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Abstract
We consider 1 + 1 dimensional SU(N) gauge theory coupled to a multiplet of massive Dirac

fermions transforming in the adjoint representation of the gauge group. The only global symmetry

of this theory is a U(1) associated with the conserved Dirac fermion number, and we study the

theory at variable, non-zero densities. The high density limit is characterized by a deconfined Fermi

surface state with Fermi wavevector equal to that of free gauge-charged fermions. Its low energy

fluctuations are described by a coset conformal field theory with central charge c = (N2 − 1)/3

and an emergent N = (2, 2) supersymmetry: the U(1) fermion number symmetry becomes an

R-symmetry. We determine the exact scaling dimensions of the operators associated with Friedel

oscillations and pairing correlations. For N > 2, we find that the symmetries allow relevant

perturbations to this state. We discuss aspects of the N →∞ limit, and its possible dual description

in AdS3 involving string theory or higher-spin gauge theory. We also discuss the low density limit

of the theory by computing the low lying bound state spectrum of the large N gauge theory

numerically at zero density, using discretized light cone quantization.

∗ On leave from Department of Physics and Center for Theoretical Science, Princeton University.
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I. INTRODUCTION

An important aim of many applications of the AdS/CFT correspondence to condensed

matter physics is the description of quantum matter at variable, non-zero densities. Here

‘density’ refers to the conserved charge, Q, of a global U(1) symmetry of the underlying

quantum field theory in d spatial dimensions. Our interest here will be restricted to zero

temperature states which do not break translational symmetry or the global U(1) symmetry.

Thus, we will not consider ‘solids,’ ‘charge density waves’ or ‘superfluids.’ In the traditional

phases of condensed matter physics, the only remaining possibilities for non-zero density

states are the Landau Fermi liquid in dimension d ≥ 2, and the Luttinger liquid in dimension

d = 1. Both these states are characterized by a Fermi momentum, kF , whose value obeys

the Luttinger relation: the volume enclosed by the (d−1)-dimensional surface in momentum

space at kF is proportional to the density, Q/Ld, with the same proportionality constant as

that for free fermions (L is the spatial size which we will take to infinity).

Any other realization of quantum matter whose density can be varied continuously by

an applied chemical potential can generically be referred to as a ‘strange metal.’ A very

promising candidate of a strange metal is a model of fermions at non-zero density coupled

to an Abelian or non-Abelian gauge field. The non-Fermi liquid effects are strongest in

d = 2, and this model has been the focus of much study in the condensed matter literature

[1–13]. The theory scales to strong coupling, and a perturbative expansion in the gauge

coupling constant cannot be used to analyze the leading infrared behavior. The flavor large

Nf expansion also leads to difficulty: an expansion in the inverse number of fermion flavors

cannot be reduced to counting fermion loops because of infrared divergences [9, 10].

Another possible approach is to take the gauge-charged fermions in the adjoint represen-

tation of the gauge group, and to then take the ‘t Hooft large N limit for the SU(N) gauge

group. In this case, infrared divergences do not spoil the naive counting in powers of N , and

so even the non-zero density case has a 1/N expansion controlled by the genus of the surface

defined by a Feynman graph, as in all matrix models [14]. However, one is then left with the

generally intractable task of summing all graphs with a given genus. For certain supersym-

metric gauge theories, such matrix field theories can, in principle, be solved in the large N

limit by the AdS/CFT correspondence [15–17]. Studies of such finite density models by the

AdS/CFT correspondence [18–35] have so far only provided a rather incomplete picture of

the non-zero density quantum state. The boundary theory has density, Q/Ld, which scales

as N2, and essentially all of this density is associated in the bulk with degrees of freedom

which are beyond the infrared horizon, with an unknown fate. Under appropriate parameter

regimes, gauge-invariant probe fermions (‘mesinos’) can acquire a Fermi surface; however

such a Fermi surface is only associated with a density of order unity, and is incidental to the

physics of the non-Fermi liquid state [36–41]. These probe Fermi surfaces are analogous to

conduction electron Fermi surfaces in the ‘fractionalized Fermi liquid’ state of Kondo lattice

[42, 43], and do not yield much information on the underlying non-Fermi liquid state. In
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certain uncontrolled computations, all of the boundary density Q/Ld can be associated with

visible Fermi surfaces in the bulk [44–49], but then the resulting state is a Fermi liquid,

although an interesting non-Fermi liquid state seems to have been obtained in recent work

[49].

In an attempt to shed light on the difficult question of the fate of the ‘hidden’ matter of

density proportional to N2, this paper will examine the problem of adjoint Dirac fermions,

at non-zero density, coupled to a SU(N) gauge field in 1 + 1 dimensions, i.e. for d = 1. We

will show that a number of exact results can be obtained for general N , which we hope will

help elucidate the structure of the large N limit of such matrix field theories.

We consider the theory with Lagrangian

L = Tr
[
Ψ̄
(
iγµDµ −m− µγ0

)
Ψ
]
− 1

2g2
YM

TrFµνF
µν (1.1)

with a SU(N) gauge field Aµ, gauge field strength Fµν , gauge coupling gYM , and adjoint

2-component complex Dirac fermions Ψ with mass m. The chemical potential µ couples to a

global U(1) charge which is distinct from all the SU(N) gauge charges. Note that this U(1)

is the only global symmetry of this Lagrangian. An analogous d = 1 model was examined

earlier for adjoint Majorana fermions [50–54]: in that case there is no global U(1) that can

be coupled to a chemical potential; it was found that the ground state had an energy gap to

all excitations, even at m = 0. As we will see here, just introducing a global U(1) by making

the fermions complex is sufficient to transform the physics, and a gapless compressible state

is obtained provided µ is large enough, or when µ = m = 0.

This theory is characterized by three energy scales, m, gYM
√
N , and µ. We will consider

first the “high density” limit µ� m, gYM
√
N , where we can begin the analysis with a Fermi

sea of free gauge-charged fermions. Next, we will consider the opposite “low density” limit,

where m� gYM
√
N while µ is comparable with m. Here we have to begin with an analysis

of the spectrum of the SU(N) singlet excitations of the zero density vacuum: this will be

carried out via the discrete light-cone quantization (DLCQ) [55, 56].

We begin with a description of our results for the high density theory. The theory of free

fermions has a Fermi wavevector related to the variable U(1) density Q/L by

Q

L
= (N2 − 1)

kF
π
. (1.2)

The N2 − 1 prefactor is a characteristic signature identifying this Fermi surface as that

of gauge-charged fermions; this Fermi surface is ‘hidden’ [39] because the single fermion

Green’s function is not gauge-invariant. The Luttinger relation implies that this value of

kF will not be renormalized [57]. We can analyze the infrared singular effects of the gauge

interactions by writing down a continuum theory obtained by linearizing the fermions about

the Fermi wavevector. Then, following a procedure standard in the condensed matter physics
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FIG. 1: Energy dispersion of the Dirac fermions as a function of momentum. The full line is the

zero of energy. The shaded region represents the occupied states. The filled circles are at ±kF .

literature, we can express the Dirac fermion in terms of its right-moving and left-moving

components at the Fermi surface

Ψ(x, t) ∼ 1√
2EF

(
u(−kF )ψR(x, t)eikF x + u(kF )ψL(x, t)e−ikF x

)
; (1.3)

where u(±kF ) are the standard Dirac basis spinors at the Fermi wavevectors; see (2.2) and

Appendix C for a more detailed explanation, and see figure 1 for an illustration of this

field redefinition. We will assume that ψL,R, and the gauge-fields, are slowly varying on

the spatial scale k−1
F , and so all spatial integrals of fields multiplied by non-zero integral

powers of e±ikF x vanish. (In condensed matter models, such theories are obtained in the

continuum limit of a lattice Hamiltonian, and in this context we are assuming that density

is incommensurate, and so there is no ‘umklapp’ scattering.) An immediate consequence is

that the resulting low energy theory has an emergent global U(1) conservation law: the total

number of left-moving and right-moving fermions are separately conserved. We will denote

these two U(1) charges as QL and QR respectively, with Q = QL + QR. This U(1) × U(1)

global symmetry will be crucial to our analysis. All operators appearing in the effective

low-energy Lagrangian must have both QL = 0 and QR = 0.

As we will describe in section II, the high-density, low energy theory so obtained is a two

dimensional conformal field theory (CFT), associated with the coset

SU(N)N ⊗ SU(N)N
SU(N)2N

(1.4)

of central charge

c =
N2 − 1

3
. (1.5)
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The two dimensions of the CFT are the euclidean continuation of the original 1 + 1 di-

mensions. With the requirement that the coset CFT have a global U(1)× U(1) symmetry,

it actually has the N = (2, 2) supersymmetry [59]. For N = 2, 3 the central charges are

c = 1, 8/3, and then the theories coincide with the N = 2 superconformal minimal models

[58] with c = 3k/(k+2) for k = 1, 16 (in the k = 16 case we actually find a certain consistent

truncation of the minimal model); the N ≥ 4 theories were only briefly considered earlier

[59]. For all N , the R-charge symmetry of these N = (2, 2) superconformal field theories

(SCFTs) is U(1) × U(1), and this provides the needed global symmetry; the SCFT has no

other global flavor symmetries. Note that this supersymmetry is an emergent symmetry at

low energies and high densities; it is not a symmetry of the underlying Lagrangian. It is also

remarkable that the diagonal R-charge is conjugate to the chemical potential, µ, as has been

assumed by fiat in many earlier higher dimensional studies of non-zero density quantum

matter.

These two dimensional SCFTs are our ‘strange metals.’ They are T = 0 phases with

variable density in models with only a global U(1) symmetry, but with a central charge

which can become much greater than unity. The density fluctuations associated with the

U(1) symmetry cannot be represented by a gapless scalar field which is decoupled from all

other sectors, as is the case for Luttinger liquids (exceptions for the N = 2, c = 1 case

will be discussed in detail below). We note that the ‘Bose metal’ phases found in multi-leg

ladder models in Refs. [60] also have c > 1 and only a global U(1) symmetry, although they

are not expected to be described by our SCFTs.

