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Abstract: The wiretap channel models secure communication between two users in the presence of
an eavesdropper who must be kept ignorant of transmitted messages. This communication scenario
is studied for arbitrarily varying channels (AVCs), in which the legitimate users know only that the
true channel realization comes from a pre-specified uncertainty set and that it varies from channel
use to channel use in an arbitrary and unknown manner. This concept not only captures the case of
channel uncertainty, but also models scenarios in which malevolent adversaries influence or jam the
transmission of the legitimate users. For secure communication over orthogonal arbitrarily varying
wiretap channels (AVWCs) it has been shown that the phenomenon of super-activation occurs; that is,
there are orthogonal AVWCs, each having zero secrecy capacity, which allow for transmission with
positive rate if they are used together. It is shown that for such orthogonal AVWCs super-activation
is generic in the sense that whenever super-activation is possible, it is possible for all AVWCs in
a certain neighborhood as well. As a consequence, a super-activated AVWC is robust and continuous
in the uncertainty set, although a single AVWC might not be. Moreover, it is shown that the question
of super-activation and the continuity of the secrecy capacity solely depends on the legitimate
link. Accordingly, the single-user AVC is subsequently studied and it is shown that in this case,
super-activation for non-secure message transmission is not possible making it a unique feature
of secure communication over AVWCs. However, the capacity for message transmission of the
single-user AVC is shown to be super-additive including a complete characterization. Such knowledge
is important for medium access control and in particular resource allocation as it determines the
overall performance of a system.

Keywords: wiretap channel; arbitrarily varying channel (AVC); secrecy capacity; super-activation;
super-additivity; active attacks; malicious behavior

1. Introduction

The architecture of today’s communication systems is designed such that data encryption and
error correction are clearly separated. Data encryption is based on cryptographic principles and
usually implemented at higher layers which abstracts out the underlying communication channel as
an ideal bit pipe. The error correction is performed at the physical layer by adding redundancy into
the message bits in order to combat the noisy channel. Such separation based approaches have been
the typical solution in current communication systems.

In recent years there has been a growing interest in complementary approaches that realize
security directly at the physical layer. Such information theoretic approaches to security establish data
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confidentiality and reliable communication jointly at the physical layer by exploiting the noisy and
imperfect nature of the communication channel. This line of thinking goes back to Wyner, who
introduced the so-called wiretap channel in [1]. This area of research provides a promising approach to
achieve secrecy and to embed secure communication into wireless networks. Not surprisingly, it has
drawn considerable attention recently [2–7] and has also been identified by operators of communication
systems and national agencies as a key technique to secure future communication systems [8–10].

These studies are in particular relevant for wireless communication systems as the open nature
of the wireless medium makes such systems inherently vulnerable for eavesdropping: Transmitted
signals are received not only by intended users, but also easily eavesdropped upon by non-legitimate
receivers. A common assumption of many studies is that all channels to the intended receivers and
also to the non-legitimate eavesdroppers are known perfectly to all users. However, practical systems
will always be limited in the availability of channel state information (CSI) due to nature of the wireless
medium but also due to practical limitations such as estimation/feedback inaccuracy. In addition to
that, the assumption of knowing the eavesdropper’s channel is often hard to justify in practice since
malevolent eavesdroppers will not share any information about their channels to make eavesdropping
even harder. Accordingly, such approaches to security must incorporate imperfect CSI assumptions
to yield practically meaningful insights. A recent survey on secure communication under channel
uncertainty and adversarial attacks can be found in [11].

In this paper, we model the uncertainty in CSI by assuming arbitrarily varying channels (AVCs) [12–14].
This concept assumes that the actual channel realization is unknown; rather, it is only known that
this realization is from a known uncertainty set and that it may vary in an arbitrary and unknown
manner from channel use to channel use. The concept of AVCs provides a very general and powerful
framework as it not only models the case of channel uncertainty, but also captures scenarios with
malevolent adversaries who maliciously influence or jam the legitimate transmission.

Secure communication over AVCs is then modeled by the arbitrarily varying wiretap channel
(AVWC) which has been studied in [15–22]. It has been shown that it makes a substantial difference
whether unassisted or common randomness (CR) assisted codes are used by the transmitter and
the legitimate receiver. Specifically, if the AVC to the legitimate receiver possesses the so-called
symmetrizability property, then the unassisted secrecy capacity is zero, while the CR-assisted secrecy
capacity may be positive. A complete characterization of how unassisted and CR-assisted secrecy
capacity relate to each other is given in [16,21]. However, a single-letter characterization of the secrecy
capacity itself remains open. Only a multi-letter description of the CR-assisted secrecy capacity has
been recently established in [20].

Wireless communication systems are usually composed of orthogonal sub-systems such as those
that arise via orthogonal frequency division multiplexing (OFDM) or time division multiplexing
(TDM). And the important issue in such systems is how the available resources should be allocated
to these orthogonal sub-systems. Common sense tells us that the overall capacity of such a system
is given by the sum of the capacities of all orthogonal sub-systems. The inherent world view of the
additivity of classical resources is also reflected by Shannon who conjectured in [23] the additivity of
the zero error capacity for orthogonal discrete memoryless channels (DMCs). This was later restated
by Lovász in ([24], Problem 2) and recently further highlighted in [25].

To this end, let us consider a system consisting of two orthogonal ordinary DMCs W1 and W2.
If both channels are accessed in an orthogonal way by using independent encoders and decoders,
we obtain C(W1) + C(W2) as an achievable transmission rate, where C(·) denotes the capacity of the
corresponding channel.

An interesting question is: Are there gains in capacity to be had by bonding the orthogonal
channels and jointly accessing the resulting system W1 ⊗W2 by using a joint encoder and decoder?
From the operational definition of the capacity it is clear that we have

C(W1 ⊗W2) ≥ C(W1) + C(W2) (1)
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since a joint use of both channels can only increase the capacity. However, it is known that the capacity
of ordinary DMCs is additive under the average error criterion so that Equation (1) is actually satisfied
with equality, i.e.,

C(W1 ⊗W2) = C(W1) + C(W2). (2)

This means that joint encoding and decoding over orthogonal channels does not provide any
gains in capacity and the overall capacity of an OFDM system is indeed given by the sum of the
capacities of all orthogonal sub-channels.

Although this verifies what one usually would expect for the capacity of orthogonal channels, the
question of additivity of the capacity function is in general by no means obvious or trivial to answer. As
already mentioned, Shannon for example asked this question in 1956 for the zero error capacity [23]. He
conjectured that the zero error capacity C0 is additive, thus possessing the same behavior as ordinary
DMCs: C0(W1 ⊗W2) = C0(W1) + C0(W2); similar to Equation (2). This problem was subsequently
studied by Haemers [26] and later by Alon [27] who explicitly constructed counter-examples. Thus,
there exist channels for which the zero error capacity is strictly greater when encoding and decoding
are done jointly instead of independently. This means that the zero error capacity is super-additive and
there exist channels for which “≥” in Equation (1) can actually be replaced by “>” so that

C0(W1 ⊗W2) > C0(W1) + C0(W2)

holds. To date, only certain explicit examples are known that possess this property of super-additivity.
A general characterization of which channels are super-additive or what further properties such
channels possess remains open. In 1970 it was Ahlswede who showed that the capacity of the AVC
under the maximum error criterion includes the characterization of the zero error capacity as a special
case [28]. This is only one example demonstrating that Shannon’s question of additivity of the zero
error capacity considerably influenced the research in discrete mathematics and graph theory, cf. for
example ([29], Chapter 41). Thus, Shannon’s zero error capacity is closely related to AVCs, making it
worth studying this question also from an AVC perspective.

