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Abstract

Animals learn tasks requiring a sequence of actions over time. Waiting a given time before taking an 
action is a simple example.   Mimicry is a complex example—e.g. in humans, humming a brief tune you 
have just heard. Re-experiencing a sensory pattern mentally must involve reproducing a sequence of 
neural activities over time.  In mammals, neurons in prefrontal cortex have time-dependent firing rates 
that vary smoothly and slowly in a stereotyped fashion.  We show through modeling that a ‘Many are 
Equal’ computation can use such slowly-varying activities to identify each timepoint in a sequence by 
the population pattern of activity at the timepoint. The MAE operation implemented here is facilitated by 
a common inhibitory conductivity due to a theta rhythm.  Sequences of analog values of discrete 
events, exemplified by a brief tune having notes of different durations and intensities, can be learned in 
a single trial through STDP.  An action sequence can be ‘played back’ sped up, slowed down, or 
reversed by modulating the system that generates the slowly changing stereotyped activities.  Synaptic 
adaptation and cellular post-hyperpolarization rebound contribute to robustness.  An ability to mimic a 
sequence only seconds after observing it requires the STDP to be effective within seconds.

Introduction 

An understanding of the passage of time is displayed in many short term phenomena at the 
psychological level.   Trained to remember the time interval between a tone onset and reward 
availability, a rat can do so with an accuracy of ~25% (Catania, 1970; Roberts, 1981). Given a single 
instance of an irregularly spaced set of five clicks spread over two seconds, a person can tap out the 
pattern with good fidelity.   Any musician can hear a single instance of a brief melody and replay it with 
fidelity.  All of us experience this short-term ‘tape recorder in the head’ phenomenon in which we hear 
somebody to speak, briefly remembering not just the recent phrase, but also the tone and voice in 
which it was said.

Extracellular recordings in rats and monkeys doing tasks involving time intervals lasting seconds have 
revealed neurons that have rates of action potential firing that change slowly during the time interval  
(Brody et al., 2003; Kojima and Goldman-Rakic, 1982; Komura et al., 2001; Mita et al., 2009). An 
example, taken from prefrontal cortex of monkeys, is shown in Fig. 1a. Each neuron has a different but 
stereotyped activity pattern. The time since the onset of the trial can be decoded from the pattern of 
activities across neurons in prefrontal cortex, a large fraction of which are active at any particular time. 
The situation may be contrasted with the representation of time that has been found in area HVC of 
songbirds   (Hahnloser et al., 2002). During singing, individual HVC cells fire a short burst of action 
potentials at a single timepoint during a syllable, thus explicitly encoding that timepoint in a labeled-line 
code. That is, in songbirds, asking “what time is it now?” can be easily answered by asking “which cell 
is firing now?” In contrast, when a substantial fraction of cells are firing, as in the mammalian prefrontal 
cortex example, it is the activity pattern over the population of cells with time-dependent cell firing 
rates that encodes the timepoint. If this slowly-changing, distributed coding is the fundamental 
representation of time in mammals, how can times of events be encoded, learned, and decoded in 
order to generate sequences? The encoding and learning must be flexible enough to recapitulate a 
sequence of events and intensities.

Higher animals have the capacity to reproduce a sequence of observed actions, as in mimicry. The 
ability to regenerate, in some appropriate part of the brain, the same spatiotemporal pattern of neural 
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activity as was produced by the initial stimulus after an observation of the pattern, is a plausible neural 
basis for mimicry. Often, only a single observation of the sequence is required in order to regenerate it.  
We show that spike timing dependent plasticity of an appropriate form can result in single trial learning 
of such sequences 

In this paper we describe a cell and circuit model which reproduces this class of phenomena.  The 
approach is appropriate for both sequences of multiple time intervals and for single time intervals 
(Matell and Meck 2004; Meck, 2005; Mauk and Buonomano, 2004) that involve only knowing that a 
given amount of time (since a starting point) has elapsed.

The problem is more complex for a prefrontal-like distributed representation of time than they are for 
HVC-like labeled-line timecodes. Our focus here is on the distributed system.  We show that a common 
rhythm to an array of cells whose overall firing rates are like those shown in Fig. 1, combined with 
synapse spike-timing-dependent plasticity, provides a solution to these computational problems of 
sequence production and learning.  We will construct a neural system that embodies a map of 
(timepoints)-->(internal recapitulation or motor acts). The central idea is that any particular time can 
be recognized by its pattern of activation across a set of neuronal activities by an implementation of the 
Many Are Equal (MAE) algorithm   (Hopfield and Brody, 2001; Hopfield and Brody, 2000), made possible 
by the spike timing effects of a common rhythm  (Brody and Hopfield, 2003).

Although the basic idea requires only very simple neurons and synapses, synaptic and cellular 
adaptation are useful in achieving operation across a range of conditions.  Unlike some schemes for 
learning analog quantities such as intensities (Brozović et al., 2007; Zipser and Andersen, 1988). the 
encoding of the learned analog variables is not encoded in synaptic strengths per se, but rather in the 
selection of which connections to be made.  Synapse modification is thus a yes-no question, not a how-
much question, and this fact permits rapid learning of analog values.

In previous modeling work, we have implemented MAE by three different means, namely using a 
common gamma oscillation (~40 Hz) as input to a group of neurons   (Brody and Hopfield, 2003); 
similarly using a noisy gamma oscillation   (Markowitz et al., 2008); or through direct synaptic 
connections   (Hopfield and Brody, 2001). We introduce here a fourth implementation of MAE using a 
common theta rhythm (~8 Hz) and conductance-based inhibition. This method is appropriate if focusing 
on slower dynamics (unlike   (Hopfield and Brody, 2001; Markowitz et al., 2008)) and permits the 
learning of intensity-dependent information (unlike the intensity-independent representation sought in   
(Brody and Hopfield, 2003)).

The network to be simulated and simulation results are described in the bulk of the paper.  The 
concluding section sets the results and meaning of these simulations in the experimental context of 
animal systems and behaviors, and expected concomitants at the neuronal level.

Results

The model's conceptual framework

Time-dependent activity of the type shown in Fig. 1a can be used as an implicit code for elapsed time. 
Different neurons are found to have very different, but highly reproducible, temporal signatures   
(Brody et al., 2003). This allows identifying specific timepoints by identifying a specific set of neurons 
whose firing rates are all similar at the desired timepoint. The confluence of the firing rates of those 
neurons is then the signature of that timepoint (Fig. 1b, colored circles). Furthermore, at any given 
timepoint we can choose confluences at different firing rates to indicate different possible intensities 
(Fig. 1b, blue and green circles). In previous modeling work, we have called detection of such 
confluences, that is, firing rate similarity across a pool of neurons, a “Many Are Equals” computation. 
We have also shown how this computation can be implemented neurally: a shared oscillation can be 
used to induce spike synchrony across the chosen pool of neurons when and only when their firing rates 
are similar   (Hopfield and Brody, 2001).  It is useful to think of the problem of representing the motor 
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acts necessary to play a simple melody, 
representing a sequence of notes at appropriate 
times and intensities.

