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Abstract—In this paper, the application of wireless information
and power transfer to cooperative networks is investigated, where
the relays in the network are randomly located and based on
the decode-forward strategy. For the scenario with one source-
destination pair, three different strategies for using theavailable
relays are studied, and their impact on the outage probability and
diversity gain is characterized by applying stochastic geometry.
By using the assumptions that the path loss exponent is two
and that the relay-destination distances are much larger than
the source-relay distances, closed form analytical results can be
developed to demonstrate that the use of energy harvesting relays
can achieve the same diversity gain as the case with conventional
self-powered relays. For the scenario with multiple sources, the
relays can be viewed as a type of scarce resource, where the
sources compete with each other to get help from the relays.
Such a competition is modeled as a coalition formation game,and
two distributed game theoretic algorithms are developed based
on different payoff functions. Simulation results are provided
to confirm the accuracy of the developed analytical results and
facilitate a better performance comparison.

I. I NTRODUCTION

Energy harvesting technologies have been recognized as
a promising cost-effective solution to maximize the lifetime
of wireless energy constrained networks by eliminating the
cost for hard-wiring or replacing batteries of mobile nodes.
Conventional energy harvesting techniques scavenge energy
from the environment, and therefore they are not applicableto
the scenario in which wireless nodes do not have any access to
external energy sources. This difficulty motivates the recently
developed concept of simultaneous wireless information and
power transfer (SWIPT) [1]–[5].

The concept of SWIPT was first proposed in [1] and [2],
where it is assumed that the receiver circuit can perform two
functions, energy harvesting and information decoding, atthe
same time. Following these pioneering works, more practical
receiver architectures have been developed by assuming that
the receiver has two circuits to perform energy harvesting
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and information decoding separately [3], [4]. Particularly the
receiver either switches on two circuits at different time,a
strategy called time switching, or splits its observationsinto
the two streams which are directed to two circuits at the
same time, a strategy called power splitting. The work in [3]
considers a simple single-input single-output scenario, and an
extension to multi-input multi-output broadcasting scenarios is
considered in [5].

SWIPT has been demonstrated as a general energy har-
vesting technique and applied to various types of wireless
communication networks. For example, in [6], the application
of SWIPT to cognitive radio networks is considered, where
users from secondary networks perform energy harvesting
from the primary transmitters and deliver information to their
own destinations opportunistically. The use of SWIPT in
OFDM networks has also received a lot of attention due
to the success of WiMAX and 3GPP-Long Term Evolution
(LTE) [7]. In [8] the combination of SWIPT with secure
communications has also been considered, where an optimal
beamforming and power allocation solution has been proposed
to avoid the source information being intercepted by the energy
harvesting eavesdroppers.

In this paper, we consider the application of SWIPT to
wireless cooperative networks, where the relay transmissions
are powered by the energy harvested from the relay observa-
tions. The contribution of this paper is two-fold.Firstly we
focus on cooperative networks with one source-destination
pair and multiple energy harvesting relays, and the impact
of SWIPT on the reception reliability is studied by taking the
spatial randomness of the relay locations into consideration,
unlike existing works in [4] and [9] which treat the distances
as constants. Stochastic geometry is used to characterize the
density function for the wireless channels of the randomly
deployed relays, where the developed analytical results are
shown to match the simulations. In addition, three different
strategies to use the available relays are studied, and we
demonstrate that a more sophisticated relay selection strategy
can ensure better reception reliability, albeit with a price
of more system overhead to realize the required channel
state information (CSI) assumption. By using the assumptions
that the path loss exponent is two and the relay-destination
distances are much larger than the source-relay distances,
closed form analytical results can be developed to demonstrate
that the use of energy harvesting relays can achieve the same
diversity gain as the case with conventional self-powered
relays. However, the provided asymptotic studies show that
the outage probability with energy harvesting relays is worse
than that with conventional relays. For example, when a
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randomly chosen relay is used, it can be shown that the outage
probability decays at a rate oflogSNR

SNR2 , instead of 1
SNR2 as

in conventional cooperative networks, where SNR denotes the
signal to noise ratio.

Secondly we consider a more challenging cooperative sce-
nario where multiple sources communicate with one common
destination via multiple energy harvesting relays. In such
a scenario, the relays can be viewed as a type of scarce
resource, where the sources compete with each other to get
help from the relays. Such a competition can be modeled as a
coalition formation game, and two distributed game theoretic
algorithms are developed based on different payoff functions.
In addition, analytical results are provided to demonstrate
that a user-fairness approach should consider not only the
SNR gain that a relay can contribute to a coalition, but also
how significant this gain is in contrast to the overall SNR
of the coalition. Therefore we can avoid a situation with
unbalanced relay allocation, i.e. some coalitions are crowded
but some coalitions do not get any help from the relays. Both
analytical and numerical results are provided to demonstrate
the outage performance and convergence of the proposed
coalition formation algorithms.

This paper is organized as follows. In Section II the energy
harvesting cooperative scenario with one source node is con-
sider, and three different strategies for using relays are inves-
tigated. In Section III the cooperative scenario with multiple
source nodes is studied, and a game theoretic approach for
coalition formation is proposed. Numerical results are shown
in Section IV for performance evaluation and comparison.
Finally, concluding remarks are given in Section V. The
mathematical proofs are collected in the appendix.
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(a) Cooperative networks with one source
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(b) Cooperative networks with multiple sources

Fig. 1. System diagrams for the scenarios considered in Section II and
Section III.

