bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.213157; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Title: The inner membrane protein YhdP modulates the rate of anterograde

- 2 phospholipid flow in Escherichia coli
- 3
- 4 **Authors:** Jacqueline Grimm^{1,†}, Handuo Shi^{2,†}, Wei Wang³, Angela M. Mitchell^{1,4}, Ned S.

5 Wingreen^{1,3}, Kerwyn Casey Huang^{2,5,6,*}, Thomas J. Silhavy^{1,*}

6

7 Affiliations

- 8 ¹Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- 9 ²Department of Bioengineering, Stanford University School of Medicine, Stanford, CA
- 10 94305, USA
- ¹¹ ³Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
- 12 08544, USA
- 13 ⁴Department of Biology, Texas A&M University, College Station, TX 77843
- 14 ⁵Department of Microbiology & Immunology, Stanford University School of Medicine,
- 15 Stanford, CA 94305, USA
- 16 ⁶Chan Zuckerberg Biohub, San Francisco, CA 94158

- ¹⁸ [†]: These authors contributed equally.
- 19 *Corresponding authors: tsilhavy@princeton.edu and kchuang@stanford.edu
- 20

- 21 *Keywords:* MlaA, Gram-negative, cell envelope, AsmA, enterobacterial common antigen,
- 22 cell mechanics, permeability barrier, cell death, single-cell microscopy, lipid
- 23 homeostasis, lipid transport

24 Abstract

The outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier 25 that allows uptake of nutrients while simultaneously protecting the cell from harmful 26 27 compounds. The basic pathways and molecular machinery responsible for transporting 28 lipopolysaccharides (LPS), lipoproteins, and β -barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes 29 capable of affecting PL transport, we screened for genetic interactions with *mlaA**, a 30 31 mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of *mlaA**-mediated lysis suggested that PL 32 transport can occur via a high-flux, diffusive flow mechanism. We found that YhdP, an 33 34 IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during *mlaA**-mediated lysis. Deletion of *yhdP* from *mlaA** reduced the rate 35 36 of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of $\Delta y dh P$ cells was further compromised and ruptured before 37 38 the IM during *mlaA**-mediated death. These findings demonstrate the existence of a 39 high-flux, diffusive pathway for PL flow in *Escherichia coli* that is modulated by YhdP.

40 Significance Statement

41	The outer membrane (OM) of Gram-negative bacteria serves as a barrier that protects
42	cells from harmful chemical compounds, including many antibiotics. Understanding
43	how bacteria build this barrier is an important step in engineering strategies to
44	circumvent it. A long-standing mystery in the field is how phospholipids (PLs) are
45	transported from the inner membrane (IM) to the OM. We previously discovered that a
46	mutation in the gene <i>mlaA</i> causes rapid flow of PLs to the OM, eventually resulting in
47	IM rupture. Here, we found that deletion of the gene <i>yhdP</i> delayed cell death in the
48	<i>mlaA</i> mutant by slowing flow of PLs to the OM. These findings reveal a high-flux,
49	diffusive pathway for PL transport in Gram-negative bacteria modulated by YhdP.

50 Introduction

51	The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer
52	composed of lipopolysaccharides (LPS) in the outer leaflet and PLs in the inner leaflet
53	(1). Strong lateral interactions between LPS molecules in the outer leaflet result in a
54	bilayer that is impermeable to both hydrophobic and large hydrophilic compounds (2).
55	In addition to its role as a permeability barrier, β -barrel proteins and lipoproteins in the
56	OM play key roles in a variety of other important processes, including motility,
57	pathogenesis, and cell division (3). Because the periplasm lacks conventional sources of
58	energy such as ATP, Gram-negative bacteria face a significant challenge in transporting
59	and assembling OM components. To circumvent this challenge, cells utilize ATP
60	hydrolysis in the inner membrane (IM) to transport LPS molecules across a protein
61	bridge that spans the periplasm (4, 5). β -barrel proteins and lipoproteins also use ATP
62	hydrolysis to cross the IM, but are escorted across the periplasm by soluble carriers (6,
63	7).
64	
65	While relatively little is known about the transport of PLs to the OM, current
66	understanding points to a mechanism that is highly distinct from the known OM

- 67 transport pathways. Liposome fusion experiments in *Salmonella* Typhimurium
- 68 demonstrated that unlike proteins and LPS, PL transport is bidirectional and
- 69 indiscriminate (8). Rapid transfer from the OM to the IM was observed for all major and

70	minor species of <i>Salmonella</i> PLs and even for cholesteryl oleate, which is not a normal
71	component of bacterial membranes (8). One explanation consistent with these findings
72	is that PLs can be transported by diffusional flow. Diffusive PL transport could occur at
73	zones of hemifusion that form spontaneously. Diffusion could also require protein
74	facilitators, for instance to encourage formation of hemifusions or to form protein
75	channels through which PLs flow.
76	
77	Although the bacterial PL transport pathway is currently unknown, the mechanisms by
78	which cells maintain asymmetry in the OM are much better understood. When the
79	integrity of the outer leaflet is disrupted, PLs from the inner leaflet migrate to fill gaps
80	in the LPS, creating zones that are newly permeable to toxic hydrophobic compounds.
81	The cell remedies this problem using the Mla (Maintenance of lipid asymmetry)
82	pathway, which removes mislocalized PLs from the outer leaflet and shuttles them to
83	the IM (9). MlaA is a donut-shaped lipoprotein that sits in the outer membrane,
84	removes PLs from the outer leaflet, and delivers them to the soluble carrier, MlaC. MlaC
85	then transports them across the periplasm to the MlaFEDB complex, an ABC transport
86	system that unloads MlaC and returns PLs to the IM.
87	
88	In <i>E. coli</i> , a dominant negative mutation in <i>mlaA</i> , called <i>mlaA</i> *, reverses the protein's
89	normal function (10). Instead of removing surface-exposed PLs, MlaA* allows properly

90	localized PLs to flow through its pore into the outer leaflet (10, 11). Accumulation of
91	PLs in the outer leaflet triggers a cell death pathway that results in lysis during
92	stationary phase (10). First, the presence of PLs in the outer leaflet activates the OM
93	phospholipase PldA, which cleaves surface-exposed PLs, generating breakdown
94	products that signal to increase production of LPS (12). Hyper-production of LPS
95	destabilizes the OM, resulting in loss of OM material through blebbing. PLs then flow
96	from the IM to the OM to replace the lost material. In stationary phase, cells can no
97	longer synthesize new PLs to replace those lost from the IM. As a result, PL flow causes
98	the IM to shrink and ultimately rupture.