Armed with this construction of the SCFTs, we will compute exact scaling dimensions

of gauge-invariant operators. An important observable which is sensitive to the presence of

the underlying Fermi surface of the deconfined fermions is the Friedel oscillation in response

to a localized perturbation coupling to the density. Upon perturbing the Lagrangian (1.1)

via Limp = L+ λ δ(x)ρ(x, t), where the density operator

ρ ≡ Tr(Ψ̄γ0Ψ) = Tr

(
ψ†LψL + ψ†RψR +

m

µ
e−2ikF xψ†LψR +

m

µ
e2ikF xψ†RψL

)
, (1.6)

the Friedel oscillation response is

〈ρ(x)〉imp ∝ λ
cos(2kFx)

|x|2∆F
+ . . . , (1.7)

where ∆F is the scaling dimension of the operator Tr(ψ†LψR), which we will call the Friedel

operator in the CFT. Equivalently, we can relate the Friedel oscillation to an oscillatory

term in the density-density correlator in the original system without an impurity:

〈ρ(x)ρ(x′)〉 ∝ cos(2kF (x− x′))
|x− x′|2∆F

+ . . . . (1.8)
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Our exact result for ∆F , obtained by finding the smallest scaling dimension of operators

with QL = 1 and QR = −1, is

∆F = 1/3 for all N ≥ 2. (1.9)

Observation of the oscillatory terms in (1.7) and (1.8) constitutes a measurement of the

kF in (1.2), and is a direct signature of the gauge-charged Fermi surfaces in these strange

metals. Unfortunately, we do not determine the N dependence of the missing proportionality

constants in (1.7) and (1.8); the vanishing of this proportionality constant in the N → ∞
limit is the presumed reason for the absence of such Friedel oscillations in existing studies

via the AdS/CFT correspondence [61].

A second important observable is the fermion pair operator Tr(ψLψR). Condensation

of this operator leads to a superfluid ground state. The spatial decay of its two-point

correlations is determined by its scaling dimension ∆P . Our result for ∆P was obtained by

finding the smallest scaling dimension of operators with QL = QR = −1:

∆P = 1/3 for all N ≥ 3. (1.10)

For N = 2 there is no fermion pair operator Tr(ψLψR) in the CFT, and so in the original

gauge theory we expect the two-point functions of Q = 2 and Q = −2 operators to decay

exponentially fast. Instead, the lowest CFT operator with QL = QR appears for N = 2 at

QL = QR = −3 and has scaling dimension 3 (see section II A). In Appendix A we review

the Luttinger liquid of fermions with short-range interactions (e.g. the Thirring model at

non-zero density), and find that it obeys ∆F = 1/∆P ; this identity is clearly not obeyed by

the present adjoint matter theory. Appendix A also computes the values of ∆F,P in models

of fundamental Dirac fermions coupled to a SU(N) gauge field.

Finally, to assess the stability of the theory in (1.4) as a description of the low energy

limit of (1.1), we have to determine the scaling dimensions of all perturbations allowed by

symmetry: these are all operators with QL = QR = 0. Here we again find a distinction

between N = 2 and N ≥ 3. For N ≥ 3 the smallest scaling dimension of such an operator is

dim
[
Tr(ψ†LψLψ

†
RψR)

]
=

2(N − 2)

3N
, (1.11)

which is smaller than 2, and so always relevant. So the N ≥ 3 SCFT2 is unstable to

such a perturbation. We are not able to assess the N dependence of the coefficient of such a

perturbation, or the ultimate fate of the ground state. A natural conjecture is that this is an

instability to a paired superfluid. In contrast, for N = 2 there are no relevant perturbations,

and only a marginal perturbation.

The low density limit will be considered in section III. Here we determine the spectrum

of SU(N) singlet excitations above the zero density vacuum with the aim of using this as

6



input to describe the finite µ state as a dilute gas of such states. We determine the mass

M of the lightest state for a series of values of Q; we will obtain a dilute gas of such states

for µ > M/Q. So we need to determine the value of Q for which M/Q is a minimum. Our

numerical analysis, carried out in the limit N = ∞, suggests that M/Q may accumulate

to a dense set of decreasing values as Q becomes larger (see figure 3). This suggests that

M/Q becomes degenerate at some value in the limit of large Q (however, more extensive

numerical work is needed to decide if the degeneracy is actually present). This degeneracy

would indicate that even in the low density limit it is not appropriate to use a description of

a dilute gas of gauge-neutral particles, and suggests the possibility that the gauge-charged-

Fermi-sea description of the high density limit applies even at low densities.

II. HIGH DENSITY

In this section we will analyze the regime µ� m, gYM
√
N . We will derive the SCFT2 in

(1.4), and then analyze its properties in the subsequent subsections.

We begin by writing the Hamiltonian for the free Dirac fermion in (1.1) in terms of

particle, p, and hole, h, creation and annihilation operators introduced via (C6):

H0 =

∫
dk

2π
Tr
[
(
√
k2 +m2 − µ)p†(k)p(k)− (

√
k2 +m2 + µ)h†(k)h(k)

]
(2.1)

where k is spatial momentum. This defines kF by µ =
√
k2
F +m2. Now we introduce the

left and right movers by

ψR(k) = p(kF + k) , ψL(k) = p(−kF + k), (2.2)

and then linearize about kF by approximating

H0 =

∫
dk

2π
v kTr

[
ψ†R(k)ψR(k)− ψ†L(k)ψL(k)

]
(2.3)

where the velocity v = kF/
√
k2
F +m2. We will henceforth set v = 1. Carrying out the same

mapping to low energy degrees of freedom in the presence of the gauge field, we obtain the

effective Lagrangian

Leff = Tr
[
ψ†R(∂τ − ∂x)ψR + ψ†L(∂τ + ∂x)ψL + (Aτ − Ax)[ψ†L, ψL] + (Aτ + Ax)[ψ

†
R, ψR]

]
− 1

2g2
YM

TrF 2 . (2.4)

Note that this theory is of the same form as (1.1), but after setting µ = m = 0. The CFT

structure of this theory becomes clearer upon writing the complex Dirac fields in terms of a
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pair of Majorana fields ψaL,R, and a = 1, 2:

ψL,R =
1√
2

(
ψ1
L,R + iψ2

L,R

)
(2.5)

and then the Lagrangian becomes

Leff =
1

2
Tr [ψaR(∂τ − ∂x)ψaR + ψaL(∂τ + ∂x)ψ

a
L + (Aτ − Ax)ψaLψaL + (Aτ + Ax)ψ

a
Rψ

a
R]

− 1

2g2
YM

TrF 2 . (2.6)

As is well-known, each adjoint Majorana fermion is equivalent to a SU(N) WZW model at

level N [62–66], each with central charge (N2− 1)/2. We assume the gauge theory is in the

strong coupling limit (gYM → ∞), and then the integral over the gauge field reduces to a

constraint: the vanishing of the currents JL = ψaLψ
a
L and JR = ψaRψ

a
R. It is easily verified

that these currents obey a SU(N) Kac-Moody algebra at level 2N [67], and central charge

2(N2 − 1)/3. The standard coset construction [63] then leads to the CFT in (1.4).

The fact that the low energy CFT2 of the gauged adjoint Dirac fermion system has

N = (2, 2) supersymmetry was demonstrated explicitly in (12) of [59]. This fact can also be

seen to follow easily from an extension of earlier arguments. It is useful to write the CFT in

(1.4) in the compact notation (N,N ; 2N) as a special case of the general diagonal coset model

(k, `; k + `) of SU(N), which is SU(N)k ⊗ SU(N)`/SU(N)k+`. Section 3 of [63] considered

the coset model (N, `;N + `) and established that it had N = (1, 1) supersymmetry. We

can obtain the second pair of supercharges by applying the same argument to the coset

(k,N ; k + N), and so conclude that the coset (N,N ; 2N) has N = (2, 2) supersymmetry.

This argument also shows that the R-charge symmetry rotates between the two SU(N)N
components i.e. between the two a components of the Majorana fermions. From (2.5) we

then see that the R-charge symmetry is the global U(1) which is conjugate to the chemical

potential.

In the following subsections we will describe the structure of these theories, including

their modular-invariant partition functions and operator scaling dimensions.

A. N = 2

Let us first discuss the simplest non-trivial CFT, corresponding to the SU(2) gauge theory

coupled to an adjoint Dirac fermion. This c = 1 CFT may be described by the coset

SU(2)2 ⊗ SU(2)2

SU(2)4

. (2.7)
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The primary fields of this coset theory are therefore labeled by three SU(2) spins j1, j2, j

where j = |j1 − j2|, . . . , j1 + j2. Their conformal weights are

h(j1, j2; j) =
j1(j1 + 1)

4
+
j2(j2 + 1)

4
− j(j + 1)

6
+ n . (2.8)

The N = 2 superconformal symmetry fixes which values of (j1, j2, j) appear in the spectrum.

Here n is a non-negative integer determined in terms of (j1, j2, j). It will be zero for the

cases of interest below.

An important quantity characterizing a CFT2 is its modular invariant partition function

on a torus:

Z(τ, τ̄) =
∑
j

e2πiτ(hj−c/24)e−2πiτ̄(h̃j−c/24) , (2.9)

where the sum runs over the entire spectrum, and (hj, h̃j) are the holomorphic and anti-

holomorphic conformal weights of the state j. Once the modular invariant is known, it is

not hard to read off the spectrum of the theory. While there is a variety of possible modular

invariants at c = 1, the N = 2 superconformal invariance turns out to fix Z(τ, τ̄) completely,

up to an additive constant.

The c = 1 CFT turns out to be the simplest member of the series ofN = 2 superconformal

minimal models [58, 59] with central charges c = 3k/(k + 2): it is its k = 1 member. The

dimensions of theN = 2 superconformal primary fields, and their U(1) charges are in general

given by [58, 59]

h(p, s, r) =
p2 − 1− (s− r)2

4(k + 2)
+
|r|
8
, q =

s− r
2(k + 2)

+
r

4
, (2.10)

where 1 ≤ p ≤ k + 1, |s| ≤ p − 1, and p − s must be odd. In the NS sector r = 0, while

in the R sector r = ±1. The NS sector operators with p = s + 1 have h = q; these are the

special operators that form the chiral ring [68]. We should note that each primary field of

the extended N = 2 algebra gives rise to various Virasoro primary fields obtained by acting

with the supercharges and U(1)R current oscillators.

