcellular locations. A line connecting an essential GO term and a subcellular location denotes that

the GO term contributes to the prediction of the subcellular location. On the contrary, if there is no line connecting an essential GO term with a particular subcellular

location, then this GO term cannot indicate any information about the presence or absence of a protein in this particular subcellular location. Starting from the top

green dot to the bottom green dot in clockwise direction, the degree of overlapping among the lines gradually changes from low to high, suggesting that the number

of subcellular locations to which an essential GO term contributes changes from small to large. See the caption of Fig. 4 for the acronyms of subcellular locations.
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Table 1: Comparing mLASSO-Hum with state-of-the-art multi-label predictors based on leave-one-out cross-validation on the human dataset. “–” means the

corresponding references do not provide the related metrics. Note that OAA is the most stringent and objective among all the metrics.

Label Subcellular Location
LOOCV Locative Accuracy (LA)

iLoc-Hum [58] mGOASVM [61] mLASSO-Hum

1 Centrosome 56/77 = 0.727 64/77 = 0.831 56/77 = 0.727

2 Cytoplasm 561/817 = 0.687 683/817 = 0.836 703/817 = 0.861

3 Cytoskeleton 27/79 = 0.342 44/79 = 0.557 31/79 = 0.392

4 Endoplasmic reticulum 166/229 = 0.725 193/229 = 0.843 188/229 = 0.821

5 Endosome 1/24 = 0.042 9/24 = 0.375 3/24 = 0.125

6 Extracellular 325/385 = 0.844 344/385 = 0.894 327/385 = 0.849

7 Golgi apparatus 99/161 = 0.615 131/161 = 0.814 133/161 = 0.826

8 Lysosome 56/77 = 0.727 71/77 = 0.922 73/77 = 0.948

9 Microsome 7/24 = 0.292 18/24 = 0.750 1/24 = 0.042

10 Mitochondrion 284/364 = 0.780 339/364 = 0.931 343/364 = 0.942

11 Nucleus 918/1021 = 0.899 931/1021 = 0.912 929/1021 = 0.910

12 Peroxisome 20/47 = 0.426 43/47 = 0.915 41/47 = 0.872

13 Plasma membrane 277/354 = 0.783 288/354 = 0.814 282/354 = 0.797

14 Synapse 12/22 = 0.546 12/22 = 0.546 4/22 = 0.182

Overall Actual Accuracy (OAA) 2118/3106 = 0.682 2251/3106 = 0.725 2324/3106 = 0.748

Overall Locative Accuracy (OLA) 2809/3681 = 0.763 3170/3681 = 0.861 3114/3681 = 0.846

Accuracy – 0.821 0.833

Precision – 0.851 0.874

Recall – 0.888 0.879

F1 – 0.853 0.862

HL – 0.029 0.027

benchmark dataset. To the best of our knowledge, iLoc-Hum

[27] is the best state-of-the-art predictor specializing for pre-

dicting multi-label human protein subcellular localization. Be-

cause mGOASVM [61] is not trained for predicting human

proteins, we retrained it on the human dataset so that the re-

sults can be compared with those obtained from mLASSO-

Hum. All of the predictors use the information of GO terms

as features. From the classification perspective, iLoc-Hum use

a multi-label KNN classifier; mGOASVM [61] uses a multi-

label SVM classifier; and the proposed mLASSO-Hum uses a

multi-label LASSO classifier.

As shown in Table 1, mLASSO-Hum performs significantly

better than iLoc-Hum. The OLA and OAA of mLASSO-Hum

are 8% (absolute) and 6% higher than those of iLoc-Hum, re-

spectively. When comparing with mGOASVM, the OAA of

mLASSO-Hum is more than 2% (absolute) higher than that of

mGOASVM, although it is a bit lower than that of mGOASVM

in terms of OLA and Recall. In terms of Accuracy, Precision,

F1 and HL, mLASSO-Hum performs better than mGOASVM.

The results suggest that the proposed mLASSO-Hum performs

better than the state-of-the-art predictors. The individual loca-

tive accuracies of mLASSO-Hum are remarkably higher than

that of iLoc-Hum, and are comparable to mGOASVM.

9. Discussion

We observe that among the essential GO terms, some GO

terms have much larger absolute weights (i.e. |βs,m|) than the

rest, suggesting that they play more significant roles in making

the predictions. Specifically, if the weight of an essential GO

term for a particular subcellular location is larger than a certain

positive threshold, it has high confidence to indicate that the

query protein resides in this subcellular location; on the con-

trary, if the weight is smaller than a certain negative threshold,

it has high confidence to indicate that the query protein does

not belong to the corresponding subcellular location. We refer

the former GO terms and the latter GO terms to as significantly

essential positive GO terms (SEPos GO terms) and significantly

essential negative GO terms (SENeg GO terms), respectively.