99

We hypothesized that changing the rate of PL flow from the IM to the OM would affect 100 101 the rate of lysis in *mlaA** cells, since PL flow to the OM is what eventually causes the IM 102 to rupture. Hence, we should be able to identify genes that affect PL transport through genetic interactions with *mlaA**. Our screen identified *yhdP*, a gene already known to 103 play a role in maintaining the barrier function of the OM (13). Deletion of *yhdP* slowed 104 105 lysis, but did not restore wild-type LPS levels, indicating that it affects a step in the pathway after LPS levels have already increased. Single-cell microscopy showed that 106 the IM of $mlaA^* \Delta yhdP$ cells shrank more slowly, implying slower anterograde flow. In 107 108 *mlaA*^{*} cells, PL flow ultimately leads to IM rupture but also compensates for loss of OM material while cells are actively growing. By contrast, without YhdP, the OM ruptured 109

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.213157; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 110 before the IM, suggesting that these cells cannot efficiently compensate for OM loss
- 111 through anterograde flow.

112 **Results**

113 *mlaA** causes high-flux, passive phospholipid flow

It was previously shown that PL flow in *mlaA** cells is not affected by membrane 114 depolarization or ATP synthase mutations, indicating that flow occurs via a passive 115 mechanism (11). To further characterize this pathway, we quantified the rate of 116 117 anterograde flow. We induced the cell division inhibitor SulA (14) and then transitioned exponentially growing cells onto agarose pads containing spent medium to cause the 118 119 *mlaA** death phenotype. The SulA-induced cells became filamentous, and hence we 120 could quantify the IM shrinkage from one of the poles prior to cell death (Figure 1A, white arrows) more easily than in non-filamentous cells. Since IM shrinkage in *mlaA** 121 122 cells is the result of PL transport to the OM (10), we measured the rate of shrinkage as a proxy for the PL transport rate. 123

124

The IM shrunk by ~20% in approximately 20 min (Figure 1B,C), corresponding to a PL flow rate of $1.2 \pm 0.4\%$ of the cell length per min. That a substantial fraction of the IM can be transported quickly even under the energetic limitations that occur upon entry into stationary phase provides further evidence that PL flow can occur via a diffusive mechanism. It also shows that the diffusive pathway is high-flux, permitting transport of a large proportion of the IM within a short period of time.

132	Genetic interactions with $mlaA^*$ depend on the length of time in spent medium
133	To identify genetic interactions with $mlaA^*$, we constructed transposon insertion
134	libraries in <i>mlaA</i> [*] and Δ <i>mlaA</i> cells. We grew the libraries to late exponential phase and
135	incubated them in spent medium overnight to induce lysis. We repeated this process
136	three times successively, inferring that the survival of any mutant that suppressed
137	<i>mlaA</i> *-mediated cell death would be amplified by the repeated incubations.
138	
139	As expected, by far the most abundant hit was <i>mlaA</i> , since null mutations in <i>mlaA</i> *
140	prevent production of the mutant protein, completely suppressing cell death (10). The
141	next most abundant hit was <i>pldA</i> , again expected as without PldA, there is no signal to
142	increase production of LPS (10). After three rounds of incubation, insertions in <i>mlaA</i>
143	and <i>pldA</i> accounted for 96.3% of all reads. Among the other hits (Table 1), several were
144	known to affect LPS levels, corresponding to the results of a previous low-throughput
145	screen, which also identified several suppressor mutations that lowered LPS levels (10).
146	Since overproduction of LPS is a critical step in the cell-death pathway, mutations that
147	restore wild-type LPS levels are expected to suppress lysis independent of any potential
148	impact on PL transport (10). We therefore sought to find a genetic disruption that
149	suppressed <i>mlaA</i> * without lowering LPS levels.
150	

Since the most potent suppressors of *mlaA** block the earliest steps of the pathway, we 151 hypothesized that slowing PL flow, the final step in the pathway, would only slow 152 153 lysis. Hence, we carried out a similar experiment in which cells were only incubated for two hours in spent medium rather than overnight, to identify partial suppressors of 154 155 *mlaA*^{*} (Figure 1D). Now, the most abundant hit in the *mlaA*^{*} library was *yhdP*, a large (1266 amino acid) IM protein. Interestingly, another member of its protein family, *asmA*, 156 was identified as a suppressor in the previous screen (Table 1). YhdP has been shown to 157 158 enhance OM permeability barrier function during stationary phase, but its mechanism is currently unknown (13). Deletion of *yhdP* causes sensitivity to SDS/EDTA and 159 vancomycin regardless of growth phase, indicating that it plays a role in maintaining 160 OM integrity (15). To confirm that disruption of *yhdP* inhibits lysis, we grew *mlaA** 161 $\Delta yhdP$ cells to late exponential phase, resuspended them in spent medium, and 162 163 measured OD over time; deletion of *yhdP* slowed the rate of lysis of *mlaA** cells (Figure 1E). 164

165

166 **Deletion of** *yhdP* **slows** *mlaA** **lysis without lowering LPS levels**

Since modulating PL flow would affect a step in the cell death pathway after LPS levels have already increased, we expected that inhibiting PL flow would slow *mlaA** lysis without restoring wild-type LPS levels. To test the effects of *yhdP* deletion on *mlaA** cells, we measured LPS levels by immunoblotting (Methods). Deletion of *yhdP* had no effect on LPS levels either alone or in combination with *mlaA**, suggesting that it affects
a later step in the pathway (Figure 1F). In addition, this finding suggests that *yhdP* does
not slow lysis by affecting LPS transport, as it has been shown that slowing transport of
LPS also reduces LPS levels (13).

175

176 **Deletion of** *yhdP* **slows shrinking of the IM**

177 In *mlaA*^{*} cells, shrinking of the IM away from the cell pole is thought to reflect

anterograde PL flow to the OM (10). We therefore expected that a mutation that slows

179 PL flow would also slow IM shrinking. To determine whether *yhdP* deletion affects PL

flow, we imaged $mlaA^*$ or $mlaA^* \Delta yhdP$ cells during incubation in a microfluidic flow

181 cell. Cells were first kept in LB until they reached steady-state growth, and then rapidly

182 switched into spent medium. With continuous flow of spent medium, all *mlaA** cells

died within 20-30 min (10). Deletion of *yhdP* delayed cell death (Figure 2A), consistent

184 with the dynamics in bulk culture (Figure 1E).