II. ENERGY HARVESTING COOPERATIVE NETWORKS

WITH ONE SOURCE

Consider a cooperative scenario with one source-destination
pair and multiplerandomly deployed energy harvesting relays,

where the scenario with multiple sources will be considered
in the next section. In particular consider a disc, denoted by
D, where the source is located at the origin of the disc and the
radius of the disc isRD. The location of the relays is modeled
as a homogeneous Poisson point process with the intensity
λφ. Therefore the number of the relays inD, denoted byN ,

is Poisson distributed, i.e.P(N = k) =
µk
D

k! e
−µD , whereµD

denotes the mean measure, i.e.µD = πR2
Dλφ. The distance

between the source and the destination is denoted byd.
The decode-and-forward strategy is used at the relays, and

the energy harvesting cooperative transmission consists of two
phases. During the first time slot, the source broadcasts its
message, and all the relays and the destination listen to the
source transmission. The energy harvesting relay will first
try to direct the observation flow to the detection circuit,
following from the power splitting approach in [3] and [4].
If the detection is successful and there is any energy left,
the remaining signal flow will be directed to the energy
harvesting circuit, and the harvested energy will be used to
power the relay transmission. The observation split to the
detection circuit is given by

yri =
√

(1− θi)
hi
√
Ps

√
1 + dαi

+ nri , (1)

whereθi is the power splitting coefficient,hi models frequency
flat quasi static Rayleigh fading,di denotes the distance
between the source and thei-th relay,α denotes the path loss
exponent,P is the transmission power,s is the source message
with the normalized power andnri is additive noise. Note that
θi is used to decide how much observation flow will be di-
rected to the energy harvesting circuit. For example, the choice
of θi = 0 means that all observations will flow to the detection
circuit, andθi = 1 means that the energy harvesting circuit
receives all of the observation flow. The data rate supportedby
the source-relay channel isRi = 1

2 log
(

1 + (1 − θi)
|hi|2P
1+dα

i

)

.
Note that in (1) the bounded path-loss model is used to ensure
that the path loss is always larger than one for any distance
[10], i.e. 1 + dαi > 1, even if d < 1, whereas the simplified
channel models used in [11] and [12] are valid only if the
transceiver distance is larger than one. To ensure successful
detection at the relay given a targeted data rateR, i.e.Ri = R,
the power splitting coefficient is set as follows:

θi , max

{

0, 1− (1 + dαi )(2
2R − 1)

P |hi|2
}

. (2)

Note that the choice ofθi in the above equation is based on the
strategy that a relay first tries to achieve information detection
and then performs energy harvesting if there is any energy
left. It is important to note that different receiver strategies
could result in different choices ofθi as well as different
values of the achieved outage performance. In addition, in
this paper we do not consider how to use a relay that cannot
decode the source information, but the use of such relays
can potentially yield more opportunities, particularly intwo
types of situations. The first is the case with multiple pairs
of sources and destinations. A relay that cannot detect Source
A’s information can harvest energy from this source’s signals,
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and use it to power the relay transmission to Source B. The
second is when the the relay can store the energy harvested
from the current time slot and use it for future time slots.
The consideration of different detection and energy harvesting
strategies is beyond the scope of this paper.

When the channel condition is poor, i.e.θ = 0, no energy
can be harvested from the observation since all the received
signals will be directed to the detection circuit. Whenθ > 0,
the energy harvested at thei-th relay is given by

Eri =
Tη

2

( |hi|2
1 + dαi

P − τ

)

, (3)

whereη is the energy harvesting efficiency coefficient,T is
the time period for one time slot andτ = 22R − 1. It is
assumed that the two phases of cooperative transmissions have
the same time period. So at thei-th relay, the transmission
power available for the second-stage relay transmission is

Pri =
Eri
T
2

= η

( |hi|2
1 + dαi

P − τ

)

. (4)

Where there are multiple relays, i.e.N > 1, it is of interest
to study how to utilize these relays. In particular we will
study the performance of three strategies with different CSI
assumptions, as shown in the following three subsections.

A. Random relay selection

Prior to the transmissions, the source randomly selects a
relay as its helper, a strategy that does not require any CSI.
Without loss of generality, consider that thei-th relay is
selected to help the source. This relay will use the harvested
energy to power the relaying transmission, if it can decode the
source message correctly. Therefore during the second time
slot, the destination receives

yD =
gi

√
1 + cαi

√

Pris+ nD, (5)

where ci is the distance between thei-th relay and the
destination, andgi is the multi-path fading channel coefficient.
After combining the observation from the first time slot, the
receive SNR at the destination is given by

SNRi =
|hd|2
1 + dα

P + η
|gi|2
1 + cαi

( |hi|2
1 + dαi

P − τ

)

, (6)

conditioned on a successful detection at thei-th relay, where
hd is the multi-path fading channel. To simplify notation, we
let x0 ,

|hd|2
1+dα , xi ,

|hi|2
1+dα

i

andyi ,
|gi|2
1+cα

i

.
In this paper, the outage probability and diversity gain

will be used for performance evaluation, as explained in the
following. Provided that the optimal channel coding scheme
with infinite coding length is used, the bit error probability
can be closely bounded by the outage probability [13]. On
the other hand, the diversity gain is an important metric for
the robustness of transmissions in the high SNR regime. The
outage probability can be Therefore the outage probability

given the use of thei-th relay is

Pi , P(N = 0, Px0 < τ) + P (SNRi < τ, Pxi > τ,N ≥ 1)

