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Abstract—This paper studies a three party energy management
problem in a user interactive smart community that consists
of a large number of residential units (RUs) with distributed
energy resources (DERs), a shared facility controller (SFC) and
the main grid. A Stackelberg game is formulated to benefit
both the SFC and RUs, in terms of incurred cost and achieved
utility respectively, from their energy trading with each other
and the grid. The properties of the game are studied and it is
shown that there exists a unique Stackelberg equilibrium (SE).
A novel algorithm is proposed that can be implemented in a
distributed fashion by both RUs and the SFC to reach the SE.
The convergence of the algorithm is also proven, and shown to
always reach the SE. Numerical examples are used to assess the
properties and effectiveness of the proposed scheme.

Index Terms—Smart grid, distributed energy resources, game
theory, energy management.

I. I NTRODUCTION

Distributed energy resources (DERs) have the capability of
assisting consumers is reducing their dependence on the main
grid as their primary source of electricity, and thus, lowering
their costs of energy purchase [1]. They are also critical to
the reduction of green house emissions and alleviation of
climate change [2]. As a result, there has been an increasing
interest in deploying DERs in the smart grid. The majority
of recent works in managing energy using DERs have mainly
focussed on two areas: 1) the study of feasibility and control
of DERs for their use in designing efficient micro-grids, e.g.,
see [3] and the references therein; and 2) scheduling energy
consumption of household equipment by exploiting the use of
DERs to optimize different grid operational objectives such as
minimizing the energy consumption costs of users [4], [5]. In
most cases it is assumed that the users with DERs also possess
storage devices. However, there are also some cases in which
users might not want to store energy. Rather, they are more
inclined to consume or trade energy as soon as it is generated,
e.g., as in a grid-tie solar system without battery back up [6].
Furthermore, the majority of research on energy management
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emphasizes energy trading between two energy entities, i.e.,
two-way energy flow. For example, a considerable number of
references that use such models can be found in [7]–[11].

In this paper, a three party energy management scheme
is proposed for a smart community that consists of multiple
residential units (RUs), a shared facility controller (SFC) and
the main grid. To the best of our knowledge, this paper is
the first that introduces the idea of a shared facility and
considers a 3-party energy management problem in smart grid.
With the development of modern residential communities,
shared facilities provide essential public services to theRUs,
e.g., maintenance of lifts in community apartments. Hence,
it is necessary to study the energy demand management of
shared facilities for expediting effective community work. In
particular, for the considered setting, as will be seen shortly,
energy trading of RUs with the grid and the SFC constitutes
an important energy management problem for both the SFC
and RUs. On the one hand, each RU is interested in selling
its energy either to the SFC or to the grid at a higher price
to increase revenue. On the other hand, the SFC wants to
minimize its cost of energy purchased by making a price offer
to RUs to encourage them to sell their energy to the SFC
instead of the grid. This enables the SFC to be less dependent
on expensive electricity from the grid.

As an energy management tool, the framework of a non-
cooperative Stackelberg game (NSG) [12] is considered. In
fact, NSGs have been used extensively in designing differ-
ent energy management solutions. For example, maximizing
revenues of multiple utility companies and customers [12],
[13], minimizing customers’ bills to retailers while maximiz-
ing retailers’ profits [14], prioritizing consumers’ interests in
designing energy management solutions [15], and managing
energy between multiple micro-grids in the smart grid [16],
among many others. However, the choice of players and their
strategies significantly differ from one game to another based
on the system model, the objective of energy management
design and the use of algorithms. To that end, an NSG is
proposed for the considered scenario to capture the interaction
between the SFC and RUs and it is shown that the maximum
benefits to the SFC and RUs are achieved at the SE of the
game. The properties of the game are studied, and it is proven
that there exists a unique SE. Finally, a novel algorithm, which
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Fig. 1: Shift of maximum utility point as the price per unit ofenergy
set by the SFC to pay to each RU increases. A higher price results
in less consumption by the RU and vice versa.

is guaranteed to reach the SE, and can be implemented in a
distributed fashion by the SFC and the RUs is introduced.
The effectiveness of the proposed scheme is confirmed by
numerical simulations.