Fig. 1d shows the overall architecture of the model 
we shall develop here. Prefrontal-like neurons, 
encoding time through slowly varying firing rates 
and called here "P" neurons, excite a set of 
neurons that we call the "S" neurons. The S 
neurons also receive input from a common signal 
that serves to synchronize the spike times of those 
S neurons that have similar input currents. A 
different set of neurons, the γ neurons, explicitly 
represent, in one-to-one fashion, the set of 
possible notes to be played (or, more generally, the 
set of motor acts to be carried out). A given note 
at a given time is then represented by creating 
connections from those S neurons that have 
confluent inputs at the chosen time to the γ neuron 
that corresponds to the chosen note. The intensity 
of the note to be played is encoded by the firing 
rate at which the confluence of the selected S 
neurons occurs.

How are the stereotyped P neuron activities 
generated? There are many neurally plausible 
answers to this question, and for the purposes of 
this paper it does not much matter which is used.  
One convenient possibility, used in the simulations 
here, is to have a network of neurons whose state 
of activity moves slowly along a collective 
coordinate, and which controls in a coordinated 
fashion the activities of all the P neurons (see 
Methods). This results in approximately Gaussian-
shaped, slowly changing patterns of activity, as 
shown in Fig. 1b.  

When time intervals involved in a known behavioral 
task are sped up or slowed down, it has been 
observed experimentally that firing patterns of the 
type of Fig. 1a are correspondingly compressed or 
stretched in time   (Brody et al., 2003; Komura et 
al., 2001) Here, speed of P neuron replay 
corresponds to the speed of motion along their 
collective coordinate. If this is fast (slow), the 
event map is read out rapidly (slowly), and the 
internal ‘melody’ is played rapidly (slowly). Rapid 
replay of sequences previously observed through 
experience, or reverse replay, as in  (Lee and 
Wilson, 2002; Foster and Wilson, 2006; Diba and 
Buzsáki, 2007), can thus be obtained simply by 
increasing the speed of motion along the collective 
coordinate of the slowly varying firing rates (Fig. 
1c), or by reversing its direction of motion.  

A cornerstone of the above model architecture is 
the detection of confluences, the "Many Are 
Equals" (MAE) computation.  Given a set of variables 

Figure 1. Firing rates that reliably change on a 
timescale of seconds to tens of seconds can be used to 
represent temporal intervals. a) An example of slow 
time signatures in the firing rates of 3 different 
neurons, recorded from prefrontal cortex of monkeys 
performing a sequential discrimination task. Data for 
this figure was kindly provided by R. Romo. All data in 
this panel is from identically prepared trials, recorded 
from a single monkey. Each neuron’s firing rate is 
shown in a different color. The solid line represents the 
average of 20 trials; shading indicates the standard 
error of this average. Time signatures can be seen to 
be reliable, and very different across different neurons. 
b) The slowly changing firing rates used in the current 
modeling study. Each black line represents a different 
neuron. Neurons are drawn from a standard model of 
a slowly moving “bump” attractor   (Wang, 2001). Any 
given timepoint can be identified by choosing a set of 
neurons whose firing rates are all similar at that time 
point (colored circles), a “Many Are Equals” 
computation   (Hopfield and Brody, 2001). In addition, 
at any given time point different intensities can be 
identified by choosing different sets of confluences 
(e.g. green and blue circles). c) Connectivity between 
different components of the model used here. Neurons  
with slowly changing firing rates and a common noisy 
oscillation both impinge on a set of neurons, labeled S. 
Synchronous action potentials in a group of S neurons 
indicates that the input drives to this group are all 
similar, which is the signature of a particular timepoint. 
Integrate-and-fire neurons with a high firing threshold, 
acting as coincidence detectors, report the output of 
this “Many Are Equals” computation (γ neurons). In 
addition, if the γ neurons are driven by sensory inputs 
at the appropriate time, a spike-timing-dependent 
learning rule can be used to learn the S-to-γ 
connections. d) The speed of the spatiotemporal 
sequence playback can be accelerated or decelerated 
simply by changing the speed of the slowly moving 
bump attractor.  A 1.5x speedup is illustrated.
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Pk, the MAE algorithm answers the question of whether a substantial subset (the “Many”) of the Pk are 
approximately equal.   The algorithm is significant to neurobiology because it can be readily 
implemented by spiking neurons when the variables Pk are the input currents to a set of neurons.  
Synchronization of the neurons having equal values of input currents can occur through a variety of 
mechanisms: when the neurons are synaptically interconnected   (Hopfield and Brody, 2001), or when 
there is a common periodic gamma oscillatory input to the set of neurons   (Brody and Hopfield, 2003), 
or when there is a common noisy gamma oscillatory signal incident on the set   (Markowitz et al., 
2008).  This synchronization (and its absence when the Pk are not approximately equal) is the 
neurodynamic basis for the MAE operation.

Given the slowly-changing P neuron firing patterns, then, subsets of S neurons of Fig. 1d can use MAE 
to detect chosen timepoints through spike synchrony. 

Theta-based “many are equals” 

In this work, we have explored and implemented the 
MAE operation based on a common theta signal that 
activates an inhibitory conductance.  This mechanism 
turns out to achieve rapid synchronization over a 
wider range of firing rates than previously described 
MAE mechanisms when the inputs vary on a 
timescale of hundreds of milliseconds or slower. The 
capacity to encode intensity rapidly over a wide 
range is important for the type of temporal 
sequences that are the focus of this paper.  

Theta-based synchrony can be understood by first 
considering an extreme case in which an intuitive 
answer is exactly correct.   We examine a set of 
spiking leaky integrate-and-fire neurons, each 
receiving the same steady input current, and each 
with its own small membrane noise.  The membrane 
potential as a function of time for a set of 5 such 
neurons is shown in Fig. 2a.  The threshold for firing 
is at 10 mV, and when the membrane potential 
reaches that level, an action potential is generated 
and the membrane potential switches to the ‘reset’ 
level.  Prior to t = 1, the membrane potentials and 
action potentials of the different neurons are 
uncorrelated.  At t = 1, a strong brief inhibitory 
conductivity pulse (e.g for K+ or Cl- ions) is 
introduced to all neurons.  If this conductivity pulse is 
large enough, it will result (as in the figure) in the 
membrane potentials of all the neurons being driven 
to the Nernst potential for that ion, in this figure 
taken as     -0.002 V.  When this pulse ends at t = 
1.005, the neurons resume their firing.  However, 
because they now all have the same membrane 
potential, the trajectories of membrane potential for all the neurons will be very similar, and they will 
fire almost synchronously for a while until the noise in the system decorrelates them, a behavior clearly 
visible in the action potential bunching after t = 1 sec at the top of Fig 2a.