The extreme case of non-additivity in Equation (1) occurs when for a system consisting of
two orthogonal “useless” channels, i.e., having zero capacity C(W1) = C(W2) = 0, it holds that
C(W1 ⊗W2) > 0. This phenomenon is called super-activation: Two channels each with zero capacity
can be used together to super-activate the whole system giving it a positive capacity. This phenomenon
has been observed and studied in particular in the area of quantum information theory [30,31].

Very recently the phenomenon of super-activation has been observed for classical communication
as well. Super-activation can occur for secure communication over AVCs and there exist orthogonal
“useless” AVWCs, i.e., having zero secrecy capacity, whose overall secrecy capacity is strictly
positive [17]. This phenomenon of super-activation and its resulting secrecy capacity have then
been completely characterized in [21].

In this paper we further explore the phenomenon of super-activation for AVWCs and its
contributions are as follows. After introducing the system model in Section 2, we show that
super-activation is not an isolated phenomenon in the sense that whenever two AVWCs can be
super-activated, this is also true for all AVWCs in a certain neighborhood. As a consequence, we
show that the secrecy capacity of a super-activated AVWC is continuous in the underlying uncertainty
set, although this might not be the case for one of the AVWCs itself. Furthermore, we show that the
question of whether super-activation is possible or not depends only on the legitimate channel, making
it independent of the eavesdropper channel. This is the content of Section 3.

From a super-activation and continuity perspective, the legitimate AVC is more important than
the eavesdropper AVC. Accordingly, we subsequently study these issues for the single-user AVC in
detail in Section 4. Surprisingly, this has not been done so far to the best of our knowledge and we
show that super-activation is not possible for public message transmission, making this a unique
phenomenon of secure communication over AVWCs. However, we show that the single-user AVC
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indeed possesses the property of super-additivity which means that a joint use of orthogonal AVCs
can provide gains in capacity. With this we provide a complete characterization of super-additivity
and super-activation for the capacity of a single-user AVC. Finally, a discussion is given in Section 5.

Notation

Discrete random variables are denoted by capital letters and their realizations and ranges by
lower case and script letters, respectively; all logarithms and information quantities are taken to the
base 2; X−Y− Z denotes a Markov chain of random variables X, Y, and Z in this order; P(X ) is the
set of all probability distributions on X ; the mutual information between the input random variable
X and the output random variable Y of a channel W is denoted by I(X; Y) = I(PX, W), where the
latter notation is interchangeably used to emphasize the dependence on the input distribution PX and
the channel.

2. Arbitrarily Varying Wiretap Channels

In this section we introduce the problem of secure communication over arbitrarily varying
channels [12–14]. Such channel conditions appear for example in fast fading environments but also,
more importantly, in scenarios in which malevolent adversaries actively influence or jam the legitimate
transmission. This is the AVWC [15–22] which is depicted in Figure 1.

max
sn∈Sn

I(M; Zn
sn)≤δn

M̂

(W,V)M Xn

Yn
sn

Zn
sn

Dec ϕ

Eve

Enc E

State sn

Vn
sn

Wn
sn

Figure 1. Arbitrarily varying wiretap channel. The transmitter encodes the message M into the
codeword Xn = E(M) and transmits it over the AVWC to the legitimate receiver, which has to decode
its intended message M̂ = ϕ(Yn

sn ) for any state sequence sn ∈ Sn. At the same time, the eavesdropper
must be kept ignorant of M by requiring maxsn∈Sn I(M; Zn

sn ) ≤ δn.

2.1. System Model

The channel state may vary in an unknown and arbitrary manner from channel use to channel use
and this uncertainty in CSI is modeled with the help of a finite state set S . Then the communication links
to the legitimate receiver and the eavesdropper are given by stochastic matrices W : X × S → P(Y)
and V : X × S → P(Z) with X the finite input alphabet and Y and Z the finite output alphabets at
the legitimate receiver and eavesdropper respectively. We interchangeably also write Ws : X → P(Y)
and Vs : X → P(Z) with s ∈ S .

For a fixed state sequence sn = (s1, s2, ..., sn) ∈ Sn of length n, the discrete memoryless channel to
the legitimate receiver is given by Wn

sn(yn|xn) = Wn(yn|xn, sn) = ∏n
i=1 W(yi|xi, si) for all input and

output sequences xn ∈ X n and yn ∈ Yn.

Definition 1. The arbitrarily varying channel (AVC) W to the legitimate receiver is defined as the family
of channels for all state sequences sn ∈ Sn as

W =
{

Wn
sn : sn ∈ Sn}.
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We further need the definition of an averaged channel which is defined for any probability
distribution q ∈ P(S) as

Wq(y|x) = ∑
s∈S

W(y|x, s)q(s) (3)

for all x ∈ X and y ∈ Y . An important property of an AVC is the so-called concept of symmetrizability
as introduced next.

Definition 2. An AVC W is called symmetrizable if there exists a channel (stochastic matrix) σ : X →
P(S) such that

∑
s∈S

W(y|x, s)σ(s|x′) = ∑
s∈S

W(y|x′, s)σ(s|x) (4)

holds for all x, x′ ∈ X and y ∈ Y .

Roughly speaking, symmetrizability means that the AVC can “simulate” a valid channel input
which makes it impossible for the receiver to decide on the correct codeword sent by the transmitter.
This can be seen by writing the left hand side of Equation (4) as W̃(y|x, x′) = ∑s∈S W(y|x, s)σ(s|x′).
Now symmetrizability means that this channel is symmetric in both inputs x and x′, i.e., W̃(y|x, x′) =
W̃(y|x′, x).

In a similar way we can define the channel to the eavesdropper. For fixed sn ∈ Sn the discrete
memoryless channel is given by Vn

sn(zn|xn) = Vn(zn|xn, sn) = ∏n
i=1 V(zi|xi, si). We also set V = {Vn

sn :
sn ∈ Sn} and Vq(z|x) = ∑s∈S V(z|x, s)q(s) for q ∈ P(S).

Definition 3. The arbitrarily varying wiretap channel (AVWC) (W,V) is given by its marginal AVCs W
and V with common input as

(W,V) =
(
{Wn

sn : sn ∈ Sn}, {Vn
sn : sn ∈ Sn}

)
.

Finally, we need a concept to measure the distance between two channels. As in [22] we define
the distance between two channels W1, W2 : X → P(Y) based on the total variation distance as

d(W1, W2) = max
x∈X ∑

y∈Y

∣∣W1(y|x)−W2(y|x)
∣∣. (5)

Now, this generalizes to a distance between two AVCs as follows. For two AVWCs W1 and W2

with finite state sets S1 and S2 we define uncertainty setsW1 = {Ws1 : s1 ∈ S1} andW2 = {Ws2 : s2 ∈ S2}.
Then the distance between these two sets of channels is

d1(W1,W2) = max
s2∈S2

min
s1∈S1

d(Ws1 , Ws2)

d2(W1,W2) = max
s1∈S1

min
s2∈S2

d(Ws1 , Ws2)

so that the distance between the AVCs W1 and W2 is given as

D(W1,W2) = max
{

d1(W1,W2), d2(W1,W2)
}

.

Roughly speaking, the distance D(W1,W2) between two AVCs W1 and W2 is given by the largest
distance in Equation (5) between all possible channel realizations in the corresponding state sets.