II. SYSTEM MODEL

Consider a smart grid network consisting of the main grid
and a smart community withN RUs and an SFC, which
are connected to one another via communication and power
lines. Each RU, which is equipped with DERs such as solar
panels or wind turbines, can be a single residential unit or
group of units connected via an aggregator that acts as a
single entity. All RUs are considered to belong to the setN .
Here, on the one hand, the SFC does not have any electricity
generation capacity. Hence, at any time of the day, it needs
to rely on the grid and RUs for required energyEreq

sf to run
equipment and machines in the shared facility such as lifts,
water pumps, parking gates and lights that are shared and
used by the residences on daily basis. On the other hand, each
RU n ∈ N is considered to have no storage capability, and
therefore, wants to consume or sell its generated energyEgen

n

either to the main grid or to the SFC to raise revenue. It is
assumed that each RU can manage its consumptionen, and
thus sell the rest of the generated energyEgen

n − en to the
SFC or to the grid. Clearly, ifEgen

n ≤ Emin
n , whereEmin

n is
the base load for RUn, the RU cannot take part in the energy
management. Otherwise, which is the considered case, the RU
sellsEgen

n − en after controlling its consumption amounten.
In general, the buying pricepbg of a grid is noticeably lower

than its selling pricepsg [17]. To this end, it is assumed that the
pricepssf per unit of energy that the SFC pays to each RU is set
between the buying and selling price of the grid. Therefore,
each RU can sell its energy at a higher pricepssf > pbg and
the SFC can buy at a lower pricepssf < psg by trading energy
among themselves rather than trading with the grid. Under this

condition, it is reasonable to assume that the RUn would be
more inclined to sellEgen

n − en to the SFC instead of to the
grid. To that end, the amount of utility that an RU achieves
from its energy consumptionen and trading the rest with the
SFC can be modeled as

Un = kn ln(1 + en) + pssf(E
gen
n − en), kn > 0. (1)

In (1), kn ln(1 + en) is the utility that the RUn achieves
from consumingen, and kn is a preference parameter [18].
pssf(E

gen
n − en) is the revenue that the RU receives from

selling the rest of its energy to the SFC. Please note that the
natural logarithmln(·) has been used extensively for utility
functions [19], and has particularly been shown to be suitable
for modeling the utility for power consumers [12]. From (1),
the RU n would be interested in selling more energy to the
SFC, e.g., by scheduling its use of devices at a later time, if
the values ofkn and pssf are high and vice-versa. The effect
of pssf on the achieved utility by an RU is illustrated in Fig. 1.
The figure clearly shows that at a higherpssf maximum utility
is achieved by an RU when it consumes less, i.e., it sells more
to the SFC.

On the other hand, the SFC buys all its required energy
Ereq

sf from RUs and the grid. Due to the choice of pricepssf,
i.e., pssf < psg, the SFC is more interested in buying its energy
from RUs and then procuring the rest, if there is any, from the
grid at a pricepsg. To this end, a cost function for the SFC is
defined as

Jsf = pssf

∑

n

esn,sf+ (E
req
sf −

∑

n

esn,sf)p
s
g (2)

to capture its total cost of buying energy from RUs and the
grid. In (2), esn,sf = E

gen
n − en is the amount of energy that the

SFC buys from RUn. Now if pssf is too low it might cause
an RU to refrain from selling its energy to the SFC. As a
result, the SFC would need to buy all itsEreq

sf from the grid
at a higher rate. On the contrary, ifpssf is very high, it will
increase the cost to the SFC significantly. Hence,pssf should
be within a legitimate range to encourage the RUs to sell their
energy to the SFC, while at the same time, keeping the cost
to the SFC at a minimum.

Now, to decide on the energy trading parametersesn,sf and
pssf, on the one hand, the SFC interacts with each RUn ∈ N
to minimize (2) by choosing a suitable price to pay to eachn.
On the other hand, each RU decides on the amount of energy
en that it wants to consume and thus maximize (1). To capture
this interaction, an NSG between the SFC and RUs is proposed
in the next section.

