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A two-dimensional programmable tweezer array of fermions

Zoe Z. Yan'*, Benjamin M. Spar*, Max L. Prichard', Sungjae Chi!, Hao-Tian

Wei?3, Eduardo Ibarra-Garcia-Padilla?3, Kaden R. A. Hazzard?3, Waseem S. Bakr!
Y Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2 Department of Physics and Astronomy, Rice University, Houston, Tezas 77005, USA
3 Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
(Dated: March 30, 2022)

We prepare high-filling two-component arrays of up to fifty fermionic atoms in optical tweezers,

with the atoms in the ground motional state of each tweezer.

Using a stroboscopic technique,

we configure the arrays in various two-dimensional geometries with negligible Floquet heating. Full
spin- and density-resolved readout of individual sites allows us to post-select near-zero entropy initial
states for fermionic quantum simulation. We prepare a correlated state in a two-by-two tunnel-
coupled Hubbard plaquette, demonstrating all the building blocks for realizing a programmable

fermionic quantum simulator.

Ultracold atoms in optical tweezer arrays have become
a popular platform for quantum simulation, computa-
tion, and metrology [I]. The tweezer platform has re-
cently witnessed rapid breakthroughs, ranging from the
development of precise optical clocks [2} 3] to the demon-
stration of entangling operations [4H7]. The realization of
defect-free arbitrary geometries [8, 0], in particular in two
dimensions, has paved the way for studying rich quan-
tum many-body physics with localized Rydberg atoms,
including frustrated spin models on a triangular lat-
tice [10) 1], topological phases in a zig-zag chain [12],
and quantum spin liquids with atoms placed on the links
of a kagome lattice [13].

The versatility of tweezer arrays has also been ex-
tended to systems of itinerant atoms where quantum
statistics play a role [I4HI9]. In particular, tunnel-
coupled arrays have been realized for small systems of
bosonic [I4] and fermionic [I5HI8] atoms in one dimen-
sional arrays. If these experiments can be scaled, they
would constitute a bottom-up approach toward quantum
simulation that complements optical lattice experiments
with quantum gas microscopes, which currently lie at the
forefront of studying one- and two-dimensional Hubbard
models [20H29]. The difficulty of reconfiguring micro-
scope experiments has led to an almost exclusive focus on
physics in square lattices (Ref. [30] is a recent exception).
Programmable Hubbard tweezer arrays would allow the
extension of site-resolved studies to arbitrary lattice ge-
ometries that bring additional ingredients into play, in-
cluding frustration, topology, and flat-band physics.

Hubbard tweezer arrays also have the potential to ad-
dress another major challenge for optical lattice experi-
ments: the preparation of low-entropy phases of fermions.
In optical lattice experiments, the entropy of the gas is
limited by evaporative cooling, which is hindered by poor
efficiencies at low temperatures. Entropy redistribution
schemes relying on the flow of entropy away from gapped
phases have been proposed [31], B2] and experimentally
explored [33], but they have not resulted in significant
reduction of achieved temperatures.

Here we show that stroboscopic optical tweezer arrays
can be used to prepare low entropy fermionic systems
with arbitrary two-dimensional (2D) geometry. The low
entropy is possible due to several features particular to
this platform. First, in loading a tweezer from a degen-
erate Fermi gas, the tweezer acts as a “dimple trap,”
wherein the local Fermi temperature (%) is significantly
higher than in the bulk gas. Since the fraction of atoms
loaded into the tweezers is low, the temperature of the
system remains approximately fixed to the bulk gas’s
temperature, but the tweezers’ phase space density is en-
hanced. Furthermore, the occupancy of the lowest level
of each tweezer (given by the Fermi-Dirac distribution)
is close to unity. This enables the preparation of a state
with two atoms in the ground motional state (one per
spin state) on every tweezer with high fidelity, as first
demonstrated in Ref. [34]. Second, the system can be
evolved from the band insulator into a correlated state
via an adiabatic ramp-on of additional sites, taking ad-
vantage of independent tunability of each lattice site. We
have previously shown that this technique can be used to
prepare a state with antiferromagnetic correlations in an
eight-site Fermi Hubbard chain [I§]. We extend this ap-
proach to 2D and show that any pre-ramp entropy in the
system can be effectively eliminated by post-selection on
the atom number in each spin state. Post-selection is
enabled by spin- and density-resolved readout [22], 35],
which we implement in a bilayer imaging scheme.