The distance D(V1,V2) between two eavesdropper AVCs is defined accordingly so that the
distance between two AVWCs (W1,V1) and (W2,V2) is finally given by

D((W1,V1), (W2,V2)) = max
{

D(W1,W2), D(V1,V2)
}

.
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2.2. Code Concepts

For communication over AVCs it makes a substantial difference whether unassisted (deterministic)
or more sophisticated code concepts based on common randomness (CR) are used. Indeed, the unassisted
capacity of an AVC can be zero, while the corresponding CR-assisted capacity is positive [12–14].

2.2.1. Unassisted Codes

Unassisted codes refer to codes whose encoder and decoder are pre-specified and fixed prior to
the transmission as shown in Figure 1.

Definition 4. An unassisted (n, Mn)-code C consists of a stochastic encoder at the transmitter

E :M→ P(X n) (6)

with a set of messagesM = {1, ..., Mn} and a deterministic decoder at the legitimate receiver

ϕ : Yn →M. (7)

Remark 1. Since the encoder in Equation (6) and the decoder in Equation (7) are fixed prior
to the transmission of the message, they must be universally valid for all possible state
sequences sn ∈ Sn simultaneously.

The average probability of error of such a code for a given state sequence sn ∈ Sn is given by

ēn(sn) =
1
|M| ∑

m∈M
∑

xn∈X n
∑

yn:ϕ(yn) 6=m
Wn(yn|xn, sn)E(xn|m).

The confidentiality of the message is ensured by requiring maxsn∈Sn I(M; Zn
sn) ≤ δn for some

δn > 0 with M the random variable uniformly distributed over the set of messages M and
Zn

sn = (Zs1 , Zs2 , ..., Zsn) the output at the eavesdropper for state sequence sn ∈ Sn. This criterion
is termed strong secrecy [32,33] and the reasoning is to control the total amount of information leaked
to the eavesdropper. This yields the following definition.

Definition 5. A rate RS > 0 is an achievable secrecy rate for the AVWC (W,V) if for all τ > 0 there exists
an n(τ) ∈ N, positive null sequences {λn}n∈N, {δn}n∈N, and a sequence of (n, Mn)-codes {Cn}n∈N such
that for all n ≥ n(τ) we have 1

n log Mn ≥ RS − τ,

max
sn∈Sn

ēn(sn) ≤ λn,

and
max
sn∈Sn

I(M; Zn
sn) ≤ δn.

The unassisted secrecy capacity CS(W,V) of the AVWC (W,V) is given by the maximum of all achievable
rates RS.

Unfortunately, it has been shown that unassisted codes with a pre-specified encoder and decoder
will not work for symmetrizable channels, cf. Definition 2. Thus the unassisted capacity will be
zero [14] and more sophisticated code concepts based on CR are needed.

2.2.2. CR-Assisted Codes

CR is a powerful coordination resource and can be realized for example based on a common
synchronization procedure or a satellite signal. It is modeled by a random variable Γ which takes
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values in a finite set Gn according to a distribution PΓ ∈ P(Gn). This enables the transmitter and the
receiver to choose their encoder in Equation (6) and decoder in Equation (7) according to the actual
realization γ ∈ Gn as shown in Figure 2.

max
sn∈Sn

I(M; Zn
sn,γ)≤δn

M̂

γ ∈ Gnγ ∈ Gn

Xn

Yn
sn

Zn
sn

Dec ϕγ

Eve

Enc EγM (W,V)

Common randomness Γ

γ ∈ Gn

State sn

Vn
sn

Wn
sn

Figure 2. CR is available to all users including the eavesdropper. The transmitter and receiver can
adapt their encoder and decoder according to the actual CR realization γ ∈ Gn.

Definition 6. A CR-assisted (n, Mn,Gn, PΓ)-code CCR is given by a family of unassisted codes{
C(γ) : γ ∈ Gn

}
together with a random variable Γ taking values in Gn with |Gn| < ∞ according to PΓ ∈ P(Gn).

The reliability and secrecy constraints extend to CR-assisted codes in a natural way: The mean
average probability of error is

ēCR = max
sn∈Sn

1
|M| ∑

m∈M
∑

γ∈Gn

∑
xn∈X n

∑
yn :ϕγ(yn) 6=m

Wn(yn|xn, sn)Eγ(xn|m)PΓ(γ)

where Eγ and ϕγ indicate that the encoder and decoder are chosen according to the CR realization
γ ∈ Gn. Accordingly, the secrecy criterion becomes

max
sn∈Sn ∑

γ∈Gn

I(M; Zn
sn ,γ)PΓ(γ) ≤ δn (8)

where Zn
sn ,γ indicates that the observed output at the eavesdropper depends on the chosen

encoder Eγ, γ ∈ Gn.

Remark 2. Note that the secrecy criterion Equation (8) can further be strengthened by requiring

max
sn∈Sn

max
γ∈Gn

I(M; Zn
sn ,γ) ≤ δn,

i.e., the average over all CR in Equation (8) is replaced by the maximum. Surprisingly, this strengthening
comes at no cost and does not decrease the secrecy capacity, cf. [20]. The stronger criterion has the
advantage that it protects the message even in the scenario in which the eavesdropper is aware of the
CR realization γ ∈ Gn, cf. Figure 2.
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Then the definitions of a CR-assisted achievable secrecy rate and the CR-assisted secrecy capacity
CS,CR(W,V) of the AVWC (W,V) follow accordingly.

2.3. Capacity Results

There has been some work done in order to understand the secrecy capacity of the AVWC [15–22]
which is briefly reviewed in the following. If CR is available, the transmitter and the legitimate receiver
can coordinate their choice of encoder and decoder. This scenario has been studied in [15–18,20,22],
but despite these efforts a single-letter characterization remains unknown to date (if it exists at all).
Only a multi-letter description has been found in [20].

Theorem 1 ([20]). A multi-letter description of the CR-assisted secrecy capacity CS,CR(W,V) of the AVWC
(W,V) is

CS,CR(W,V) = lim
n→∞

1
n

max
U−Xn−(Yn

q ,Zn
sn )

(
min

q∈P(S)
I(U; Yn

q )− max
sn∈Sn

I(U; Zn
sn)
)

with Yn
q the random variable associated with the output of the averaged channel Wn

q = ∑sn∈Sn qn(sn)Wsn ,
q ∈ P(S).

If CR is not available to the transmitter and legitimate receiver, unassisted codes must be used
and the corresponding unassisted secrecy capacity has been completely characterized in terms of its
CR-assisted secrecy capacity [16,21].

Theorem 2 ([16,21]). The unassisted secrecy capacity CS(W,V) of the AVWC (W,V) possesses the following
symmetrizability properties:

1. If W is symmetrizable, then CS(W,V) = 0.
2. If W is non-symmetrizable, then CS(W,V) = CS,CR(W,V).

The unassisted secrecy capacity displays a dichotomous behavior similar to the capacity of
the single-user AVC: The unassisted secrecy capacity CS(W,V) either equals its CR-assisted secrecy
capacity CS,CR(W,V) or else is zero.

From Theorem 2 we see that it is only the symmetrizability of the legitimate AVC W that controls
whether the unassisted secrecy capacity is zero or positive. However, it does not specify the sensitivity,
meaning how rapidly the AVC W can change from symmetrizable to non-symmetrizable. This is
addressed by the next result.

Theorem 3 ([21]). If the unassisted secrecy capacity CS(W,V) of the AVWC (W,V) satisfies CS(W,V) > 0,
then there is an ε > 0 such that for all AVWCs (W′,V′) satisfying D((W,V), (W′,V′)) ≤ ε we have
CS(W

′,V′) > 0.