The k = 1 theory has the following NS-sector N = 2 primaries: the identity operator,

and the operators with h = 1
6

and U(1)R charge q = ±1
6
. In the R sector the primary fields

are (h = 1
24
, q = ± 1

12
) and (h = 3

8
, q = ±1

4
). The former are the R ground states with

h = c/24.

Now, let us recall the c = 1 CFT of a compact massless scalar field φ of radius r, i.e. φ is

identified with φ+2πr. The torus partition function of such a theory has the simple explicit

form

Zscalar(τ, τ̄) = |η(τ)|−2

∞∑
n=−∞

∞∑
w=−∞

eπiτk
2
Le−πiτ̄k

2
R . (2.11)
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The spectrum of left and right momenta is

kL =
n

r
− wr/2 , kR =

n

r
+ wr/2 , (2.12)

where n and w are the integer momentum and winding numbers, respectively. The left and

right dimensions of the Virasoro primary fields,

exp(ikLφL + ikRφR) , (2.13)

are h = k2
L/2, h̃ = k2

R/2. In addition, for a generic radius r, this CFT has certain primary

fields with kL = kR = 0 which occur for h = h̃ = n2 where n is an integer. The simplest of

such discrete primary fields is the exactly marginal operator ∂φ∂̄φ which changes the radius

r.

It is well-known that the compact scalar theory at radius r = 2
√

3 (in units where the

self-dual radius is
√

2) has N = 2 supersymmetry. This theory is the bosonization of the

above N = 2 minimal model which provides the correct modular invariant. Let us consider

some of the simplest operators in the bosonized theory and translate them into the original

adjoint fermion language. The marginal operator that changes the radius, ∂φ∂̄φ, corresponds

to JL(z)JR(z̄), where

JL ∝ Tr(ψ†LψL) , JR ∝ Tr(ψ†RψR) (2.14)

are the U(1) × U(1) currents. We identify the U(1) × U(1) charges in the k = 1 N = 2

minimal model as qL = kL
2
√

3
and qR = − kR

2
√

3
. It follows that the relation between n and w in

the compact boson model and the integer charges QL and QR of the fermions in the gauge

theory is

n = QL −QR , w = −(QL +QR)/6 , (2.15)

where QL = 6qL and QR = 6qR.

For n = ±1, w = 0 we get h = h̃ = 1
24

. This corresponds to h(1
2
, 1

2
; 1) in (2.8). These

two spin zero operators are products of the R-sector N = 2 superconformal primaries with

h = 1
24

.

For n = ±2, w = 0 we get hn=±2 = h̃n=±2 = 1
6

corresponding to h(1, 0; 1) or h(0, 1; 1).

These two spin zero operators are products of the NS-sectorN = 2 superconformal primaries

with dimension 1
6
. In the gauge theory these operators are Tr(ψ†LψR) with charges QL =

1, QR = −1, and Tr(ψLψ
†
R) with charges QL = −1, QR = 1. Their sum is simply the fermion

mass term. The total dimension of these operators is ∆F = h + h̃ = 1
3
; this is the scaling

exponent for decay of the Friedel oscillations.

For (n,w) = ±(3, 0) we find h = h̃ = 3
8
. The holomorphic part of this operator is the

(h = 3
8
, q = ±1

4
) N = 2 superconformal primary from the R sector (in the coset theory, it is

h(1
2
, 1

2
; 0) = 3

8
).

We could also consider n = ±4, w = 0 operators with hn=±4 = h̃±4 = 2
3
. These operators
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are not superconformal primary fields, but they are Virasoro primary. We note that h±4 =

h±2 + 1
2
. This suggests that the n = ±4 operators are obtained from n = ±2 by acting with

a holomorphic and an anti-holomorphic supercharge.

For n = 0, w = ±1 we get h = h̃ = 3
2
. According to (2.15), these are the operators

with QL = QR = ±3 responsible for superconducting correlations. Since ei
√

3φL is the

supercurrent, we identify the n = 0, w = ±1 operators with double-trace operators which

are products of two super-currents, each having dimension 3/2. Their net dimension is 3.

We do not find, therefore, separate fermion pair operators Tr(ψLψR) and Tr(ψ†Lψ
†
R). This

is a special feature of the N = 2 case; we will see that such distinct operators appear for

N ≥ 3.

B. N = 3

In appendix B we outline a general approach to obtaining the modular invariant partition

sum for the (N,N ; 2N) cosets and, thereby, the operator content of the theory. We first

show how for N = 2 this approach reproduces the result given in (2.11) and then proceed

to the case N = 3.

The proper starting point for the N = 2 gauged fermion model is the SO(6)1 invariant

partition sum, broken down to SO(3)1 × SO(3)1,

ZSO(6)1 = |χSO(6)1
1 |2 + |χSO(6)1

v |2 + 2|χSO(6)1
sp |2

= |χSO(3)1
1 χ

SO(3)1
1 + χSO(3)1

v χSO(3)1
v |2 + 4|χSO(3)1

1 χSO(3)1
v |2 + 2|χSO(3)1

sp χSO(3)1
sp |2 . (2.16)

We consider the branching rules of the relevant combinations of SO(3)1 characters. The

N = (2, 2) superconformal symmetry of the coset CFT2 guarantees that chiral branching

functions will organize into characters of N = 2 SCFT, defined as

chR,NS
h = Tr[e2πiτ(L0−c/24)] (2.17)

(the complete characters of the N = 2 superconformal symmetry would keep track the U(1)

charges as well - for simplicity we suppress those in our notations). Considering the explicit
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leading terms in the various characters, we established the following relations

χ
SO(3)1
1 χ

SO(3)1
1 + χSO(3)1

v χSO(3)1
v + 2χ

SO(3)1
1 χSO(3)1

v

= chNS
0 (χ

SU(2)4
(0) + χ

SU(2)4
(4) ) + 2 chNS

1/6 χ
SU(2)4
(2)

χ
SO(3)1
1 χ

SO(3)1
1 + χSO(3)1

v χSO(3)1
v − 2χ

SO(3)1
1 χSO(3)1

v

= c̃h
NS

0 (χ
SU(2)4
(0) + χ

SU(2)4
(4) ) + 2 c̃h

NS

1/6 χ
SU(2)4
(2)

χSO(3)1
sp χSO(3)1

sp

= chR
1/24 (χ

SU(2)4
(0) + χ

SU(2)4
(4) ) + chR

3/8 χ
SU(2)4
(2) . (2.18)

Note that the characters c̃h
NS

are obtained by inserting a (−1)F , with F the fermion parity

operator. In the R-sector the characters c̃h
R

are constants known as the Witten index of

the sector.

For SU(2)4 there exists an exceptional invariant (labeled as D4 in the literature [69]),

which groups the characters according to the automorphism (B7)

ZSU(2)4 = |χSU(2)4
(0) + χ

SU(2)4
(4) |2 + 2|χSU(4)4

(2) |2 . (2.19)

This invariant sets a modular invariant metric on the SU(2)4 characters. Using the metric

we can project out the level-4 characters in the various product terms in the SO(6)1 partition

sum. The final result is the following modular invariant coset partition sum

Zcoset(2,2;4) =
1

2
[|chNS

0 |2 + 2|chNS
1/6|2 + (chNS → c̃h

NS
)]

+
1

2
[|chR

3/8|2 + 2|chR
1/24|2] . (2.20)

Comparing with the expression (2.11), evaluated at the N = 2 radius r = 2
√

3, one checks

that the two expressions agree up to a constant which we can write as the sum of the R-sector

Witten indices and which is by itself modular invariant

Zcoset(2,2;4) = Zscalar −
1

2

[
2|c̃h

R

1/24|2
]

= Zscalar − 1 . (2.21)

We are now ready to take on the case N = 3. The central charge c = 8/3 corresponds

to the k = 16 entry in the minimal series of unitary N = (2, 2) SCFT2. One thus expects

that the partition sum can be expressed as a finite sum of terms of the form chN=2
h,q ch

N=2

h′,q′ .

Modular invariant partition sums of this type have been completely classified [70] - our

challenge is thus to identify the correct entry from the (rather extensive) list.
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The N = 3 strange metal starts from 16 fermions with partition sum

ZSO(16)1 = |χSO(16)1
1 |2 + |χSO(16)1

v |2 + 2|χSO(16)1
sp |2

= |χSO(8)1
1 χ

SO(8)1
1 + χSO(8)1

v χSO(8)1
v |2 + 4|χSO(8)1

1 χSO(8)1
v |2 + 8|χSO(8)1

sp χSO(8)1
sp |2 . (2.22)

A curiosity specific to N = 3 is that the vector representation of SO(8) is isomorphic to the

spinors - in the coset theory this leads to degeneracies between NS and R sector dimensions.