The time at which the first synchronous event occurs is determined by the time it takes the membrane 
potential to change from the Nernst potential at which it was briefly clamped to the firing threshold.  
This time depends on the steady excitatory current flowing into the cell, and is approximately 1/(firing 
rate) of the neuron.  Thus if the 5 neurons had very different excitatory input currents and intrinsic 

Figure 2  a) membrane potential (mV) vs time for 
5 spiking model neurons receiving the same input 
current.  Threshold for spike generation 10 mV, 
reset potential 0 mV.  Spikes are indicated above.  
At t=1,0, a large 5msec duration conductivity pulse 
occurs, briefly clamping the cell potential at the 
Nernst potential for an inhibitory ion, here taken as  
-2 mV. b) The same as a) except that three groups 
of 5 cells are shown, with different excitatory input 
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firing rates, the first action potentials upon release from inhibition would occur at very different times, 
and there would be no highly synchronous event near t = 1.05 sec.   Fig. 2b depicts the same kind of 
behavior, except now for 3 groups of 5 neurons.  Neurons within each group all receive the same 
excitatory current, but the excitatory currents for the different groups are different.  Synchrony within 
each group after the inhibitory pulse is evident, and because they have different excitatory currents, 
different groups synchronize at different times.  A single large inhibitory conductance pulse can thus 
implement the MAE operation, synchronizing groups of neurons where Many have approximately Equal 
driving currents. In addition, since the separation between the pulses of synchronized action potentials 
is the firing rate of the neurons due to their excitatory input currents, the separations between the 
synchronized action potential clumps of each color encode the input current level for the color.

Fig 2c shows that the basic phenomenon 
behaves similarly in a less idealized situation, 
when the inhibitory conductivity pulses are 
modest in size and have an extended time 
course like that which would occur at a GABAB 
synapse responding to an action potential  
(Levitan and Kaczmarek, 1996)  This figure is 
like Fig 2a except that there are three 
extended conductivity pulses occurring at a 
rate of 8 Hz, whose time dependence is shown 
at the bottom of Fig 2c.  The size of the peak 
potassium conductivity represented by these 
pulses corresponds to a reduction of the 
membrane time constant by 20% in these 
simulations.   Fig 2d corresponds to Fig 2b in 
showing the action potentials of three groups 
of five neurons synchronized by the 
conductivity pulses shown in Fig 2c.   Once 
again the action potentials of different neurons 
receiving the same excitatory current become 
approximately synchronized by the inhibitory 
conductivity pulses.  In this case, the 
synchronous pulses come in groups, and the 
separation between the action potential clumps 
within a group implicitly encodes the input 
current to the group. Thus the presence of 
synchronous events reports that many inputs 
are equal; and the frequency of the 
synchronous events reports the level at which 
the inputs are equal.

Playing a melody

Playing a melody involves producing notes of 
specific intensities at defined times. Let us 
take the specific example of playing a brief 
chord composed of three notes of duration 0.3 
sec, each at a different intensity, 1.5 s. after 
the beginning of the melody. We will assume 
that intensity corresponds to γ  neuron firing 
rate. In the theta-based MAE mechanism we 
have described above, a desired γ neuron 
firing rate corresponds to a particular input 
current level to the S neurons. In the 
examples below, we will use input current levels 
of 0.3, 0.45, and 0.6 to represent three different intensities. For each current level, a subset of 30 S 
neurons are identified, which all have very nearly the target input current at the chosen time (1.5 sec).  

Figure 3 a) Input currents around t=1.5 s for 30 selected S 
neurons. Each line corresponds to the input from one P 
neuron; only inputs that at t=1.5 are close to a current of 
0.3 (red), 0.45 (green), and 0.6 (blue) are shown. Finding 
neurons that have currents that are very similar to our 
targets at t=1.5, but diverge elsewhere, is possible thanks 
to the large diversity of S neurons available. b)  The 
membrane potentials of the three designed γ neurons that 
each receive synapses from one of the selected groups of S 
cells. In this panel, the γ neurons have been prevented 
from spiking so as to best illustrate the membrane 
potential.  c) The spikes from the three designed γ neurons 
using adapting synapses.
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The time dependencies of the input currents of these three sets of neurons is shown in Fig 3a.  Each of 
these sets of neurons is connected to its own recognition cell (γ neuron) by fast excitatory synapses.  
The recognition cells have been taken to have membrane time constants of 5 msec. For this particular 
example, we chose three simultaneous notes, but different times could equally well have been chosen 
for each note.

Fig. 3b shows the membrane potential of the recognition cells when spiking in these cells is suppressed.  
The y-axis units are arbitrary since they scale with the synaptic strength chosen. The S cells for each of 
the three γ cells become synchronized at approx 1.5 sec, due to the MAE mechanism, leading to a 
substantial set of high-magnitude peaks in the γ cells’ membrane potential near t = 1.5 sec.  For any of 
the three cells, a threshold can be chosen such that the γ cell fires chiefly during the desired interval.  
However, the threshold necessary to do this is different for the three cases: any single choice would 
lead to a longer duration for the higher-intensity note.  The differences are due to the fact that the 
precision of synchrony in the presence of noise depends on the size of the input current.  Because 
smaller input currents lead to larger time intervals or time delays, there is more time for the effects of 
noise to produce decorrelation.  In order to make a system that will work gracefully over a range of 
input currents, an adaptive mechanism is needed.  We have chosen to use synaptic adaptation, and to 
have a single non-adapting threshold level for all γ cells.

The effectiveness of many kinds of synapses is reduced by recent presynaptic neuronal firing (as for 
example by vesicle depletion), producing a firing-rate-dependent synaptic efficacy   (Tsodyks and 
Markram, 1997; Abbott et al., 1997). Such adaptation has been included in the modeling (see 
Methods).  With this inclusion, all excitatory synapses to γ cells have the same properties, all γ cells 
have the same properties, and the system functions well 
over a range of input currents.  

Figure 3c shows the spikes of the three γ cells, when 
synaptic adaptation is included is S to γ cell synapses, 
and the γ cells are allowed to spike. All three γ cells have 
the same membrane potential firing threshold. At 1.5 
sec., these cells all fire a multiplet after a theta-inhibitory 
event. The spike intervals in this multiplet encode the 
size of the analog current that was selected by each 
recognition cell.

The same ideas can be used to design the appropriate 
connections for a network that can recapitulate a 10 
element sequence having a mixture of event durations 
and intensities. This is shown in Fig. 4.

We have seen that accurate intensity information is 
contained in the spike intervals of multiplets.  For some 
purposes, the mere existence of such a spike interval 
representation is all that may be necessary.  For other 
neurobiological purposes (e.g. driving a muscle) it may be 
desirable to ‘neurally’ decode a spike train into an analog 
pattern. The decoder should be sensitive to the interspike 
interval between pairs of γ cell spikes: the shorter this is, 
the greater the intensity. One straightforward system 
sensitive to interspike intervals is an integrate-and-fire 
neuron, because the maximum membrane potential 
observed in response to two incoming spikes is sensitive 
to the temporal separation between the spikes. In the 
Methods section, we describe analog decoders based on 
using γ cell spikes to drive a population of integrate-and-
fire neurons, thus obtaining a spike-interval-sensitive 
readout, and averaging over this population of readout 
neurons, thus obtaining an analog signal. Applied to the spike trains of Fig. 4b, it produces the results 

Figure 4 Appropriate choice of S to γ cell 
connections can produce a desired sequence of 
γ cell firing rates. a) The desired intensities 
(gray scale) vs time for a sequence of 10 
elements with varying intensities and 
durations.  Three different levels of intensity 
and 2 different durations are present in the 
sequence.  b) The action potentials of 10 γ 
neurons from a network with S to cell 
connections designed to produce the sequence 
shown in (a).  The intervals in the γ cell action 
potential bursts encode the corresponding 
intensities (see Fig. 3).  c) Analog intensity vs 
time can be decoded using a simple ‘neural 
decoder’; the decoder’s output is shown for γ 
neuron numbers 1,5, and 10.  d) Same analog 
intensity ‘neural decode’ as in (c), but shown 
using gray scale for all 10 γ cells.
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illustrated in 4c and 4d.  While this decode does not accurately recapitulate  the uniformity of intensity 
within each element of the sequence of the top panel, its peaks do a fine job of encoding the analog 
values.  When this reconstruction is used to control a tone generator, and the sequence has been 
chosen to represent a simple melody, the neural playback even from using a single γ cell for each note 
is strikingly similar to the original melody.