185

spent medium. The cytoplasm of $mlaA^*$ cells shrank by an average of ~0.7 μ m (20%,

188 Figure 2B,C) over ~20 min (Figure 2A) and appeared to increase in density, followed by

a "popping" expansion and then gradual loss of phase contrast (Figure 2B) that we

190 previously characterized as typical of *mlaA*^{*}-mediated death (10). *mlaA*^{*} $\Delta yhdP$ cells

191	displayed a qualitatively similar death trajectory (Figure 2B). The average time to lysis
192	was longer (29 min, Figure 2A) and yet less shrinkage occurred (0.5 μm , 15%, Figure
193	2B,C) before popping than in $mlaA^*$ cells. In both strains, the expansion at cell death
194	roughly restored cell length to the pre-shrinkage size (Figure 2C,D), suggesting that the
195	cell envelope returned to a relaxed state after the expansion. Shrinkage rate prior to
196	popping was also slowed down in <i>mlaA</i> * Δ <i>yhdP</i> cells by 50% (Figure 2E). Taken
197	together, these data indicate that YhdP plays an important role in PL transport during
198	mlaA*-mediated lysis.

199

200 The effect of YhdP on lysis is cyclic ECA-independent

It was previously shown that the OM permeability phenotypes of $\Delta yhdP$ cells can be 201 suppressed by preventing synthesis of cyclic enterobacterial common antigen (ECA), 202 indicating that YhdP regulates cyclic ECA (15). To test whether the effect of *yhdP* 203 deletion on *mlaA**-mediated lysis also depends on cyclic ECA, we constructed strains 204 lacking *wzzE*. WzzE is the ECA chain length regulator, and in its absence cyclic ECA is 205 206 not synthesized. If the effect of *yhdP* deletion on lysis rate also depends on cyclic ECA, we would expect that deleting wzzE in $mlaA^* \Delta yhdP$ cells would reverse the effect of 207 *yhdP* deletion, resulting in dynamics upon transition to spent medium similar to that of 208 *mlaA** alone. 209

211	To quantify the effect of cyclic ECA in <i>mlaA</i> [*] cells, we imaged <i>mlaA</i> [*] $\Delta yhdP \Delta wzzE$ cells
212	in a microfluidic device during the transition to spent medium. Deletion of <i>wzzE</i> did not
213	restore <i>mlaA</i> *-like death dynamics (Figure 3A), nor did it change the shrinkage rate of
214	the <i>mlaA</i> [*] Δ <i>yhdP</i> strain (Figure 3B). Deletion of <i>wzzE</i> did not affect the death (Figure 3A)
215	or shrinkage (Figure 3B) of <i>mlaA</i> * cells, indicating that the effect of YhdP on PL
216	transport during <i>mlaA</i> *-mediated lysis does not require cyclic ECA.
217	
218	Deletion of <i>yhdP</i> weakens the OM chemically and mechanically
219	Another explanation for how deletion of <i>yhdP</i> could slow lysis is by preventing loss of
220	OM material. To test whether deleting <i>yhdP</i> improves OM integrity in $mlaA^*$ cells, we
221	assayed OM permeability by plating on vancomycin or SDS/EDTA. It was previously
222	shown that cells lacking <i>yhdP</i> are vancomycin-sensitive (15). However, by plating on a
223	low concentration of vancomycin such that wild-type, $mlaA^*$, and $\Delta yhdP$ cells all grew
224	to the same dilution as on LB without drug, we observed that $mlaA^* \Delta yhdP$ cells had a
225	synthetic OM permeability defect (Figure 4A). On SDS/EDTA, <i>mlaA</i> * and Δ <i>yhdP</i> were
226	both sensitive; combining the two mutations did not relieve the defect (Figure $4A$).
227	These results demonstrate that deletion of <i>yhdP</i> does not slow lysis by enhancing OM
228	integrity.
229	

Since deleting *yhdP* increased OM permeability in *mlaA** cells, we wondered whether 230 inhibition of anterograde flow might be due to destabilization of the OM. To further 231 characterize the effect of YhdP on the OM, we investigated its impact on OM 232 233 mechanical strength. In a previous study, we showed that the mechanical stiffness of 234 the *E. coli* OM is greater than or comparable to that of the cell wall, and that genetic or chemical perturbations to the OM can reduce the overall stiffness of cells (16). To 235 determine if YhdP plays a role in determining OM stiffness, we utilized an assay in 236 237 which exponentially growing cells are first exposed to a large, hyperosmotic shock with 3 M sorbitol, and then treated with EDTA. We used a microfluidic flow cell to precisely 238 control the timing of treatments and track single cells throughout (Methods). Upon the 239 shock, wild-type cells experienced a large decrease in the length of the fluorescently 240 labeled cell wall (Figure 4B), as expected since turgor pressure was relieved and hence 241 242 the cell wall-OM envelope complex was no longer under stress. EDTA treatment, which disrupts the OM by rapidly inducing loss of LPS molecules (17, 18), led to a further 243 244 decrease in cell length (Figure 4B), signifying that the stiff OM was holding the cell wall 245 out beyond its rest length before its removal. Application of this assay to $\Delta yhdP$ cells 246 showed greater contraction of the cell wall after the osmotic shock (Figure 4B,C) and after EDTA treatment (Figure 4B,D), indicating that the overall stiffness of $\Delta yhdP$ cells 247 248 was lower than that of wildtype.

To further test whether deletion of *yhdP* weakened cells mechanically, we quantified the 250 yield of viable cells after breaking down the cell wall using beta-lactam antibiotics to 251 252 form wall-less spheroplasts with intact IM and OM (Methods). We previously showed that spheroplast yield is strongly correlated with the stiffness of the OM across chemical 253 and genetic perturbations (16). In this assay, spheroplasts were generated overnight in 254 the presence of cefsulodin, and then were washed and plated on fresh medium without 255 antibiotics after the cell wall was removed. Survival in the absence of a cell wall relies 256 257 on having a stiff outer membrane to bear the stress of turgor. We observed that *mlaA** and *yhdP* deletion each caused a dramatic (>1000-fold) decrease in spheroplast viability 258 in comparison with wildtype (Figure 4E). The *mlaA*^{*} $\Delta yhdP$ double mutant exhibited a 259 further decrease in spheroplast viability, highlighting the importance of YhdP in 260 determining OM stiffness. However, deletion of *wzzE* partially suppressed the decrease 261 262 in spheroplast viability due to $\Delta yhdP$ (Figure 4E), demonstrating that the effect of YhdP on OM mechanical strength is cyclic ECA-dependent. 263

264

Taken together, these results suggest that deleting *yhdP* does not slow lysis by
preventing loss of OM material. Deletion of *yhdP* severely disrupts OM integrity, which
is more likely to promote loss of OM material than to prevent it. Furthermore, *yhdP*deletion still slows lysis even when its effect on the mechanical strength of the OM is

suppressed (Figure 3A,B, Figure S1), indicating that *yhdP*'s effect on lysis is not a result
of its effect on OM mechanics.