As before we now study the branching into characters of SU(3)6 times branching functions

which we expect to be characters of a W -algebra extension of N = (2, 2) superconformal

symmetry.1 Working through explicit details, one observes that in the r.h.s. of the branching

rules, the SU(3)6 characters consistently show up in the combinations

χ
SU(3)6
(00) + χ

SU(3)6
(60) + χ

SU(3)6
(06) , χ

SU(3)6
(11) + χ

SU(3)6
(41) + χ

SU(3)6
(14) ,

χ
SU(3)6
(33) + χ

SU(3)6
(30) + χ

SU(3)6
(03) , χ

SU(3)6
(22) . (2.23)

A modular invariant projector for these terms is provided by the D6 invariant of SU(3)6 [74]

ZSU(3)6 = |χ(00)+χ(60)+χ(06)|2+|χ(11)+χ(41)+χ(14)|2+|χ(33)+χ(30)+χ(03)|2+3|χ(22)|2 . (2.24)

Completing this analysis, we have identified (up to a constant) the partition sum for the

(3, 3; 6) strange metal with the exceptional invariant of N = (2, 2) superconformal symmetry

at c = 8/3 which in the classification [70] is labeled as M̃4,2 with parameters v = 3, z = 1,

x = 1. This invariant involves a subset of all NS and R characters at k = 16; furthermore,

those that survive are grouped into groups of 6 (4 groups in each sector) and per sector

one group of 3. So in total, 54 fields survive. In the NS sector the extended characters are

(N = 2 characters labeled as chl=p−1,s with r = 0 for NS and r = −1 for R)

chNS,ext
0 = chNS

0,0 + chNS
16,0 + chNS

16,6 + chNS
16,−6 + chNS

16,12 + chNS16,−12

chNS,ext
1/9 = chNS

2,0 + chNS
14,0 + chNS

14,6 + chNS
14,−6 + chNS

14,12 + chNS
14,−12

chNS,ext
1/3 = chNS

4,0 + chNS
12,0 + chNS

12,6 + chNS
12,−6 + chNS

12,12 + chNS
12,−12

chNS,ext
1/6 = chNS

6,0 + chNS
10,0 + chNS

6,6 + chNS
6,−6 + chNS

10,6 + chNS
10,−6

chNS,ext
11/18 = chNS

8,0 + chNS
8,6 + chNS

8,−6 (2.25)

1 See [71] for a general review of W -symmetry and [72, 73] for W -extensions of N = 1 superconformal

symmetry in general cosets involving a SU(N)N factor.
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and in the R sector

chR,ext
1 = chR

16,−16 + chR
16,14 + chR

16,−10 + chR
16,8 + chR

16,−4 + chR
16,2

chR,ext
1/9 = chR

14,14 + chR
14,−10 + chR

14,8 + chR
14,−4 + chR

14,2 + chR
2,2

chR,ext
1/3 = chR

12,−10 + chR
12,8 + chR

12,−4 + chR
12,2 + chR

4,−4 + chR
4,2

chR,ext
2/3 = chR

10,−10 + chR
10,8 + chR

10,−4 + chR
10,2 + chR

6,−4 + chR
6,2

chR,ext
1/9′ = chR

8,−4 + chR
8,2 + chR

8,8 . (2.26)

The extended vacuum character has the following content (returning to the notation chh,q
for the N = 2 characters)

chNS,ext
0 = (2.27)

chNS
h=0,q=0 + chNS

h=2,q=1/3 + chNSh=2,q=−1/3 + chNS
h=7/2,q=1/6 + chNS

h=7/2,q=−1/6 + chNS
h=4,q=0 .

These fields span a W -algebra extension of N = 2 superconformal symmetry, with extra

currents of dimension 2, 2, 7/2, 7/2, 4. The W -currents at h = 2 are given by

WL = Tr(ψ†Lψ
3
L) , W †

L = Tr(ψLψ
†3
L ) . (2.28)

These currents exist for all N ≥ 3. For N = 2 the triple products ψ3
L and ψ†3L are SU(2)

singlets and the trace vanishes. For N ≥ 3 explicit expressions for WL and W †
L in terms of

component fields (ψL)A and (ψ†L)A, with A = 1, 2, . . . N2 − 1 an adjoint index, involve the

3-index d-symbols dABC .

The M̃4,2 invariant reads

ZM̃4,2

=
1

2

 ∑
h=0,1/9,1/6,1/3

|chNS,ext
h |2 + 2|chNS,ext

11/18 |
2 + (chNS → c̃h

NS
)

+
∑

h=1/9,1/3,2/3,1

|chR,ext
h |2 + 2|chR,ext

1/9′ |
2

 . (2.29)

and the claim is

Zcoset(3,3;6) = ZM̃4,2 − 1/3 . (2.30)

The U(1)R charges of the fields surviving in the partition sum are easily extracted from the

field labels in the partition sum. In both the NS and the R sectors, the U(1)R charges are

multiples of ±1/6.

Comparing with N = 2, we observe, at N = 3, the presence of fermion pair operators

Tr(ψLψR) and Tr(ψ†Lψ
†
R) which were absent from the operator spectrum for N = 2. From

(2.25) we read off that these operators are in the same extended symmetry multiplet as the
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current (qL, qR) (h, h̃)

JL ∝ Tr(ψLψ
†
L) (0, 0) (1, 0) N ≥ 2

GL ∝ Tr(ψ3
L) (−1

2
, 0) (3

2
, 0) N ≥ 2

G†L ∝ Tr(ψ†3L ) (1
2
, 0) (3

2
, 0) N ≥ 2

TL ∝ Tr(ψL∂ψ
†
L + ψ†L∂ψL) (0, 0) (2, 0) N ≥ 2

WL ∝ Tr(ψ†Lψ
3
L) (−1

3
, 0) (2, 0) N ≥ 3

W †
L ∝ Tr(ψLψ

†3
L ) (1

3
, 0) (2, 0) N ≥ 3

. . .

TABLE I: This table lists some of the (left) chiral fields (currents) in the (N,N ; 2N) coset model.

The currents JL, GL, G
†
L, TL constitute an N = 2 superconformal algebra. The dimension-2 cur-

rents WL, W †L are the first of an extensive set of extra primary symmetry generators that exist for

N ≥ 3.

mass (Friedel) operators Tr(ψ†LψR) and Tr(ψLψ
†
R). Both these sets of operators have scaling

dimension 1/3 - the degeneracy is due to the fact that the zero mode of the charged spin

two currents in (2.28) relates the two sets of operators.

We also observe the presence of a number of charge neutral relevant operators. The most

relevant operator is the (l = 2, s = 0) field in the NS sector, with scaling dimension ∆ = 2/9,

as in (1.11).

C. General N

We have also obtained several explicit results for N = 4 and higher, confirming the

general structure outlined above and in appendix B. We defer the details of the description

of the general N case to a forthcoming publication. Here we briefly indicate some of the

findings, paying special attention to the extrapolation to large N .

• In tables I and II we list the general form of the leading currents and primary field

operators in the (N,N ; 2N) coset. These operators are all in the NS sector. We see that

their scaling dimensions are either N -independent or are such that h (h̃) converge in

the large N limit to nL(R)/6 if the operator involves nL(R) left (right) moving fermions.

In particular, we see that both fermion pair operators and the Friedel operators are

present in the spectrum and have a scaling dimension ∆F = ∆P = 1/3 independent

of N . Their degeneracy is due to the presence of the charged spin two currents (2.28)

which are part of the extended W -symmetry for any N ≥ 3.
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operator type (qL, qR) (h, h̃) channel

Tr(ψ†LψR) (1
6
,−1

6
) (1

6
, 1

6
) (10 . . . 01) N ≥ 2

Tr(ψLψ
†
R) (−1

6
, 1

6
) (1

6
, 1

6
) (10 . . . 01) N ≥ 2

Tr(ψLψR) (−1
6
,−1

6
) (1

6
, 1

6
) (10 . . . 01) N ≥ 3

Tr(ψ†Lψ
†
R) (1

6
, 1

6
) (1

6
, 1

6
) (10 . . . 01) N ≥ 3

Tr(ψLψLψRψR) (−1
3
,−1

3
) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψLψLψ
†
RψR) (−1

3
, 0) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψLψLψ
†
Rψ
†
R) (−1

3
, 1

3
) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψ†LψLψRψR) (0,−1
3
) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψ†LψLψ
†
RψR) (0, 0) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψ†LψLψ
†
Rψ
†
R) (0, 1

3
) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψ†Lψ
†
LψRψR) (1

3
,−1

3
) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψ†Lψ
†
Lψ
†
RψR) (1

3
, 0) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

Tr(ψ†Lψ
†
Lψ
†
Rψ
†
R) (1

3
, 1

3
) (1

3
, 1

3
) (20 . . . 10) N ≥ 3

same 9 terms (1
3
, 1

3
) (010 . . . 02) N ≥ 3

same 9 terms (2
3
, 2

3
) (10 . . . 01) N ≥ 3

Tr(ψ†LψLψ
†
RψR) (0, 0) (N−2

3N
, N−2

3N
) (20 . . . 02) N ≥ 3

Tr(ψ†LψLψ
†
RψR) (0, 0) (N+2

3N
, N+2

3N
) (010 . . . 010) N ≥ 4

Tr(ψ†Lψ
2
LψRψ

† 2
R ) (−1

6
, 1

6
) (N−2

2N
, N−2

2N
) (30 . . . 011) N ≥ 4

. . .

Tr(ψ†LψLψ
†
RψR)2 (0, 0) (2(N−2)

3N
, 2(N−2)

3N
) (210 . . . 012) N ≥ 4

Tr(ψ†LψLψ
†
RψR)2 (0, 0) (2(N−3)

3N
, 2(N−3)

3N
) (40 . . . 020) N ≥ 4

. . .

Tr(ψ†LψLψ
†
RψR)n (0, 0) (nN−1−n

3N
, nN−1−n

3N
) (2n0 . . . 02n) N ≥ n+ 2

. . .

TABLE II: Operators in the (N,N ; 2N) coset model. The operators listed (all in the NS sector)

are primaries with respect to the N = (2, 2) superconformal algebra. The channel indicated is the

SU(N) representation of the gauged diagonal SU(N)2N subalgebra. We give the complete list of

2- and 4-fermion primaries and in addition list some of the higher operators.

• One can also quickly verify that the scaling dimensions in the R sector satisfy

hR ≥ c

24
=
N2 − 1

72
(2.31)
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so that for large N all R-sector operators are irrelevant.

• The algebraic structure of the general-N coset appears to be highly involved. The

cosets of the form
SU(N)k ⊗ SU(N)1

SU(N)k+1

(2.32)

are known to have an extended WN symmetry with one chiral current for each spin

s = 2, . . . N [71, 75]. For a general diagonal coset (which includes our coset as a special

case)
SU(N)k ⊗ SU(N)`

SU(N)k+`

(2.33)

we can construct higher spin-s currents from polynomial (of degree s) combinations of

the individual numerator SU(N) currents which commute with the diagonal SU(N).

See (7.42) and (7.43) of [71] for an explicit expression for the spin-3 current. These

general cosets are expected to have many additional currents as well. In the case of

N = 3 we found two charged spin two fields, see (2.28), in addition to the stress tensor.