The speed of the playback from a given set of 
connections is determined by the rate of motion 
along the slow coordinate in the P neurons. For 
the P neuron model, the rate and direction of 
motion are determined by an unbalance in the 
steady inputs to the two sets of inhibitory cells. 
This allows control of the speed or even the 
direction of motion of the slow coordinate. For a 
speedup factor X, the set of S-neurons will 
maintain the same input currents, at a time 
scaled by X. This was illustrated in Fig. 1b and 
1d which show that the scaling the speed of 
motion in the inputs from P rescales the timing 
of the intersecting inputs to the S neurons. The 
possible scalings are of course bounded: the 
fact that the development of synchrony in the S 
neurons takes a finite amount of time, and the 
fact that neuronal peak firing rate is also finite, 
are expected to limit the range of speedups at 
which the γ cells can respond adequately. Fig. 
5a shows the response of the γ cells of Fig. 4 at the original playback speed (1x), and (without 
changing any connections) at playback speeds of 3x and 10x. The ordering of the responses of the 
different γ cells is very well preserved at a speedup of 3x, and even at a speedup of 10x, the ramp-
nature of the response of the γ cells can be easily distinguished. The 10x playback is reminiscent of the 
accelerated sequence playback observed in hippocampal cells during slow wave sleep   (Lee and Wilson, 
2002). Fig. 5b shows the response of the γ cells when motion in the P neurons has a reversed direction, 
and is at a 10-fold higher speed than the original. An orderly reversed ramp in the γ cell response can 
be seen. This accelerated, reversed playback of the sequence is reminiscent of the hippocampal data 
reported by   (Foster and Wilson, 2006; Diba and Buzsáki, 2007) when rats are awake but still, and 
have recently navigated through a sequence of known locations.

Single trial learning of appropriate connections

In the circuit designed above, approximately synchronized S cells provide the excitatory drive that leads 
γ cells to fire. Over a brief time there is a 1:1 relationship between the S cell action potentials and the 
action potentials of the γ cell they are connected to. Choosing S cells with such a property can be used 
as the basis for learning, i.e., for selecting which S to γ cell connections should be functionally active. 
Let us assume that, before learning, there are no active connections between S cells and γ cells. Let us 
further assume that, at some given time after the P cell trajectories, there is an external sensory signal 
that drives a γ cell to fire at a given firing rate. For example, the γ cells could be auditory cells with 
frequency selectivity, cells that are activated during the hearing of a melody and that are reactivated in 
sequence when the melody is internally replayed. The S cells that synchronize, in a 1:1 fashion, with 
the γ cell at the time that the sensory input drove it to fire will be an adequate source of synaptic input 
with which to reproduce the γ cell’s firing --at the same rate and at the same time—in the absence of 
the external sensory input. Using this approach with a set of γ cells, each driven by different elements 
of a sequence, allows an unsupervised STDP rule  (Caporale and Dan, 2008) to replicate the entire 
sequence. We use a symmetric STDP rule similar to that of  (Tsukada et al., 2005; Samura and Hattori, 
2005). Below we show that the connections chosen by this neurally plausible learning method are 
virtually identical to the connections that would be designed to reproduce the same sequence (as done 
in Fig. 4). 

Let a γ cell share the same theta oscillatory input and membrane time constant with the S cells. During 

Figure 5 a) Spikes from the γ cells of the designed 
network of Fig. 4 when the bump attractor producing the 
smooth P neuron firing rates moves at normal speed 
(red), 3x normal speed (green), and 10x normal speed 
(blue). b) Resulting γ spikes when the bump attractor 
moves in reverse at 10x normal speed. 



88

the learning exposure, there are no synaptic inputs from S cells to γ cells.  A sensory stimulus produces 
a brief pulse of current to the target γ cell at particular time and duration.  Except for an initiation 
transient, the γ cell should then synchronize with a subset of S cells—the subset whose synchronized 
action potentials will drive the reproduction of the γ cell’s firing. An STDP rule that favored creating 
connections between synchronized cells should thus lead to the formation of appropriate S cell to γ cell 
synapses. In Fig. 6, we show the action potentials of a γ cell (top, black lines) that has a membrane 
time constant equal to that of the S cells, and is driven by the same theta oscillation as the S cells. 
During the time period indicated by the grey bar, the γ cell is in addition driven by an external input 
current. Below it, we show the spikes of a large group of S cells, sorted by their input currents at the 
midpoint of the current pulse. The horizontal line at neuron 512 indicates the S cell with input current at 
time 2.625 sec that is closest to the input current driving the gamma cell. 

We select which S cell to γ cell synapses to make active using an STDP rule with a Mexican Hat function 
shape and with additive contributions from different S spike/γ spike pairs. This procedure is equivalent 
to convolving the γ cell’s spikes with the STDP rule’s Mexican Hat function and then summing the values 
of this convolution at the location of the spikes of the S cells. The output of this procedure is what we 
call the “total STDP reward” for each S-cell, graphed at the right of Fig. 6. Well-synchronized S cells will 
have spikes mostly in the red regions, leading to a high STDP reward, while unsynchronized S cells will 
have spikes in both red and blue regions, leading to a low reward. As can be seen in the right panel of 

Figure 6  Spike rasters for a set of S neurons (black square dots) and for a γ neuron 
(vertical lines above graph) driven by a brief current pulse centered at 2.625 sec.  The 
S neurons are displayed in the order of their excitatory input current at 2.625 sec. The 
underlying color background indicates the convolution of the γ cell spikes with the 
STDP rule’s Mexican hat function. It represents the size and sign of the STDP 
contribution of a presynaptic action potential occurring at any particular time, given the 
locations of all the post-synaptic spikes.  The reward for each S cell is simply summed 
over the STDP value at the time of each S-cell spike, and is shown by the blue curve at 
the right.
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Fig. 6, neurons with input currents close to neuron #512 are the S neurons that are best synchronized 
with the  cell. After exposure to a single sensory stimulus, the 30 S-cells with the greatest STDP reward 
are assigned connections to the γ cell, with all connections being created with equal strength.  The 
dotted line at the right in Fig. 6 indicates the threshold value of reward for determining the connected 
set. In this particular example, designed connections would comprise neurons 495-525, a set very 
similar to the set selected by the learning rule. 

The selection of S cells and consequent reproduction 
of the stimulus sequence is based on pattern and 
timing. It does not require the S cells to be identical—
on the contrary, it depends on there being a diversity 
of S cells from which appropriate ones can be found. 
Our example above used S cells that differed only in 
their input currents merely for simplicity. 