This result shows the stability of positivity of the unassisted secrecy capacity: Wherever it is
positive, i.e., CS(W,V) > 0, it remains positive in a certain neighborhood, i.e., CS(W

′,V′) > 0 for
D((W,V), (W′,V′)) ≤ ε. Thus, if the AVC W is non-symmetrizable, small changes in the uncertainty
set will not make it symmetrizable.

To further explore the question of continuity for the AVWC, we need the function

F(W) = min
σ:X→P(S)

(
max
x 6=x′

∑
y∈Y

∣∣∣ ∑
s∈S

W(y|x′, s)σ(s|x)− ∑
s∈S

W(y|x, s)σ(s|x′)
∣∣∣). (9)

This function generalizes ideas from the concept of symmetrizability, cf. Definition 2. It is
a continuous function of the legitimate AVC W and the AVC W is symmetrizable if and only if
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F(W) = 0. This yields a characterization of when the unassisted secrecy capacity CS(W,V) is
discontinuous: The AVC W changes from non-symmetrizable to symmetrizable and the capacity
breaks down to zero.

That the unassisted secrecy capacity is indeed discontinuous has been observed in [22] for the first
time by constructing a simple example of dimensions |X | = 2, |Y| = 3, and |S| = 2. It is noteworthy
that a state set consisting of two different states only is already sufficient to get a discontinuous
behavior. From an adversarial point of view this means that two different strategies for the adversary
suffice to break down the system. On the other hand, reducing the state set to have only one element,
i.e., |S| = 1, the AVWC becomes a compound wiretap channel [34–36] (as the state remains constant for
the entire duration of transmission) and the corresponding secrecy capacity becomes continuous [22].
Subsequently, the discontinuous behavior was then completely characterized in [21].

Theorem 4 ([21]). The unassisted secrecy capacity CS(W,V) of the AVWC (W,V) possesses the following
discontinuity properties:

1. The AVWC (W,V) is a discontinuity point of CS(W,V) if and only if the following holds: First,
CS,CR(W,V) > 0, and second, F(W) = 0 but for every ε > 0 there is a finite W′ with D(W,W′) ≤ ε

and F(W′) > 0.
2. If CS(W,V) is discontinuous in the point (W,V) then it is discontinuous for all V′ for which

CS,CR(W,V′) > 0.

This result has the following important consequence: Since the second condition relates the
question of discontinuity to the function F(W) and therewith solely to the symmetrizability of the
legitimate AVC W, the unassisted secrecy capacity CS(W,V) is always a continuous function of the
eavesdropper AVC V, while the discontinuity comes from the legitimate AVC W only.

3. Super-Activation and Robustness

Medium access control and in particular resource allocation is one of the most important issues for
wireless communication systems as it determines the overall performance of a system. For example, the
overall capacity of an OFDM system is given by the sum of the capacities of all orthogonal sub-channels.
To this end, a system consisting of two orthogonal ordinary DMCs, where both are “useless” in the
sense of having zero capacity, the capacity of the whole system is zero as well. This reflects the world
view of classical additivity of resources in the sense that “0 + 0 = 0.”

Recently, it was shown in [17] that the additivity of basic resources does not hold anymore for
secure communication over AVCs. Specifically, it was demonstrated that two orthogonal AVWCs
which are themselves useless can be used jointly to allow for secure transmission with positive rate, i.e.,
“0 + 0 > 0.” This phenomenon of super-activation was then further studied in [21], which in particular
provides a characterization of when super-activation is possible.

3.1. Secure Communication over Orthogonal AVWCs

To continue this line of research, we now introduce the corresponding system model in detail.
For finite state sets Si, input alphabets Xi, and output alphabets Yi and Zi, i = 1, 2, we define

two AVWCs (W1,V1) and (W2,V2) exactly as in Section 2.1, cf. Definitions 1 and 3. Then the parallel
use of both AVWCs (W1,V1) and (W2,V2) creates a combined AVWC

(W̃, Ṽ) = (W1,V1)⊗ (W2,V2)

= (W1 ⊗W2,V1 ⊗V2),
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where the notation ⊗ indicates the orthogonal use of (W1,V1) and (W2,V2). Now, for given state
sequences sn = (sn

1 , sn
2 ) ∈ Sn

1 × Sn
2 , the discrete memoryless channel to the legitimate receiver is

W̃n(yn|xn, sn) = Wn
1,sn

1
(yn

1 |xn
1 )W

n
2,sn

2
(yn

2 |xn
2 )

= Wn
1 (y

n
1 |xn

1 , sn
1 )W

n
2 (y

n
2 |xn

2 , sn
2 )

=
n

∏
i=1

W1(y1,i|x1,i, s1,i)
n

∏
i=1

W2(y2,i|x2,i, s2,i) (10)

with xn = (xn
1 , xn

2 ) ∈ X n
1 ×X n

2 and yn = (yn
1 , yn

2 ) ∈ Yn
1 ×Yn

2 . Accordingly, the AVC W̃ is then given by

W̃ =
{

W̃n
sn : sn ∈ Sn

1 × Sn
2
}

=
{

Wn
1,sn

1
Wn

2,sn
2

: sn
1 ∈ Sn

1 , sn
2 ∈ Sn

2
}

(11)

and the AVWC (W̃, Ṽ) by

(W̃, Ṽ) =
(
{W̃n

sn : sn ∈ Sn
1 × Sn

2 }, {Ṽn
sn : sn ∈ Sn

1 × Sn
2 }
)

with Ṽ the AVC to the eavesdropper defined accordingly as in Equation (11).
Note that a parallel use of both AVWCs (W1,V1) and (W2,V2) means that for each (Wi,Vi)

we have individual encoders Ei : Mi → P(X n
i ) and decoders ϕi : Yn

i → Mi, i = 1, 2, according
to Definitions 4 and 6. On the other hand, a joint use of both AVWCs results in a joint encoder
E :M→ P(X n

1 ×X n
2 ) and a joint decoder ϕ : Yn

1 ×Yn
2 →M.

3.2. Super-Activation of Orthogonal AVWCs

For orthogonal AVWCs as described above, the phenomenon of super-activation has been
completely characterized in [21].

Theorem 5 ([21]). Let (W1,V1) and (W2,V2) be two orthogonal AVWCs. Then the following properties hold:

1. If CS(W1,V1) = CS(W2,V2) = 0, then

CS(W1 ⊗W2,V1 ⊗V2) > 0

if and only if W1 ⊗W2 is non-symmetrizable and CS,CR(W1 ⊗W2,V1 ⊗V2) > 0. If (W1,V1) and
(W2,V2) can be super-activated it holds that

CS(W1 ⊗W2,V1 ⊗V2) = CS,CR(W1 ⊗W2,V1 ⊗V2).

2. If CS,CR shows no super-activation for (W1,V1) and (W2,V2), then super-activation of CS can
only happen if W1 is non-symmetrizable and W2 is symmetrizable and CS,CR(W1,V1) = 0 and
CS,CR(W2,V2) > 0. The statement is independent of the specific labeling.

