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Introduction
Epithelial-mesenchymal transition (EMT) is a physiological 
process that is critical for embryonic development and that 
plays an important role in wound healing and tissue mor-
phogenesis, but which becomes activated during patho-
logical conditions, including fibrosis and cancer.1–3 EMT is 
characterized by decreased adhesion to neighboring epithe-
lial cells and the basement membrane, a specialized network 
of extracellular matrix (ECM) proteins that underlie epi-
thelial tissues; increased association with interstitial ECM 
molecules; as well as increased cellular motility. Activation 
of EMT is associated with altered expression of many genes, 

including downregulation of epithelial markers, including 
E-cadherin and epithelial cytokeratins; upregulation of mes-
enchymal marker genes, including N-cadherin and vimentin; 
and altered expression of integrins and other molecules that 
associate with the ECM.4,5 In normal development, EMT 
is a process that is tightly choreographed so as to maintain 
the integrity of the epithelial sheet, proceeding through 
steps involving specification of the cells that will undergo 
EMT, followed by cellular extrusion in coordination with 
tissue morphogenesis to fill the gap, and then conversion of 
the extruded cell to the mesenchymal phenotype. In can-
cer, these processes become uncoordinated and chaotic, and 
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are highly dependent upon the specific characteristics of the 
tumor microenvironment.

Cell culture models have proven to be useful for dissect-
ing the signaling pathways that regulate EMT,1,6 and sophis-
ticated model systems have been developed to determine how 
these pathways are integrated in normal tissues and in tumor 
progression.7 MCF10A mammary epithelial cells have been 
used to investigate EMT pathways in premalignant cells, while 
MCF10A cells are immortal and they do not form tumors in 
immunocompromised mice and retain their ability to form 
growth-arrested, polarized mammary acini when grown in 
the basement membrane surrogate, Matrigel.8,9 However, 
MCF10A cells readily undergo EMT when exposed to trans-
forming growth factor b (TGFb),10–12 and have been found 
to exhibit many EMT-like changes when grown at low cell 
density: cells grown under sparse conditions on tissue culture 
plastic express higher levels of many mesenchymal markers, 
while cells grown under confluent conditions express higher 
levels of epithelial markers.13 Induction of EMT-associated 
transcriptional changes has been observed in other cell lines 
as well, including the original bladder carcinoma cell model 
used as an EMT paradigm in early EMT publications.14 
However, the extent to which density-dependent alterations 
in MCF10A cells fully recapitulate the EMT program and 
how this process occurs remain unknown.

Many distinct signaling pathways affect the EMT pro-
gram, and a theme that has emerged is that signals from soluble 
extracellular factors are integrated with contextual signaling 
processes for control of cellular phenotype.1,15,16 Among these 
extracellular molecules, matrix metalloproteinases (MMPs) 
have emerged as regulators of EMT through modulation of 
cell–cell and cell–ECM interactions.17–19 The activation of 
EMT by MMP-3 (stromelysin-1) has been the best charac-
terized. MMP-3 is highly expressed in the mammary gland, 
where it functions to regulate branching morphogenesis and 
post-lactational involution.20,21 Transgenic expression of 
MMP-3 in mouse mammary glands stimulates development 
of fibrosis, followed by spontaneous tumor formation.22,23 
Exposure of cultured mouse mammary epithelial cells to 
MMP-3  stimulates the EMT program through changes in 
cell morphology24–26 and cleavage of E-cadherin,27 increased 
expression of the Rac1 splice isoform Rac1b, and consequent 
induction of cellular reactive oxygen species (ROS).28,29 In 
animal models and in human cancer, MMP-3/Rac1b-induced 
signaling has been found to lead to EMT, fibrosis, and can-
cer development in other organs as well, including the breast, 
lung, and pancreas.30–34

Here, we use transcriptional profiling to investigate 
the processes by which cell contact regulates EMT and how 
these processes are affected by exposure to MMP−3. We 
performed new experiments in which we assessed the effect 
of differential density in human MCF10A breast epithe-
lial cells and the effect of differential density or exposure 
to MMP-3  in SCp2 mouse mammary epithelial cells. We 

found many similar patterns of gene expression in response 
to differing cell densities in human MCF10A breast epithe-
lial cells and mouse SCp2  mammary epithelial cells, and 
further found that MMP-3 activates overlapping as well as 
independent pathways. We obtained evidence that alter-
native splicing of Rac1b is regulated both by cell density 
and by MMP-3 as a component of a broad regulation of 
EMT-associated splicing factors. These findings provide 
new insights into how the diverse signals from the microen-
vironment become integrated to facilitate the development 
of the tumor phenotype.