In Fig. 6 we showed a short span of time from the 
whole simulation, and focused on S cells that 
synchronized with a single γ neuron. We now take a 
longer stretch of time in the simulation, and consider 
multiple gamma neurons that can each be driven at a 
different time and with a different intensity. 
Connections from the S cell population to the gamma 
neurons are then learnt, for each gamma neuron, as in 
the single example of Fig. 6. The results of using the 
synaptic connections made from this learning are 
shown in Fig. 7.

The blue (“target”) spikes in Fig. 7b are the 
information available to the system for learning. As 
with the γ cell of Fig 6, each γ cell shown in Fig. 7b is 
driven by a brief pulse of constant current, at a time, 
intensity, and duration determined by the sensory 
input shown in Fig. 7a.  The timing of these few spikes 
are the sole information that the system has available 
for learning the desired sequence. The green spikes 
(“learned”) in Fig. 7b show the performance of the 
network using the connections obtained through single 
trial learning. The red spikes (“designed”) are 
reproduced here from Fig. 4 for comparison. Panels 
7c,d,e use the decoding procedure described for Fig. 4 
to decode each set of gamma cell spikes of Fig. 7b into  
a sequence. The similarity of panels 7c,d,e indicates 
that learning has been successful and that the learned 
connections are functionally equivalent to the designed 
connections. 

Discussion

We have shown how a population of neurons with slowly varying firing rates can be used as an 
underlying timekeeper to drive the production of a sequence of temporal events, or to recapitulate the 
spatiotemporal activity pattern that has been recently experienced due to a sensory stimulus. Such 
slowly varying firing rates, repeatable from trial to trial, are commonly seen in vivo in mammals. They 
currently constitute a leading candidate for how time is represented in mammalian brains.  While it is of 
course possible that the very different representation of time that has been found in songbirds also 
occurs in mammals, our work shows that such a representation need not be invoked—i.e., we showed 
that the observed slowly varying time signals are an adequate representation for such tasks.

Figure 7  Learned S to γ cell connections 
reproduce a target sequence of γ cell firing rates 
a): the intensities (gray scale) vs time for a 
desired sequence of 10 elements with varying 
intensities and durations; same data as top panel 
of Fig. 4.  b): the action potentials of 10 γ neurons  
under three different conditions. “Target” spikes 
(blue) are spikes driven by a sequence of sensory 
stimuli that directly excite the γ neurons (see Fig. 
1b).  “Learned” spikes (green) are produced by S-
> γ connections after single-trial learning. For 
comparison, “designed” spikes (red) from Fig. 4 
are also shown. c,d,e): Corresponding decoded 
output intensities for the three sets of γ cell spikes  
from panel b (see Methods for decoding 
procedure).
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Recognizing a particular point in time is achieved by recognizing the signature of that timepoint in the 
slowly-varying firing rates. This is done using the MAE (“Many Are Equals”) algorithm: when Many 
neurons have roughly Equal firing rates, their action potentials can be synchronized, which can in turn 
be readily detected by a downstream γ neuron. The firing of γ neurons can encode both a motor act 
and its intensity. Unlike HVC-like time codes in birds, γ neurons may fire more than once in any 
particular sequence. 

We propose that the underlying slowly varying firing rates could be generated by the slow motion of the  
collective state of activity of an attractor network. For the particular simulations used here, we 
implemented a slowly moving “bump” attractor, but other attractor networks could easily have been 
used. In this view, time is encoded by the position of the collective activity state. The rate of change of 
encoded time is therefore the same as the rate of change of the collective activity state: if this moves 
rapidly, sequence production can be speeded up; if the collective state moves slowly, sequence 
production can be slowed down; and if the collective state moves in a direction opposite to its usual 
motion, sequence production can be reversed. These changes in motion are readily introduced in a 
controlled fashion in attractor models (e.g., a leaky integrator or a drifting bump; (Zhang, 1996)). 
Scaling of the rate of change of slowly-varying firing rates has been observed experimentally (Komura 
et al., 2001; Brody et al., 2003). The speeded-up and/or reversed sequences thus produced are 
reminiscent of speeded-up and reversed sequences produced in hippocampal place cells during slow-
wave or ripple EEG patterns, respectively  (Lee and Wilson, 2002; Foster and Wilson, 2006; Diba and 
Buzsáki, 2007). Sequences longer than a few seconds could be achieved by linking several such slowly-
moving attractor networks into a chain.

A conceptually related approach has been proposed by Matell and Meck (2004), who suggested that 
patterns of activity across a population of oscillating cortical neurons with diverse frequencies could be 
used to indicate signatures of specific points in time. If the slowly-varying input to the S neurons in our 
model were replaced by low-frequency sinusoids, as in the model of Matell and Meck, then longer 
sequences with precise timing could be learned.

We have used a new mechanism for producing the characteristic synchrony between action potentials 
across a chosen set of neurons that is necessary to implement MAE, namely synchronization through 
inhibitory conductances driven by a theta rhythm. Use of the theta-rhythm should be contrasted with 
previous implementations of MAE and learning. In the synaptically coupled system of mus silicium,  
(Hopfield and Brody, 2001) there were two sets of synapses that needed to be learned, and no STDP 
rule could be found to implement one of them.  In the case of periodic gamma  (Hopfield and Brody, 
2004), single trial learning through STDP was effective, but the overall system had a representation of 
odor strength (analog value) only in a phase encoding. The theta-rhythm method we used here leads to 
a more easily decoded representation of intensity. In contrast, we have experimented with the noisy 
gamma system for the sequence production/reproduction task of the present paper, and found that in a 
network of the size used here multiple trials are required for robust STDP-based synaptic learning. In 
addition, the reproduction of intensities with the noisy gamma system was not very good for the brief 
intervals. Interestingly, for all four of the MAE alternatives, the desired S to γ connections are the same. 
We note that the sequence of events and their analog intensities are encoded in the selection of which S 
cells connect to which γ cells, not in the analog strength of those connections. Therefore, even when 
connections are learned using the theta-rhythm method, a noisy gamma signal can be added to the 
theta signal during playback, providing some synergistic reduction in noise. If the theta and the gamma 
rhythms were phase-locked, more specific synergistic effects might be expected (e.g., Jensen 2005).

We found that some additional biophysical properties, naturally occurring in neurons, were useful for 
improving the performance of the system. Synaptic adaptation facilitated better intensity encoding by 
allowing a single firing threshold in the downstream γ neurons to be appropriate for many different 
levels of afferent firing rates. Membrane voltage adaptation in the γ neurons allowed different cells to 
function effectively even if they had different numbers of synaptic inputs (a case almost unavoidable 
when different numbers of repeats of a given event in a sequence), again without requiring adjustments 
in their firing threshold.