Since these are primaries of the N = 2 supersymmetry, this then implies the existence

of charged spin 5
2

and spin-3 currents as well. Similarly, we see from (2.27) that there

are charged spin 7
2

currents and their N = 2 descendants.

For general N we expect to be able to build many chiral operators from ψL, ψ†L and

holomorphic derivatives. In the large N limit we do not expect any trace relations for

such operators of spin s� N . Then by the usual counting arguments for words built

from matrix valued fields one expects to roughly see a Hagedorn growth in the number

of these currents (as a function of the dimension, which is the same as the spin). Thus

we might expect an algebra much larger than the conventional WN symmetry algebra.

It would be interesting to work out the consequences of this larger symmetry algebra.

There are a number of issues that would be important to explore further for this class of

coset models.

A key algebraic structure of N = 2 SCFT2 is the chiral ring: the collection of NS sector

primaries with q = ±h, which form a closed algebra under fusion [68]. In the N = 3 case,

we read off from the NS sector primaries in (2.25) that the only chiral primaries are those

with p− 1 = s = 6, 12 in (2.10). The chiral ring in this minimal model case is generated by

one generator x obeying the relation xk+2 = x18 = 0. The chiral primaries present in the

coset correspond to the elements x6 and x12 which form a consistent subring of the original

chiral ring. The large N structure of the chiral ring can, we believe, be exploited to study

the large N physical characteristics of the gauged fermion model.

Finally, it would be very interesting to uncover the AdS dual to this interesting class of

CFTs (in the large N limit). The simpler coset models in (2.32) have been identified [76, 77]

with a class of higher spin Vasiliev theories on AdS3 [78]. These have a single bulk gauge

field of every spin s ≥ 2. Roughly speaking there is a single Regge trajectory in the bulk

17



and no Hagedorn growth of states. This is related to the fact, mentioned above, that there

is a single conserved current in these coset CFTs for a given spin. The W -symmetry in

the coset considered here is very different having many more fields. In general, we expect

there to be a Hagedorn density of states in this theory corresponding to single trace words

built from ψL, ψ
†
L, ψR, ψ

†
R together with derivatives (modulo the projection by the diagonal

SU(N) currents). Thus the bulk dual is presumably a string theory on AdS3. This fits with

the fact that these cosets have a central charge proportional to N2 as opposed to the cosets

in (2.32) which have c ∝ N and behave like vector models with fewer gauge invariant states

[79][76].

Though the coset theory is a strongly interacting CFT as evidenced by the anomalous

dimensions of different operators, it is interesting that the dimensions of the operators in

the table II are like those of a free theory in the large N limit. They are integer multiples

of 1
3
. In that sense the spectrum is similar to that of free Yang-Mills theory or that of the

D1-D5 CFT [80, 81] at a symmetric orbifold point. Note that these are the points where

we expect a dual tensionless string theory with an unbroken higher spin symmetry. This is

consistent with the fact that these cosets have a large chiral W -algebra as discussed above.

III. LOW DENSITY

In this section, we will study the behavior of the SU(N) gauge theory coupled to two

adjoint multiplets of Majorana fermions for small U(1) chemical potential µ. We will work

in the regime where m, the mass of the adjoint, is much smaller than the scale set by the

’t Hooft coupling gYM
√
N . We are interested in the low energy dynamics of the system as

µ is increased from zero to values comparable to the scale set by m. Some features of this

low energy theory can be inferred from the spectrum of gauge invariant hadronic states at

µ = 0. Let us describe how this works for our model.

Generally, it is extremely difficult to compute the spectrum of hadronic bound states in

gauge field theories such as QCD. In 1 + 1 dimensions, however, the light cone quantiza-

tion can make this problem tractable. Compactification of the light-like coordinate on a

circle: x− ∼ x− + L, a formal regularization procedure known as the discrete light cone

quantization (DLCQ) [55, 56], typically reduces the problem to matrix diagonalization. The

problem is further simplified in the planar (large N) limit where the SU(N) singlet states are

non-interacting. The physical bound state spectrum can be inferred by taking the decom-

pactification limit for the light-cone coordinate x−. This can be computationally expensive

for certain models, but is nonetheless a well controlled approximation scheme. Often, this

continuum limit is presented by taking the limit K → ∞, where the integer ‘harmonic

resolution parameter’ K enters the definition light cone momentum:

P+ =
πK

L
(3.1)
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After diagonalization of the light cone hamiltonian, P−, the spectrum of bound state masses

M is read off from

M2 = 2P+P− . (3.2)

In this paper we will be primarily concerned with the spectrum of bound state masses

in the regime where m2 is kept fixed while the ‘t Hooft coupling g2
YMN is sent to infinity.

We find a rich spectrum of bound states whose masses divided by m approach constants in

this limit. These bound states originate from the large N coset CFT discussed in section II,

perturbed by the operator m(Tr(ψLψ
†
R)+h.c.) of dimension 1/3. This mass operator breaks

the QL −QR symmetry of the CFT, but the overall U(1) charge symmetry, Q = QL +QR,

remains unbroken. Therefore, the bound states break up into sectors labeled by the integer

charge Q.

The DLCQ of a closely related system consisting of a single adjoint multiplet of Majorana

fermions has been analyzed in the past [50, 52, 54]. However, in the same limit of sending

the ’t Hooft coupling to infinity while keeping m2 fixed, all bound states acquire masses of

order ∼ gYM
√
N . The fact that there are no light bound states with masses of order m is

due to the triviality of the CFT arising from the SU(N) gauge theory coupled to an adjoint

Majorana fermion: in that case, instead of (1.5) one finds c = 0 [52].

We will summarize the details of the DLCQ computation in Appendix C. In this section,

we will focus on presenting the results of the computation.

First, let us describe the basic physics of the model. In 1 + 1 dimensions, gauge fields are

non-dynamical but serve as agents binding the colored matter fields. The hadronic bound

states will then be superpositions of traces of products of the adjoint creation operators

(C22). The problem can be separated into boson and fermion sectors depending on whether

the number of the creation operators in the trace is odd or even.2

When there are two adjoint Majorana fermions, there is a U(1) = SO(2) global flavor

symmetry which provides an additional quantum number to label the states in the spectrum.

One way to make this manifest is to combine the two adjoint Majorana fermions into an

adjoint Dirac fermion, and count the difference between the number of fermions and anti-

fermions for each state.

Suppose for µ = 0 we succeed in computing the masses M and charges Q of all the bound

states. Suppose also that all states have M > 0 and as a result the theory is gapped in the

far IR. What happens when µ is increased?

2 The CFT arising in the m = 0 limit exhibits the N = 2 supersymmetry relating the bosonic and the

fermionic operators. Since the light cone quantization is unreliable in the presence of massless states, we

will keep m non-vanishing. Then the supersymmetry is broken; so, the boson and fermion bound state

spectra are not identical. However, the bound states with m�M � gYM

√
N may exhibit approximate

supersymmetry. Such highly excited states are difficult to access numerically, but it would be very

interesting to look for the emergent supersymmetry in this region of bound state masses.
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We expect that some of the particles will condense when

ζ = M − µQ (3.3)

becomes negative.

If we were working in dimensions greater than 1 + 1, then depending on whether the first

state for which ζ becomes negative is a boson or a fermion, the system would exhibit the

universal behavior of either the Bose-Einstein condensation or formation of a degenerate

Fermi gas. In 1 + 1 dimensions, the distinction is somewhat blurred by the fact that bosons

and fermions are related by bosonization. If the spectrum is sufficiently generic so that there

is precisely one state for which ζ is going to zero at the minimal critical µ, then one expects

the system to behave as a Luttinger liquid.

Additional subtleties can arise from the fact that there might be a degeneracy causing

more than one state to hit ζ = 0 at the same time. Logically, there are three distinct

possibilities.

I The value of ζ goes to zero for exactly one state.

II The value of ζ goes to zero for several, but a finite number of states.

III The value of ζ goes to zero for an infinite set of degenerate states.

The DLCQ computation of the bound state spectrum can help distinguish among these

three possibilities.

The details regarding the implementation of the DLCQ procedure are summarized in the

appendix. Here we will merely present the result, where we display the full spectrum in

figure 2.

The points illustrated in figure 2 are to be interpreted as follows.

1. These points correspond to the spectrum of fermions for which the harmonic resolution

parameter K takes odd integer values. One expects to recover the exact spectrum in

the limit K →∞.

2. The ‘t Hooft coupling g2
YMN is taken, for the sake of definitiveness, to be 2π · 103

times the bare mass-squared of the fermions, m2. As long as this number is very large,

the spectrum in the range illustrated, presented in units where m2 = 1, is insensitive

to its precise value. The idea is to extract the behavior of this system in the limit of

large g2
YMN .

3. M is the mass of the hadronic bound state. Here we are displaying M/Q. The state

with lowest M/Q is the one whose ζ will hit zero first as µ is increased.

4. For each K, Q in the range from Q = 1 to Q = K are possible. However, the Q = 1

states are heavier than the range of M illustrated in figure 2 and as a result are not
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FIG. 2: The spectrum of fermionic bound states for K = 5, 7, 9, 11, 13, 15, 17, 19. The states with

the same K are shown using the same color. Increasing K for fixed Q is illustrated by a gradual

shift to the right in each of the columns.

displayed in this figure. The state in the Q = K sector is decoupled from the rest of the

dynamics. In general, taking the large K limit with Q fixed will give rise to a reliable

extrapolation of the spectrum of that fixed Q sector. The spectrum with Q of the order

of K, however, is sensitive to the DLCQ artifacts and does not effectively approximate

the spectrum in the continuum limit. Here we have computed and presented the states

for Q in the range 3 ≤ Q ≤ K − 2 with the exception of some small Q states for large

values of K for which the computations became numerically intractable.

5. For each value of K, states with different charges Q are displayed in separate columns.

States with the same K, however, can be identified by the fact that they are plotted

using the same color. For each Q, increase in K is indicated by gradual shift in the

column of points to the right.

In order to identify the states with smallest M/Q, one must, for each Q, track the lowest

mass state and extrapolate to large values of K. The spectrum illustrated in figure 2 suggests

that, for each Q, the masses are gradually increasing in a similar manner as K is increased.