+ P (Px0 < τ, Pxi < τ,N ≥ 1)

= P(N = 0, x0 < ǫ) + P (x0 + ηyi (xi − ǫ) < ǫ, xi > ǫ)
︸ ︷︷ ︸

Q1

× P(N ≥ 1) + P(x0 < ǫ, xi < ǫ,N ≥ 1). (7)

whereǫ = τ
ρ
. The first probability in (7) is for the event that

there is no relay deployed inD; the second and third ones are
for the events that there is at least one relay inD. Note that the
probabilityQ1 is conditioned onN ≥ 1, but such a condition
can be omitted since it has no impact on the calculation ofQ1,
as shown in the appendix. Particulary the second probability is
for the event that thei-th relay can detect the source message
correctly but the overall SNR at the destination cannot support
the targeted data rate; and the third one is for the event that
neither thei-th relay nor the destination can detect the source
message. The following theorem provides an exact expression
and a high-SNR approximation for the outage probability.
Theorem 1: The outage probability achieved by an en-

ergy harvesting cooperative protocol with a randomly cho-
sen relay is given by (8), wherefx0 = 1

1+dα e
−(1+dα)x0

and q(r, θ) ,

√

(1+(r2+d2−2rd cos(θ))
α
2 )(1+rα)(ǫ−x0)

η
. For the

special case ofα = 2 and RD << d, the outage prob-
ability can be approximated at high SNR as in (9), where
a1 = (1−(1+d2)ǫ), e1 = − 1

4 (ψ(1) + ψ(2)) andψ(·) denotes
the psi function.

Proof: See the appendix.
Note that the exact expression of the outage probability shown
in (8) is applicable for any choices ofα and distances.
However, such a general expression is very complicated since
it contains multiple integrals. Therefore the use of such an
involved expression is not helpful for developing insights
about the fundamental limits of energy harvesting relaying,
which motivates the studies for the special case withα = 2
and RD << d, i.e. the radius ofD is much smaller than
the source-destination distance. Numerical results demonstrate
that the approximated analytical results in Theorem 1 are
accurate whend > 5RD, as can be seen in Section IV.
Theorem 1 can be used to study the diversity gain achieved
by the energy harvesting cooperative scheme, as shown in the
following corollary.
Corollary 1: For the special case withα = 2, RD << d

and N ≥ 1, the diversity gain achieved by the energy
harvesting cooperative protocol with a randomly chosen relay
is 2.

Proof: WhenN ≥ 1, the first factor in (9) can be ignored,
as explained in the proof for Theorem 1. Therefore by applying
ǫ → 0, the corollary can be obtained in a straightforward
manner.
Recall that in a conventional cooperative network, the use of
a randomly chosen relay will also yield a diversity gain of
2 [14]. Corollary 1 states that the use of energy harvesting
relays will not decrease the diversity gain of cooperative
protocols. However, an important observation from (9) is that
the dominant factor in the expression for the outage probability
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P =
(

1− e−(1+dα)ǫ
)

e−πR
2
D
λφ +

(

1− e−πR
2
D
λφ

)

πR2
D

∫ ǫ

0

∫ RD

0

∫ 2π

0

e−(1+rα)ǫ (1− 2q(r, θ)K1 (2q(r, θ)))

×rdrdθfx0 (x0)dx0 +
2

R2
D

(

1− e−πR
2
D
λφ

) ∫ RD

0

(

1− e−(1+dα)ǫ
)(

1− e−(1+rα)ǫ
)

rdr, (8)

P ≈ (1 + d2)ǫe−πR
2
D
λφ − ηa1

4R2
D

[

R2
D(R

2
D + 2)

(
(1 + d2)2ǫ2

η2
ln

(1 + d2)ǫ

η
− (1 + d2)2ǫ2

η2

)

+
(1 + d2)2ǫ2

η2
(9)

×
(
(1 +R2

D)
2 ln(1 +R2

D) + 4e1R
2
D(R

2
D + 2)

)] (

1− e−πR
2
D
λφ

)

+
1

2
(R2

D + 2)(1 + d2)ǫ2
(

1− e−πR
2
D
λφ

)

,

at high SNR is−ǫ2 ln ǫ, or equivalently lnSNR
SNR2 . Therefore,

the use of energy harvesting relays will cause the outage
probability to decrease at a rate oflnSNR

SNR2 , whereas a faster
decaying rate of 1

SNR2 can be realized in a conventional
cooperative network.

B. Relay selection based on the second order statistics of the
channels

For many practical communication scenarios, it is realistic
to obtain the second order statistics of wireless channels.
Such information is determined by the distance between the
transceivers and changes more slowly compared to small scale
multi-path fading. In this section, we will focus on the impact
of relay selection on the outage probability when the second
order statistics of the channels are known. To make meaningful
conclusions, we assumeN ≥ 1, α = 2, and RD << d,
the same conditions as in Theorem 1. With these conditions,
intuition suggests that the optimal strategy of relay selection is
to find the relay closest to the source, which can be confirmed
in the following proposition.