III. N ONCOOPERATIVESTACKELBERG GAME AND ITS

PROPERTIES

First, the objective of each RU is to decide on the amount
of energyen that it wants to consume, and thus to determine
esn,sf based on the offered pricepssf to sell to the SFC such that
(1) possesses the maximum value. Mathematically,

max
en

[kn ln(1 + en) + pssf(E
gen
n − en)] . (3)



Conversely, having the offered energy from all RUs, i.e.,
esn,sf ∀n, the SFC determines the pricepssf so as to minimize
the cost captured via (2). Therefore, the objective of the SFC
is

min
ps

sf

[

pssf

∑

n

esn,sf+ (Ereq
sf −

∑

n

esn,sf)p
s
g

]

. (4)

Here, (3) and (4) are concave and convex functions respec-
tively, and are coupled via common parametersen and pssf.
Therefore, it would be possible to solve the problem in an
optimal centralized fashion if private information such askn
and Egen

n were available to the central controller. However,
to protect the privacy of each RU as well as to reduce the
demand on communications bandwidth, it is useful to develop
a distributed mechanism. With these considerations in mind,
we study the problem using an NSG.

A. Noncooperative Stackelberg Game

A Stackelberg game, also known as a leader-follower game,
studies the multi-level decision making processes of a number
of independent players, i.e., followers, in response to the
decision made by the leader (or, leaders) of the game [12].
In the proposed NSG, the SFC and each RU are modeled as
the leader and a follower respectively. Formally, the NSG can
be defined by its strategic form as

Γ = {(N ∪ {SFC}), {En∈N}, {Un}n∈N , pssf, Jsf}, (5)

which has following components:

i) The setN of all followers in the game.
ii) The set{SFC} of leaders in the game that has only one

element in our case, i.e., a single leader.
iii) The strategy setEn of each RUn ∈ N to choose an

amount of energyen ∈ En to be consumed during the
game.

iv) The utility function Un of each RUn to capture the
benefit from consumingen, and the utility from selling
esn,sf = Egen

n − en to the SFC.
v) The pricepssf set by the SFC to buy its energy from RUs.
vi) The cost functionJsf of the SFC that quantifies the total

cost of energy purchase from RUs and the grid.

ThroughΓ, all RUs that want to trade their energy and the SFC
interact with each other and decide on the decision vectore =
[e1, e2, . . . , en, . . . , eN ] andpssf by choosing their appropriate
strategies. In this regard, one suitable solution of the proposed
Γ is the SE, which is obtained as soon as the leader decides
on its optimal price based on the followers’ best responses of
their offered energy.

Definition 1. Consider the NSGΓ as defined by(5) where
Un and Jsf are determined by(1) and (2) respectively. A set
of strategies(e∗, ps

∗

sf ) comprises the SE of the proposedΓ if
it satisfies the following set of inequalities:

Un(e
∗, ps

∗

sf ) ≥ Un(en, e
∗
−n, p

s∗

sf ), ∀n ∈ N , en ∈ N , (6)

and

Jsf(e
∗, ps

∗

sf ) ≤ Jsf(e
∗, pssf), (7)

wheree−n is the strategy set of all RUs inN/{n}.

Therefore, according to (6) and (7), neither the SFC nor any
RU in the set(N ∪ {SFC}) can benefit, in terms of its total
cost and achieved utility respectively, by unilaterally changing
its strategy once the NSGΓ reaches an SE.

B. Existence and Uniqueness of SE

The existence of a pure strategy solution is not always
guarateed in noncooperative games [12]. Hence, there is a need
to investigate whether there exists any SE for the proposed
NSG. The following theorem settles this issue.

Theorem 1. There exists a unique pure strategy SE in the
proposed NSGΓ between the SFC and RUs in the set(N ∪
{SFC}).