We used an STDP rule to learn which S cells should connect to which γ cells in order to reproduce the 
neural activity pattern that a sensory stimulus produced. Since sequences and intensities are encoded 
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by synapse identity, not analog strength, our synapses could be restricted to strengths of either 0 or 1.  
A decision between these two values can be accurately made on the basis of very few action potential 
pairs—few enough, in fact, that adequate learning could be obtained on the basis of a single learning 
trial (“one-shot” learning), with as few as four action potentials in the postsynaptic neuron. This 
learning process describes how we could be capable of endogenously reproducing stimulus-driven 
sequences of neural activities. Most experimental protocols exploring STDP use many repeated spike 
pairings, where learning is induced over a period of tens of seconds to minutes (Caporale and Dan, 
2008). We suggest that induction of learning over a much shorter timescale – a few pairings, and 
hundreds of milliseconds, such as described by Rutishauser et al., 2006 – is relevant to biological tasks 
and merits exploration. The subjective experience of observing something only once, and rapidly (e.g., 
“I parked on level 3 this morning”), yet being able to remember it over timescales of many hours during 
which our minds are busy with other items (Standing 1970), also suggests that  rapidly-induced, long-
term synaptic plasticity is biologically important. 

In this article, reproduction of a heard melody was used as an example of internal sequence 
reproduction, i.e., internally reproducing the sequence of neural activations elicited by the melody. We 
used examples where only single γ neurons were active at any one time, as in a melody. But the 
framework we have described could equally well be used to drive multiple γ neurons simultaneously, as 
in a sequence of chords. If the notes heard directly drive pre-motor neurons (as might be the case for 
someone who knows how to play the piano), then reproduction of this neural activation sequence in 
premotor cortex could be the basis for physically playing the previously heard sequence. More 
generally, if γ neurons are themselves motor or premotor neurons, the framework presented could be 
used to reproduce any desired sequence of muscle activations. Mirror neurons are an example of how 
observation of a sequence, produced by another, could result in an internal spatiotemporal activity 
pattern that represents the observed sequence if it were produced by oneself. The capacity to 
endogenously reproduce such an internal activity pattern, as the model presented here does, would 
then be the neural basis of behavioral mimicry, and the γ neurons closely related to mirror neurons.

Predictions. The MAE basis of our model predicts that in S neurons, which are characterized by reliable 
yet slowly-varying firing rates, spike time synchrony between two S neurons should depend on the 
magnitude of the difference between their input currents. Similar input currents should lead to greater 
synchrony. In many cases, firing rate can serve as a surrogate measure of input current, and therefore 
the prediction is that synchrony will depend on the magnitude of differences in firing rate (Markowitz 
2008). If the theta rhythm is very strong, such that two neurons produce similar numbers of action 
potentials per theta cycle, then overall firing rate is a poor surrogate for input current strength. In this 
case, for theta cycles where both cells produce a spike doublet, the inter-spike interval between spikes 
in a doublet is a measure of input current. The prediction then is that synchrony between the first spike 
in a doublet, across the two cells, will depend on similarity, across the two cells, in the doublet inter-
spike intervals. 

The fact that different S neurons in the model are all reflecting the position of a single bump attractor 
predicts that S neurons will be correlated in a particular way. Let us assume that, over different 
productions of the same sequence, the speed of P neuron firing rate evolution may vary slightly, in 
some trials being faster than others. All S neurons will follow the same speed-up/slow-down pattern. 
Thus, single-neuron per-trial estimates of overall speed-up or slow-down should be correlated across 
different of neurons.

Methods

Computation

All simulations were carried out in Matlab.  The differential equations representing neural variables were 
integrated using an Euler procedure with a 0.1 ms time step. Simulation code is available at http://
genomics.princeton.edu/hopfield/simulation.html
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Attractor network for generating slowly varying inputs to S neurons

A biological example of the slowly changing signals on which timing is to be based is illustrated in Fig. 
1a.  Such patterns are characteristic of a class of attractor network.   If for the moment we consider 
simple rate-based neural models, then the present state of the system can be specified by the firing 
rates of the N cells, and is represented by a point in N-space.  If the nature of the connectivity results 
in the evolution of the activity in time proceeding until the activity lies on a particular 1-dimensional 
curve in this N-space and then stops, the system is described as having a line attractor.  The neural 
integrator in the vestibular-ocular system has been described as a line attractor, as has the bump 
attractor in the head-direction remembering system.   The neural dynamics of these systems is 
described by N-1 dimensions in which the system rapidly evolves, and one dimension along which it 
does not change with time.  The behavior illustrated in Fig 1a is a minor variant of the line attractor in 
which there is rapid motion in the activity until the state lies on a 1-d curve in N-space, and then a 
slow, typically linear, drifting motion along that curve. The speed of drift is controlled by a single input 
parameter. The activity of each neuron will then change slowly in time, and the coordination between 
these activities is fixed by the connectivity pattern.  A ‘leaky integrator’ or ‘ring attractor network with 
drift’ are particular examples of such systems.   We have chosen to model this part of the system, the P  
cell box of Fig 1, as section cut from a bump attractor network in close correspondence to an 
established model (Song and Wang, 2005), except that spiking neurons were replace by rate-based 
units for simplicity and speed of computation.  The model was chosen for biological plausibility (unlike 
many bump attractor models it obeys Dale’s law) and for the fact that the rate of drift along the slow 
dimension was controlled by plausible inputs.  Excitatory currents proportional to these firing rates are 
used to drive the cells of box 4 in the model of Fig. 1d.  The stereotyped time responses seen in vivo 
are initiated by a ‘start’ signal through some unknown neural process, which can be either internally 
generated (‘recall’) or externally generated (‘listening and remembering’)  To achieve the same end, we 
directly initiate the ‘drifting attractor network’ at the start of either task by briefly initiating a bump of 
fixed location in the bump attractor.  Following this initiation, the leaky integrator follows its slow 
dynamics along its stereotype 1-dimensional curve, producing the time-dependent signals illustrated on 
the right side of Fig. 1. It should be emphasized that for the general phenomena to be described in this 
paper, the origin of these time varying signals is unimportant.  It is important only that they are 
coordinated along a slow drift coordinate, and have the slow rate of change and diversity of behaviors 
like those observed in frontal cortex.

The beginning of any sequence initializes the bump attractor, and therefore the P neuron firing rates, to 
a standard state, which then evolves slowly in time. Both the initial state and the time-evolution of P 
neurons are independent of the stimulus or the particular sequence to be played back. The MAE 
approach benefits from a large diversity of neurons that have similar firing rates at any given point in 
time. To provide this diversity, different S neurons in the model were driven with different input 
strengths from P neurons in the bump attractor. Each S neuron was driven by one P bump attractor 
neuron.