3. There exist AVWCs that exhibit the behavior described by the second property.

To give some intuition into why super-activation can happen, let us consider the following
scenario: Assume there are two orthogonal AVWCs each having zero unassisted secrecy capacity.
To this end, assume that one of the unassisted secrecy capacities is zero because the corresponding
legitimate AVC is symmetrizable and the other capacity is zero because the eavesdropper AVC is
“stronger” than the legitimate AVC. Since the latter legitimate AVC supports a positive rate (although
non-secure), it can be used to transmit information to the legitimate receiver (and eavesdropper) to
generate CR. Then the legitimate users can use CR-assisted codes to achieve a positive CR-assisted
secrecy rate.
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Theorem 5 provides a complete characterization of when super-activation can happen. In the
following, we want to further explore this phenomenon. To this end, we first show that super-activation
is generic in the sense that whenever two orthogonal AVWCs can be super-activated, it is possible for
all AVWCs in a certain neighborhood as well.

Theorem 6. Let (W1,V1) and (W2,V2) be two useless AVWCs that can be super-activated, i.e.,
CS(W1,V1) = CS(W2,V2) = 0 and CS(W1 ⊗W2,V1 ⊗V2) > 0. Then there exists an ε > 0 such
that for all useless AVWCs (W′1,V′1) and (W′2,V′2) with

D((Wi,Vi), (W′i,V
′
i)) < ε, i = 1, 2,

we have
CS(W

′
1 ⊗W′2,V′1 ⊗V′2) > 0,

i.e., all channels in the neighborhood of (W1,V1) and (W2,V2) can be super-activated as well.

Proof. Let (W1,V1) and (W2,V2) be two useless orthogonal AVWCs that can be super-activated and
let (W′1,V′1) and (W′2,V′2) be two useless AVWCs with D((Wi,Vi), (W′i,V

′
i)) < ε, i = 1, 2. Then it

holds that

∑
y1∈Y1

∑
y2∈Y2

∣∣∣W1(y1|x1, s1)W2(y2|x2, s2)−W′1(y1|x1, s′1)W
′
2(y2|x2, s′2)

∣∣∣
= ∑

y1∈Y1

∑
y2∈Y2

∣∣∣W1(y1|x1, s1)W2(y2|x2, s2)−W′1(y1|x1, s′1)W2(y2|x2, s2)

+W′1(y1|x1, s′1)W2(y2|x2, s2)−W′1(y1|x1, s′1)W
′
2(y2|x2, s′2)

∣∣∣
≤ ∑

y1∈Y1

∑
y2∈Y2

∣∣∣(W1(y1|x1, s1)−W′1(y1|x1, s′1)
)
W2(y2|x2, s2)

∣∣∣
+ ∑

y1∈Y1

∑
y2∈Y2

∣∣∣(W2(y2|x2, s2)−W′2(y2|x2, s′2)
)
W′1(y1|x1, s′1)

∣∣∣
= ∑

y1∈Y1

∣∣∣W1(y1|x1, s1)−W′1(y1|x1, s′1)
∣∣∣+ ∑

y2∈Y2

∣∣∣W2(y2|x2, s2)−W′2(y2|x2, s′2)
∣∣∣.

Since D((Wi,Vi), (W′i,V
′
i)) < ε, i = 1, 2, by assumption, we have

D((W1 ⊗W2,V1 ⊗V2)), (W′1 ⊗W′2,V′1 ⊗V′2) < 2ε. (12)

Now we can apply the stability result in Theorem 3. From this we know that for all AVWCs
(W̃, Ṽ) with W̃ : X1 ×X2 ×S1 ×S2 → P(Y1 ×Y2) and Ṽ : X1 ×X2 ×S1 ×S2 → P(Z1 ×Z2) and

D((W1 ⊗W2,V1 ⊗V2), (W̃, Ṽ)) < ε̃

we have
CS(W̃, Ṽ) > 0.

Now we choose ε in Equation (12) small such that 2ε < ε̃ holds. With this we obtain the desired
positivity for all AVWCs (W′1,V′1) and (W′2,V′2) for which Equation (12) is satisfied. This completes
the proof.

This result shows that super-activation is not an isolated phenomenon of orthogonal AVWCs.
In fact, whenever super-activation is possible for two AVWCs, it occurs for all AVWCs that are
sufficiently close to them.
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Corollary 1. Let (W1,V1) and (W2,V2) be two useless orthogonal AVWCs that can be super-activated. Then
(W2,V2) super-activates all AVWCs (W′1,V′1) that are close enough to (W1,V1).

Proof. The result follows immediately from Theorem 6. Note that we can even choose ε = ε̃ in this
case to obtain the desired result.

The previous result of Theorem 6 can even be strengthened. This formulation is more involved
than the previous one, but the advantage is that it reveals the following behavior: The AVC to
the legitimate receiver is much more important than the AVC to the eavesdropper in terms of
super-activation. Specifically, there is no need of an explicit requirement on the distance between the
eavesdropper channels. We obtain the following result.

Theorem 7. Let (W1,V1) and (W2,V2) be two useless orthogonal AVWCs that can be super-activated.
Then there exists an ε > 0 such that all useless orthogonal AVWCs (W′1,V′1) and (W′2,V′2) that satisfy

D(W1,W′1) < ε, D(W2,W′2) < ε,

and
CS,CR(W

′
1 ⊗W′2,V′1 ⊗V′2) > 0,

can be super-activated as well.

Proof. We know that the combined AVC W1 ⊗ W2 is non-symmetrizable, since otherwise
super-activation would not be possible, cf. Theorem 5. Similarly as in the proof of Theorem 6
we can then show that D(W1 ⊗W2,W′1 ⊗W′2) < 2ε holds. Next we consider the function
F(W1 ⊗W2), cf. Equation (9). Since W1 ⊗W2 is non-symmetrizable, we have F(W1 ⊗W2) > 0.
In addition, since the function F depends in a continuous way on the channel, for all AVCs W̃ with
W̃ : X1 ×X2 ×S1 ×S2 → P(Y1 ×Y2) and D(W1 ⊗W2,W̃) < ε̃ we always have F(W̃) > 0. Here we
have to choose ε̃ > 0 sufficiently small depending on W1 ⊗W2. Since F(W̃) > 0, the AVC W̃ is
non-symmetrizable and from Theorem 2 it follows that

CS(W
′
1 ⊗W′2,V′1 ⊗V′2) = CS,CR(W

′
1 ⊗W′2,V′1 ⊗V′2) > 0

which proves that these AVWCs can be super-activated. This completes the proof.

In the following we briefly present an example in which super-activation is possible for all
orthogonal AVWCs in a certain neighborhood. This example is based on an example given in ([22],
Section V-C). This constructs suitable AVWCs, whose unassisted secrecy capacities are zero in a certain
neighborhood, but who all can be super-activated to allow for secure communication at a positive rate.

Example 1. First, we construct an AVWC (W∗,V∗) with |X | = 2, |Y| = 3, |Z| = 2, and |S| = 2
for which in a set of AVWCs (W,V) around this channel we always have CS,CR(W

∗,V∗) > 0 and
CS(W,V) = CS(W

∗,V∗) = 0. To do so, we define the legitimate AVC as W∗ = {W∗1 , W∗2 } with

W∗1 =

(
1
2

1
2 0

1
4 0 3

4

)
and W∗2 =

(
0 0 1
0 1 0

)

and the eavesdropper AVC as V∗ = {V∗, V∗} with

V∗ =

(
1
2

1
2

1
2

1
2

)
. (13)
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With this choice, the eavesdropper channel is fixed, while the legitimate channel allows
appropriate variations. In particular, it is easy to show that W∗ is symmetrizable so that CS(W

∗,V∗) = 0
but CS,CR(W

∗,V∗) > 0, cf. ([22], Section V-C). Further, for all AVWCs (W,V) with D(W∗,W) < ε for
some ε > 0 it holds that CS(W

∗,V∗) = 0 but CS,CR(W
∗,V∗) > 0, cf. ([22], Theorem 6), which means

that all AVWCs in a certain neighborhood have zero unassisted secrecy capacity. Now we can find
another orthogonal AVWC (W̃, Ṽ) that super-activates the original AVWC (W∗,V∗), but also all other
AVWCs (W,V) with D(W∗,W) < ε, cf. Corollary 1 and Theorem 7.