Proposition 1: AssumeN ≥ 1, α = 2 and RD << d.
Selecting a relay that is closest to the source minimizes the
outage probability at high SNR.

Proof: See the appendix.
As can be seen from Proposition 1, the criterion for relay
selection is based only on the source-relay distances. This
is due to the assumptionRD << d which leads to the
approximation that all relay-destination distances are the same.

By using the density function of the shortest source-relay
distance, we can obtain the following theorem about the di-
versity gain achieved by the proposed relay selection scheme.

Theorem 2: Assumeα = 2, RD << d andN ≥ 1. The
diversity gain achieved by the relay selection scheme based
on the second order statistics of the channel is2.

Proof: See the appendix.
The exact expression of the outage probability is difficult
to obtain, since the use of the relay closest to the source
makes the density function of the source-relay channel more
complicated. Therefore, in Theorem 2 we can obtain the diver-
sity order only after applying high-SNR asymptotic analysis.
Surprisingly the knowledge of the second order statistics of
the channels is not helpful for improving the diversity order.

However, it is worth pointing out that the use of this CSI
knowledge can improve the outage performance compared to
the scheme with a randomly chosen relay, as can be seen in
Section IV.

C. Distributed beamforming

When global CSI is available at the source and the re-
lays, an optimal strategy for using the available relays is
to apply distributed beamforming, analogous to single-input
multiple-output scenarios in which maximal ratio combining
is optimal. Again we assume that there areN ≥ 1 relays
in D, andN = {1, . . . , N}. Denote the group of qualified
relays that can decode the source message correctly byS̃,
and the group containing the remaining relays byS̃c, i.e.
N = S̃ ∪ S̃c. Note that it is possible that one of the two
sets is empty. The transmission strategy for a qualified relay
is as follows. The relayi, i ∈ S̃, will transmit g∗i Pri√

ξ(1+cα
i
)
s,

whereξ =
∑

i∈S̃
|gi|2Pri

(1+cα
i
) . The power normalization factorξ

is to enure that the transmission power of the relayi is always
less thanPri. With such beamforming, during the second time
slot, the destination observes

yD =




∑

i∈S̃

gi
√
1 + cαi

g∗i Pri
√

ξ(1 + cαi )



 s+ nD. (10)

By applying MRC over two time slots, the resulting SNR at
the destination will be

SNRS̃ =
|hd|2
1 + dα

P +
∑

i∈S̃
η

|gi|2
1 + cαi

( |hi|2
1 + dαi

P − τ

)

. (11)

DefineΠn as a set containing all possible partitions yielding
distinct pairs of S̃ and S̃c. The overall outage probability
conditioned onN ≥ 1 is given by

PN =
∑

Πn

P
(
1

2
log(1 + SNRS̃) < R, xi > ǫ, i ∈ S̃, (12)

xj < ǫ, j ∈ S̃c
)

.

In conventional cooperative networks, the SNR at the desti-
nation is independent of the source-relay channels, which is
no longer the case in the energy harvesting network consid-
ered here. Definezi ,

|gi|2
1+cα

i

(
|hi|2
1+dα

i

P − τ
)

, and the outage
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probability of the considered energy harvesting network then
becomes

PN =
∑

Πn

E
x0<ǫ

{

P
(

n∑

i=1

zi <
τ − x0P

η
, xi > ǫ, i ∈ S̃

)}

︸ ︷︷ ︸

Q5

× P
(

xj < ǫ, j ∈ S̃c
)

, (13)

where E{·} denotes the expectation operation. As can be
observed from the proofs for Theorems 1 and 2, it is quite
difficult to find an exact expression of the pdf forzi. The
outage probability in (13) requires not only the pdf ofzi but
also the pdf of

∑n

i=1 zi. Therefore finding an exact expression
for this outage probability is difficult. In order to obtain the
diversity order achieved by distributed beamforming, we can
first develop lower and upper bounds on the outage probability
in (13) and then show that the bounds converge in the high
SNR regime. These two steps will result in the following
theorem.
Theorem 3: Assumeα = 2, RD << d andN ≥ 1. In

an energy harvesting network with randomly deployed relays,
the use of distributed beamforming achieves the maximum
diversity gain(N + 1).

Proof: See the appendix.
As can be observed from Theorem 3, the full diversity gain can
still be achieved, even though the relaying transmissions are
powered by the energy harvested from the relay observations.

III. E NERGY HARVESTING COOPERATIVE NETWORKS

WITH MULTIPLE SOURCES

In this section, we will consider a more general cooperative
scenario in whichM sources communicate with a common
destination viaN energy harvesting relays. Similar to the
previous section, the cooperative transmission consists of two
phases. During the first phase, theM sources first broadcast
their messages, denoted bysm for sourcem, via orthogonal
channels. During the second phase, theN relays will form
M disjoint groups to help theM sources via the orthogonal
channels. Distributed beamforming will be carried out among
the relays from the same group since it can achieve the
maximum diversity gain as described in the previous section.
Therefore a relay in a group to help them-th source, denoted
by Sm, will send the following message:

sRi,i∈Sm
=

{
g∗i

√
Pmi

|gi|
√

1+cα
i

sm, if
|hmi|2
1+dα

mi
P ≥ τ

0, otherwise
, (14)

where the transmission power of the relay is powered by
the energy harvested from its incoming signal, i.e.Pmi =

max
{

0, η
(

|hmi|2
1+dα

mi

P − τ
)}

as shown in (4),dmi is the dis-
tance between them-th source and thei-th relay andhmi is
the corresponding multi-path fading channel coefficient.