271

272 Impairment of phospholipid flow leads to OM rupture

273 We observed that the IM of $mlaA^* \Delta yhdP$ cells shrank more slowly and less relative to

274 *mlaA** (Figure 2B-E). We would expect that a mutation that decreases PL flow would

cause the IM to shrink more slowly. To explain why the IM shrank less before lysis, we

wondered whether, in these cells, lysis occurs for a reason other than IM rupture. In

277 *mlaA**, anterograde flow leads to rupture of the IM, followed shortly by OM rupture

(10). We surmised that impairing PL flow in $mlaA^*$ cells would increase the stress on the

279 OM, potentially causing the OM to rupture before the IM.

280

281 To test this hypothesis, we constructed $mlaA^*$ and $mlaA^* \Delta yhdP$ strains expressing both a cytoplasmic and a periplasmic fluorescent protein. When the *mlaA** strain was shifted 282 283 into spent medium, shrinkage of the IM led to a large periplasmic space with high 284 mCherry signal (Figure 5A, white arrow). The mCherry signal remained intact 285 throughout shrinkage, and when the cells popped and lysed, periplasmic mCherry and cytoplasmic GFP signals were lost simultaneously in every cell (Figure 5A,B), 286 287 presumably because rupture of the IM also led to rapid OM rupture (10). By contrast, in *mlaA** $\Delta yhdP$ cells, the extent of IM shrinkage was much smaller (Figure 2C), and the 288

289	periplasmic mCherry signal remained largely uniform around cell periphery rather
290	than intensified at a cell pole(s) (Figure 5C). During the transition to spent medium, the
291	mCherry signal was lost tens of minutes before popping (Figure 5C,D), while the
292	cytoplasmic YFP signal remained intact until popping occurred (Figure 5C). Taken
293	together, these data indicate that disruption of anterograde flow caused by <i>yhdP</i>
294	deletion in <i>mlaA</i> [*] Δ <i>yhdP</i> cells leads to rupture of the OM before the IM (Figure 5E).

295 **Discussion**

296	The existence of fusion junctions facilitating PL flow between the IM and OM has been
297	a matter of controversy for some time. In the 1960s, electron microscopy showed sites of
298	contact between the two membranes, but improved microscopy methods called into
299	question the existence of these "Bayer's junctions" (19, 20). While it may be the case that
300	the junctions observed in those early images were indeed artifacts, several lines of
301	evidence now suggest that intermembrane PL transport can occur via diffusion.
302	
303	Previous studies showed that PL transport is bidirectional and can involve even non-
304	native lipids (8, 21). In the <i>mlaA</i> * mutant, PL flow does not require either ATP or proton
305	motive force (11). In addition, in this mutant approximately 20% of the IM is lost by
306	transport even under the nutrient limitations that trigger entry into stationary phase.
307	These data are strong evidence that PL flow in <i>mlaA</i> * cells is passive, and occurs
308	through a high-flux pathway. It remains to be seen whether this pathway functions in
309	normal PL transport or is active only in certain conditions.
310	
311	In this study, we provide evidence that YhdP is involved in modulating the high-flux
312	PL transport pathway. Time-lapse imaging showed that deleting <i>yhdP</i> slowed shrinkage

of the IM in *mlaA** cells (Figure 2), implying that PLs flowed more slowly from the IM to

the OM. In *mlaA**, loss of lipids from the IM ultimately causes it to rupture (10). As a

result, slowing PL flow delays cell death. However, since PL flow also compensates for loss of OM material, slowing flow from the IM comes at the cost of OM integrity. Thus, while lysis takes longer in *mlaA** Δ *yhdP* cells, when it does occur, the OM rather than the IM ruptures first (Figure 5D).

319

Cells survive without *yhdP*, suggesting that YhdP functions specifically in high-flux PL 320 transport. If it does play a role in normal PL transport, then there must be multiple, 321 322 redundant pathways. How YhdP modulates PL transport is still unknown, but an intriguing possibility is suggested by its protein family. YhdP belongs to a family of six 323 "AsmA-like" proteins (AsmA, TamB, YdbH, YicH, YhjG, and YhdP). Two members of 324 this family, AsmA and TamB, are predicted to share homology with the eukaryotic PL 325 transporter, Vps13 (22). Vps13 forms a hydrophobic channel through which PLs are 326 327 transported between membranes (23, 24). The structure of TamB also includes a channel with a highly hydrophobic interior (25). Interestingly, it has been suggested that due to 328 329 its ability to accommodate many lipids at once, Vps13 functions specifically in high-flux 330 PL transport (26).

331

While our study does not determine YhdP's molecular mechanism, it does rule out certain possibilities. Deleting *yhdP* does not lower LPS levels (Figure 1F), hence it must affect a step in the *mlaA** death pathway after LPS levels have already increased.

335	Moreover, the effect of $ydhP$ deletion on $mlaA^*$ lysis cannot be explained by slowed
336	transport of LPS to the OM, as it has previously been shown that slowing LPS transport
337	also decreases LPS levels (12). It is also unlikely that deleting <i>yhdP</i> slowed lysis (Figure
338	2A,B) by preventing loss of OM material, as <i>yhdP</i> deletion has a severe negative impact
339	on OM integrity (Figure 4). Of the remaining options, a direct role in transport is
340	certainly the simplest. YhdP is a large (1266 amino acid) IM protein with one clear N-
341	terminal and possibly a second, C-terminal transmembrane domain. Given the size of
342	its periplasmic domain, it is plausible that YhdP can span the periplasm, but further
343	structural and biochemical studies are needed to determine its precise role in
344	anterograde PL transport. Regardless, our data provide new insight into the process of
345	PL flow and cell lysis caused by the dominant negative $mlaA^*$ allele, and shed light on
346	the multiple roles played by YhdP in the maintanence of OM integrity. The fact that
347	YdhP changes both OM stiffness and permeability suggests an intriguing link between
348	these two properties. Our discovery of a mutant capable of slowing PL transport should
349	provide a useful foothold in the investigation of this poorly understood pathway.

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.213157; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

350 Methods

351

352 Bacterial strains

- 353 The strains used in this study are listed in Table S1. Strains were constructed by
- 354 generalized P1 transduction with all deletions originating from the Keio collection (27,
- 28). Kanamycin resistance cassettes were removed using the Flp recombinase system, as
- previously described (29). Overnight cultures were grown at 37 °C in lysogeny broth
- 357 (LB) medium supplemented with 10 mM MgSO₄ to prevent *mlaA** lysis and diluted into
- unsupplemented LB for subsequent experiments. When necessary, media were

supplemented with 25 μ g/mL kanamycin or 25 μ g/mL tetracycline.