Remark 3. The previous considerations show that bonding of orthogonal resources can increase the
performance significantly. Such bonding gains do not only appear if both unassisted secrecy capacities
are equal to zero (super-activation), but also if only one of these is zero while the other one is positive
(super-additivity). This follows by an easy adaptation of the discussion above.

Next we want to show that bonding of orthogonal resources reveals further effects and properties
that are practically relevant. This is discussed in the following result.

Theorem 8. Let (W1,V1) and (W2,V2) be two useless orthogonal AVWCs that can be super-activated.
Then the unassisted secrecy capacity CS(W

′
1 ⊗W′2,V′1 ⊗V′2) depends in a continuous way on the channels

(W′1,V′1) and (W′2,V′2) with D(Wi,W′i) < ε, i = 1, 2. Here, ε depends only on the orthogonal AVCs W1

and W2.

Proof. Since the AVWCs (W1,V1) and (W2,V2) can be super-activated, we know that CS(W1 ⊗
W2,V1⊗V2) > 0. Then we know that this is also true for all AVWCs (W̃, Ṽ) with W̃ : X1×X2×S1×
S2 → P(Y1 × Y2) and Ṽ : X1 ×X2 × S1 × S2 → P(Z1 ×Z2) that are sufficiently close to (W1,V1)

and (W2,V2), cf. Theorem 3, so that

CS(W̃, Ṽ) = CS,CR(W̃, Ṽ)

holds. Since CS,CR(W̃, Ṽ) is a continuous function, cf. [20,22], the desired result follows then
from Theorem 6.

Remark 4. The unassisted secrecy capacity CS(W1⊗W2,V1⊗V2) need not necessarily be continuous
in (W1,V1) or (W2,V2). In particular, there are examples with a discontinuous behavior as
discussed above.

Remark 5. We see that bonding of orthogonal resources can also lead to a more robust system which
is continuous. On the other hand, for a single AVC such continuous behavior cannot be guaranteed
in general.

In the following we briefly present an example that demonstrates these effects. This example is
based on an example in ([22], Section V-A). This constructs suitable AVWCs, whose unassisted secrecy
capacity is continuous after super-activation although the unassisted secrecy capacity of one AVWC
itself has a discontinuity point.

Example 2. First, we construct an AVWC (W(λ),V) for 0 ≤ λ ≤ 1 with |X | = 2, |Y| = 3, |Z| = 2,
and |S| = 2, whose unassisted secrecy capacity has a discontinuity point. To do so, for 0 ≤ λ ≤ 1 we
define the legitimate AVC as W(λ) = {W1(λ), W2(λ)} with

W1(λ) =

(
1 0 0
0 λ 1− λ

)
and W2(λ) =

(
λ 0 1− λ

0 1 0

)
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and the eavesdropper AVC as V = {V∗, V∗}with V∗ the useless channel as in (13) of Example 1. It can
be shown that the unassisted secrecy capacity of the AVWC (W(λ),V) has a discontinuity point at
λ = 0, i.e., we have CS(W(0),V) = 0, but limλ↘0 CS(W(0),V) > 0, cf. ([22], Theorem 4). Now we can
find another orthogonal AVWC (W̃, Ṽ) that super-activates the original AVWC (W(λ),V). Then we
know from Theorem 8 that the unassisted secrecy capacity of this super-activated AVWC is continuous.

4. Communication over Orthogonal AVCs

The previous results and in particular Theorem 7 have shown that super-activation of AVWCs is
robust in the eavesdropper AVC. Specifically, it is sufficient to require the eavesdropper AVC to be such
that the CR-assisted secrecy capacity of the corresponding AVWC is positive. Then this capacity is
continuous in the eavesdropper AVC. As a consequence, the phenomenon of super-activation depends
particularly on the legitimate AVC. Accordingly, it is interesting to drop the eavesdropper and the
security requirement for a while and study reliable message transmission over single-user AVCs in
more detail.

4.1. Capacity Results

The single-user AVC is given as in Section 2.1 by considering only the legitimate AVC
between the transmitter and legitimate receiver. Reliable message transmission for the single-user
AVC has been well studied and its capacity has been established for both unassisted [13,14] and
CR-assisted [12] codes.

Theorem 9 ([12]). The CR-assisted capacity CCR(W) of the AVC W is

CCR(W) = max
PX∈P(X )

inf
q∈P(S)

I(X; Yq) (14)

where Yq denotes the random variable associated with the output of the averaged channel Wq, q ∈ P(S),
cf. Equation (3).

The unassisted capacity is then completely characterized in terms of its CR-assisted capacity.

Theorem 10 ([13,14]). The unassisted capacity C(W) of the AVC W is

C(W) =

{
CCR(W) if W is non-symmetrizable

0 if W is symmetrizable.

To the best of our knowledge, reliable message transmission over orthogonal AVCs has not been
studied previously. This is surprising as this is already implicitly addressed by Shannon’s question of
the additivity of the zero error capacity [23]. Specifically, Ahlswede showed in [28] that the capacity of
the AVC under the maximum error criterion includes the characterization of the zero error capacity as
a special case. To this end, Alon’s example in [27] for the super-additivity of the capacity of reliable
message transmission over orthogonal AVCs under the maximum error criterion can be seen as the
first contribution towards understanding the behavior of the capacity of orthogonal AVCs. In the
following, we completely characterize the behavior of the capacity of orthogonal AVCs for the average
error criterion.

4.2. Additivity of CR-Assisted Capacity

We start with the CR-assisted capacity and show that it is additive. This means that the CR-assisted
capacity of two orthogonal AVCs is the sum of its CR-assisted capacities.
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Theorem 11. Let W1 and W2 be two orthogonal AVCs. Then the CR-assisted capacity is additive, i.e.,

CCR(W1 ⊗W2) = CCR(W1) + CCR(W2). (15)

Proof. From the definition of capacity it follows immediately that

CCR(W1 ⊗W2) ≥ CCR(W1) + CCR(W2) (16)

is satisfied since joint encoding and decoding over both AVCs can only increase the capacity compared
to an individual encoding and decoding for both channels. Thus, to show equality in Equation (15) it
remains to prove that the reversed inequality is also true, i.e., CCR(W1 ⊗W2) ≤ CCR(W1) + CCR(W2).

For the following argumentation it is beneficial to write the CR-assisted capacity in Equation (14) as

CCR(W) = max
PX∈P(X )

inf
q∈P(S)

I(X; Yq)

= max
PX∈P(X )

min
q∈P(S)

I(PX, Wq)

as the mutual information term is completely determined by the input distribution PX ∈ P(X ) and
the averaged channel Wq, q ∈ P(S), cf. Equation (3).