Materials and Methods
Cell culture. SCp2 nontumorigenic mouse mam-

mary epithelial cells, containing tetracycline-regulated, 
autoactivated MMP-3 construct, were cultured and used as 
described previously.28,29,35 The cells were grown in DMEM/
F12 (Gibco) supplemented with 2% Tet system approved 
FBS (Clontech), 0.4 mg/mL G418 sulfate (CellGro), 50 µg/
mL gentamicin (Gibco), and 5 µg/mL human recombinant 
insulin (Gibco). MCF10A cells were grown in DMEM/
F12 (Gibco), supplemented with 5% horse serum (Gibco), 
20  ng/mL EGF (PeproTech), 0.5  µg/mL hydrocortisone 
(Sigma), 100 ng/mL cholera toxin (Sigma), 10 µg/mL insulin 
(Sigma), and 100 µg/mL gentamicin (Gibco) and maintained 
as described previously.8

Transcriptional analysis by microarray. SCp2  cells 
were plated in six-well plates at the indicated densities and 
grown either in the presence or absence of MMP-3. After 
72  hours, the cells were lysed in TRIzol (Invitrogen), and 
RNA was isolated according to the manufacturer’s instruc-
tions. The experiment was performed once at seeding densi-
ties of 25K, 50K, 100K, and 200K per well, and replicated 
for seeding densities of 50K, 100K, and 200K; results are 
presented as single replicates for 25K and with averaged rep-
licates for 50K, 100K, and 200K. Transcriptional profiles 
were obtained using Affymetrix mouse 430_2 gene expres-
sion chips with data analyzed and processed as described 
previously.36 MCF10A cells were plated in six-well plates at 
indicated densities with single replicates and lysed in TRIzol 
after 48 hours. RNA was assessed with Affymetrix human 
U133_Plus_2 gene expression chips. Transcriptional profiles 
have been deposited in Gene Expression Omnibus. Gene 
expression data were processed and analyzed using Gene-
Spring 13.0. Differentially expressed genes in the MCF10A 
dataset (n = 3108) were identified as FC . 2.0 in 800K den-
sity vs 50K density. Differentially expressed genes (n = 7056) 
in the SCp2 dataset were identified as FC . 2 in any of 50K 
control vs 50K MMP-3, 250K control vs 250K MMP-3, or 
50K control vs 250K control. K-means clustering was per-
formed on the SCp2 differentially regulated gene set using 
eight groups, Pearson-centered similarity measure, and 1000 
iterations. Meta-analysis was performed using the NextBio 
platform37 as described previously.38 Gene expression profiles 
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have been deposited in the Gene Expression Omnibus. 
(GSE63354 is the superseries containing all expression data; 
GSE63331 is the SCp2-only subseries and GSE63353 is the 
MCF10A -only subseries.)

Real-time quantitative PCR. RNA was isolated using 
TRIzol reagent according to the manufacturer’s instructions. 
cDNA was synthesized with MultiScribe reverse transcriptase 
(Applied Biosystems). Gene expression levels were assayed 
by real-time quantitative PCR (RT-qPCR) using 7900HT 
Fast Real-Time PCR System (Applied Biosystems). TaqMan 
probes for specific genes (human vimentin Hs00185584_m1, 
human N-cadherin HS00169953_m1, human E-cadherin 
Hs00170423_m1, human GAPDH Hs99999905_m1) 
were purchased from Applied Biosystems. Custom primers 
and reporter probes were used for human and mouse Rac1b 
and for mouse GAPDH (human Rac1b: forward primer  
5′-TATGACAGATTACGCCCCCTATC-3′, reverse primer  
5′- CTTTGCCCCGGGAGGTTA-3′, and probe 5′-AAA
CGTACGGTAAGGAT-3′; mouse Rac1b: forward primer 

5′-TGGACAAGAAGATTATGACAGATTGC-3′, reverse  
primer 5′-CCCTGGAGGGTCTATCTTTACCA-3′, and  
probe 5′-CCGCAGACAGTTGGAGA-3′; and mouse  
GAPDH: forward primer 5′-GTGTCCGTCGTGGATC
TGA-3′, reverse primer 5′-GCTTCACCACCTTCTTGAT-
GTCAT-3′, and probe 5′-CTTGGCAGGTTTCTCC-3′). 
All assays were performed in triplicate, and analysis was per-
formed using RQ Manager software (Applied Biosystems) 
and the 2−∆∆Ct method to obtain relative quantitation (RQ ) 
values, with GAPDH used as endogenous control.