For the considered multi-source scenario, the relays can
be viewed as a type of scarce resource, where the sources
compete with each other to get help from the relays. Such a
competition can be modeled as a coalition formation game.
Particularly, denote byN , {1, . . . , N} the set of all relays

and similarly byS the set of all source nodes. LetSm be a
coalition consisting of them-th source and the relays that are
willing to help this source. Therefore

∑M

m=1
¯̄Sm = (N +M)

and1 ≤ ¯̄Sm ≤ (N + 1), where ¯̄Sm denotes the cardinality of
Sm. A network partition is defined asΠ = {S1, . . . ,SM}

A. A baseline approach without considering user fairness

The receive SNR is an important parameter since it deter-
mines the data rate as well as the reception reliability. Given
that the relays inSm perform distributed beamforming, the
SNR for them-th source message at the destination is given
by

SNRSm
,

P |hdm|2
1 + dα0m

+
∑

i∈Sm

Pmi|gi|2
1 + cαi

, (15)

whered0m denotes the distance between them-th source and
the destination andhdm denotes the corresponding small scale
fading channel. A straightforward approach to opportunisti-
cally use the relays is to define the payoff function for the
i-th relay to joinSm as follows:

φi(Sm) = SNRSm
− SNRSm�i − c(Sm) (16)

=
Pmi|gi|2
1 + cαi

− c(Sm),

whereSNRSm�i denotes the SNR achieved by removing the
i-th relay from the coalitionSm. The cost,c(Sm), is related
to the size of the coalition, and in this paper we assume that
the cost is proportional to the number of relays performing
distributed beamforming, i.e.,c(Sm) = κ|S̃m|, where κ is
a coefficient to measure the cost to coordinate distributed
beamforming and̃Sm ∈ Sm contains all the relays inSm that
can decodesm correctly. Therefore the value of each coalition
is given by

v(Sm) =
∑

i∈Sm

φi(Sm). (17)

The above definitions of the payoff and the coalition value
leads to a solution that does not consider the fairness among
the users, as illustrated by the following example. Consider
a scenario withM = 2 sources andN = 2 relays, where
there is no direct link between the sources and destination,
i.e. hdm = 0. Assume that the first relay has a very good
connection to the first source, but no connection to the second
source, e.g.,φ1(S1) = 1000 andφ1(S1) = 0, where the cost
has been ignored. The channel condition between the second
relay and the first source is slightly better than that between
the second relay and the second source, e.g.,φ2(S1) = 50
andφ2(S2) = 49. The definitions in (16) and (17) imply that
the second relay will joinS1. However, the contribution of
the second relay inS1 is insignificant due to the fact that
φ1(S1) = 1000, whereas including the second relay inS2

is important to achieve better fairness among the users. This
observation motivates the following approach which achieves
a better tradeoff between the system performance and fairness.
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B. A user-fairness coalition formation approach

In order to take user fairness into consideration, consider
the following alternative definition of the payoff functionfor
the i-th relay joiningSm:

φi(Sm) =
SNRSm

− SNRSm�i

SNRSm

− c(Sm). (18)

And the value of the coalition isv(Sm) =
∑

i∈Sm
φi(Sm).

Compared to the definition in (16), the one in (18) can take
the user fairness into consideration, and encourage the relays
to help the sources that need the help more desperately. We
consider the same example as in the previous section, i.e.,
P11|g1|2
1+cα1

= 10000, P21|g1|2
1+cα1

= 0, P12|g2|2
1+cα2

= 50, P22|g2|2
1+cα2

=

49, c(Sm) = 0 andhdm = 0. In such a case, the first relay
always joinsS1. Based on the definition in (18), the payoffs
for the second relay to joinS1 and S2 are φ2(S1) = 50

1050
and φ2(S2) = 1, respectively. Therefore the use of the new
payoff function in (18) can ensure that the second relay joins
S2 and help the second source which is in a critical situation
of an outage. Additional properties of the proposed fairness
approach will be discussed in the following subsection. Note
that there are other possible payoff functions other than the
ones shown in (16) and (18). The benefit of using these two
payoff functions is two-fold. One is that these payoff functions
are based on SNRs which are important parameters directly
related to various metrics for performance evaluation, such as
the data rate and the outage probability. The other is that these
payoff functions are linear functions of the SNRs, and hence
can be easily used to analyze the various properties of the
addressed games, as shown in the next sub-section.