S cells

These cells are modeled as leaky integrate-and-fire neurons with a membrane time constant of 15 ms.  
Spike generation is instantaneous when the membrane potential reaches a threshold value of 20 mV, 
and the cell potential is then reset to zero. After a spike, the membrane potential is held at zero for 2 
ms, representing an absolute refractory period.  The resting potential of these neurons is 9 mV.   An                                                                

In most of the simulations, all S neurons receive a common inhibitory synaptic input with a theta-
rhythm.  This input is modeled as though it came from synchronous volleys of action potentials from an 
inhibitory network, activating the conductivity of channels for an ion with a reversal potential of 0 mV.  
These pulses occur in a quasi-random fashion, with intervals between them randomly and uniformly 
chosen in the interval 100 -160 ms (6.7 Hz to 10 Hz).   This randomness was introduced to emphasize 
the fact that for this means of evaluating MAE, the underlying rhythm need not be periodic.  The 
conductivity pulses were modeled as alpha-functions with a characteristic time of 10ms.  The peak 
conductivity due to this inhibitory synapse was equal to the conductivity of the cell membrane in the 
absence of input.  The timing of the initiation of the slow input bump attractor was independent of the 
theta pulses.
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The excitatory synapses from S neurons to γ neurons were modeled as the conductivity of AMPA-like 
receptors with time dependence

σsynaptic = (1 – exp(-t/τon))*(exp(-t/τoff)

with τon = 0.7 ms and τoff = 1.5 ms.  The reversal potential for Na+ was 100 mV.  All non-zero synapses 
had the same strength.

Rate-dependent adaptation for S neurons to γ neurons synapses was modeled as follows.  After each 
synaptic conductivity pulse due to a presynaptic action potential, the synaptic efficacy is reduced by a 
factor (1 – 0.07).  (In biological synapses, vesicle depletion in a pool of 15 vesicles could have such an 
effect.)  This reduction disappears with a time constant of 400 ms.  For steady state synaptic use at 
firing rate f, the synaptic efficacy as a function of firing rate in this model would be  1/( 1 + 0.028*f).  
This weak adaptive behavior allows gamma neurons to have the same firing threshold and maintain 
their stimulus selectivity, even while they may be driven at quite different firing rates  (Tsodyks and 
Markram, 1997). 

γ  cells

There are two phases to the use of γ cells, the learning phase and the performance phase.  During the 
learning phase, a particular γ cell is driven by a current pulse coming from the sensory system some 
time after the initiation cue.  Which cell gets driven when depends on the encoding between the 
sensory system and the γ cells.  For simple melody encoding, each γ cell corresponds to a particular 
musical note. In the learning phase, each γ cell is driven at a time that describes when the note is to 
occur with respect to the initiation cue. The strength of the driving current pulse describes the intensity 
of the note.

In the learning phase, γ cell electrical characteristics are identical to the S cells, and the γ cells receive 
the same inhibitory theta pulses as the S cells.  In the learning phase, there are silent synapses 
between each S cells and each γ cell.

In the performance phase there are three changes to the γ cell behavior.  None is necessary to obtain 
crude operation, but all help to obtain good performance.  First, the time constant of the γ cells is 
shortened from 15 ms to 5 ms.  Second, the theta rhythm inhibitory input is turned off.  Third, an 
adapting voltage-dependent ‘conductivity channel’ is introduced for simulations late in the paper where 
repeats are involved (Figs. 8,9).  These channels make it more difficult to drive the cells to firing if they 
have had elevated membrane potentials recently (i.e., post depolarization depression), and easier to 
make the cell fire if the membrane potential has been held at low levels (post-hyperpolarization 
excitability).  When found in biological neurons, such a behavior is typically described in terms of 
adaptive gain rescaling. It plays the same role here in modifying the excitability of the γ neurons on the 
basis of the level of ongoing synaptic input currents, even when that input is not large enough to make 
the γ neuron fire. 

The adaptation was modeled as follows.  A variable u_bar, the recent time-average of the membrane 
potential, was computed according to

du_bar/dt = -(u_bar  - u)/τadapt

with a constraint that keeps u_bar >= 0. Since u_bar is positive, it can be understood conceptually as a 
stand-in for the details of the voltage-dependent site occupancy of a channel ligand. τadapt was not a 
sensitive parameter, and values in the range 100-250 ms give similar results. This channel controlled an 
inhibitory conductivity channel of an ion having a reversal potential of 0 mV according to 

σadapt = (u_bar – u_barthreshold) for u_bar>u_barthreshold, and zero otherwise. 
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u_barthreshold = 4 mV. 

This results in behavior similar to that found by Spain and colleagues  (Spain et al., 1991). During the 
simulations the value of u_bar lies in the range 4 < u_bar <10 and the non-negativity constraints are 
inoperative. They have been included in the simulation code only because non-negativity is required of 
a reasonable biophysical model, and because others may wish to use the code in a more extended 
range 

‘Neural’ decode of spike trains into analog values

There are many ways to ‘neurally’ decode such action potential trains into analog signals. We illustrate 
(and have used) a particular one, to show by example that if in biology there were a need to produce 
an analog signal that resembles the actual input analog intensities, such a signal can be generated even 
from the properties of simple neurons.  While this procedure is based on cell and membrane properties, 
other procedures involving synaptic properties such as facilitation or metabatropic action are readily 
constructed. 

The action potentials from each gamma cell were used to drive 1000 identical integrate-and-fire 
decoding neurons through excitatory synapses.  The intrinsic properties of these neurons are exactly 
the same as the S-cells. The resting potential was set 1.6 mV below the threshold for firing.  The 
random current injected to simulate membrane noise was increased by 60% to decrease the number of 
cells necessary to get good statistical smoothing from the noise.  The excitatory synaptic currents to the 
decoding neurons are slow; an action potential from a gamma neuron produces an input current to the 
decoding neuron soma having a shape (t/τsyn)2 exp(-t/τsyn) with τsyn = 30 ms.  While this does not 
correspond to any simple channel in a compact neuron, such a slowed form can biologically result from 
dendritic integration and delay of fast excitatory currents in a non-compact cell, since the τsyn used in 
reconstruction is similar to the membrane time constant.  The spike rasters of these 1000 decoding 
neurons are summed.  This action potential sum was smoothed for use in the figures with an α-function 
smoothing kernel with time constant 60 ms. 

 learning protocol

Learning is particularly simple to do when the connections to each γ neuron need to represent only a 
single event during the entire time interval. The γ neuron generates spikes only during the single event. 
Spike timings between those spikes and the spiking of each S neuron can be used with a spike-timing-
dependent protocol for choosing which of the silent synapses to convert to AMPA-like synapses. 

A ‘reward’ was calculated for each synapse, summing the contribution of all pre-post synaptic spike 
pairs separated by a time difference δt milliseconds according to 

rewardshape = exp(-(δt/10)2) - 0.35*exp(-(δt/25)2) 

After a single experience of the pattern to be learned, the 30 synapses with the greatest reward are 
made into active synapses, all with the same strength. 

learning when some γ cells need to respond more than once

If we wish to make a γ cell respond at two different times, and with an appropriate representation of 
intensity at both times, a designed solution to this task is to simply make two sets of synapses onto the 
cell, one corresponding to each time and intensity.  At each recognition epoch, the γ cell receives 
synaptic input from both.  The presynaptic action potentials for one are well-synchronized; the 
presynaptic action potentials for the other are disorganized, and to a first approximation provide only a 
DC level shift.  This level shift is removed by the slow adaptive nature of the γ cells.  As a result, this 
set of designed connections functions well.  Our remaining task is to identify a STD learning protocol 
that will generate these connections. 
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We initially tried to merely use the procedure defined in the previous section by simply increasing the 
number of synapses chosen.  This procedure seldom gave good results because it lacked essential 
balance.   If one epoch to be remembered of greater duration, or more intense, the synapse selection 
procedure would choose concentrate too many synapses on this epoch and two few on the other.  In 
addition, S cells are chosen that will somewhat contribute at both times, rather than to be good for one 
time or for the other.  We believe that any procedure that waits for the end of the entire sequence to 
learn, sums over all experienced pre-post spike timing pairs at each synapse, and then chooses 
synapses, will have this failing.  Instead, what is needed is an automatic segmentation into learning 
epochs in time.  When the end of a segment is identified, a synapse change algorithm based on all the 
spike pair timings accumulated in that epoch results, and accumulation of further spike-pair timings for 
the next epoch is initiated.