Phase contrast microscopy and cell area quantification. 
Phase contrast images of cells were acquired prior to their lysis 
in TRIzol, using Olympus IX51 microscope, equipped with 
Olympus objectives (UPlanFLN 10x NA 0.3, LUCPlanFLN 
20X NA 0.45) and an Olympus DP72 camera. Projected cell 
areas were determined using ImageJ software39 by manually 
outlining cells. At least 40 cells were measured per condition. 
Graphs represent average cell area with error bars showing 
standard error of the mean (SEM).
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Figure 1. Regulation of EMT characteristics by cell density in MCF10A cells. (A) Phase contrast micrographs of cells plated at indicated densities in 
35-mm plates and imaged after 24 hours. Scale bar 200 µm. (B) Area of cells at indicated densities (n . 20 for each condition; values displayed as 
means ± SEM; ANOVA P , 0.001 for trend). (C–E) Quantitative PCR assessment of E-cadherin (C; ANOVA P = 0.042 for trend), N-cadherin (D; ANOVA 
P = 0.12 for trend), and vimentin (E; ANOVA P , 0.001 for trend) expression in the cell cultures.
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Results
Cell density controls extensive transcriptional pro-

grams in MCF10A cells. To determine how gradual dif-
ferences in MCF10A cell density affected patterns of gene 
expression, cells were plated in 35-mm plates at 50K, 100K, 
200K, 400K, 600K, and 800K cells per dish, and then cul-
tured for 24  hours (Fig.  1A). Image analysis of cell mor-
phology for these conditions (Fig. 1B) revealed that while 
the cells were more spread at the lowest densities, the differ-
ences between the higher densities were smaller. MCF10A 
cells are known to show differential expression of EMT 
marker genes depending on whether the cells are cultured 
under sparse or confluent conditions,13,40 and we also found 
differential expression of EMT markers, with progressively 
increasing mRNA levels of the epithelial marker E-cadherin 
(Fig. 1C) and progressively decreasing mRNA levels of the 
mesenchymal markers N-cadherin (Fig. 1D) and vimentin 
(Fig.  1E) at higher cell densities throughout the density 
range.

Transcriptional profiling of the MCF10A cells identi-
fied a large number of genes that were substantially regulated 
by cell density: 1444 probes (mapped to 1131  genes) were 
upregulated more than two-fold in 800K density relative to 
50K density (Fig.  2A and B) and 1658 probes (mapped to 
1303 genes) were downregulated more than two-fold in 800K 
density relative to 50K density (Fig. 2C and D). Meta-analysis 
of the MCF10A gene set using the NextBio platform revealed 
significant overlap with numerous cancer-associated datasets 
(Table 1), including lung cancer, liver cancer, and breast cancer. 
The negative association of the MCF10A dataset (comparing 
800K density vs 50K density) with most cancer datasets indi-
cates that lower cell density is more associated with cancer as 
compared with the normal tissue. Examination of overlap with 
individual datasets (Table 2) revealed significant negative cor-
relation between the MCF10A dataset and gene sets compar-
ing breast cancer vs normal breast tissue,41–46 particularly when 
the breast cancers were of the basal molecular subtype. This 
finding suggests that the MCF10A cells, which are immor-
tal and nontransformed but which are classified as basal-type 
breast cancer cells,13,47 activate basal-type cancer characteris-
tics at lower cell densities. The MCF10A dataset also showed 
significant negative overlap with comparisons of breast cancer 
cell lines, including MCF10A cells expressing activated ErbB2 
vs control vector,48 the transformed MDA-MB-231, MCF-7 
and T47D breast cancer cell lines vs MCF10A cells,49 and the 
MDA-MB-231 cells vs M98040 normal breast cells.50 With 
regard to the highly significant overlap (P = 1.9E − 184) with 
the dataset comparing MDA-MB-231 cells vs MCF10A cells, 
it was striking that the majority of the 2385 overlapping gene 
features showed a negative correlation (Fig.  2E), indicating 
that more than 2/3 of the transcriptional alterations induced 
by low density cultivation of MCF10A cells overlapped signifi-
cantly with MDA-MB-231 cells. Comparison of the dataset 
of density-dependent gene expression changes in MCF10A 
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Figure 2. Analysis of genes differentially expressed by density in 
MCF10A cells. (A–D) Genes upregulated more than two-fold in cells 
cultured at 800K density vs 50K density (A and B; n = 1444 features 
mapped to 1131 genes) or downregulated more than two-fold in cells 
cultured at 800K density vs 50K density (C and D; n = 1658 features 
mapped to 1303 genes); all genes are normalized to 50K expression and 
displayed as line graphs (A and C; colored by expression at 800K) or 
box-and-whisker plots (B and D). (E and F) Overlap of dataset of genes 
differentially regulated two-fold in MCF10A cells cultured at 800K density 
vs 50K density with datasets of genes differentially regulated between 
MDA-MB-231 cells and MCF10A cells (showing negative correlation; E) 
and of genes differentially regulated between MCF10A cells cultured on 
differentiating conditions vs 2D monolayers (showing positive  
correlation; F).
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direction of association indicates that MCF10A cells plated at 
low density manifest an increasing association with basal sub-
type breast cancer.