Lists of the SEPos GO terms and SENeg GO terms for all

of the 14 human subcellular locations can be found in Table 2.

For ease of comparison, we have also listed the key GO terms,

which are defined as those GO terms whose names are exactly

the same as the names of subcellular locations according to the

GO annotations. Note that there are no key GO terms for ex-

tracellular and microsome. As can be seen, there are around

1∼3 SEPos GO terms for each subcellular location, whose pres-

ences indicate high confidence of residing in the corresponding

subcellular location. More importantly, Table 2 shows that the

SEPos GO term(s) selected by mLASSO-Hum for a particular

subcellular location incorporate the corresponding key GO term

10



Table 2: Significantly essential positive and negative GO terms for the 14 human subcellular locations. Key GO terms are those GO terms whose names are exactly

the same as the names of subcellular locations according to the GO annotations; SEPos GO terms: significantly essential positive GO terms, whose weights are

larger than 0.1; SENeg GO terms: significantly essential negative GO terms, whose weights are smaller than −0.1. “–” means that there is no GO term whose name

is exactly the same as the name of the corresponding subcellular location in the GO annotations.

Label Subcellular Location Key GO Terms SEPos GO Terms SENeg GO Terms

1 Centrosome GO:0005813

GO:0005813, GO:0016020, GO:0016021, GO:0016787,

GO:0005815 GO:0044281, GO:0046872, GO:0005615

GO:0005634 , GO:0005737 , GO:0005739

2 Cytoplasm GO:0005737 GO:0005737

GO:0016020,GO:0016021,GO:0005615,

GO:0005634 , GO:0005739,GO:0005764,

GO:0005783,GO:0005794,GO:0005813,

GO:0005856

3 Cytoskeleton GO:0005856 GO:0005856

GO:0016020,GO:0016021,GO:0016787,

GO:0044281,GO:0046872,GO:0005615,

GO:0005634,GO:0005737,GO:0005739

4 Endoplasmic reticulum GO:0005783

GO:0005783, GO:0016020,GO:0046872,GO:0005578

GO:0005789 GO:0005615,GO:0005634,GO:0005730,

GO:0005737,GO:0005739,GO:0005764,

GO:0005856

5 Endosome GO:0005768 GO:0005768

GO:0016020,GO:0016021,GO:0016787,

GO:0044281,GO:0046872,GO:0005578,

GO:0005615,GO:0005634,GO:0005737,

GO:0005739,GO:0005856

6 Extracellular —

GO:0005578, GO:0015031,GO:0016020,GO:0016021,

GO:0005615 GO:0044281,GO:0005634,GO:0005737,

GO:0005739,GO:0005856,GO:0008543

7 Golgi apparatus GO:0005794

GO:0000139, GO:0016020,GO:0016021,GO:0044281,

GO:0005794 GO:0046872,GO:0005615,GO:0005634,

GO:0005737,GO:0005739,GO:0005764,

GO:0005783,GO:0005856

8 Lysosome GO:0005764

GO:0005764, GO:0016020,GO:0016021,GO:0046872,

GO:0005765 GO:0005615,GO:0005634,GO:0005737,

GO:0005739,GO:0005783,GO:0005856

9 Microsome — GO:0043231

GO:0016020,GO:0016021,GO:0016787,

GO:0046872,GO:0005578,GO:0005615,

GO:0005634,GO:0005737,GO:0005739,

GO:0005856

10 Mitochondrion GO:0005739 GO:0005739

GO:0016020,GO:0016021,GO:0016787,

GO:0005615,GO:0005634,GO:0005737,

GO:0005783,GO:000585

11 Nucleus GO:0005634

GO:0031965, GO:0016020,GO:0016021,GO:0005615,

GO:0005634, GO:0005737,GO:0005739,GO:0005783,

GO:0005730 GO:0005840

12 Peroxisome GO:0005777 GO:0005777

GO:0016020,GO:0016021,GO:0016787,

GO:0046872,GO:0005615,GO:0005634,

GO:0005737,GO:0005739,GO:0005856

13 Plasma membrane GO:0005886 GO:0005886

GO:0015031,GO:0016740,GO:0046872,

GO:0005578,GO:0005615,GO:0005634,

GO:0005737,GO:0005739,GO:0005764,

GO:0005783,GO:0005789,GO:0005856

14 Synapse GO:0045202

GO:0045202, GO:0016020,GO:0016021,GO:0016787,

GO:0045211 GO:0046872,GO:0005615,GO:0005634,

GO:0005737,GO:0005739,GO:0005856
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(if any). For example, the SEPos GO terms for centrosome in-

clude its key GO term “GO:0005813”; the SEPos GO term for

cytoplasm is the same as its key GO term “GO:0005737”. This

suggests that our experimental results are consistent with GO

annotations, i.e., the key GO terms play more significant roles

in determining the final predictions of mLASSO-Hum. There

is one exception—GO:0008543, which has been removed from

the list of SEPos GO terms although its weights are larger than

0.1. This is because it appears to act as a SEPos GO term in

13 subcellular locations, which in fact has lost the indicative

functions of SEPos GO term for localization. We have found

that only less than 1% (24 out of 3106) proteins have this GO

term, which, despite its larger weights, will have limited contri-

butions to the final decisions.