It also suggests that these increasing masses are converging to the large K limit.

In order to analyze the asymptotic behavior of the masses of the low-lying states, it is

useful to plot their masses as a function of 1/K. Since we are interested in how these states

are affected by the chemical potential, we will actually plot M/Q as a function of 1/K for

different values of K. This is illustrated in figure 3 for Q = 3, 5, 7, 9, 11.

We have also superposed a line indicating the linear extrapolation available from the set

of data available. These lines cross 1/K = 0 at finite values. This can be viewed as a crude

method to extract the extrapolated value for the large K limit.
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FIG. 3: The spectrum M/Q of lightest states as a function of 1/K for Q = 3, 5, 7, 9, 11. The

lines are linear fits to the available data. The points for Q = 3 have the largest M/Q. For each

successive Q, the M/Q is decreasing. The intercept of the linear fit at 1/K = 0 is the extrapolated

value of the M/Q for the lightest state for fixed value of Q.

What we see in figure 3 is the tendency for the large K limit of the M/Q of the lightest

states to become dense with increasing Q. Since Q can get arbitrarily large, this suggests

that in the large K limit, states with arbitrarily large Q are converging to the same value of

M/Q. In other words, we seem to be finding out that our model is exhibiting scenario III

enumerated earlier in this section. It should be kept in mind, however, that one must send

K → ∞ first, and then look for a trend as Q is increased. The order of these two limits

cannot be exchanged.

It is not easy to determine the critical value µcrit of M/Q. To settle this question, a higher

precision computation is required. Unfortunately, for the reason given above, one must

explore very large values of K in order to explore large values of Q. This is computationally

very expensive.

The fact that there may be infinitely many states with degenerate µcrit = M/Q suggests

that, when µ approaches µcrit, the system may undergo a transition from a gapped phase

into a phase with a non-trivial interacting conformal field theory with c > 1 in the IR.

The DLCQ results presented in this section focused mainly on fermionic bound states.

We have also carried out the analogous computation for bosonic bound states and found a

similar behavior of M/Q. We will not present the detailed results of our analysis for the

bosonic spectrum here. Some technical issues which arise for the DLCQ computation in the

bosonic sector will be described briefly in Appendix C.

Let us, in closing, mention that since all of these results were presented for the case

where N was taken to infinity first, it is certainly possible for the seemingly dense spectrum
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of M/Q to be discretized by a fine structure of order N−α for some α > 0. Such a structure

can change the basic feature of our model from scenario III to II or I. This may also be

related to the fate, following the relevant flow, e.g. (1.11), of the coset CFT discussed in the

earlier sections.

IV. CONCLUSIONS

In this paper, we described a novel metallic state of matter in one spatial dimension, with

a continuously variable density.

The well-studied one-dimensional metallic state is the Luttinger liquid, and in many

respects this state can be considered to be the natural limiting case of the Fermi liquid

state of higher dimensions. Indeed, the Luttinger liquid reduces to a free fermion model

at a specific value of the Luttinger parameter, and other parameter values are continuously

connected to this one. It has central charge c = 1, and this is directly linked to the massless

scalar representing fluctuations of the globally conserved U(1) charge density. We note

that some Luttinger liquids have additional gapless modes associated with other global

symmetries (and so a larger central charge), such as the models described in Appendix A.

Our state was obtained by considering a non-zero density of Dirac fermions carrying

adjoint color charges of a SU(N) gauge field. We found a ‘strange metal’ state described

by two-dimensional superconformal field theories with central charges c = (N2 − 1)/3. For

large N the central charge becomes large, while the global symmetry remains only the U(1)

associated with fermion number conservation. The strange metal has a Fermi surface with

a Fermi wavevector, given by (1.2), which is equal to that of non-interacting color-charged

particles; the Fermi wavevector changes continuously as the density is varied. This Fermi

surface is ‘hidden’ [39], because the single fermion Green’s function is not a gauge-invariant

observable. Nevertheless, the Fermi surface and the value of the Fermi wavevector are

detectable in the Friedel oscillations of (1.7). We propose that this variable density state,

with its large phase space of low energy excitations linked to its large central charge and

Fermi surface of color-charged fermions, can serve as a paradigm for non-Fermi liquid states

in two and higher spatial dimensions.

The structure of our d = 1 strange metal is quite analogous to the ‘hidden’ Fermi surface

states obtained recently for general d in Refs. [37–39, 41] via the AdS/CFT correspondence.

In Refs. [38, 39] it was postulated that the Fermi surfaces of gauge-charged particles could be

detected by the hyperscaling violation of the thermal entropy density, and by a logarithmic

violation of the ‘boundary law’ of entanglement entropy. The coefficient of the entanglement

entropy logarithm was used to deduce a value for the Fermi wavevector which depended upon

ultraviolet details only through the value of the density Q/Ld, in just the manner expected

from the Luttinger relation [39]. In our d = 1 strange metal here, analogous properties of the

entropy and entanglement entropy are trivially satisfied, because the hyperscaling violation
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exponent θ = d − 1 = 0 (in the notation of Ref. [39]), and every CFT2 has a logarithmic

violation of the boundary law of entanglement entropy [82, 83]. However, here we were

able to detect the Fermi surface, and determine the Fermi wavevector, from the Friedel

oscillations in the density correlations. Obtaining the Friedel oscillations in the AdS/CFT

description of strange metals in general d is clearly one of the important challenges for

future work. In this direction, it would be useful to understand the large N dependence of

the proportionality constant in (1.7): this should shed light on how Friedel oscillations of

gauge-charged particles appear in holographic theories. We also note the interesting recent

computation of [41] which detected Friedel oscillations in an anisotropic quantum liquid of

strings in 5 + 1 dimensions.

In section III we studied the bound state spectrum of the large N gauge theory in the

limit g2
YMN � m2 using the numerical DLCQ approximation. This approach sheds light on

the properties of the SU(N) gauge theory at low density. A very interesting phenomenon

that we have uncovered is the emergent N = 2 supersymmetry of the gauge theory in

the limit m → 0. A useful direction for future work would be to obtain some numerical

DLCQ evidence for the emergent supersymmetry by studying the masses of highly excited

bound states with gYM
√
N � M � m. Hopefully, this spectrum will exhibit approximate

supersymmetry.

Another intriguing direction for future work, which was discussed at the end of section

II.C, is the possibility of a dual description of the large N CFT in terms of a theory with

higher-spin gauge symmetry in AdS3. The existence of such a dual description is suggested

by the large W -symmetry, and by the fact all the operator dimensions appear to approach

constants in the large N limit that are quantized in units of 1/3. A useful 3 + 1 dimensional

analogue of the N = 2 supersymmetric large N CFT we are considering may be the N = 4

supersymmetric SU(N) gauge theory, which is dual to the AdS5×S5 background of type IIB

string theory [15–17]. Both theories have anomaly coefficients of order N2. When the N = 4

gauge theory has a large ‘t Hooft coupling g2
YMN , the dual AdS5× S5 background becomes

weakly curved. In this limit the dimensions of all operators not protected by supersymmetry

become very large. On the other hand, at vanishing ‘t Hooft coupling all the operators have

integer dimensions, and their number exhibits the exponential Hagedorn growth. In this

limit the curvature of the dual string background becomes very large; this is often referred

to as the “tensionless string limit.” It has been suggested [84] that a useful dual description

of the free N = 4 SYM theory may involve higher-spin gauge theory in AdS5 [85] coupled

to an infinite number of additional fields.

Similarly, if an AdS3 string dual of our N = 2 supersymmetric coset CFT is found,

we expect it to be strongly curved. It is therefore interesting to ask if the coset CFT has

an exactly marginal operator which could correspond to increasing the radius of the dual

background. In fact, the CFT has an exactly marginal double-trace operator which is a

product of the left and right U(1) currents, JL(z)JR(z̄). This operator breaks the N = 2

supersymmetry as well as some of the the extended W -symmetries. For the N = 2 coset
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CFT (2.7), this marginal operator changes the radius of the compact scalar in the bosonized

formulation. In the limit of large radius, a large gap develops between the dimensions of

typical momentum and winding operators. It would be interesting to study the effect of the

marginal deformation on the operator dimensions for N > 2, and to see if deforming the

CFT along this marginal direction could also create a large gap in the spectrum of operator

dimensions. The presence of such a gap would suggest [86] a weakly curved AdS3 dual of

the large N CFT.
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Appendix A: Fundamental matter

This appendix briefly describes the high density physics of the theory in (1.1), but for the

case where Ψ transforms as a fundamental of the SU(N) gauge group. For completeness, we

include the case where Ψ has a flavor index which takes Nf values, and then the model has

a U(Nf ) global symmetry. It is convenient to decompose the global symmetries into a U(1)

symmetry associated with the ‘charge’ density, and a SU(Nf ) flavor symmetry (the latter is

absent for Nf = 1). We proceed just as in section II. The high density limit is characterized

by a Fermi wavevector of gauge-charged fermions given by

Q

L
= NNf

kF
π

; (A1)

note that the r.h.s. has a prefactor of N , rather than the (N2− 1) in (1.2). The fluctuations

near this wavevector map onto the m = µ = 0 theory, which was considered in [87, 88].

Now we bosonize the NNf complex Dirac fermions differently. Rather than considering
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them as 2NNf Majorana fermions, we note that they can be used generate WZW currents

of SU(N)Nf , SU(Nf )N , and U(1), and these fully span the Hilbert space [87–89]. The

SU(N)Nf currents are projected out by the gauge field, and so the low energy theory is

made up of two decoupled sectors: a c = 1 free gapless scalar associated with the U(1),

and a SU(Nf )N WZW model associated with the SU(Nf ) global flavor symmetry with c =

N(N2
f−1)/(N+Nf ). This decoupling of the U(1) density mode is the key simplifying feature

of the fundamental matter case, and was absent for the adjoint matter case considered in the

body of the paper. Consequently, the U(1) sector here is similar to an ordinary Luttinger

liquid, while the spectator SU(Nf )N WZW model is directly linked to the additional global

flavor symmetries of the model.