The MCF10A dataset showed significant negative over-
lap with datasets comparing MCF-7 breast cancer cells treated 
with estradiol55–57 or the estrogenic compound bisphenol,58 
and significant positive overlap with MCF-7 cells treated with 
the estrogen receptor (ER) downregulator fulvestrant,59,60 
consistent with the identification of EMT-inducing charac-
teristics of estrogen signaling in the ER-positive MCF-7 cell 
line.61 The MCF10A dataset also showed significant positive 
overlap with datasets comparing cell lines cultured under 

Table 1. Overlap of cancer-related gene sets with gene set comparing MCF10A cells cultured at 800K density vs 50K density.

Cancer subtype Overlap score # studies correlation

Malignant tumor of hypopharynx 86.44 1 negative

Cancer of head and neck 78.95 21 negative

Kidney cancer 78.40 31 negative

Esophageal cancer 77.82 16 negative

Lung cancer 77.75 69 negative

Liver cancer 77.10 64 negative

Adrenal cancer 76.83 7 negative

Gastric cancer 75.71 27 negative

Breast cancer 74.10 83 negative

Brain cancer 73.29 57 negative

Neuroendocrine tumor 73.12 19 negative

Other cancer 70.54 60 negative

Malignant tumor of muscle 70.33 21 negative

Skin cancer 70.09 27 negative

Malignant tumor of intestine 69.39 83 negative

T-cell lymphoma 68.55 9 negative

Secondary neoplastic disease 67.43 55 negative

Bladder cancer 66.37 22 positive

Pancreatic cancer 64.82 22 negative

Uterine cancer 64.58 13 negative

Lymphoid leukemia 63.16 32 negative

Myeloid leukemia 62.95 31 positive

Ovarian cancer 62.87 27 positive

Multiple myeloma/plasmacytoma 61.41 12 positive

Prostate cancer 60.76 38 negative

Other lymphoma 59.74 12 negative

Primary malignant neoplasm of bone 58.32 13 negative

B-cell lymphoma 56.44 16 negative

Thyroid cancer 54.84 11 positive

Testicular cancer 53.10 7 positive

Other leukemia 52.32 3 negative

Cancer of thymus 51.47 2 negative

Malignant tumor of pituitary gland 28.64 2 negative

Retinoblastoma 21.81 1 positive
 

cells with clinical datasets examining differences between 
breast cancers of different intrinsic subtypes identified signifi-
cant overlap with four datasets comparing basal subtype breast 
cancers with normal breast tissue (Supplementary Fig.  1A, 
P = 1.6E − 65, ref.42; Supplementary Fig. 1B, P = 15.0E − 63, 
ref. 51; Supplementary Fig. 1C, P = 1.2E − 28, ref.52; and Sup-
plementary Fig.  1D, P  =  1.6E  −  48, ref.53). We also identi-
fied significant overlap with a dataset comparing basal subtype 
breast cancer vs normal subtype breast cancer (Supplementary 
Fig. 1E, P = 2.2E − 25, ref.52), and another dataset compar-
ing breast cancer cell lines of the basal B subtype vs basal A 
subtype (Supplementary Fig.  1F, P =  3.7E −  54, ref.54). The 
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Table 2. Meta-analysis reveals overlap of gene set comparing MCF10A cells cultured at 800K density vs 50K density with studies of breast 
cancer, breast cancer cell lines, cellular differentiation, and EMT.