The experimental cycle, including tweezer loading, is
the same as detailed in Ref. [I8]. Tweezers are loaded
from a bulk Fermi gas at T/TF ~0.2 that is a balanced
mixture of the lowest and third lowest hyperfine ground
states (|1, |{), respectively). Our scheme for generating
2D arrays uses two crossed acousto-optical modulators
[Fig. a)]. The tweezers are produced using light with
a wavelength of 780 nm, and their waist at the atoms is
10007155 nm. Radiofrequency tones for both AOMs are
generated by a two-channel arbitrary waveform genera-
tor, with a tone separation of 8 MHz corresponding to a
tweezer spacing of 1350 nm in the atom plane. The aper-
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FIG. 1. 2D stroboscopic tweezer technique and lifetimes. (a) Two crossed acousto-optic modulators spaced in a 4 f configuration
generate the array. (b) Illustration of the principle of stroboscopic array generation of an 8-site ring. For a strobe frequency
fs, each column of the array is turned on for a quarter of the period 1/fs, generating a time-averaged potential shown in
(c). (d) Lifetime of an atom in the ground vibrational state of a tweezer versus strobe frequency, with the red point at
0kHz indicating the non-strobed lifetime. The dashed line shows the theoretical prediction, and grey shading indicates the
systematic uncertainties on the tweezer waist. The inset shows an example of a decay curve of population in the ground state

for fs =513kHz with an exponential fit.

ture size and bandwidth of the modulators currently limit
us to ~9 tweezers in each direction. The beat frequency
of neighboring tweezers is > 100 times larger than typical
tweezer depths, leading to negligible parametric heating.

Homogenizing the tweezer depths is particularly chal-
lenging for 2D arrays generated using crossed AOMs. A
common approach used in Rydberg tweezer experiments
is to apply a static set of frequencies consisting of n,
and n, tones for the z- and y- directional AOMs, respec-
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FIG. 2. Examples of band insulators of different geometries,
showing (a) rectangular 5 x 5, (2) 21-site Lieb plaquette, (3)
4 x5 triangular, and (4) octagonal ring arrays. Only |1)atoms
are imaged and the sites here are not tunnel-coupled. The top
row shows single shots with perfect filling of the |1) state, and
the bottom row shows average images. Deviations of the atom
positions in the single-shot images are due to quantization
onto the lattice for imaging. Average fillings of |1) are (93,
92, 91, 89)%, accounting for imaging fidelity of 98.5%, out of
(411, 254 , 275, 100) shots.

tively. This generates a rectangular array of n,n, sites;
however, the n, +n, degrees of freedom from the signal
strength of each tone are insufficient to independently
tune the depth of each tweezer. Better homogeneity can
be achieved by tuning the relative phases of the tones,
but the typical resultant inhomogeneity still exceeds 1%.
Tunnel-coupled arrays have more stringent requirements
for homogeneity, since the energy offsets in tweezers of
typical depth ~ hx50kHz must be controlled to within
tunneling energies of ~ hx250 Hz, or better than 0.5%.

To homogenize arrays to within this precision and pro-
duce arrays with arbitrary geometry, we introduce a stro-
boscopic tweezer technique. We generate the array one
column at a time, with different y—directional tones ap-
plied in every timestep [Fig.[[{b)]. Effectively, the atoms
experience a time-averaged potential of concatenated 1D
arrays, as long as the strobe rate f; far exceeds the tweez-
ers’ harmonic trap frequencies. As the typical axial (ra-
dial) trap frequencies are around 2.5 (15) kHz, we need
strobe rates over an order of magnitude higher to avoid
significant Floquet heating of the atoms.

We verify that the stroboscopic scheme is compatible
with long lifetimes in the tweezer ground vibrational state
with the following study. We measure the dependence of
the lifetime in the lowest vibrational state on fs; in a
two-site strobed array, varying the strobe rate from 163-
1083kHz [36]. Higher frequencies are inaccessible due to
limitations on the AOM response rate, set by the speed of
sound and beam size in the crystal. We also compare the
lifetimes to that of a static (non-strobed) tweezer, which
is limited by background gas collisions and off-resonant
photon scattering due to the trapping light. Consistent



with expectations, the lowest strobe rates give the short-
est lifetimes in the ground state [Fig. [[(d)]. Measure-
ments and numerics using a discrete variable representa-
tion (DVR) method [36H38] both indicate that Floquet
heating decreases exponentially with increasing f, and is
negligible for fs = 250kHz, although the numerics un-
derestimate the threshold frequency range below which
severe heating occurs by ~ 18%.