C. A distributed coalition formation algorithm

Based on the definitions in (16) and (18), one can observe
that the payoff of a relay depends only on the members
of the coalition in which this relay is located. Therefore
the proposed coalitional game can be modeled as a hedonic
coalition formation game, in which the coalition formation
process is accomplished by applying preference relations [15],
[16]. Particulary for any relayi ∈ N , consider two coalitions
Sm andSn, wherei ∈ Sm andi ∈ Sn. The preference relation,
denoted bySm ≺i Sn , implies that the relay prefers to join
Sn instead ofSm. In according with [16], we use the following
two criteria to determine the preference relation

Sm ≺i Sn ⇔







C1: φi(Sm) < φi(Sn)
C2: v(Sm) + v(Sn�{i})

< v(Sm�{i}) + v(Sn)
, (19)

whereS�{i} denotes a subset ofS created by removing the
nodei. The motivation to have the first criterion in (19) is that
each relay tries to maximize its own individual benefit. And
the second criterion in (19) is to impose a constraint that the
overall network benefit will not be reduced if the relay moves
from Sm to Sn. These two criteria could be conflicting. For
example, a relay wants to move fromSm to Sn since its payoff
will be increased, but such a move may be blocked since it
will reduce the overall network benefit. However, the following
proposition demonstrates that for some critical situations, C1

is a sufficient condition for C2, i.e. a satisfaction of C1 will
lead to a satisfaction of C2.

Proposition 2: Consider a scenario in which̄̄Sm > 2, ¯̄Sn =
2, i ∈ Sm, andi ∈ Sn. The cost for cooperation is ignored, i.e.
c(Sm) = 0. If φi(Sm) < φi(Sn), thenv(Sm)+v(Sn�{i}) <
v(Sm�{i}) + v(Sn) also holds.

Proof: See the appendix.
The situation described in Proposition 2 is critical, as

described in the following. The relayi has a choice to help one
of two sources, i.e. sourcesm andn. The condition ¯̄Sn = 2
means that then-th source does not get any help except from
the relayi. The conditionφi(Sm) < φi(Sn) means that the
relay wants to move fromSm to Sn, since its payoff will be
increased. Such a move is critical to then-th source since its
SNR will be zero if such a move is rejected. Proposition 2
illustrates that such a move will be guaranteed.

By using the conditions in (19), a distributed coalition
formation algorithm can be described as follows. During the
initialization phase, the relays are randomly assigned to the
M sources. During the iteration phase, each relay takes its
turn to determine whether to stay in the same coalition or
join a new coalition based on the criteria in (19). Compared
to Eq. (12) in [16], the conditions for the preference relation
in (19) are weaker in the sense that assigning the relayi to
a coalition will reduce the payoffs of other players in the
same coalition. But the conditions in (19) are sufficient to
ensure the convergence of the proposed algorithm, which can
be shown by using the criterion of Nash-stability. Recall that
a partition Π = {S1, . . . ,SM} is Nash stable if∀i ∈ N
s.t. i ∈ Sm, (Sm,Π) ≻i (Sk ∪ {i},Π′) for any Sk with
Π′ = (Π�{Sm,Sk}∪{Sm�{i}}). The following proposition
can demonstrate the convergence of the proposed scheme.

Proposition 3: Starting from any initial partition, the pro-
posed coalition formation algorithm always converges to a
final network partition, and this final partition is Nash stable.

Proof: The key step for the proof is to observe that
the overall network benefit is always non-decreasing after
each iteration, because of the second criterion in (19). With
this observation and following similar steps as in [16], the
proposition can be proved.

IV. N UMERICAL RESULTS

To demonstrate the performance of the proposed energy
harvesting cooperative schemes, we present some numerical
studies and evaluate the developed analytical results in two
different scenarios. The numerical results are obtained by
carrying out Monte Carlo simulations, and the number of
simulation runs for all figures except Fig. 2 is105, whereas
108 simulation runs are used for Fig. 2.

A. Energy harvesting cooperative networks with one source

In Fig. 2, the performance of the energy harvesting trans-
mission scheme with a randomly chosen relay is depicted.
Particularly the targeted data rate isR = 0.1 bit per channel
use (BPCU), the energy harvesting efficiency coefficient is
η = 0.5, the path loss exponent isα = 2 and the radius
of D is RD = 1.5m. The number of relays inD is Poisson
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distributed with the parameterλφ = 1. As can be observed
from the figure, the analytical results developed in Theorem
1 are very close to the simulations, particularly at high
SNR. In addition, the performance of a non-cooperative direct
transmission scheme has also been shown. As can be seen
from Fig. 2, the use of energy harvesting relays is helpful to
improve the reception reliability at the destination. Particularly
the slope of the outage probability curve for the cooperative
scheme is larger than that of the non-cooperative one, which
means that a larger diversity gain can be achieved by the
cooperative scheme.
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Non cooperative scheme, d=10m
Cooperative scheme, d=10, simulation
Cooperative scheme, d=10, analytical
Non cooperative scheme, d=8m
Cooperative scheme, d=8m, simulation
Cooperative scheme, d=8m, analytical

Fig. 2. Outage probability versus SNR with a randomly chosenrelay. The
targeted data rate isR = 0.1 BPCU. The energy harvesting efficiency is
η = 0.5, the radius ofD is RD = 1.5m, and the node density isλφ = 1.
Solid lines are for simulation results and dashed lines are for the analytical
results developed in Theorem 1.