Proof: First, note thatUn in (1) is a strictly concave
function of en, ∀n ∈ N , i.e., δ2Un

δe2
n

< 0. Therefore, for any
price pssf > 0, each RUn will have a uniqueen, chosen from
a bounded strategy set[Emin

n , Egen
n ]1, that maximizesUn. It

is also noted thatΓ reaches SE when all players including
the SFC and each RUn ∈ N have their best cost and utilities
respectively with respect to the strategies chosen by all players
in the game. Thereby, it is indisputable that the proposed game
Γ would find an SE as soon as the SFC is able to find an
optimal priceps

∗

sf while all RUs play their unique strategy
vectore∗.

Now the second derivative of (2) with respect topssf is

δ2Jsf

δps
2

sf

=
2
∑

n kn
(pssf)

3
, (8)

which is greater than0. Therefore,Jsf is strictly convex with
respect topssf. Consequently, the SFC is able to find a unique
price ps

∗

sf in response to the strategy vectore∗. Thus, there
exists a unique SE in the proposed NSG, and Theorem 1 is
proved.

C. Distributed Algorithm

In this section, an iterative algorithm that the SFC and
RUs can implement in a distributed fashion is proposed to
reach the SE of the game. In order to attain the unique
SE, the SFC needs to communicate with each RU. At each
iteration, on the one hand, the RUn chooses its best energy
consumption amounten in response to the pricepssf set by the
SFC, calculatesesn,sf = E

gen
n − en and sends it to the SFC.

On the other hand, having the information on the choice of
energyesn,sf ∀n, the SFC derives its pricepssf to minimize its
cost in (2) and resends it to each RU. The interaction between
the SFC and all RUs continues iteratively until (6) and (7) are
satisfied. As soon as these conditions are met, the proposed
NSG reaches the SE. Details are given in Algorithm 1.

1An RU must consume at least its base load, and cannot consume more
than its generation, at any time.



Algorithm 1 Algorithm to reach the SE

1: Initialization: ps
∗

sf = 0 J∗
sf = psg ∗ E

req
sf

2: for Buying pricingpssf from pbg to psg do
3: for Each RUn ∈ N do
4: RU n adjusts its energy consumptionen according to

e
∗
n = arg max

0≤en≤E
gen
n

[kn ln(1+en)+p
s
sf(E

gen
n −en)]. (9)

5: end for
6: The SFC computes the cost according to

Jsf = p
s
sf

∑

n∈N

(Egen
n − en) + p

s
g

(

E
req
sf −

∑

n∈N

(Egen
n − en)

)

.

(10)
7: if Jsf ≤ J∗

sf then
8: The SFC keeps records of the optimal price and minimal

cost
p
s∗

sf = p
s
sf, J

∗
sf = Jsf (11)

9: end if
10: end for

The SE (e∗, ps
∗

sf ) is achieved.

Theorem 2. The proposed Algorithm 1 is always guaranteed
to reach the SE of the game.

Proof: According to the proposed algorithm, the conflict
between RUs’ choices of strategies stem from their impact on
the choice ofpssf by the SFC. Due to the strict convexity of
Jsf, the choice ofps

∗

sf > 0 lowers the cost of the SFC to the
minimum. Now, as the algorithm is designed, in response to
the ps

∗

sf , each RUn chooses its strategyen from the bounded
range

[

Emin
n , Egen

n

]

to maximize its concave utility function
Un. Hence, due to a bounded strategy set and the continuity
of the utility function Un with respect toen, each RUn
also reaches a fixed point at which its utility is maximized
for the given priceps

∗

sf [12]. As a consequence, the proposed
algorithm is always guaranteed to converge to the unique SE
of the game.

IV. N UMERICAL EXPERIMENTS

The proposed energy management scheme is simulated by
considering a number of RUs that are interested in selling
their energy to the SFC. Typical energy generation of each
RU from its DERs is assumed to be10 kWh [20] and the
required energy by the SFC is presumed to be50 kWh during
the considered time. The preference parameterkn is chosen
sufficiently large, e.g.,kn is chosen from range[90, 150]
for this case study, such thaten and pssf in (1) are always
positive. The grid’s per unit selling price is assumed to be60
cents/kWh [21] whereby the SFC sets its initial price equal
to the grid’s buying price of8.45 cents/kWh [15] to pay to
each RU. Nonetheless, it is very important to highlight that
all parameter values are particular to this study and may vary
according to the need of the SFC, power generation of the
grid and DERs, and the energy policy of a country.