Overlap with geneset comparing breast cancer with normal tissue

Study name p-value direction ref

Basal-like tumors vs normal tissue 2.60E-73 negative 41

Basal molecular subtype vs normal tissue 1.60E-75 negative 42

Breast tumor ER-negative vs adjacent normal breast 1.30E-41 negative 43

Invasive ductal carcinoma vs normal breast ducts 7.30E-34 negative 44

Basal molecular subtype vs normal breast 4.30E-28 negative 45

Basal-like subtype vs normal breast tissue 3.30E-23 negative 46

Overlap with genesets comparing breast cancer cell lines

Study name p-value direction ref

MCF10A overexpressing ErbB2 vs control vector 7.50E-216 negative 48

MDA-MB-231 cells vs MCF10A cells 1.90E-184 negative 49

MCF-7 cells vs MCF10A cells 3.00E-93 negative 49

T47D cells vs MCF10A cells 2.80E-90 negative 49

MDA-MB-231 cells vs M98040 normal breast cells 1.50E-137 negative 50

Comparison with genesets of MCF-7 cells treated with estradiol or endocrine inhibitors

Study name p-value direction ref

MCF-7 cells treated 48h fulvestrant vs control 4.20E-140 positive 60

MCF-7 cells treated 48h fulvestrant vs control 3.70E-128 positive 59

MCF-7 cells treated 24h estradiol vs control 3.40E-130 negative 57

MCF-7 cells treated 24h estradiol vs control 1.70E-123 negative 56

MCF-7 cells treated 24h estradiol vs control 1.70E-120 negative 55

MCF-7 cells treated 48h bisphenol vs control 3.40E-115 negative 58

Overlap with genesets evaluating differentiation of cultured cells

Study name p-value direction ref

MCF10A differentiating on transwells vs 2D 1.70E-288 positive 62

Bronchial epithelial cells in 3D vs 2D 1.70E-111 positive 63

RWPE-1 prostate epithelial cells 3D vs 2D 2.20E-145 positive 64

Adipocytes differentiating in 3D vs preadipocytes 4.80E-42 positive 66

Lung cancer cell lines in 3D vs 2D 1.80E-28 positive 65

Overlap with studies of EMT

Study name p-value direction ref

MCF10A TGFb vs untreated 2.40E-78 negative 67

MCF10A ionizing radiation and TGFb vs untreated  2.80E-62 negative 68

Panc1 pancreatic cancer cells TGFb vs untreated 1. 50E-58 negative 69

A549 lung adenocarcinoma cells TGFb vs untreated 4.50E-55 negative 70

HK2 human kidney epithelial cells TGFb vs untreated 5.60E-33 negative 71

Breast cancer cell lines-epithelial-like vs fibroblast-like 1.20E-23 positive 72

NMuMG mammary cells TGFb vs untreated 2.70E-11 negative 73

 

differentiating conditions, including MCF10A cells cultured 
on transwells vs tissue culture plastic62 (P = 1.7E − 288, with 
2106 overlapping gene features; Fig. 2F), bronchial epithelial 
cells, RWPE-1 prostate epithelial cells, or lung cancer cell 
lines cultured in 3D Matrigel vs tissue culture plastic,63–65 and 
cultured adipocytes compared with preadipocytes.66 Similar 
strong overlap was found between the MCF10A dataset and 

gene sets from experiments examining transcriptional changes 
induced by EMT.67–73 These findings indicate that cell den-
sity affects extensive transcriptional programs associated with 
malignancy, differentiation, and EMT in MCF10A cells.

Cell density and MMP-3 control overlapping tran-
scriptional programs in SCp2 cells. To dissect the differential 
effects of cell density and external stimuli on induction of 
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Figure 3. Effects of MMP-3 treatment on SCp2 mouse mammary epithelial cells cultured at different cell densities. Either 50K (top row), 100K (middle 
row), or 250K (bottom row) SCp2 cells were plated in 35-mm plates, and then treated as controls (left column) or with MMP-3 (middle column). Cell area 
measurements indicate significantly increased cell spreading with MMP-3 treatment at all three densities (right column). Scale bars, 250 µm in large views 
and 50 µm in insets.