360

361 **TraDIS sample preparation**

Transposon mutant libraries were constructed using the EZ-Tn5<KAN-2>TnP 362 Transposome Kit (Epicentre) according to the manufacturer's instructions. When 363 preparing electrocompetent cells, overnight cultures were grown in LB supplemented 364 with 5 mM MgSO₄ to prevent lysis of *mlaA*^{*} and then subcultured in 2xYT medium. 365 366 Following electroporation, cells were plated on LB+25 µg/mL kanamycin plates supplemented with 5 mM MgSO₄. Approximately 300,000 and 150,000 colonies were 367 pooled to construct the *mlaA*^{*} and Δ *mlaA* libraries, respectively. Genomic DNA was 368 369 extracted from samples of 2×10⁹ cells after lysis using the DNeasy Blood and Tissue Kit

370 (Ç	(iagen) a	according to	o the	manufacturer'	's instruc	ctions.	Libraries	were p	prepa	ared
--------	-----------	--------------	-------	---------------	------------	---------	-----------	--------	-------	------

- according to the TraDIS method (30) and sequenced on Illumina HiSeq 2500 Rapid
- flowcells as single-end, 75-nucleotide reads.
- 373

374 TraDIS data analysis

- Sequencing reads were mapped to the *E. coli* K12 genome using BWA v. 1.2.3. Mapped
- reads were quantified using htseq-count v. 0.6.0. The Integrative Genomics Viewer was
- 377 used to visualize the mapped reads.

378

379 Lysis curves

To generate spent medium, wild-type (MC4100) cultures were grown for 24 h in LB at

 $37 \,^{\circ}$ C, cells were pelleted, and the supernatant was filter-sterilized using a 0.2- μ m filter.

382 All experiments were conducted using wild-type spent medium. To assay the rate of

- 383 lysis, cultures were grown until OD₆₀₀~0.8, pelleted, and resuspended in spent medium.
- 384 Cultures were then incubated at 37 °C and OD₆₀₀ was measured at 15-min intervals.

385

386 Immunoblot analyses

387 The equivalent of 1 mL of culture at OD₆₀₀~1 was taken from overnight cultures,

388 pelleted, and resuspended in LDS sample buffer (Invitrogen). Samples were boiled for

10 min and allowed to cool. Samples were loaded on 4-12% SDS/polyacrylamide gel

390	electrophoresis (PAGE) gels and run at 100 V. LPS was then transferred to nitrocellulose
391	membranes and blocked in 5% non-fat dried milk for 1 h at room temperature.
392	Membranes were then incubated overnight at 4 $^\circ C$ with anti-LPS antibody (1:400,000;
393	Hycult Biotech) in milk. Membranes were washed and incubated with secondary
394	antibody for 1 h at room temperature (1:20,000; Goat Anti-Mouse IgG (H+L)-HRP
395	Conjugate; Bio-Rad).
396	
397	Efficiency of plating assay
398	Cultures were grown overnight in LB + 10 mM MgSO_4 , standardized by OD, and
399	serially diluted. Dilutions were then transferred to plates using a 96-well-plate replica
400	plater and incubated overnight at 37 °C.
401	
402	Single-cell imaging
403	Cells were imaged on a Nikon Eclipse Ti-E inverted fluorescence microscope with a
404	100X (NA 1.40) oil-immersion objective (Nikon Instruments). Images were collected on
405	a DU885 electron-multiplying charged couple device camera (Andor Technology) or a
406	Neo sCMOS camera (Andor Technology) using μ Manager version 1.4
407	(http://www.micro-manager.org) (31). Cells were maintained at 37 °C during imaging
408	with an active-control environmental chamber (HaisonTech).
409	

410	For experiments conducted on agarose pads, 1 μL of cells was spotted onto a pad of 1%
411	agarose in fresh LB or spent medium. For transition experiments, exponentially
412	growing cells were washed three times in spent medium before spotting. Flow-cell
413	experiments were performed in ONIX B04A microfluidic chips (CellASIC) and medium
414	was exchanged using the ONIX microfluidic platform (CellASIC).
415	
416	Imaging in microfluidic devices
417	Overnight cultures were diluted 100-fold into 1 mL of fresh LB and incubated for 2 h
418	with shaking at 37 °C. B04A plates were loaded with medium and pre-warmed to 37 °C.
419	Cells were loaded into the plate, which was incubated at 37 $^{\circ}$ C, without shaking for 30
420	min before imaging. As necessary, the cell envelope was stained with wheat germ
421	agglutinin-AlexaFluor488 (WGA-AF488, Life Technologies), which was added to the
422	loading well to a final concentration of 10 μ g/mL prior to loading cells into the imaging
423	chamber. The osmolarity of the growth medium was modulated with sorbitol (Sigma).
424	
425	During plasmolysis/lysis experiments to quantify the effect of <i>yhdP</i> deletion on cell
426	stiffness, cells were allowed to grow for 5 min in medium in the imaging chamber
427	before being plasmolyzed with LB + 3 M sorbitol and exposed to LB + 3 M sorbitol + 10
428	mM EDTA 5 min later.

430 Image analysis

431	Time-lapse images were first segmented with the software <i>DeepCell</i> (32), and the
432	resulting segmented images were analyzed using <i>Morphometrics</i> (33) to obtain cell
433	contours at sub-pixel resolution. Static images were directly segmented using
434	Morphometrics (33). Cell width and length were calculated using the MicrobeTracker
435	meshing algorithm (34).
436	
437	Quantification of spheroplast viability and growth
438	Overnight cultures of the appropriate strains were diluted 1:100 into LFLB (LB
439	supplemented with 3.6% sucrose and 10 mM MgSO ₄). Cultures were incubated at 37 $^\circ$ C
440	for 1 h, normalized to $OD_{600} \sim 0.08$, at which point cefsulodin was added to a final
441	concentration of 60 μ g/mL. Cells were further incubated for 12 h with shaking at 30 °C.
442	Ten microliters of serial ten-fold dilutions were plated on LFLB plates. Plates were
443	incubated at 30 °C for 24 h, and colony-forming units were counted manually.

444 Acknowledgements

- 445 The authors thank the Huang and Silhavy labs for helpful suggestions and the
- 446 Genomics Core Facility of Princeton University for next-generation sequencing
- 447 experiments. This research was supported by the National Institute of General Medical
- 448 Sciences of the National Institutes of Health under grants 5R35GM118024 (to T.J.S.) and
- 449 T32-GM007388 (to J.G.). The authors acknowledge partial support from NIH Grant R01
- 450 GM082938 (N.S.W.) and support from a James McDonnell Postdoctoral Fellowship (to
- 451 H.S.). K.C.H. is a Chan Zuckerberg Biohub Investigator.