In Fig. 3, the three different strategies using the available
relays are compared, when the targeted data rate isR = 1
BPCU, the source-destination distance is5m, the radius ofD
is RD = 2.5m and the other parameters are the same as in
Fig. 2. Compared to the setup used in Fig. 2, the ratio between
the source-destination distance and the radius ofD is reduced
in order to examine the performance of the proposed relaying
schemes for the case other thanRD << d. The impact of
different numbers of relays inD on the outage performance is
shown in the two figures. Theorem 2 states that when only
the second order statistics of the channels are known, the
achievable diversity gain is2, no matter how many relays there
are in D. In Fig. 3, it is clear that the slopes of the outage
curves for the distance based scheme with different numbersof
relays are the same, which confirms Theorem 2. However, it is
worth pointing out that the use of the second order statistics
of the channels can still yield an outage performance gain
compared to the case with a randomly chosen relay. On the
other hand, the use of distributed beamforming can ensure that
the achievable diversity gain is proportional toN , as can be
observed from the figures. Such an observation confirms the
analytical results developed in Theorem 3.

The developed analytical results for the diversity gains
shown in Theorem 1, 2 and 3 are based on the assumption
α = 2, and in Fig. 4, we use computer simulations to
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(a) η = 0.5
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(b) η = 1

Fig. 3. Outage probability achieved by different strategies of using the
available relays.R = 1 BPCU,RD = 2.5m andd = 5m. All the curves are
based on simulation results.

demonstrate the impact of the path loss exponent on the outage
performance. As can be seen from the figure, by increasing
the path loss exponent, the outage performance achieved by
all the relaying protocols is degraded. However, an important
observation is that the slope of the outage probability curves
stays the same. Take the beamforming scheme as an example.
By increasing the value ofα, the outage probability curve is
shifted to the right, and its slope stays the same. Therefore,
Fig. 4 has demonstrated that our developed diversity results
are most likely valid even ifα > 2, although we still do not
have a formal proof of this.

B. Energy harvesting cooperative networks with multiple
sources

In this subsection the energy harvesting scenario with
multiple source nodes will be considered, and the perfor-
mance of the proposed coalition formation algorithms will
be evaluated. The relays are randomly located inside the disc
D. The radius ofD is RD = 5m and the origin ofD is
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Non−cooperative scheme
Random relay selection
Selection based on distance
Beamforming

Dashed lines for the case of α=2
Dotted lines for the case of α=3
Solid lines for the case of α=4

Fig. 4. The impact of the path loss exponentα on the outage performance
of the energy harvesting relaying protocols.R = 1 BPCU.RD = 2.5m and
d = 5m. All the curves are based on simulation results.

located at(RD, RD). We focus on the case with4 sources,
which are located at(12RD, RD), (RD, 12RD), (32RD, RD) and
(RD, 32RD), respectively. The common destination is located
at (RD + d,RD) and d = 10m. In Fig. 5, we evaluate the
performance of two coalition formation schemes based on
different payoff functions defined in (16) and (18), termed the
Baseline Scheme and the Proposed Scheme, respectively. The
energy harvesting efficiency isη = 1 and the cost coefficient
is κ = 0.001. Different choices of the number of relays
and the targeted data rate are also shown in the figures. As
can be observed from the figure, by increasing the targeted
data rate, the outage performance achieved by both coalition
formation algorithms is reduced. When increasing the number
of relays, i.e. increasing the value ofN , there are more relays
to help source transmissions, and therefore one can expect that
the outage performance achieved by both schemes should be
improved, which can be confirmed by the two figures.

Another observation from the two figures is that the payoff
function in (18) can yield better outage performance compared
to the one based on (16). The reason for such a performance
gain is that the payoff function in (18) can efficiently capture
how significantly a relay contributes to a coalition. Particularly
the payoff function in (18) evaluates the ratio between the
SNR gain that a relay can bring to a coalition and the overall
SNR achieved by the coalition. In the case that the overall
SNR of one coalition is already large enough, the payoff
function in (18) encourages the relay to find an alternative
coalition in which this relay’s help is more significant. As
a result, such a payoff function can ensure balanced relay
allocation among the sources. As discussed in Proposition
2, the proposed coalition formation algorithm based on (18)
can avoid the unfair situations in which all relays join one
coalition, while other coalitions do not get any help from the
relays.

In Fig. 6, the convergence of the proposed coalition forma-
tion algorithm is studied, where the targeted data rate is set as
R = 1 BPCU,N = 8 and the other parameters are the same
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(a) N = 8
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(b) N = 4

Fig. 5. Outage probability achieved by the proposed coalition formation
algorithms. The cost for coordinating node cooperation isκ = 0.001, RD =

5m andd = 10m. All the curves are based on simulation results.

as in Fig. 5. As can be seen from the figure, the proposed
coalition formation algorithm can converge quickly, whichis
important to reduce the delay and computational complexityof
the energy harvesting cooperative system. In Fig. 7, the impact
of different choices of the cost coefficientκ on the outage
performance is shown. As can be observed from the figure,
increasing the value of the cost coefficient will reduce the
outage probability, which can be explained as follows. By in-
creasing the value ofκ, the coordination of the same coalition
will result in more system overhead, which implies that each
source prefers to reduce the coalition size. As a result, each
source will have fewer relays to help its transmission, which
causes the degradation of the outage performance. In Fig. 8,
the outage probability is shown as a function ofκ, where the
choices ofκ are

[
0.001 0.005 0.01 0.05 0.1 0.5 1

]
.