We demonstrate loading the arrays with band insula-
tors of fermions with high fidelity using the stroboscopic
method. These band insulators serve as low entropy ini-
tial states for fermionic quantum simulation. As proofs-
of-principle, we implement a rectangular 5 x 5 array, 21-
site Lieb plaquette, triangular 4 x 5 array, and an 8-site
octagonal ring (Fig. [2) [36]. The tweezers are homoge-
nized using a density balancing algorithm where the num-
ber of required experimental shots is almost independent
of the array size [I8]. In these examples, the sites are not
tunnel-coupled due to the large separations. Readout is
accomplished by transferring the atoms into a 2D lattice
of 752 nm spacing, which oversamples the tweezer array,
and performing Raman sideband cooling on the [1) atoms
after removal of the ||) atoms [I8] 23] with a detection
fidelity of 98.5%. Throughout these different geometries,
the loading fidelity of a single spin averages to 92%/site,
corrected for imaging infidelity, indicating a low entropy
of loading in the array. As in previous work [18, [34], the
tweezer depths are chosen so the predominant type of de-
fect in each tweezer is a missing particle rather than an
extra one in a higher motional state. In these data, we
only measure one of the spin states in a given experimen-
tal shot, due to the problem of light-assisted collisions,
which necessitates the removal of the other spin state
before imaging [39].

To circumvent this problem and obtain full density-
and spin-resolution, we adopt a high-fidelity bilayer imag-
ing scheme [35], [40H42], which also allows the reduction of
entropy upon post-selection. Bilayer density- and spin-
readout was first accomplished in fermionic quantum gas
microscope experiments in a superlattice charge-pumping
scheme [35]. Our method is conceptually similar but in-
volves no superlattice (Fig. . Starting with tweezer-
trapped atoms, we adiabatically turn off the tweezer and
turn on a 2D lattice of 1064nm to 60 Er and a verti-
cal trap frequency of 1.2kHz in 5ms. The magnetic
field is brought to 572G, where we perform a spin-flip
of |1) to the second-lowest hyperfine state, |1), with an
efficiency exceeding 99%, and then decrease the field to
near 0 G. Atoms in [f) and |]) have a greater differential
magnetic moment than those in [1), enabling the Stern-
Gerlach separation of these populations to ~9um us-
ing a z-magnetic gradient of 168 G/cm in the 2D lat-
tice at a depth of 280 EFg. We turn on two lightsheet
potentials [23]-highly anisotropic beams, each with z-
directional trap frequencies of 26 kHz—and linearly ramp
their vertical separation to 25 ym for imaging. We mea-

sure a combined transport and spin identification fidelity
of 98.7%. Finally, we image the atoms using Raman side-
band cooling simultaneously in both layers, with the 2D
lattice depth at 2500 Eg and the two lightsheet z-trap
frequencies at 70 kHz. Resulting fluorescence is collected
by a high numerical aperture objective with atoms in the
two planes focused onto two different active areas of a
CCD camera. Imaging fidelity is 98% (97%) for the layer

of [1) (1)) atoms.

Bilayer imaging enables reduction of the effective en-
tropy associated with the initial state of the tweezer ar-
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FIG. 3. Bilayer imaging procedure and entropy reduc-
tion through post-selection. (a) Atoms in |1) (yellow) and
|[4) (blue) are initially trapped in the tweezers, then adia-
batically loaded into (b) a 2D lattice with vertical waist of
75 um, where |1) is transferred to 1) (red). (c) A magnetic
field gradient is applied to separate the spins in the vertical
direction, after which (d) two lightsheet potentials turn on to
fix the z-positions. (e) The lightsheets are further separated
to 25 um separation. Raman sideband imaging commences,
producing simultaneous images of both spin states. (f) shows
a single shot image of ||) and |}) originally from a 3 x 5 rect-
angular array. (g) Probability distribution versus number of
atoms in each spin state over 972 shots. Here, all images with
doublons (65 shots) were not used. (h) By post-selecting on
the maximum number of holes, effective entropy can be re-
duced by varying amounts.



ray (the band insulator) through post-selection. The ini-
tial entropy per particle of the tweezer ensemble, assum-
ing independent tweezers and single-band occupation, is
given by