In the notation of [90], we can write the Hamiltonian of the U(1) sector as

H =
1

2π

∫
dx

[
1

K
(∂xφ)2 +K (∂xθ)

2

]
(A2)

where K is the Luttinger parameter, θ and φ are scalar fields obeying the commutation

relations

[∂xφ(x), θ(x′)] = [∂xθ(x), φ(x′)] = iπδ(x− x′), (A3)

and the U(1) charge is

Q =
1

π

∫
dx ∂xφ. (A4)

The variable K is related to the exactly marginal perturbation to the U(1) theory, the analog

of the ‘radius’ of the scalar in the string theory notation. The fermion fields are related to

these scalar fields via [91]

ψR,L = e−i(θ±φ)/
√
NNf ϕcR,L ϕ

f
R,L (A5)

where ϕcR,L is the primary field the SU(N)Nf WZW model transforming as a fundamental of

SU(N), ϕfR,L is the primary field the SU(Nf )N WZW model transforming as a fundamental

of SU(Nf ). The exponential factor has been chosen so that the free fermion theory without

the SU(N) gauge field is properly bosonized at K = 1 with both WZW models conformal

so that dim[ϕcR,L] = (N2 − 1)/(2N(N +Nf )) and dim[ϕfR,L] = (N2
f − 1)/(2Nf (N +Nf )).

To determine the Friedel exponent, we need the smallest scaling dimension operator with

QL = 1 and QR = −1. Applying (A5) to the operator Tr(ψ†LψR), we can set the trace over

the SU(N)Nf WZW fields to constants [88, 89], and the scaling dimensions of the remaining

sectors yield

∆F = dim[e2iφ/
√
NNf ] + 2 dim[ϕfL] =

K

NNf

+
(N2

f − 1)

Nf (N +Nf )
, (A6)

where K is now allowed to be not equal to unity because, in general, there will be an exactly
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marginal interaction in the c = 1 sector. We note that the ∆F → 0 corresponds to a

crystalline state with broken translational symmetry; such continuous symmetry breaking

is not possible in 1+1 dimensions, but a crystal was discussed as a mean field theory of

baryons valid in the formal large N limit [92].

In the fundamental matter model, the pairing operator ψLψR can be reduced to a gauge

singlet only for N = 2. Extending our Friedel operator argument to a gauge singlet pairing

operator implies that we need the simplest operator with QL = QR = −1, and this yields

∆P = dim[e2iθ/
√
NNf ] + 2 dim[ϕfL] =

1

NNfK
+

(N2
f − 1)

Nf (N +Nf )
, N = 2. (A7)

Finally, we note that the case N = 1 and Nf = 1 corresponds to the finite density phase

of the massive Thirring model, which realizes the simplest Luttinger liquid.

Appendix B: Modular invariants for coset CFT2

Modular invariant partition functions for coset CFT2 can be constructed once invariants

for both the numerator and denominator CFT2’s have been specified [93, 94]. Rather than

describing the general construction, we focus on the specific example of the (N,N ; 2N)

cosets for gauged adjoint fermions.

The numerator CFT2 has two copies of the SU(N)N theory, each describing (N2 − 1)

adjoint fermions. There are several options for a modular invariant, including a simple

product of the diagonal modular invariant of each of the SU(N)N factors. However, we

should here select the invariant that describes the situation where boundary conditions

on the combined fermions are such that a global U(1) symmetry arises. The appropriate

modular invariant turns out to be the diagonal modular invariant of an SO(2N2 − 2)1

symmetry, written as

ZSO(2N2−2)1 = |χSO(2N2−2)1
1 |2 + |χSO(2N2−2)1

v |2 + 2|χSO(2N2−2)1
sp |2 (B1)

with ‘1’, ‘v,’ and ‘sp’ denoting the identity, vector and spinor representations of SO(2N2−2)1.

This result arises from the well known result, known as non-Abelian bosonization [95], that

the CFT2 based on SO(M)1, at central charge c = M/2, describes M real fermions.

The partition sum can be re-expressed in terms of characters of two copies of SO(N2−1)1,

one for each of the groups of N2 − 1 fermions

ZSO(2N2−2)1 = |χSO(N2−1)1
1 χ̃

SO(N2−1)1
1 + χSO(N2−1)1

v χ̃SO(N2−1)1
v |2

+|χSO(N2−11)
v χ̃

SO(N2−1)1
1 + χ

SO(N2−1)1
1 χ̃SO(N2−1)1

v |2 + 2λ|χSO(N2−1)1
sp χ̃SO(N2−1)1

sp |2 , (B2)

with λ = 4(1) for N odd(even).The SO(N2 − 1)1 characters can each be branched into
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characters of SU(N)N . For the NS sector characters (labels ‘1’ and ‘v’) the results are

χ
SO(N2−1)1
1 = χ

SU(N)N
(00...00) + χ

SU(N)N
(20...10) + χ

SU(N)N
(01...02) + . . .

χSO(N2−1)1
v = χ

SU(N)N
(10...01) + χ

SU(N)N
(110...011) + . . . (B3)

We use Dynkin labels (l1l2 . . . lN−1) to tag the SU(N) representions: (00 . . . 00) is the iden-

tity, (10 . . . 01) the adjoint, etc. (a useful reference for the group theory is [96]). We remark

that the SU(N) representations featuring in the NS sector satisfy the N -ality condition

l1 + 2l2 + . . . (N − 1)lN−1 ≡ 0 mod N . (B4)

To obtain a partition sum for the coset CFT2 the following steps are taken. First one

writes branching rules for the SO(2N2−2)1 characters into products of branching functions

times characters of the affine algebra SU(N)2N that features in the denominator of the coset.

Schematically

χ
SO(2N2−2)1
A =

∑
a

baA × χSU(N)2N
a . (B5)

The labels a take values in the integral dominant weights of SU(N)2N , which are written as

Dynkin labels (l1l2 . . . lN−1) satisfying
∑

i li ≤ 2N . We find that, for general N , the terms

on the r.h.s. of (B5) are grouped into combinations of the form

χSU(N)2N
a + χ

SU(N)2N
λ(a) + χ

SU(N)2N
λ2(a) + . . . (B6)

where λ is the automorphism

λ : (l1l2 . . . lN−1)→ ([2N −
∑
i

li]l1l2 . . . lN−2) . (B7)

Again, the SU(N) representations featuring in the NS sector satisfy the N -ality condition

(B4).

Writing the modular invariants for the denominator (d) and numerator (n) as

Zd =
∑
AB

Nd
ABχ

SO(2N2−2)1
A χ

SO(2N2−2)1
B ,

Zn =
∑
ab

Nn
abχ

SU(N)2N
a χ

SU(N)2N
b (B8)

the coset invariant is obtained as

Zcoset =
∑
ABab

Nd
ABN

n
abb

a
Ab

b

B . (B9)
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For the (N,N ; 2N) cosets, the natural choice for the denominator modular invariant

is the SU(N)2N invariant that displays the same grouping of characters, according to the

automophism (B7), that we observed in the branching rules (B5). Such an invariant exists

for general N [97]; we display explicit examples for N = 2, 3 in the main text of this paper.

The N = (2, 2) superconformal symmetry of the (N,N ; 2N) coset guarantees that the

branching functions baA are characters of (an extension) of theN = 2 superconformal algebra.

For N ≥ 3 we find (see again the main text) that the vacuum character of this extended

symmetry takes the form

chN=2,ext
q=0,h=0 = chNS

q=0,h=0 + chNS
q=1/3,h=2 + chNS

q=−1/3,h=2 + . . . (B10)

The (N,N ; 2N) coset modular invariant can be viewed as a diagonal modular invariant for

this W -extension of N = 2 superconformal symmetry.

Appendix C: DLCQ Quantization of the gauged adjoint Dirac fermions in 1+1

dimensions

In this appendix, we will summarize the computation of the discretized light cone quan-

tization spectrum of the 1 + 1 dimensional SU(N) gauge theory coupled to adjoint Dirac

fermions in the large N limit.

The first step is to write down the Lagrangian which follows the general pattern of

[50, 52, 54] except that the fermions are now complex. Here we follow II.B of [50]. We start

with (1) of [54] but treat

Ψ = 21/4

(
ψ

χ

)
(C1)

as Dirac fermions.

The light cone coordinates are defined by

x± =
1√
2

(x0 ± x1) (C2)

so that

A± =
1√
2

(A0 ± A1) . (C3)

We will use for the Dirac matrices

γ0 = iσ2 =

(
0 −i
i 0

)
, γ1 = iσ1 =

(
0 i

i 0

)
. (C4)
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The Lagrangian is normalized to take the form

Tr
{

Ψ̄(i∂/−m)Ψ]
}

= Tr
{

2iψ†∂+ψ + 2iχ†∂−χ− i
√

2m(ψ†χ+ χ†ψ)
}
. (C5)

To compare this Lagrangian with the Hamiltonian (2.1), simply note that the fermion field

Ψ can be expressed in the standard mode expansion

Ψ(t, x) =

∫
dk1

2π

1√
2k0

(
u(k)p(k)e−ikµx

µ

+ v(k)h(k)eikµx
µ

)
(C6)

where u(k) and v(k) is the standard 2 component spinor basis satisfying

(k/−m)u(k) = (k/+m)v(k) = 0, ū(k)u(k) = −v̄(k)v(k) = 2m . (C7)

Then, in terms of p(k) and h(k) we recover (2.1) for the Hamiltonian.