EMT, we cultured SCp2 mouse mammary epithelial cells at 
differing densities with MMP-3 (Fig. 3). Because MMP-3-
induced EMT requires cell spreading,25 we selected a range 
of cell densities that would allow for sufficient cell spread-
ing at even the highest seeding density (Fig.  3). Evaluation 
of transcriptional profiles identified 7056  genes that were 
more than two-fold differentially expressed in response to 
MMP-3 (50K control vs 50K MMP-3 and 250K control vs 
250K MMP-3) or in response to cell density (250K control 
vs 50K control). To begin to dissect the differential signaling 
pathways activated in response to cell density and MMP-3, 
transcriptional profiles of these differentially expressed genes 
were clustered using a K-means algorithm into eight groups 
(Fig. 4). We initially assessed K-means classification into 2, 4, 
8, and 12 clusters. One of the endpoints we wished to pursue 
was the meta-analysis using NextBio, and we found that the 
classification into eight groups provided the most manageable 
number of genes for analysis using this utility. In the first two 
groups (Fig. 4A and B), genes showed regulation by both cell 
density and by MMP-3. These groups were enriched with 
genes associated with cell–cell and cell–ECM adhesion and 

interaction (Table  1, Supplementary Tables  1–3), including 
the gene encoding C/EBPβ, a key regulator of epithelial cell 
differentiation and proliferation in mammary branching mor-
phogenesis74,75 and in the morphogenic response to epimorphin 
in mammary epithelial cells,76–80 as well as the gene encoding 
the connective tissue growth factor (CTGF), a key regulator 
of EMT and a mediator of the earliest stages of breast cancer 
development.81–83 In the second two groups (Fig. 4C and D), 
gene expression differences were primarily associated with cell 
density and less affected by the presence or absence of MMP-3.  
These groups were enriched with genes associated with cel-
lular biogenesis and metabolic processes (Table  1, Supple-
mentary Tables 1–3), including the gene encoding RAB40B, 
which trafficks MMPs to the invadopodia during breast can-
cer cell invasion, and the gene encoding SERPINB2/PAI2, 
which regulates cellular interactions with the ECM.84,85 The 
third set of gene expression groups included genes that were 
primarily regulated by MMP-3 (Fig. 4E and F). These groups 
were enriched with genes associated with cell division and 
organization (Table 1, Supplementary Tables 1–3), including 
genes known to be regulated by MMP-3.35 Comparison of 
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the set of genes regulated by density in MCF10A cells showed 
significant overlap with subgroups A–F, with expected direc-
tionality of correlation: positive for clusters A–D and negative 
for clusters E and F (Supplementary Fig.  2). No significant 
overlap was found between the genes regulated by density in 
MCF10A cells and clusters G and H (data not shown).

Regulation of Rac1b splicing by cell density and 
MMP-3. The final two gene groups identified by the K-means 
clustering contained genes that were regulated by density in 

the absence of MMP-3, but less regulated by density in the 
presence of MMP-3 (Fig.  4G and H), an effect that could 
be induced if the protein(s) acting as sensors of cellular den-
sity for regulation of these genes was cleaved or blocked by 
MMP-3. These groups were enriched with genes encoding 
splicing factors (Table 1, Supplementary Tables 1–3). Evalu-
ation of genes with these characteristics and annotated as 
associated with RNA processing revealed 56  gene features 
(mapped to 37  genes) that were upregulated by cell density 
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in the absence of MMP-3 (Fig. 5A–C) and 80 gene features 
(mapped to 56 genes) that were downregulated by cell density 
in the absence of MMP-3 (Fig. 5D–F). Strikingly, these genes 
included HNRNPA1, which encodes a splicing factor that 
inhibits EMT86,87 and that is known to regulate the induction 
of Rac1b in mouse mammary and lung epithelial cells exposed 
to MMP-3.32,88 Analysis of HNRNPA1 expression data in the 

SCp2 cell experiments revealed substantial density-dependent 
differences in untreated cells, but relatively similar levels in 
MMP-3-treated cells (Fig. 6A). Consistent with the role of 
hnRNPA1 as a repressor of exon 3b inclusion,88 expression of 
Rac1b in the same samples decreased in the untreated samples 
as a function of density, while the levels of MMP-3-induced 
Rac1b remained constant (Fig.  6B). Other splicing factors 
contained in the density-regulated/MMP-inhibited gene 
clusters have been implicated in other studies to influence 
Rac1b inclusion, including SRSF1 (ASF/SF2), which acts 
to increase inclusion of exon 3b89 and which was downregu-
lated by density in the absence of MMP-3, but maintained 
higher expression levels in the presence of MMP-3 (Fig. 5E). 
Furthermore, while expression levels of HNRNPA1 were 
undetectable in the MCF10A cells (data not shown), we did 
find that density-dependent differences in the expression of 
ESRP1 and ESRP2 (Fig.  6C), which encode splicing fac-
tors that have been shown to regulate exon 3b inclusion in 
human oral squamous carcinoma cells,90 were also associated 
with density-dependent differences in the expression of Rac1b 
(Fig. 6D).