S —%(plogp—i- (1-p)log(l-p). (1)

(N)

where p is the probability to load one spin on a site.
With a typical loading efficiency of p = 0.907(3), the array
starts with 0.34(1) kg per particle, with entropy entering
from microstates with undesired holes. By selecting only
images with the population per spin state equal to the
number of loading tweezers, we can effectively choose a
subsample with S=0. Importantly, this post-selection
criterion eliminates the initial state entropy even after
changing the filling of the system (by introducing ad-
ditional tweezers) to prepare a correlated state. The
post-selection criterion can be relaxed to use more im-
ages from the experiment at the cost of introducing addi-
tional initial state entropy. This tradeoff is illustrated in
Figs.[3|(g-h) for a 3x5 array in which |1) and ||) had aver-
age p=0.914(3) and 0.900(3), respectively (not account-
ing for imaging fidelity). Out of 972 images, 12% had
perfect filling of 15 fermions of each species. However,
even keeping images with up to two holes, or over 50%
of shots, still results in a low entropy of 0.17(1) kg per
particle, which is favorable compared to state-of-the-art
optical lattice experiments that range from 0.3-0.5 kg per
particle [25] 43, [44].

While post-selection can be used to reduce the effective
entropy of the initial state to near zero, subsequent ramps
to correlated states will inevitably introduce additional
entropy. Numerical simulations of the dynamical ramps
in small systems indicate this extra entropy should be
low for defect-free initial configurations. For example,
for the ramp used in our previous work with an eight-site
chain [I8], the ramp is expected to have introduced an
additional entropy of 0.04 kg per particle when starting
with a defect-free state, but the presence of even a single
localized hole would lead to a significant entropy increase
of 0.2-0.3 kp per particle depending on the position of the
hole. The entropy reported in Fig. [3(h) should therefore
be treated only as a lower bound for future experiments.

Post-selection on spin and density in this context
should be distinguished from the context of optical
lattice-based quantum gas microscopy measurements.
For example, in a recent study with a fermionic mi-
croscopes [44], spin- and density- readout enabled post-
selection of half-filled systems with zero total magneti-
zation, keeping ~9% of data. However, post-selection
there did not eliminate the finite spin temperature in the
initial state.

Equipped with the ability to load near-zero-entropy
band insulators after post-selection, we implement the
simplest building block of a two-dimensional Fermi-
Hubbard model: a tunnel-coupled 2 x 2 plaquette. The

single-band Hamiltonian is

H=— Y to(el,gothe)— Y t,(),¢q+he)

(1,J) a0 <Z7.]>’y)0

+ Z Uity + Z AiNig, (2)

where é;ra is the fermionic creation operator of spin ¢ at

site 7, N, is the number operator, £, is the tunneling
matrix element in the z(y) direction, A is the energy off-
set, and U is on-site interaction between opposite spin
states. We start by loading two diagonal sites in a rect-
angular array with vertical (horizontal) spacing of 1520
(1690) nm [Fig. {4] (a,b)]. The correlated state at half-
filling is prepared by adiabatically ramping on the two
opposing diagonal sites in 50 ms [I§], with tunnelings
of t, [t,] = hx140(5)[220(5)]Hz in the final configura-
tion [36]. We also ramp U/t from 0 to 3.4(2) in the same
time using the Feshbach resonance. Here, t = (t, +1,)/2.

The resulting spin-spin correlations are shown in

Fig. c)7 which depicts Cj; =(5;:5:;)—(52,i)(5=,5),
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FIG. 4. Low entropy preparation of a 2 x 2 array. a) We
load two atoms per site on one diagonal of the array. b) We
create a correlated state by ramping on the additional lattice
sites and increasing the scattering length to introduce on-site
interactions. For the following data, we work with ¢, = 140(5)
Hz, t, = 220(5) Hz and U/t = 3.4(2). ¢) Measured spin-spin
correlations enabled by the bilayer imaging scheme. d) Best
fit (top) and measured (bottom) microstate populations for
671 post-selected experimental shots. The fit gives an entropy
in the range [0,0.09] kg per particle. Insets are shown for the
two most common states.