452 Figure Legends

453

455 **Figure 1: Deletion of** *yhdP* **slows the rate of** *mlaA** **lysis**.

459	B)	Cell length of the cell in (A) initially decreased, then rapidly snapped back to
460		approximately the initial size at the time of transition to spent medium, and
461		finally decreased due to leakage.
462	C)	During the initial 20 min in spent medium, the IM length shrank ~1% per minute.
463		Each dot represents a single cell (total $n = 677$ cells), and the bar represents mean
464		± standard deviation (S.D.).
465	D)	Schematic of TraDIS selection. Libraries were grown into late exponential phase
466		and transitioned to spent medium for 2 hours to induce lysis. The resulting
467		library was subsequently sequenced for enrichment of mutants.
468	E)	Cultures were grown to late exponential phase (OD $_{600}$ ~0.8), spun down, and
469		resuspended in spent medium to induce lysis. OD600 was measured to determine
470		rate of lysis. Deletion of <i>yhdP</i> slowed down <i>mlaA</i> *-mediated lysis. Data points are
471		mean \pm S.D. with $n = 3$ replicates.
472	F)	Overnight cultures were normalized by OD600 and assayed for LPS abundance by
473		immunoblotting. Left: immunoblotting gel image. Right: quantification of LPS
474		abundances. Data points are mean \pm S.D. with <i>n</i> = 2 biological replicates. Deletion
475		of <i>yhdP</i> did not affect LPS levels either alone or in combination with <i>mlaA</i> *.

Figure 2: Deletion of *yhdP* slows shrinking of the IM during transition to spent
medium.

479	A)	$mlaA^*$ and $mlaA^* \Delta yhdP$ cells were separately incubated in a microfluidic flow cell
480		and transitioned from fresh LB to spent medium to induce cell death. Consistent
481		with bulk measurements, deletion of <i>yhdP</i> slowed down cell death. Data points
482		are mean \pm S.D. with $n = 3$ replicates of at least 50 cells in each experiment.
483	B)	Representative single-cell traces after switching to spent medium.
484	C)	Deletion of <i>yhdP</i> reduced total shrinkage in <i>mlaA</i> [*] cells by ~50% ($p < 10^{-10}$, $n > 100$
485		cells, two-tailed Student's <i>t</i> -test).
486	D)	During the "popping" immediately preceding lysis, $mlaA^*$ and $mlaA^* \Delta yhdP$ cells
487		returned to approximately their initial length prior to the transition to spent
488		medium (compare length expansion to the shrinkage in (C); <i>mlaA</i> * cells exhibited

489	more expansion	than <i>mlaA</i> *	⁺ ∆yhdP	cells, p	$< 10^{-10}, n >$	100 cells,	two-tailed
-----	----------------	--------------------	--------------------	----------	-------------------	------------	------------

- 490 Student's *t*-test).
- 491 E) Deletion of *yhdP* slowed down the shrinkage rate of *mlaA** cells ($p < 10^{-10}$, n > 100
- 492 cells, two-tailed Student's *t*-test).
- 493 In (C-E), each dot represents a single cell, and the bar plots represent mean \pm S.D.

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.213157; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

495 Figure 3: Cyclic ECA is not responsible for suppression of death by $\Delta yhdP$.

496	A)	Cells were incubated in a microfluidic flow cell and transitioned from fresh LB to
497		spent medium to induce cell death. Deletion of the ECA biosynthesis gene $wzzE$
498		did not restore <i>mlaA</i> *-like lysis dynamics to <i>mlaA</i> * Δ <i>yhdP</i> . <i>mlaA</i> * Δ <i>yhdP</i> Δ <i>wzzE</i>
499		cells exhibited distinct and slower death dynamics compared to <i>mlaA</i> * cells,
500		while deletion of $wzzE$ from $mlaA^*$ slightly accelerated cell death. Data points are
501		mean \pm S.D. with <i>n</i> = 3 replicates.
502	B)	Deletion of <i>wzzE</i> did not alter the shrinkage rate of <i>mlaA</i> [*] Δ <i>yhdP</i> cells (<i>n</i> > 100
503		cells) and only slightly reduced the rate in <i>mlaA</i> * cells, indicating that the effect of
504		YhdP on lysis is cyclic ECA-independent. Each dot represents a single cell ($n >$
505		100 cells for each strain), and the bar plots represent mean \pm S.D. <i>p</i> -values are
506		from two-tailed Student's t-tests.

507

508 Figure 4: Deletion of *yhdP* chemically and mechanically disrupts the OM.

510 LB + 20 μ g/mL vancomycin, and LB + 0.5% SDS/0.5 mM EDTA. *mlaA** and Δ *yhdP*

511 have a synthetic permeability defect with vancomycin, and neither *mlaA** nor

516	fluorescently labeled cell wall was tracked. Sorbitol treatment relieved turgor
517	pressure and reduced cell-wall length. EDTA treatment disrupted the OM and
518	led to a further decrease in cell length. In both conditions, $\Delta yhdP$ cells shrank
519	more compared to wild-type cells.
520	C,D) Length contraction upon sorbitol (C) and EDTA (D) treatment for cells in (B). In
521	both conditions, $\Delta yhdP$ cells shrank more than wildtype, indicating a
522	mechanically weakened OM. Individual dots are data from single cells (<i>n</i> >50 for
523	each strain), and bar plots represent mean \pm S.D. p values are from a two-tailed
524	Student's <i>t</i> -test.
525	E) Spheroplasts were generated overnight in the presence of cefsulodin, and then
526	washed and plated on fresh media. Both $mlaA^*$ and $\Delta yhdP$ exhibited a
527	mechanically weakened OM and reduced spheroplast survival rates. Deletion of
528	<i>wzzE</i> partially rescued the mechanical defect in <i>mlaA</i> * Δ <i>yhdP</i> cells. Dots represent
529	biological replicates ($n>3$ replicates for each strain), and the bar plots are mean ±
530	S.D. <i>p</i> values are from one-tailed Student's <i>t</i> -test.

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.213157; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

531

Figure 5: Deletion of *yhdP* **from** *mlaA** **cells causes the OM to rupture before the IM**

533 **in spent medium**.