In Fig. 2, the SFC’s total cost is shown to converge to the
SE by following Algorithm 1 for a network with five RUs.
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Fig. 2: Utility achieved by each RU at the SE.
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Fig. 3: Comparison of the cost incurred by the SFC between the
proposed and baseline approaches for different amounts of required
energy.

It can be seen that although the SFC wants to minimize its
total cost, it cannot do so with its initial choice of price for
payment to the RUs. In fact, through interaction with each RU
of the network the SFC eventually increases its price in each
iteration to encourage the RUs to sell more, and consequently
the cost continuously reduces. As can be seen from Fig. 2, the
SFC’s choice of equilibrium price and consequently also the
minimum total cost reach their SE after the34th iteration.

Next, the effectiveness of the proposed scheme is demon-
strated by comparing its performance with a standard baseline
scheme that does not contain any DER facility, i.e., the
SFC depends on the grid for all its energy. In this regard,
considering10 RUs in the system, the total cost of energy
trading that is incurred by the SFC is plotted in Fig. 3 for
both the proposed and baseline approaches as the amount of
energy required by the SFC increases. As shown in the figure,
the cost to the SFC increases for both cases as the energy
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Fig. 4: Comparison of social cost obtained by the proposed distributed
scheme with respect to the centralized scheme as the number of RUs
varies in the network.

requirement increases from60 to 100 kWh. In fact, it is a
trivial result that a greater energy requirement leads the SFC
to spend more money on buying energy, which consequently
increases the cost. Nonetheless, the proposed scheme needsto
spend significantly less to buy the same amount of energy due
to the presence of the DERs of the RUs, and thus noticeably
benefits from its energy trading in terms of total cost compared
to the baseline scheme. As shown in Fig 3, the SFC’s cost is
74.9%, on average, lower than that of the baseline approach
for the considered change in the SFC’s energy requirement.

Nevertheless, as mentioned in Section III, it is also possible
to optimally manage energy between RUs and the SFC via
a centralized control system to minimize the social cost2 if
private information such askn andEgen

n ∀n is available to the
controller. In this regard, the performance in terms of social
cost for both the centralized and proposed distributed schemes
is observed in Fig. 4. As can be seen from the figure, the
social cost attained by adopting the distributed scheme isvery
closeto the optimal scheme at the SE of the game. However,
the centralized scheme has access to the private information
of each RU. Hence, the controller can optimally manage the
energy, and as a result shows better performance in terms of
reducing the SFC’s cost compared to the proposed scheme.
According to Fig. 4, as the number of RUs changes in the
network from5 to 25, the average social cost for the proposed
distributed scheme is only7.07% higher than that obtained via
the centralized scheme. This is a promising result considering
the distributed nature of the system.

V. CONCLUSION

In this paper, a user interactive energy management scheme
has been proposed for a smart grid network that consists of a

2In contrast to social benefit, social cost is the difference between the
total cost incurred by the SFC and total utility achieved by all RUs in the
system.

shared facility, the main grid and a large number of residential
units (RUs). A noncooperative Stackelberg game (NSG) has
been proposed that captures the interaction between the shared
facility controller (SFC) and each RU and it has been shown
to have a unique Stackelberg equilibrium (SE). It has been
shown that the use of DERs for each RU is beneficial for
both the SFC and RUs in terms of their incurred cost and
achieved utilities respectively. Further, a distributed algorithm
has been proposed, which is guaranteed to reach the SE and
can be implemented by the players in a distributed fashion.
Significant cost savings have been demonstrated for the SFC
by comparing the proposed scheme with a standard baseline
approach without any DERs.

The proposed work can be extended in different directions.
An interesting extension would be to examine the impact
of discriminate pricing among the RUs on the outcome of
the scheme. Another compelling augmentation would be to
determine how to set the threshold on the grid’s price. Further,
quantifying the inconvenience that the SFC/RUs face during
their interaction and quantifying the effect of the inclusion of
storage devices could be other potential future extensionsof
the proposed work.
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