where S, ;=1 (ny;—n,,;). Here, data were post-selected
to include only images that contained two |1) and two
[4) atoms, for a total of 673 experimental cycles. With
full spin- and density-readout, we are able reconstruct the
diagonals of the density matrix p=|¥)(¥| in the basis of

allowed number states (with Hilbert space size (;1)2: 36),
and compare data with theory. In Fig. (d), we plot
the experimental population in each microstate together
with the populations expected theoretically for the pla-
quette ground state, which are consistent within error
bars. Here, we reduce our statistical errors by taking
advantage of the spin-symmetry of the Hubbard Hamil-
tonian to average the probabilities for spin-reversed mi-
crostates. Furthermore, we fit the temperature of the
canonical ensemble to best reproduce the distribution of
microstates. The fit gives an upper bound for the tem-
perature of kT ~ 0.3t (with the fit losing sensitivity be-
low that temperature). This corresponds to an entropy
in the range [0,0.09] kp per particle, which is consistent
with the prediction from simulating the ramp dynamics
(entropy gain of 0.02 kp per particle).

In conclusion, we have realized a 2D tweezer array
of fermions with software-programmable geometry using
a novel stroboscopic technique that allows independent
control over all tweezer depths and positions. We have
realized the building blocks to implement programmable
2D Fermi-Hubbard models, and demonstrated these on a
small scale. Future work will focus on increasing the
system size of the tunnel-coupled arrays. A natural
target for future work will be few-leg ladder systems.
For example, two-leg triangular ladder systems can be
used to explore the J; — J; model, including the special
case of the Majumdar-Ghosh model and its valence-bond
solid ground states [45]. Furthermore, upon introduc-
ing spin-imbalance and hole-doping, a triangular two-leg
ladder is predicted to host magnon-hole binding at en-
ergy scales set by the tunneling, rather than the superex-
change [46]. Multi-leg triangular ladders may potentially
host other exotic states such as a chiral spin liquid at
half filling and intermediate U/t that evolves to a 120°-
antiferromagnetic order at strong U/t [47]. Ultimately,
fully 2D tunnel-coupled arrays with arbitrary geometry
will be a rich playground for exploring novel phases of
correlated fermions.
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Supplemental Information:
A two-dimensional programmable tweezer array of fermions

MEASUREMENT OF FLOQUET HEATING

To measure the ground state lifetimes shown in Fig. 1 of the main text, we perform the following experiment. We
load two tweezers, spaced 8.1 um apart to avoid any overlap, each with a spin up and a spin down atom. Atoms
in higher vibrational states are removed by lowering the tweezer depth and applying a magnetic field gradient, as
described in [I8]. The tweezer depth is increased to 50 kHz, and a variable hold time is applied. The tweezer light is
strobed such that only one tweezer is on at a time, resulting in Floquet heating for low strobe frequencies. Finally,
atoms in newly populated higher vibrational states are again removed with an identical spilling process, and the
remaining |1) atoms are imaged.

THEORETICAL CALCULATIONS OF FLOQUET HEATING

We determine the Floquet heating from the strobing of the trap by directly calculating the dynamics of a single
atom in a tweezer potential using a method based on a discrete variable representation (DVR) of Hilbert space [37],
which was applied to ground state properties of tunnel-coupled tweezers in [I4] [38]. The tweezer potential is

Vo 2r2
V(i) = — exp | ————— s1
D=1z w2(1+ 2) 50
R

3
R

where Vj is the trap depth when the tweezer is on, zg is the Rayleigh range, and wy is the trap waist, and we use
the measured parameters. We use a DVR basis of spatial-parity-adapted sinc functions on a three-dimensional cubic
grid of (N, Ny, N.) points spanning (0,0,0) to (L, Ly, L.) to represent our wavefunctions. Only even parity states
occur for the dynamics considered.

The state at time ¢ after the strobed time evolution is

|¢(t)> — e—iTéte—i(T—&-V)ét} [6—iT6t6—i(T+V)6t ‘Z> (82)

t/26t times

where 7' = —h?V?/2m + Vaus(7) is the kinetic energy operator (h is Planck’s constant, and m is the mass of SLi)
plus a potential Vabs to handle boundary conditions discussed below, V is the potential energy operator associated
with Eq. (S1)), and 6t = 1/(2f,), and assuming ¢/24t is an integer (the micromotion between such times is discussed
later). The initial state |¢) is assumed to be the ground state of the system in the time-averaged potential, i.e. of
Hy/y = T + V/2. Directly solving Eq. is challenging due to three factors: (1) the tweezer potential is 3D, (2)
it involves a wide range of length scales (the wavefunction localization length, the Gaussian waist, and the Rayleigh
range), and (3) the dynamics problem must account for a huge separation of timescales when f; is large, the short
time of the pulses and the long lifetime of the atoms, a ratio of timescales of more than 107.