During the learning phase, the γ cell has no synaptic drive from S cells, and is driven only by the 
sensory input that consists of two unequal pulses separated in time.  As a result, the γ neuron produces 
the spikes shown in Fig. 9b).   Any procedure that automatically identifies times shortly after bursts of 
spikes as the ends of learning epochs will suffice to break the learning into two unrelated segments as 
desired.  Because spike pairs with large time differences do not contribute to STDP rules, results are 
insensitive to exactly where these end-of-epoch fiduciaries are drawn.   We modeled this process by 
introducing a variable C mimicking a Ca++ high potential conductivity channel and a Ca++ extrusion 
system.  This variable was incremented up a fixed amount every time the γ cell produced an action 
potential, and decayed exponentially with a time constant of 100 ms.  When a γ cell has a single burst 
of activity, C displays a single broad peak near the time of that burst, and is in a falling phase at the 
conclusion of the burst.  A fiducial time after that burst can be defined in simple Matlab code by 
identifying the location where C has a downward crossing of a threshold level.  To make such simple 
code Matlab code work effectively, some jaggedness in C due to the discrete action potentials was 
removed by an additional 100 ms smoothing filter.  When the γ cell produces two bursts of spikes, two 
downward crossings occur.  These crossings identified the times at which to learn, providing automatic 
segmentation of the learning process described in the previous paragraph.    
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Supplementary Information

Learning with repeated elements in a sequence

So far we have dealt with only sequences having no repeated element.  Can a network be constructed 
to learn the connections when the same γ neuron is to be active at two different times in the sequence?  
A possible design for an appropriate set of connections is to use twice as many synaptic connections of 
the same strength for that gamma neuron, comprised of the two different sets of connections that 
would have been previously used for sequences with no repeats.  This simple approach does not quite 
work.  Since all inputs to the γ cell are excitatory, when the number of input synapses is doubled, even 
partial synchronization drives the γ cell to fire. This results in the γ cell firing most of the time instead of 
selectively firing at two appropriate time epochs.  The problem is seen in Fig 8a), where the membrane 
potential of γ cells (which are being prevented from generating action potentials) with one set of 
connections and with two sets of connections are shown.  No single threshold will both generate two 
clumps of spikes driven by the repeated occurrence system and also produce reliable spikes from the 
single occurrence system.

  



1616

If the number of synapses is to be doubled at the 
given fixed strength, some kind of adaptation in the 
gamma cell is necessary to compensate.  This 
adaptation must take place when the γ cell is not 
firing, and thus be based on sub-threshold membrane 
properties.  The known phenomenon of post-
hyperpolarization excitation  (Spain et al., 1991) 
forms the basis for such adaptation.  In this 
phenomenon, neurons that have been held more 
hyperpolarized are more readily driven by an 
excitatory current compared to neurons that have 
been held less hyperpolarized.   Within this paradigm, 
neurons with more synapses to them will have bigger 
input currents to them when they are not firing, will 
have less depolarized membrane potentials, and will 
be harder to drive to fire when compared to neurons 
that have less synapses to them.

The mathematical model we have chosen for post-
hyperpolarization excitation is based on a voltage-
dependent inhibitory channel conductivity that has 
slow kinetics that average over a time τadapt .   A 
channel variable ubar obeys

dubar/dt = (ubar – u)/τadapt

and controls the channel conductivity through the 
relationship

σchannel = 0  for ubar < 4 mV          σchannel = σ0 (ubar – 4) for ubar > 4 mV

The ion for which the channel conducts was taken to have a Nernst potential of zero.  This conductivity 
is in parallel with the intrinsic membrane conductivity, which was somewhat reduced from previous 
values to make the net time constant reasonable.  The effect of this adaptation is shown in Fig. 8b).  
With this adaptation it is now possible to set a single threshold that will yield appropriate spikes for both 
gamma cells.

These γ cells now exhibit post-hyperpolarization excitation.  Fig. 8c) shows the action potentials that 
such a cell produces when the membrane voltage u was clamped at different holding voltages before t 
= 0 and switched to current clamp for t > 0 with the current the same for all holding voltages.  The 
lower the holding voltage, the higher the initial rate of firing and the longer the firing continues.

With adapting gamma neurons, the designed connections successfully reproduce sequences having 
recurring elements.   This is illustrated in Fig. 9, which is closely parallel to Fig 4 except that the 
sequence now has some repeated elements and the gamma cells are adapting.  With this adaptation, 
the γ cell effective time constant is about 5 ms for the case  of a repeated occurrence, and 8 ms for the 
single occurrence.  

Learning a set of connections that can deal with repeated elements requires identifying independent 
learning epochs, and making the synapses that are appropriate to each epoch.  An approach that 
attempts to first sum ‘synaptic reward’ over all time, and then make a decision about what synapses to 
make on the basis of the size of that sum, is conceptually flawed.  It will result in a synaptic imbalance 
between the two epochs if the epochs differ in either duration or intensity.  In addition, such an 

Figure 8  The membrane potentials for two γ 
cells with action potentials suppressed without 
a) and with b) cellular adaptation.  c) Each row 
raster is the result of holding a γ cell in voltage 
clamp at the holding voltage indicated on the 
y-axis, below the firing threshold of 10 mV, 
and moving it to current clamp at t =  0.   The 
clamped current is the same for each raster. 

a

b

c
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approach will choose synapses that are somewhat in support of both epochs in preference to those 
which are truly appropriate to either.

What is needed is a learning protocol that identifies 
when a γ cell has recently been quite active and now 
has gone silent, indicating that now is the time to learn 
an epoch.  The synaptic change at that time should be 
based on a short-term average of the reward based on 
recent pre-post synaptic firing, making excitatory 
synapses of uniform strength at the synapses with 
greatest accumulated reward.  At that learning time, 
the reward average should be reset to zero in 
preparation for another learning epoch.   Any 
implementation of these ideas will succeed in choosing 
the correct synapses for multiple occurrences of an 
element. In the simulations shown below, we assumed 
Ca++ influx on gamma cell spiking (see Methods). A 
downwards crossing through a high Ca++ concentration 
threshold was then used to identify moments when the 
gamma cell had been spiking and now fell silent. The 
synaptic reward was computed from the spike-timing 
rules of Fig. 4 and averaged over the period since the 
last reset of the reward integrator (either the start of 
the trial or the last Ca++ downwards-threshold). We 
emphasize that the specifics of how this was done are 
not important for the final results. The results of such a 
procedure are shown in Fig. 9b and 9e. The γ cell 
spikes that result from these learned connections, and 
the decoded sequence they produce, are similar to the 
spikes and sequence produced by the designed 
connections.
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