Table 2 also lists the SENeg GO terms for the 14 subcel-

lular locations. The presence of these SENeg GO terms can

be used to indicate that the query protein is not located in the

corresponding subcellular location. Comparing the weights of

these SENeg GO terms and the SEPos GO terms reveals the de-

gree of exclusiveness between different subcellular locations,

namely the possibility that a protein cannot co-localize in two

or more particular subcellular locations. For example, in the

Row 10 and 13 of Table 2, we note that “GO:0005739” is a SE-

Pos GO term for mitochondrion, whereas it is a SENeg GO term

for plasma membrane; “GO:0005886” is a SEPos GO term for

plasma membrane, whereas its direct ancestor “GO:0016020”

is a SENeg term for mitochondrion.7 This means that a pro-

tein is highly likely to not co-localize in both mitochondrion

and plasma membrane. This is actually the case in the human

benchmark dataset, where only one out of the 3106 proteins

co-localizes in mitochondrion and plasma membrane.

Moreover, from the list of SENeg GO terms, we can find

that SENeg GO terms for a particular subcellular location are

likely to be overlapped with those SEPos GO terms for other

subcellular locations. This means that some GO terms may

be indicative for a query protein to reside in a subcellular lo-

cation, whereas simultaneously they are indicative of not re-

siding in other subcellular location. In other words, these es-

sential GO terms are not favorable to making multi-label deci-

sions. This is understandable because the percentage (17%, 526

out of 3106) of multi-label proteins is remarkably lower than

that (83%) of single-label proteins. Nevertheless, this does not

mean that mLASSO-Hum cannot make predictions on multi-

label proteins, because the final prediction is based on the over-

all significance of all of the essential GO terms. For example,

in Fig. S1(b) of supplementary materials, the weight (0.33) for

“GO:0005737” is even larger than the absolute weight (|−0.19|)

for “GO:0005634” (the key GO term of nucleus); and in Fig.

S1(k), the weight (0.28) for “GO:0005634” is also larger than

the absolute weight (|−0.16|) for “GO:0005737”. This means

that the presences of both “GO:0005634” and “GO:0005737”

7From the QuickGO [88] server, we can see that “GO:0005886”

plasma membrane is a child term of “GO:0016020” (membrane); hence,

“GO:0016020” which is a SENeg term for mitochondrion means that the pres-

ence of “GO:0005886” will also indicate that the query protein does not locates

in mitochondrion.

for a query protein may still indicate that it locates in both cy-

toplasm and nucleus.

10. Conclusions

This paper proposes an interpretable multi-label predictor,

namely mLASSO-Hum, which is based on a depth-dependent

GO hierarchical information-based method and a multi-label

LASSO classifier to predict subcellular localization of both

single- and multi-location homo sapien proteins. Specifically,

given a query protein, a GO frequency vector is constructed by

exploiting the information in the ProSeq-GO database. By us-

ing the one-vs-rest LASSO classifiers, 87 out 8,000+ GO terms

are selected. Based on these 87 essential GO terms, a depth-

dependent GO hierarchical information-based method is pro-

posed to incorporate the information from other non-essential

GO terms into the feature vectors, which are again presented to

multi-label LASSO classifiers for classification.

The key contributions of this paper can be summarized as

follows: (1) Our experimental results are consistent with bio-

logical annotations, i.e., the key GO terms have higher weights

in determining the corresponding subcellular location; (2) not

only GO terms from cellular component category contributes

to the prediction, but also those from the categories of molecu-

lar functions and biological processes; (3) by using mLASSO-

Hum, we can obtain a sparse solution, and through this sparse

solution, we can easily see which GO terms play more sig-

nificant roles in indicating whether a query protein belongs to

a certain subcellular location or not; (4) by incorporating the

depth-dependent GO transferring information, the performance

of mLASSO-Hum is significantly better than existing state-of-

the-art multi-label human-protein predictors.

Experimental results on a recent human benchmark dataset

demonstrate that mLASSO-Hum performs significantly bet-

ter than existing state-of-the-art multi-label human-protein pre-

dictors. To enhance the impacts of computational methods

[89, 90], we have provided a web-server for mLASSO-Hum

available online at http://bioinfo.eie.polyu.edu.hk/

mLASSOHumServer/.
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