We solve this by rewriting Eq. . First we can diagonalize to obtain e ~*1% = UoDoUy ! where Dy is diagonal and
Uy is the matrix whose columns are eigenvectors of T', obtained by first diagonalizing T and then exponentiating. (Uy
need not be unitary since T has non-Hermitian terms for the absorbing potential.) Similarly e~ {THVIot — 17, Dy Uy L
Therefore the terms in brackets — denote it M = e~ 10te=UT+V)ot _ip Eq. can be rewritten

M = UyDoUy *U D U (S3)
One can multiply these matrices, and diagonalize the result to find M = Us DUy 1, SO
) Str—1 .
(1)) = M2 |i) = U, DY > U5 i) (84)

The micromotion at times between integer multiples of 26t can be treated by propagating to the largest multiple of
1/fs as above, and then calculating the time evolution within a single period, which is straightforward and efficient in



terms of the diagonalized evolution matrices (D,, U,) already obtained. The computational cost is dominated by di-
agonalizing to find Dy, D1, and Ds, with several additional multiplications. Although this involves full diagonalization
of three large matrices, it avoids the issues associated with separation of timescales.

To obtain accurate results, one must use a a fine enough DVR grid and a large enough system. Here, a challenge
arises that is absent for ground state calculations: atoms can be excited from the ground state to scattering states
and thus escape from the trap. They may move rapidly, and thus would require L, that grow linearly with time to
capture, in practice many orders of magnitude larger than we can calculate. However, in the experiment once particles
move sufficiently far outside the trap, the probability they return is negligible. This can be accurately reproduced in
the calculations by including an absorbing boundary region in our simulations, a standard technique in calculations
of, e.g., chemical dynamics [48]. We use a potential

. ja] - L
Vabs(ﬁ = —il’ Z I _ L(O) (85)
acx,y,z —a a

This is zero inside the cubic region from the origin to (Lé‘)), Lg(,o), Lio)), and linearly increases as one moves outside

this region. The whole calculation is performed inside a box of size (Lg, Ly, L,) with (N, N,, N,) grid points. The
calculations in the main text are performed with (L&OXL@O),LEO)) = (3,3,7.2)wy, N = (27,27,23); I' = 57kHz; and
L, = L,(0) + S, where S, ~ wy, and are well-converged in the number of grid points and system size (Fig. [S1]).
(S, varies slightly in the right panel: because we fix the grid spacing and ensure that the last grid point in the
non-absorbing region doesn’t change with L,, we choose S, closest to wy while constraining L, to correspond to
the location of the last grid points along the a’th direction.) The I' and S are chosen to be sufficiently large so that
particles leaving the trap are absorbed before reaching the boundary of the calculation, but I' is maintained sufficiently
small so that there is no Zeno effect that would reflect the particles. The choices we make are consistent with these
conditions, as given in Ref. [48], and our results are insensitive to the specific choice of the parameters. For example,
varying I' over a range of a factor of hundred has a negligible effect on the atom lifetime. Calculated lifetimes are
converged to have visually negligible errors from the number of grid points, system size, and absorbing boundary.

Using this method, we calculate the population of the ground state (of the time-averaged potential) as a function
of time. We find it gives a nearly perfect exponential decay for the fy shown, with small deviations from exponential
at smaller f,. The lifetimes shown in Fig. 1(d) of the main text are obtained by fitting an exponential e~*/7 to the
obtained dynamics. The numerical calculations do not include the effects that give the finite lifetime in the unstrobed
tweezer (background gas collisions and off-resonant light scattering), and which are expected to be the reason for
the high-frequency lifetime saturation in Fig. 1(d). To incorporate those effects, the theory curve in Fig. 1(d) is a
simple interpolation 1/7eg = 1/7 4+ 1/Tstatic Where Tgtatic is the lifetime in the unstrobed tweezer. The plot is largely
insensitive to the details of this interpolation.