Returning to (C5), we gauge the free fermion theory by introducing covariant derivatives

DΨ = ∂µΨ + i[Aµ,Ψ] . (C8)

It is customary in light cone quantization to use the gauge

A− = 0 (C9)

so that the gauge kinetic term takes the form

− 1

2g2
YM

TrF 2 =
1

g2
YM

Tr(∂−A+)2 (C10)

and the Lagrangian reads

L = Tr

{
2iψ†∂+ψ + 2iχ†∂−χ−

√
2im(ψ†χ+ χ†ψ) + A+J

+ +
1

g2
YM

(∂−A+)2

}
(C11)

with

J+ = 2(ψψ† + ψ†ψ) . (C12)

If we take x+ as the time direction, χ and A+ are non-dynamical and can be integrated out,

giving rise to the light-cone momentum and Hamiltonian

P+ =

∫
dx−Tr

{
2iψ†∂−ψ

}
, (C13)

P− =

∫
dx−Tr

{
−im2ψ†

1

∂−
ψ − 1

4
g2
YMJ

+ 1

∂2
−
J+

}
. (C14)
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Imposing canonical quantization on the fermions gives rise to relation

{ψ†ij(x−), ψkl(x̃
−)} =

1

2
δ(x− − x̃−)

(
δilδjk −

1

N
δijδkl

)
(C15)

with

{ψij(x−), ψkl(x̃
−)} = {ψ†ij(x−), ψ†kl(x̃

−)} = 0 . (C16)

The Dirac fermions are expanded in modes

ψ(x−) =
1√
2L

∑
n∈odd>0

{
Aij(n)e−iπnx

−/L +B†ji(n)eiπnx
−/L
}

(C17)

where we have compactified the x− direction and imposed the anti-periodic boundary condi-

tion on the ψ(x−) field; this typically leads to a better DLCQ computation than choosing the

periodic boundary condition and removing the zero mode by hand. The choice of boundary

condition should not matter in the decompactification limit K →∞.

The anti-commutation relation for the modes are is

{Aij(m), Akl(n)} = δ(m+ n)

(
δilδjk −

1

N
δijδkl

)
, (C18)

{Bij(m), Bkl(n)} = δ(m+ n)

(
δilδjk −

1

N
δijδkl

)
(C19)

where n takes odd integer values, and

Aij(−n) = A†ji(n), Bij(−n) = B†ji(n) . (C20)

We can now set up the light cone vacuum

Aij(n)|0〉 = Bij(n)|0〉 = 0, (n > 0) . (C21)

The states are then generated by acting by a string of “letters” A(−n) and B(−n) in a

single trace state, i.e.

|ψ〉 = #Tr(B(−n1)A(−n2)...B(−nk))|0〉 (C22)

where # is a symmetry factor to ensure that the norm of each state is one.

Our next step is to write the light cone momentum and Hamiltonian operators in terms

of the fermion oscillators. It is clear that the light cone momentum operator (C13) can be

written in the form

P+ =
∑
n≥1

{πn
L
A†ij(n)Aji(n) +

πn

L
B†ij(n)Bji(n)

}
=
πK

L
, (C23)
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when acting on a state with fixed K.

Instead of writing the light cone Hamiltonian P− in terms of fermion oscillators, let us

consider the Lorentz invariant mass operator

2P+P− = V + T (C24)

where V corresponds to terms associated with the term proportional to m2 and T corre-

sponds to the term proportional to (J+)2 in (C14). Then, it is easy to show that

V = Km2
∑
n≥1

{(
1

n

)
A†ij(n)Aji(n) +

(
1

n

)
B†ij(n)Bji(n)

}
. (C25)

Note that the dependence on L drops out, but there is still a dependence on K.

Computation of T involves a somewhat tedious exercise of normal ordering the (J+)2

written in terms of fermion oscillator operators. One can organize T in accordance to the

number of oscillators destroyed and created.

T = T1→1 + T1→3 + T2→2 + T3→1 . (C26)

In this form, one finds after some algebra, that

T1→1 =
2g2

YMNK

π

∑
n

n−2∑
m=1

{(
1

n−m

)2

A†ji(n)Aji(n) +

(
1

n−m

)2

B†ji(n)Bji(n)

}
(C27)

T1→3 =

(
g2
YMNK

2π

)∑
δ(n1 + n2 + n3 −m1)×{

2

(n1 −m1)2
B†ik(n3)A†kl(n2)A†lj(n1)Aij(m1)(

2

(n1 −m1)2
− 2

(n3 −m1)2

)
A†ik(n3)B†kl(n2)A†lj(n1)Aij(m1)

− 2

(n3 −m1)2
A†kl(n3)A†lj(n2)B†ji(n1)Aki(m1)

2

(n1 −m1)2
A†lj(n3)B†ji(n2)B†ik(n1)Blk(m1)(

2

(n1 −m1)2
− 2

(n3 −m1)2

)
B†ji(n3)A†ik(n2)B†kl(n1)Bjl(m1)

− 2

(n3 −m1)2
B†ji(n3)B†ik(n2)A†kl(n1)Bjl(m1)

}
(C28)

T2→2 =

(
g2
YMNK

2π

)∑
δ(n1 + n2 −m1 −m2)×{

2

(n1 −m1)2
A†kl(n2)A†lj(n1)Aki(m2)Aij(m1)(

2

(n1 −m1)2
− 2

(m1 +m2)2

)
A†ik(n2)B†kl(n1)Aij(m2)Bjl(m1)
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− 2

(m1 +m2)2
B†ik(n2)A†kl(n1)Aij(m2)Bjl(m1)

− 2

(m1 +m2)2
A†lj(n2)B†ji(n1)Blk(m2)Aki(m1)(

2

(n1 −m1)2
− 2

(m1 +m2)2

)
B†kl(n2)A†lj(n1)Bki(m2)Aij(m1)

2

(n1 −m1)2
B†ji(n2)B†ik(n1)Bjl(m2)Blk(m1)

}
(C29)

T3→1 =

(
g2
YMNK

2π

)∑
δ(n1 −m1 −m2 −m3)×{

− 2

(n1 −m1)2
A†lj(n1)Blk(m3)Aki(m2)Aij(m1)

+

(
2

(m2 +m1)2
− 2

(n1 −m1)2

)
A†lj(n1)Alk(m3)Bki(m2)Aij(m1)

+
2

(m1 +m2)2
A†kl(n1)Aki(m3)Aij(m2)Bjl(m1)

− 2

(n1 −m1)2
B†ik(n1)Aij(m3)Bjl(m2)Blk(m1)

+

(
2

(m1 +m2)2
− 2

(n1 −m1)2

)
B†kl(n1)Bki(m3)Aij(m2)Bjl(m1)

+
2

(m1 +m2)2
B†ji(n1)Bjl(m3)Blk(m2)Aki(m1)

}
. (C30)

At this point, a computer program must be written to generate the set of states and the

elements of the mass operator M2 = 2P+P−.

As an example, for K = 5 and Q = 1, we find

T =
g2
YMNK

2π


13
8

1
8
−1

2
1
2
−1

4
1
8

13
8

1
2
−1

2
−1

4

−1
2

1
2

1 1 0
1
2
−1

2
1 3 0

−1
4
−1

4
0 0 3

2

 (C31)

whose eigenvalues in units of g2
YMN/2π are

{0, 6.25, 10, 10, 17.5} . (C32)

Strictly speaking, eigenvalues of just the T without the contribution from V are unreliable

since they correspond to taking massless fermions as the matter fields. Nonetheless, it is

encouraging to find an exactly massless state in the spectrum which would survive the limit

of strong gauge coupling. The massless states for these m2 = 0 cases continue to be present

as the values of K are increased.

33



K = 5 K = 7 K = 9 K = 11 K = 13 K = 15 K = 17 K = 19 K =∞ M/Q
Q = 1 4.60 5.08 5.42 · · · · · · · · · · · · · · · 6.42 6.42
Q = 3 3.42 3.67 3.85 4.00 4.10 · · · · · · · · · 4.49 1.50
Q = 5 - 5.51 5.87 6.14 6.36 6.54 · · · · · · 7.40 1.47
Q = 7 - - 7.55 7.97 8.30 8.58 8.82 · · · 10.19 1.46
Q = 9 - - - 9.57 10.03 10.041 10.73 · · · 12.83 1.43
Q = 11 - - - - 11.59 12.08 12.49 12.85 15.54 1.41

TABLE III: Mass M of the lightest fermionic bound state in the fixed Q sector for various K. The

“−” indicates entries which are not defined. The “· · · ” indicate entries which are well defined but

have not been computed due to limits in computational resources. These are the data presented

in figure 3. Note that M as a function of Q is minimized at Q = 3. However, M/Q as a function

of Q appears to slowly be decreasing monotonically.

K = 4 K = 6 K = 8 K = 10 K =∞ M/Q
Q = 0 2.31 2.47 2.58 2.67 2.88 ∞

TABLE IV: Mass M of the bosonic bound state in the Q = 0 sector for K = 4, 6, 8, 10.

The actual computation reported in section III is the computation of the spectrum of

M2

m2
=

1

m2
(V + T ) (C33)

where, for definitiveness, we set the dimensionless parameter

x =
2πm2

g2
YMN

= 10−3 . (C34)

The result of carrying out the calculation for K = 5, 7, 9, 11, 13, 15, 17, 19, is summarized

in table III. There, we tabulate the calculated value of the hadronic bound state mass M

for fixed Q as K is increased. The K = ∞ is a result of linear extrapolation illustrated in

figure 3. We observe that the lightest bound state appears to be in the Q = 3 sector, at least

among the fermionic states. However, the quantity M/Q which determines µcrit appears to

be slowly decreasing as Q is increased.

Similar computations can be carried out for the bosonic bound states when the values of

K are taken to be even. We did not perform the computation at the same level of precision

for the bosonic bound states as we did for the fermions. The plot analogous to figure 2 is in

figure 4 below. From figure 4, it is quite apparent that the pattern of states with smallest

M/Q is becoming degenerate at around µcrit = M/Q ≈ 1 as Q is increased.

There is one additional feature which is notable regarding the bosonic spectrum: the state

with smallest M is in the Q = 0 sector. For K = 4, 6, 8, 10, we find the masses presented in

table IV.

A closer examination of the wavefunction indicates that the lightest state is mostly a
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FIG. 4: Spectrum of bosonic bound states for K = 4, 6, 8, 10. This figure is the analogue of figure

2 for the fermionic bound states.

mixture of the “two bit” states of the form∑
p

cpTrA†(p)B†(K − p)|0〉 . (C35)

This is analogous to what was found for the adjoint Majorana model [52]. These are inter-

esting features of our model from the point of view of its dynamics at vanishing chemical

potential. As should be clear from the right most column in table IV, however, the Q = 0

states do not have any impact on the physics at finite chemical potential µ.
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