Discussion
Here we showed that the regulation of the EMT program by 
cell contact is a highly conserved process, with many similar 
transcriptional alterations found in mouse and human cells 
cultured at differing cell densities (Supplemental Fig.  1). 
We also found that the density-dependent, EMT-associated 
changes were a component of a larger cancer-related gene pro-
gram, as cultivation of MCF10A human breast epithelial cells 
at low density activated many of the transcriptional features 
of breast cancer, while cultivation at high density activated 
transcriptional features of differentiated cells (Fig. 2E and F,  
Tables  1 and 2). We found that cell density and MMP-3 
affected distinct transcriptional alterations in SCp2  mouse 
mammary cells (Fig.  4C–F) and regulated others in tan-
dem (Fig. 4A and B). We also made the unexpected findings 
that MMP-3 treatment affects the transcription of a cluster 
of genes that is regulated by cell density (Fig.  4G and H) 
and that this cluster is enriched in genes encoding RNA pro-
cessing proteins (Fig. 5, Table 3, Supplemental Tables 1–3), 
including the RNA splicing factors that regulate expression 
of Rac1b, the key mediator of MMP-3-induced EMT, under 
the same conditions (Fig.  6). These results provide insights 
into the common processes by which cell contact affects cel-
lular phenotype and sensitivity to induction of EMT and 
how these processes may be integrated in the development of 
breast cancer.

Alternative splicing allows individual genes to take on 
multiple, often opposing, functions.91,92 Differential regula-
tion of splice isoform expression of many genes is a feature 
of cancer development and progression, as cancer cells prefer-
entially express many different splice isoforms that can block 
anticancer apoptotic mechanisms, drive glycolytic metabolism, 
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induce angiogenesis, and stimulate invasion through induc-
tion of EMT.91,93,94 While some cancer-associated mutations 
have been found to directly affect the expression of physiologi-
cally relevant splice isoforms, the majority of alternative splic-
ing events in cancer are because of alterations in the splicing 
process itself.92 Splicing is controlled through the action of 
the spliceosome, a large ribonucleoprotein (RNP) complex 
that selects which pre-mRNA sequences will be retained 
or excluded. The classical regulators of alternative splicing 
include the serine/arginine-rich (SR) proteins, which gener-
ally promote exon inclusion, and the heterogeneous RNPs 
(hnRNPSs), which generally promote exon exclusion.91 Of the 
SR proteins, ESRP1/2 have been a particular target of study 
for their role in facilitating the EMT program95: differential 
activity of ESRP1/2 affects EMT through alternative splicing 
of FGFR1,96 hMena,97,98 p120-catenin,96 fibronectin,95 and 
Rac1b.89,90,99–101 Of the hnRNP proteins, hnRNPA1 has 
been focused on as a mediator of EMT processes87 and has 
been identified as specifically involved in the regulation of 
Rac1b by MMP-3.88 We found here that cell contact regu-

lated ESRP1/2 and hnRNPA1 expression in MCF10A and 
SCp2 cells, and that this regulation was affected by the pres-
ence of MMP-3 (Fig. 6). We also identified a number of other 
genes encoding RNA processing proteins whose expression 
was regulated by cell density and by MMP-3 (Figs. 4G, H 
and 5). How differences in cell density affect these processes, 
and the role of MMP-3 in their abrogation, is unclear. Dif-
ferences in cell density and exposure to MMP-3-containing 
conditioned media have been previously observed to regulate 
alternative splicing of the fibronectin mRNA in SCp2 cells,102 
which supports the idea that the effects observed here may 
reflect a larger phenomenon. Additionally, cell density has 
been found to control nonsense-mediated decay of the splicing 
factor ASF/SF2 (SRSF1),103 although whether this process is 
regulating the observed differences in splicing factors con-
tained in clusters G and H (Figs. 4G, H and 5) is unknown.