With this notation, the CR-assisted capacity of the combined AVC W1 ⊗W2, cf. also Equations (10)
and (11), is given by

CCR(W1 ⊗W2) = max
PX1X2∈P(X1×X2)

min
q12∈P(S1×S2)

I(PX1X2 , Wq12) (17)

where Wq12 , q12 ∈ P(S1 ×S2), denotes the corresponding averaged channel.
Now, this mutual information quantity in Equation (17) is continuous, concave in PX1X2 , and

convex in Wq12 so that the order of max and min can be exchanged to obtain

CCR(W1 ⊗W2) = min
q12∈P(S1×S2)

max
PX1X2∈P(X1×X2)

I(PX1X2 , Wq12)

≤ max
PX1X2∈P(X1×X2)

I(PX1X2 , W q̂1⊗q̂2)

for some arbitrary but fixed q̂1 ∈ P(S1) and q̂2 ∈ P(S2). In addition, we have

W q̂1⊗q̂2(y1, y2|x1, x2)

=
(

∑
s1∈S1

q̂1(s1)W1,s1(y1|x1)
)(

∑
s2∈S2

q̂2(s2)W2,s2(y2|x2)
)

= W1,q̂1(y1|x1)W2,q̂2(y2|x2)

so that
W q̂1⊗q̂2 = W1,q̂1 ⊗W2,q̂2 .

Since for ordinary DMCs under the average error criterion we have additivity, it holds that

max
PX1X2∈P(X1×X2)

I(PX1X2 , W q̂1⊗q̂2) = max
PX1∈P(X1)

I(PX1 , W1,q̂1) + max
PX2∈P(X2)

I(PX2 , W2,q̂2).
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Since q̂1 ∈ P(S1) and q̂2 ∈ P(S2) are arbitrary, we obtain

CCR(W1 ⊗W2) ≤ min
q̂1∈P(S1),q̂2∈P(S2)

(
max

PX1∈P(X1)
I(PX1 , W1,q̂1) + max

PX2∈P(X2)
I(PX2 , W2,q̂2)

)
= min

q̂1∈P(S1)
max

PX1∈P(X1)
I(PX1 , W1,q̂1) + min

q̂2∈P(S2)
max

PX2∈P(X2)
I(PX2 , W2,q̂2)

= CCR(W1) + CCR(W2) (18)

where the last step follows again from the fact that the mutual information is concave in the input
distribution and convex in the channel which allows an exchange of min and max.

Now the inequalities in Equations (16) and (18) establish the desired additivity of the CR-assisted
capacity, thereby proving the result.

This result shows that the CR-assisted capacity is always additive and therewith confirms
Shannon’s conviction of the additivity of the capacity. The consequence is that joint encoding and
decoding for both AVCs does not yield any gains in terms of CR-assisted capacity.

4.3. Super-Additivity of Unassisted Capacity

Next, we consider the unassisted capacity of two orthogonal AVCs.

Proposition 1. Let W1 and W2 be two orthogonal AVCs. If the unassisted capacities satisfy C(W1) > 0 and
C(W2) > 0, then the unassisted capacity is additive, i.e.,

C(W1 ⊗W2) = C(W1) + C(W2). (19)

Proof. From the additivity of the CR-assisted capacity, cf. Theorem 11, we have

C(W1 ⊗W2) ≤ CCR(W1 ⊗W2)

= CCR(W1) + CCR(W2)

= C(W1) + C(W2) (20)

where the last equality follows from Theorem 10. On the other hand we have

C(W1 ⊗W2) ≥ C(W1) + C(W2)

= CCR(W1) + CCR(W2)

= CCR(W1 ⊗W2)

= C(W1 ⊗W2) (21)

where the first equality is again due to Theorem 10 since C(W1) > 0 and C(W2) > 0, and the second
equality follows from Theorem 11. Equations (20) and (21) yield the desired equality in Equation (19),
thereby proving the result.

Proposition 2. Let W1 and W2 be two orthogonal AVCs. If the unassisted capacities satisfy C(W1) =

C(W2) = 0, then the unassisted capacity is additive, i.e.,

C(W1 ⊗W2) = C(W1) + C(W2).
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Proof. If C(W1) = C(W2) = 0, then both AVCs are symmetrizable according to Definition 2.
This means there exist stochastic matrices σi : Xi → P(Si), i = 1, 2, such that

∑
si∈Si

Wi(yi|xi, si)σi(si|x′i) = ∑
si∈Si

Wi(yi|x′i, si)σi(si|xi)

holds for all xi, x′i ∈ Xi and yi ∈ Yi, i = 1, 2.
Then, the AVC W1 ⊗W2 is symmetrizable as well and

∑
s1∈S1

∑
s2∈S2

W1(y1|x1, s1)W2(y2|x2, s2)σ1(s1|x′1)σ2(s2|x′2)

=
(

∑
s1∈S1

W1(y1|x1, s1)σ1(s1|x′1)
)(

∑
s2∈S2

W2(y2|x2, s2)σ2(s2|x′2)
)

=
(

∑
s1∈S1

W1(y1|x′1, s1)σ1(s1|x1)
)(

∑
s2∈S2

W2(y2|x′2, s2)σ2(s2|x2)
)

= ∑
s1∈S1

∑
s2∈S2

W1(y1|x′1, s1)W2(y2|x′2, s2)σ1(s1|x1)σ2(s2|x2)

holds for all xi, x′i ∈ Xi and yi ∈ Yi, i = 1, 2. This implies that C(W1 ⊗W2) = 0 as well which shows
the additivity for this case as well as completing the proof.

These two results show that when the unassisted capacities are both positive or both zero, the
overall unassisted capacity is additive. In addition, from Proposition 2 it follows immediately that
super-activation is not possible for reliable message transmission over orthogonal AVCs.

Corollary 2. Let W1 and W2 be two orthogonal AVCs. If the unassisted capacities satisfy
C(W1) = C(W2) = 0, then super-activation is not possible for the combined AVC W1 ⊗W2.

Finally, the following result solves the remaining case for which the unassisted capacity is actually
super-additive.

Theorem 12. Let W1 and W2 be two orthogonal AVCs. The unassisted capacity C(W1 ⊗W2) is
super-additive, i.e.,

C(W1 ⊗W2) > C(W1) + C(W2), (22)

if and only if either of W1 or W2 is symmetrizable and has a positive CR-assisted capacity.
Without loss of generality, let W1 be symmetrizable; then

C(W1 ⊗W2) = CCR(W1) + C(W2)

> C(W1) + C(W2) = C(W2).

Proof. First we show that if W1 is symmetrizable and CCR(W1) > 0, then the unassisted capacity
C(W1 ⊗W2) is super-additive. To do so, we use the idea of Ahlswede’s de-randomization [13].
Although CR is not available, CR-assisted codes can still be used if the transmitter is able to inform the
receiver prior to the actual message transmission about which realization of encoder and decoder has
to be used. From [13] we know that the amount of information that needs to be transmitted prior to
transmission for this task is polynomial in the block length and therewith negligible for increasing
block length.
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Since W2 is non-symmetrizable, we have CCR(W2) > 0 and therefore also C(W2) > 0. This allows
us to use the second AVC to transmit information to the receiver to make CR available for the first
AVC W1. Then CR-assisted codes can be used for W1 so that

C(W1 ⊗W2) ≥ CCR(W1) + C(W2)

= CCR(W1) + CCR(W2)

= CCR(W1 ⊗W2)

is achievable. Since C(W1 ⊗W2) ≤ CCR(W1 ⊗W2) is obviously true, we have equality which means
that we actually achieve

C(W1 ⊗W2) = CCR(W1 ⊗W2)

which shows the super-additivity of C(W1 ⊗W2).
Next we show the other direction: If C(W1 ⊗W2) is super-additive, i.e.,

C(W1 ⊗W2) > C(W1) + C(W2), (23)

then either W1 or W2 must be symmetrizable so that C(W1) = 0 or C(W2) = 0.
Assume both unassisted capacities are strictly positive. Then from Theorem 10 it follows that

C(W1) = CCR(W1) and C(W2) = CCR(W2) so that Equation (23) becomes

C(W1 ⊗W2) > CCR(W1) + CCR(W2)

= CCR(W1 ⊗W2)

where the last step follows from the additivity of the CR-assisted capacity, cf. Theorem 11. This contradicts
C(W1 ⊗W2) ≤ CCR(W1 ⊗W2) which always holds. Accordingly, without loss of generality, we must
have C(W1) = 0. However, CCR(W1) > 0 must be true, since otherwise we would have

C(W1 ⊗W2) > 0 + CCR(W2) = CCR(W1 ⊗W2)

which would be a contradiction. Thus, it must hold that CCR(W1) > 0 and C(W1) = 0 so that W1 is
symmetrizable, proving the desired result.