534	A) Death trajectory of <i>mlaA</i> * cells on an agarose pad with spent medium. Cells were
535	labelled with periplasmic mCherry and cytoplasmic GFP. During shrinkage, PLs
536	flowed from the IM to the OM, causing the IM to shrink away from the cell wall

537		and OM. As a result, periplasmic mCherry was enriched at one cell pole (white
538		arrow). At the time of "popping," both fluorescence signals were lost in the same
539		frame. Scale bar is 1 μm.
540	B)	During the transition to spent medium, mCherry and GFP signals were lost
541		simultaneously in all $mlaA^*$ cells ($n=27$). Dots represent single cells, and black line
542		is $x = y$. The dots are slightly jittered to visualize overlapping data.
543	C)	Death trajectory of $mlaA^* \Delta yhdP$ cells on an agarose pad with spent medium.
544		Cells were labelled with periplasmic mCherry and cytoplasmic YFP. During the
545		period of shrinkage (52-87 min), the IM did not shrink away from cell wall and
546		OM, as shown by the uniform mCherry signal around the cell periphery. The cell
547		also lost its periplasmic mCherry signal tens of minutes before losing
548		cytoplasmic YFP signal, suggesting that the OM ruptured before the IM. Scale
549		bar is 1 μm.
550	D)	During the transition to spent medium, the mCherry signal was lost at least 2
551		min before the YFP signal in <i>n</i> =74 (out of 110) <i>mlaA</i> * Δ <i>yhdP</i> cells, indicating that
552		deletion of <i>yhdP</i> leads to rupture of the OM before the IM. In all other cells both
553		signals were lost simultaneously. Dots represent single cells, and black line is $x =$
554		y. The dots are slightly jittered to visualize overlapping data.
555	E)	Model of $\Delta yhdP$ -mediated death. The <i>mlaA</i> [*] mutation leads to membrane loss via
556		OM vesicles and disrupts PL homeostasis during the transition into stationary

557	phase. In the <i>mlaA</i> * background (top), PLs flow from the IM to the OM to
558	replenish the membrane loss, causing the IM to shrink away from OM, and
559	eventually leading to cell death through IM rupture. By contrast, in $mlaA^* \Delta yhdP$
560	cells (bottom), deletion of <i>yhdP</i> suppresses PL flow, leading to further weakening
561	of an already compromised OM that ruptures before the IM.
562	

563 Tables

564

Table 1: Percentage of reads in the *mlaA** **library mapping to suppressor genes**

566 following three successive overnight incubations in spent medium.

Gene name	% of total reads,	% of total reads,	% of total reads,
	incubation 1	incubation 2	incubation 3
mlaA	48.1	84.1	86.0
pldA	14.7	9.8	10.3
lptC	8.6	0.9	0
dsbA	4.5	0	0
yaiP	1.3	2.7	1.7
acs	0.7	0	0
fadE	0.6	0	0
secA	0.5	0	0
asmA	0.3	0	0
yejM	0.2	0	0

Genomic DNA was extracted from the *mlaA** library following overnight incubation,
which induces lysis, and transposon junctions were sequenced. Reads were mapped to
the *E. coli* MC4100 genome and open reading frames were quantified to identify which
gene disruptions were enriched after each incubation and hence were potential

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.213157; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- suppressors. The two known strongest suppressors of *mlaA**, *mlaA* and *pldA*, quickly
- 572 predominated in the culture.

573 Table 2: Number of reads in the $mlaA^*$ and $\Delta mlaA$ libraries mapping to various

Gene name	# of reads - <i>mlaA</i> *	# of reads – $\Delta m laA$	$\log_2(mlaA^*/\Delta mlaA)$
yhdP	2,512,727	49,893	5.7
cyaA	1,153,018	83,061	3.8
mlaA	680,035	N/A	N/A
cysG	348,756	13,056	4.7
rbsD	215,556	13,903	4.0
sdhA	139,279	16,305	3.1
rssB	138,738	3885	5.2

574 genes after a two-hour incubation in spent medium.

575 Genomic DNA was extracted from the $mlaA^*$ and $\Delta mlaA$ libraries following 2 h of

576 incubation in spent medium, and transposon junctions were sequenced. Reads were

577 mapped to the *E. coli* MC4100 genome and open reading frames were quantified. The

578 most abundant gene disruption in the $mlaA^*$ library was yhdP.

579 Supplementary Tables

580

581 Table S1: Strains used in this study.

Escherichia coli K-12	Genotype and relevant	Reference
strains	features	
MC4100	F-araD139 (argF-lac)U169	(35)
	rpsL150 relA1 flb5301 deoC1	
	ptsF25 thi	
HC735	MC4100 ara+ $\Delta y f dI$	(10, 36)
HC687	MC4100 ara+ $\Delta y f dI m la A^*$	(10, 27)
НС736	MC4100 ara+ $\Delta y f dI \Delta m la A$	(10, 27, 37)
JG153	MC4100 ara+ $\Delta y f dI$	(10, 27) and this study
	∆yhdP::kan	
JG152	MC4100 ara+ $\Delta y f dI m la A^*$	(10, 27) and this study
	∆yhdP::kan	
JG174	MC4100 ara+ $\Delta y f dI$	This study
	intS::tn10	
JG178	MC4100 ara+ $\Delta y f dI m la A^*$	This study
	intS::tn10	

JG176	MC4100 ara+ $\Delta y f dI m la A^*$	(27, 37) and this study
	intS::tn10 ∆yhdP	
JG179	MC4100 ara+ $\Delta y f dI m la A^*$	(27, 37) and this study
	intS::tn10 ∆yhdP	
	$\Delta wzzE::kan$	
JG197	MC4100 ara+ $\Delta y f dI m la A^*$	(27, 37) and this study
	intS::tn10	
KC637	HC687 pMT37-sulA	(10)
KC626	HC687 attHK:Plac-mCherry	(10)
	pZS21-GFP	
KC1307	JG153 attHK:Plac-mCherry	(10) and this study
	Plac-YFP	

583 **References**

584	1.	H. Nikaido, Outer membrane of Salmonella typhimurium: transmembrane
585		diffusion of some hydrophobic substances. BBA-Biomembranes 433, 118-132
586		(1976).
587	2.	H. Nikaido, Molecular basis of bacterial outer membrane permeability revisited.
588		Microbiol. Mol. Biol. Rev. 67, 593-656 (2003).
589	3.	A. Kovacs-Simon, R. Titball, S. L. Michell, Lipoproteins of bacterial pathogens.
590		Infect. Immun. 79 , 548-561 (2011).
591	4.	S. Okuda, E. Freinkman, D. Kahne, Cytoplasmic ATP hydrolysis powers
592		transport of lipopolysaccharide across the periplasm in <i>E. coli. Science</i> 338 , 1214-
593		1217 (2012).
594	5.	S. Okuda, D. J. Sherman, T. J. Silhavy, N. Ruiz, D. Kahne, Lipopolysaccharide
595		transport and assembly at the outer membrane: The PEZ model. Nat. Rev.
596		Microbiol. 14, 337-349 (2016).
597	6.	A. Konovalova, T. J. Silhavy, Outer membrane lipoprotein biogenesis: Lol is not
598		the end. <i>Philos. T. R. Soc. B</i> 370 , 20150030 (2015).
599	7.	N. W. Rigel, T. J. Silhavy, Making a beta-barrel: Assembly of outer membrane
600		proteins in Gram-negative bacteria. Curr. Opin. Microbiol. 15, 189-193 (2012).
601	8.	N. C. Jones, M. J. Osborn, Translocation of phospholipids between the outer and
602		inner membranes of Salmonella typhimurium. J. Biol. Chem. 252, 7405-7412 (1977).