Rac1, like other members of the Ras superfamily, is a 
GTPase that cycles between a GDP-bound inactive form and 
a GTP-bound active form. Rac1b was originally identified 
in colorectal and breast tumors as an alternatively spliced 

0

1

2

50K 100K 250K

R
ac

1b
/G

A
P

D
H

Control
MMP-3

B

D

0

0.5

1

R
ac

1b
/G

A
P

D
H

A

H
N

R
N

PA
1

0

1

2

3
Control
MMP-3

50K 100K 200K

C

0

1

2

3
ESRP1

ESRP2

G
en

e 
ex

p
re

ss
io

n

10
0K

20
0K

40
0K

60
0K

80
0K50

K

10
0K

20
0K

40
0K

60
0K

80
0K50

K
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transcript containing the 57-nucleotide exon 3b, resulting 
in a 19-amino acid in-frame insertion in the Rac1b protein 
sequence.104 Rac1b was found to have greatly reduced intrin-
sic GTPase activity and accelerated GDP–GTP exchange; 
the 19-amino acid insertion also led to altered association 
with Rac1 effector proteins.105–107 Rac1b was subsequently 
identified as a critical effector of MMP-3-induced EMT in 
SCp2 cells: MMP-3-induced Rac1b induces elevated levels 
of cellular ROS, which drive EMT and genomic instabil-
ity.3,28,29,108 Further studies have revealed MMP-3-induced 
Rac1b and consequent EMT processes in lung and pancreas 
as well.30,32–34,109 In addition to the expected upregula-
tion of Rac1b by MMP-3 in the SCp2 cells, we also found 
that Rac1b was upregulated at lower cell density in both 
the SCp2 and the MCF10A cells (Fig. 6B and D), condi-
tions under which the MCF10A cells showed strong overlap 
with breast cancer cell lines and tumor biopsies (Table 2). 
These results support the possibility of inhibition of Rac1b 
as a therapeutic approach for breast cancer.110 EHT164 is 
an inhibitor of Rac1 family of GTPases that has selectivity 
toward Rac1b111,112 and that has been found to inhibit estro-
gen-dependent breast cancer cell proliferation in culture 
models,113 although the effects of this compound in clinical 
settings remain to be evaluated.

In summary, we have found that cell contact regulates 
a broad transcriptional program that is conserved between 
mouse and man and that is highly relevant to the transi-
tion from the differentiated state to malignancy. We also 
found that MMP-3  induces EMT by interfering with the 

density-dependent regulation, causing the cells to retain their 
cancer-like transcriptional state even at higher cell density. 
These results point toward loss of cell contact as a critical step 
in the activation of the EMT program in the development of 
breast cancer.
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Supplementary Materials
Supplementary Table  1. Broad MSigDB - Canonical 

Pathways for SCp2 cell experiment.
Supplementary Table  2. Broad MSigDB - Regulatory 

Motifs for SCp2 cell experiment.
Supplementary Table 3. Gene Ontology (GO) for SCp2 

cell experiment.
Supplementary Figure 1. Meta-analysis of datasets 

showing overlap of density-dependent gene expression 
changes in MCF10A cells with biosets comparing breast can-
cer of basal subtype vs other subtypes. In each panel, Bioset 
1 is the list of genes upregulated or downregulated more than 
two-fold in cells cultured at 800K density vs 50K density 
(n  =  3102 features mapped to 2434  genes). (A–D) Overlap 
with biosets comparing breast tumors of the basal subtype 
vs normal breast tissue (A42, B51, C52, and D53). (E) Over-
lap with bioset comparing breast tumors of basal subtype vs 
normal-like subtype.52 (F) Overlap with bioset comparing 
breast cancer cell lines derived from basal B subtype vs basal 
A subtype tumors.54

Supplementary Figure 2. Overlap of genes regulated by 
density in MCF10A and by MMP-3  in SCp2 cells. Signifi-
cant overlap of genes upregulated in MCF10A cells at 800K vs 
50K (left column) or genes downregulated in MCF10A cells at 
800K vs 50K (right column) with genes regulated by both den-
sity and MMP-3 (top row; comparison shown for genes regu-
lated in 50K control vs 50K MMP-3), with genes regulated 
primarily by density (middle row; comparison shown for genes 
regulated in 250K control vs 50K control), and with genes reg-
ulated primarily by MMP-3 (bottom row; comparison shown 
for genes regulated in 50K control vs 50K MMP-3).
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