This result shows that the capacity of reliable message transmission over orthogonal AVCs is
super-additive under certain circumstances. This breaks with the world view of classical additivity
of resources.

Note that Example 1 discussed in Section 3.2 provides an AVC with |S| = 2, which exactly
displays the behavior characterized above. Interestingly, if the state set is reduced to |S| = 1, such
a behavior is not possible anymore.

5. Discussion

In this paper, we have studied communication under arbitrarily varying channel conditions.
For the case of public message transmission over orthogonal AVCs we have completely characterized
the behavior of the unassisted and CR-assisted capacity. While the CR-assisted capacity is additive,
the unassisted capacity is super-additive, which means that there are orthogonal AVCs for which joint
encoding and decoding results in a higher capacity than individual encoding and decoding.

If secrecy requirements are imposed on the message transmission, the capacity behavior for
orthogonal AVWCs becomes even more involved. In this case, the phenomenon of super-activation
occurs. A joint use of two completely useless AVWCs, i.e., with zero unassisted secrecy capacity,
can result in a combined AVWC whose unassisted secrecy capacity is non-zero. From a practical
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point of view this has important consequences for medium access control and in particular for
resource allocation.

The problem of reliable communication over AVCs is closely related to Shannon’s zero
error capacity problem, as the latter turns out to be a special case of the capacity of the AVC
under the maximum error criterion. Shannon conjectured in 1956 that the zero error capacity is
additive. Accordingly, the phenomena of super-additivity and super-activation for AVCs and AVWCs
respectively are remarkable as these properties show the non-additivity of the capacity of the AVC.

The phenomenon of super-activation has substantial consequences for jamming strategies of
potential adversaries. Let us assume that there are two orthogonal AVWCs that can be super-activated.
Further assume that for each AVWC an adversary has a suitable jamming strategy to drive the
unassisted secrecy capacity to zero. In more detail, for each AVWC the adversary can choose
a corresponding state sequence that symmetrizes the legitimate AVC, prohibiting any reliable
communication between transmitter and legitimate receiver. Now, joint encoding and decoding
allows super-activation of the combined AVWC to make the communication robust: They can now
transmit at a positive secrecy rate. This means that for the adversary there is no suitable jamming
strategy for the combined AVWC although there is one for each AVWC individually. As there are no
restrictions on the strategy space of the adversary, this includes even the case of a product strategy
consisting of both individually working jamming strategies.

Super-activation is not an isolated phenomenon. We have shown that whenever orthogonal
AVWCs can be super-activated, this is also true for all AVWCs in a certain neighborhood. As a
consequence the overall system becomes stable as well. If a super-activated AVWC allows for
secure communication with a positive rate, then this is true for all AVWCs sufficiently close to
this super-activated AVWC.

Finally we want to note that this also has a game-theoretic interpretation of a “game against
nature” [37]. The legitimate users (player) and the adversary (nature) play a two-player zero-sum
game [38,39] with the secure communication rate as the payoff function. In this game, the set of state
sequences corresponds to nature’s action space, and nature’s intention is to establish the worst possible
communication conditions by selecting the state sequence such that the legitimate AVC becomes
symmetrizable. The set of input distributions corresponds to the action space of the player and, clearly,
the aim is to maximize the secure communication rate. Within this game against nature framework,
the player and nature move simultaneously without knowing the other’s choice which leads to the
max min expressions in the corresponding secrecy capacity results.
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16. Bjelaković, I.; Boche, H.; Sommerfeld, J. Capacity results for arbitrarily varying wiretap channels.
In Information Theory, Combinatorics, and Search Theory; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 123–144.

17. Boche, H.; Schaefer, R.F. Capacity results and super-activation for wiretap channels with active wiretappers.
IEEE Trans. Inf. Forensics Secur. 2013, 8, 1482–1496.

18. Boche, H.; Schaefer, R.F.; Poor, H.V. On arbitrarily varying wiretap channels for different classes of secrecy
measures. In Proceedings of the IEEE International Symposium on Information Theory, Honolulu, HI, USA,
29 June–4 July 2014; pp. 2376–2380.

19. Janda, C.R.; Scheunert, C.; Jorswieck, E.A. Wiretap-channels with constrained active attacks. In Proceedings
of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2–5 November
2014; pp. 1984–1988.

20. Wiese, M.; Nötzel, J.; Boche, H. A channel under simultaneous jamming and eavesdropping
attack—Correlated random coding capacities under strong secrecy criteria. 2015, arXiv:1410.8078.

21. Nötzel, J.; Wiese, M.; Boche, H. The arbitrarily varying wiretap channel—Secret randomness, stability and
super-activation. In Proceedings of 2015 IEEE International Symposium on Information Theory, Hong Kong,
China, 14–19 June 2015; pp. 2151–2155.

22. Boche, H.; Schaefer, R.F.; Poor, H.V. On the continuity of the secrecy capacity of compound and arbitrarily
varying wiretap channels. IEEE Trans. Inf. Forensics Secur. 2015, 12, 2531–2546.

23. Shannon, C.E. The zero error capacity of a noisy channel. IRE Trans. Inf. Theory 1956, 2, 8–19.
24. Lovász, L. On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 1979, 25, 1–7.
25. Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U., Eds. Rudolf Ahlswede’s Lectures on Information Theory

3—Hiding Data: Selected Topics; Springer: Cham, Switzerland, 2016.
26. Haemers, W. On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans.

Inf. Theory 1979, 25, 231–232.
27. Alon, N. The Shannon capacity of a union. Combinatorica 1998, 18, 301–310.
28. Ahlswede, R. A note on the existence of the weak capacity for channels with arbitrarily varying channel

probability functions and its relation to Shannon’s zero error capacity. Ann. Math. Stat. 1970, 41, 1027–1033.



Information 2016, 7, 24 21 of 21

29. Aigner, M.; Ziegler, G.M. Proofs from THE BOOK, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2014.
30. Smith, G.; Smolin, J.A.; Yard, J. Quantum communication with Gaussian channels of zero quantum capacity.

Nat. Photonics 2011, 5, 624–627.
31. Giedke, G.; Wolf, M.M. Quantum communication: Super-activated channels. Nat. Photonics 2011, 5, 578–580.
32. Csiszár, I. Almost independence and secrecy capacity. Probl. Pered. Inform. 1996, 32, 48–57.
33. Maurer, U.M.; Wolf, S. Information-theoretic key agreement: From weak to strong secrecy for free.

In Advances in Cryptology — EUROCRYPT 2000; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1807,
pp. 351–368.

34. Liang, Y.; Kramer, G.; Poor, H.V.; Shamai, S. Compound wiretap channels. EURASIP J. Wirel. Commun. Netw.
2009, doi:10.1155/2009/142374.
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