104 10%4
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FIG. S1. Convergence of the calculated atom lifetime with respect to number of DVR grid points (left) and system size (right).
Left: Lifetimes for different numbers of DVR grid points are converged well in the number of gridpoints for (N, Ny, N.) =
(25,25, 21) (or more) in systems of size (LY, L\, L) = (3,3,7.2)wo. Right: lifetimes for different system sizes are converged
well for (Lz, Ly, L.) = (3,3,5.6)wo and larger. Right panel is at fixed grid point spacing (0.16667,0.166667, 0.4)wo, so the N,
vary with L,. The spacing corresponds to (N, Ny, N.) = (24,24, 20) for the largest system.



2D ARRAY GENERATION

Our arrays are generated by two perpendicularly oriented AOMs from AA Optoelectronic (MT110-B50A1,5-IR)
driven by a two-channel arbitrary waveform generator (Spectrum M4i.6621-x8 PCle). The typical strobing scheme,
illustrated in Fig. 1 of the main text, generates one column of the array at any given time. This gives the most
flexibility for creating different geometries. The two AOMs operate with the longitudinal acoustic mode with a high
speed of sound (4200m/s) in the crystal. This speed, along with the aperture size of 1.5 x 2mm?, sets the minimum
possible dwell time on a tweezer (the duration for which the tweezer is on). We find that dwell times below 0.5 us
produce tweezers with profiles that are significantly distorted along the strobe axis. When generating a two-site array
by strobing, we measure that the tweezer waist along the strobe axis increases at 1.4% per increase of 100 kHz strobing
rate. Distortions in the tweezer profile can be partly mitigated by applying a cosine-sum window function on the
waveform that is sent to the strobed AOM. Given the minimum dwell time per tweezer, the strobe period 1/ f, grows
linearly with the number of strobed columns. This seemingly limits us to about 8 sites along the strobe axis due to
Floquet heating based on the results shown in Fig. 1 of the main text. However, we can surpass this limitation with
the technique discussed in the following paragraph.

To reduce Floquet heating and distortion of the tweezer intensity profile, we combine 2D multitone arrays (produced
by driving both AOMs with a set of radiofrequency tones) with strobing. For certain geometries, this allows us to
reduce tweezer dwell times by using smaller modulation depths. We define modulation depth as the difference between
the minimum and maximum relative intensity used over one strobe period. The principle is illustrated in Fig.
for 50% modulation depth, and was applied for the rectangular, Lieb, triangular, and ring lattices in Fig. 2 of the
main text. For the example of Fig. a static 2D multitone configuration (modulation depth of 0%) can be used in
principle to create the geometry shown, but would not give enough degrees of freedom to homogenize the depths of
all sites.

The type of lattices that can be generated with this approach is restricted to combinations of patterns that can
be generated by using 2D multitone arrays. Assume each of the two AOMs is driven by a set of tones such that it
individually produces tweezers at positions P, P, respectively, where Py ={py 1, ...pz.n} and Py ={py.1,...0y,m}- The
result when driving both AOMs will be the Cartesian product of the two sets Py X Py = {(p,i;Dy.j) | Peyi € P, Py,j €
P,}. For example, triangular and Lieb lattices can be generated by switching between two multitone rectangular arrays
and overlaying a small amplitude strobed array to homogenize the tweezer depths. In general, most 2D patterns of
interest that host some level of periodicity can be generated by switching between two or three multitone rectangular
arrays at full modulation depth and overlaying a small amplitude strobed array for homogenization. When using 2D
multitone arrays, we avoid square geometries, as equidistant tweezer spacing in = and y leads to diagonal sites having
degenerate tones, which results in low frequency beating between these tweezers and atom heating.

time

1/3)‘ 2/3f average
‘ ' potential

FIG. S2. Illustration of using 50% modulation depth to generate a 2 x 3 array with strobe rate fs, with (a) the individual
strobe steps and (b) the time-averaged potential. This procedure can be thought of as superimposing a static 2 x 3 grid on top
of a 3-step array with 100% modulation depth.

2 x 2 PLAQUETTE

We calibrate the tunnelings in the horizontal and vertical directions in the 2 x 2 array as follows. We first load
atoms on only one site, and reduce the tweezer intensities by 5 percent on all other sites except for the one in the
direction we want to measure the tunneling. At a non-interacting magnetic field, we quickly initialize tunneling by
zeroing the offsets among the target sites [I8], and we measure Rabi oscillations between the two sites [14) [I5].