603	9.	J. C. Malinverni, T. J. Silhavy, An ABC transport system that maintains lipid
604		asymmetry in the Gram-negative outer membrane. Proc. Natl. Acad. Sci. U.S.A.
605		106 , 8009-8014 (2009).
606	10.	H. A. Sutterlin et al., Disruption of lipid homeostasis in the Gram-negative cell
607		envelope activates a novel cell death pathway. Proc. Natl. Acad. Sci. U.S.A. 113,
608		E1565-E1574 (2016).
609	11.	J. Abellón-Ruiz et al., Structural basis for maintenance of bacterial outer
610		membrane lipid asymmetry. Nat. Microbiol. 2, 1616-1623 (2017).
611	12.	K. L. May, T. J. Silhavy, The Escherichia coli phospholipase PldA regulates outer
612		membrane homeostasis via lipid signaling. <i>mBio</i> 9 (2018).
613	13.	A. M. Mitchell, W. Wang, T. J. Silhavy, Novel RpoS-dependent mechanisms
614		strengthen the envelope permeability barrier during stationary phase. J. Bacteriol.
615		199 (2017).
616	14.	E. Bi, J. Lutkenhaus, Cell division inhibitors SulA and MinCD prevent formation
617		of the FtsZ ring. J. Bacteriol. 175, 1118-1125 (1993).
618	15.	A. M. Mitchell, T. Srikumar, T. J. Silhavy, Cyclic enterobacterial common antigen
619		maintains the outer membrane permeability barrier of Escherichia coli in a manner
620		controlled by YhdP. <i>mBio</i> 9 (2018).
621	16.	E. R. Rojas <i>et al.</i> , The outer membrane is an essential load-bearing element in
622		Gram-negative bacteria. Nature 559, 617-621 (2018).

623	17.	L. Leive, V. K. Shovlin, S. E. Mergenhagen, Physical, chemical, and
624		immunological properties of lipopolysaccharide released from Escherichia coli by
625		ethylenediaminetetraacetate. J. Biol. Chem. 243, 6384-6391 (1968).
626	18.	N. A. Amro et al., High-resolution atomic force microscopy studies of the
627		<i>Escherichia coli</i> outer membrane: structural basis for permeability. <i>Langmuir</i> 16 ,
628		2789-2796 (2000).
629	19.	M. Bayer, Areas of adhesion between wall and membrane of Escherichia coli.
630		Microbiology 53 , 395-404 (1968).
631	20.	E. Kellenberger, The 'Bayer bridges' confronted with results from improved
632		electron microscopy methods. Mol. Microbiol. 4, 697-705 (1990).
633	21.	N. C. Jones, M. J. Osborn, Interaction of Salmonella typhimurium with
634		phospholipid vesicles. Incorporation of exogenous lipids into intact cells. J. Biol.
635		Chem. 252 , 7398-7404 (1977).
636	22.	T. P. Levine, Remote homology searches identify bacterial homologues of
637		eukaryotic lipid transfer proteins, including Chorein-N domains in TamB and
638		AsmA and Mdm31p. BMC Mol Cell Biol 20, 43 (2019).
639	23.	N. Kumar et al., VPS13A and VPS13C are lipid transport proteins differentially
640		localized at ER contact sites. J. Cell Biol. 217, 3625-3639 (2018).

641	24.	P. Li, J. A. Lees, C. P. Lusk, K. M. Reinisch, Cryo-EM reconstruction of a VPS13
642		fragment reveals a long groove to channel lipids between membranes. J. Cell Biol.
643		219 (2020).
644	25.	I. Josts et al., The Structure of a Conserved Domain of TamB Reveals a
645		Hydrophobic β Taco Fold. <i>Structure</i> 25 , 1898-1906 (2017).
646	26.	J. A. Lees, K. M. Reinisch, Inter-organelle lipid transfer: a channel model for
647		Vps13 and chorein-N motif proteins. Curr. Opin. Cell Biol. 65, 66-71 (2020).
648	27.	T. Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout
649		mutants: The Keio collection. Mol. Syst. Biol. 2, 2006-0008 (2006).
650	28.	T. J. Silhavy, M. L. Berman, L. W. Enquist, Experiments with gene fusions (Cold
651		Spring Harbor Laboratory, 1984).
652	29.	K. A. Datsenko, B. L. Wanner, One-step inactivation of chromosomal genes in
653		Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97, 6640-
654		6645 (2000).
655	30.	G. C. Langridge et al., Simultaneous assay of every Salmonella Typhi gene using
656		one million transposon mutants. Genome Res. 19, 2308-2316 (2009).
657	31.	A. Edelstein, N. Amodaj, K. Hoover, R. Vale, N. Stuurman, Computer control of
658		microscopes using µManager. Curr. Protoc. Mol. Biol. 92, 14-20 (2010).
659	32.	D. A. Van Valen et al., Deep learning automates the quantitative analysis of
660		individual cells in live-cell imaging experiments. PLoS Comp. Biol. 12 (2016).

661	33.	T. Ursell et al., Rapid, precise quantification of bacterial cellular dimensions
662		across a genomic-scale knockout library. BMC Biol. 15, 17 (2017).
663	34.	O. Sliusarenko, J. Heinritz, T. Emonet, C. Jacobs-Wagner, High-throughput,
664		subpixel precision analysis of bacterial morphogenesis and intracellular spatio-
665		temporal dynamics. Mol. Microbiol. 80, 612-627 (2011).
666	35.	M. J. Casadaban, Transposition and fusion of the <i>lac</i> genes to selected promoters
667		in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104, 541-555
668		(1976).
669	36.	N. Ruiz, L. S. Gronenberg, D. Kahne, T. J. Silhavy, Identification of two inner-
670		membrane proteins required for the transport of lipopolysaccharide to the outer
671		membrane of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 105, 5537-5542 (2008).
672	37.	P. P. Cherepanov, W. Wackernagel, Gene disruption in Escherichia coli: TcR and
673		KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-
674		resistance determinant. <i>Gene</i> 158 , 9-14 (1995).