To calibrate the on-site interaction energy U, we perform radiofrequency spectroscopy and measure the difference
between single and double occupied sites. However, the most sensitive way to measure U/t is to fit the distribution of
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FIG. S3. Full microstate data for Fig. 4 of the main text without averaging to take advantage of the spin symmetry of the
Hamiltonian.

microstates. In particular, for temperatures far below the interaction energy, U/t sensitively determines the number
of single occupied sites. The value of U/t reported in the main text comes from a best fit of the experimental data,
which is in reasonable agreement with an independent spectroscopic calibration [U/t = 4.4(5)].

To prepare the 2 x 2 plaquette ground state, we initialize the ground state of sites 1 and 4 with doublons, as
pictured in Fig. 4 of the main text. To achieve a half-filled system, we turn on the opposing diagonal sites in a two-
step sequence. First, the intensities of sites 2 and 3 are increased in 5ms with an exponential time constant of 1 ms,
until they are at ~90% intensity of sites 1 and 4. Then, the intensities are further increased in a 50 ms exponential
ramp with a time constant of 5 ms, until the offsets are zeroed. During this time, the magnetic field is ramped from a
nearly non-interacting system at 573 G to its final value of 631 G using a two-point cubic spline function. A hold time
of 4ms is applied for further equilibration. Finally, tunneling is frozen by rapidly increasing the tweezer intensity to
2.5 times the science depth, and imaging commences.

In the main text of the paper, for the 2 x 2 tunneling data we average over states obtained by interchanging |1) and
|[4). This is because all potentials in the system are state independent. This reduces the statistical error due to the
limited number of experimental shots (673 shots). Since we do not equalize the disorder entirely to zero, we do not
assume any reflection symmetries that could be utilized in the ideal system to further reduce the statistical errors.
We show the full microstate distribution without averaging in Fig. [S3] and the full labelling of microstates in Tab. [l

ENTROPY AND TEMPERATURE

In order to fit the temperature of our system, we use the canonical ensemble as post-selection enables us to remove
number fluctuations. Thus, with free parameters temperature T and U/t, the partition function is the sum over all
energy eigenstates (2, with

ZU/t,T) Zexp ( Ezbg/t)> . (S6)

For each temperature and interaction, we create an expected distribution of microstates, and we compare to the
experimental data using a weighted least squares fit. We find that the weighted sum of the squared residuals reaches
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H Index‘ [ population‘ [ populationH

0 1100 1100
1 1010 1100
2 1001 1100
3 0110 1100
4 0101 1100
5 0011 1100
6 1100 1010
7 1010 1010
8 1001 1010
9 0110 1010
10 0101 1010
11 0011 1010
12 1100 1001
13 1010 1001
14 1001 1001
15 0110 1001
16 0101 1001
17 0011 1001
18 1100 0110
19 1010 0110
20 1001 0110
21 0110 0110
22 0101 0110
23 0011 0110
24 1100 0101
25 1010 0101
26 1001 0101
27 0110 0101
28 0101 0101
29 0011 0101
30 1100 0011
31 1010 0011
32 1001 0011
33 0110 0011
34 0101 0011
35 0011 0011

TABLE I. The basis microstates for the data reported in Fig. 4 of the main text. The order of the sites used corresponds to
the numbering in Fig. 4(a).

a local minimum (which depends very weakly on temperature) at U/t = 3.4(2), where the errorbar is extracted from
500 bootstrapped samples of the data. We find that the temperature fit loses sensitivity below kgT ~ 0.3t (Fig .
This corresponds to an entropy range of [0,0.09] kg per particle. Exact diagonalization performed by in the Python
package Quspin [49] suggests that for our ramp parameters, the entropy gain would be 0.02 kg per particle.

In future studies, we wish to implement larger 2D ladder systems, preparing ground states of half-filled systems
by the aforementioned technique of adiabatically ramping on additional tweezer sites. We use exact diagonalization
on numerically tractable systems to estimate the many-body gaps sizes and therefore the feasibility of this approach.
For instance, on a 2 x 5 triangular lattice at half filling, at U/t = 6, we can perform an adiabatic ramp in 100 ms
that will only lead to an increase of 0.06 kg per particle. For a 2 x 6 lattice with the same parameters, the increase
is 0.07 k. These values were obtained by calculating dynamics with experimentally realistic ramp parameters. We
are unable to perform exact diagonalization with our computing resources for larger 2D systems.
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FIG. S4. Entropy and least squares residual as a function of temperature. Below around kgT = 0.3t, the least squares residual
is minimized, corresponding to an entropy range of [0,0.09] kg per particle.
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