Again we observe that the outage probability will be increased
by enlarging κ, similar to the observations from Fig. 7.
An interesting observation is that the outage probability is
sensitive to the choice ofκ whenκ is of the order of0.001,
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whereas the outage probability curves are quite flat forκ of
the order of0.01.
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Fig. 6. The convergence of the proposed coalition formationalgorithm.
R = 1 BPCU.κ = 0.001 andN = 8. All the curves are based on simulation
results.
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Fig. 7. The impact of the cost coefficientκ on the performance achieved
by the proposed coalition formation algorithm.R = 1 BPCU andN = 8.
All the curves are based on simulation results.

V. CONCLUSION

In this paper, we have considered the application of wire-
less information and power transfer to cooperative networks
with spatially random relays. When there is a single source-
destination pair in the network, we have proposed three
different strategies to use the available relays, and theirimpact
on the outage probability and diversity gain has been character-
ized by applying stochastic geometry. When there are multiple
sources, relay allocation among the users has been modeled as
a coalition formation game, and two distributed game theoretic
algorithms have been developed based on different payoff
functions. Most of the analytical results developed in thispaper
rely on the assumption that the relays are located far away
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Fig. 8. The impact of the cost coefficientκ on the performance achieved
by proposed coalition formation algorithm.R = 1 BPCU andN = 8. All
the curves are based on simulation results.

from the destination, where a promising future direction isto
characterize the outage performance for cooperative networks
in a more general topology. A relevant topic of interest is
whether it is more beneficial to use the relays deployed close
to the source, compared to the ones close to the destination.
A useful observation is that the source-relay channel not only
affects the reliability of the transmission from the sourceto
the relay, but also plays an important role for the transmission
from the relay to the destination, since the relay transmission
power is determined by the source-relay channel condition.
In addition, it is promising to study the use of amplify-and-
forward (AF) strategies at the relays. The use of AF will
significantly complicate the determination ofθi. Thus, it will
be important to find the optimal choice ofθi in this case and
also to understand the corresponding outage performance.

Note that this paper has considered the strategy of si-
multaneous information and power transfer, and this strategy
can be more energy efficient compared to the decoupled
strategy, in which some sources send only information and
the other sources are placed only to deliver energy. Take the
cooperative network described in Section II as an example,
i.e. one source-destination pair with multiple relays. When the
source broadcasts its message, some relays can first use part
of their observations for decoding, and then carry out energy
harvesting by using the rest after successful decoding. As a
result, the energy broadcast by the source can be fully used.
On the other hand, the energy efficiency of the system will
be reduced if we consider the decoupled strategy, since the
potential energy remaining in the relay observations cannot
be used efficiently.
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APPENDIX

Proof of Theorem 1 :Recall that theN relays are deployed
in D according to a homogeneous Poisson point process.
Therefore theN relays can be modeled as a set of independent
and identically distributed points in the discD, denoted byWi.
The pointWi contains the location information about the relay,
from which the source-relay and relay-destination distances
can be calculated. And the probability density function (pdf)
of each pointWi is given by [11], [17]

pWi
(wi) =

λφ

µ(D)
=

1

πR2
D
.

By using this density function, the probability in (7),Q1, can
be re-written as

Q1 = P (x0 + ηyi (xi − ǫ) < ǫ, xi > ǫ) (20)

= P
(

yi <
ǫ− x0

η(xi − ǫ)
, xi > ǫ

)

=

∫ ǫ

0

∫

D

∫ ∞

ǫ

(

1− e
−(1+cαi )

ǫ−x0
η(t−ǫ)

)

(1 + dαi )e
−(1+dαi )tdt

︸ ︷︷ ︸

Q2

× pWi
(wi)dwifx0(x0)dx0,

where fx0(x0) is the pdf of x0. Since x0 = |hd|2
1+dα and

hd is assumed to be complex Gaussian distributed, we have
fx0(x0) = (1 + dα)e−(1+dα)x0 . Note that the parameterdi
is determined by the location of the relay, i.e.Wi, as shown
later.

To obtain a closed-form expression, the integralQ2 can be
first re-written as follows:

Q2 = e−(1+dαi )ǫ −
∫ ∞

0

e−
(ǫ−x0)(1+cα

i
)

ηz (21)

×(1 + dαi )e
−(1+dαi )(z+ǫ)dz

= e−(1+dαi )ǫ − (1 + dαi )e
−(1+dαi )ǫ

×
∫ ∞

0

e−
(ǫ−x0)(1+cα

i
)

ηz e−(1+dαi )zdz.

Now applying [Eq.3,324] in [18], the integral can be expressed
as follows:

Q2 = e−(1+dαi )ǫ

(

1− 2

(√

(1 + cαi )(1 + dαi )(ǫ− x0)

η

)

×K1

(

2

√

(1 + cαi )(1 + dαi )(ǫ − x0)

η

))

, (22)

where Kn(·) denotes the modified Bessel function of the
second kind. Givendi, the source-relay distance,d, the source-
destination distance and the angle∠RiSD, denoted byθi, the
relay-destination distance is given by

c2i = d2i + d2 − 2did cos(θi).

By using the above relationship, the probabilityQ1 can be
written as follows:

Q1 =

∫ ǫ

0

∫

D

e−(1+dαi )ǫ (1− 2q(di, θi)K1 (2q(di, θi)))

× pWi
(wi)dwifx0(x0)dx0.

where q(di, θi) is defined as q(di, θi) ,
√

(1+(d2i+d2−2did cos(θi))
α
2 )(1+dα

i
)(ǫ−x0)

η
. By using the

homogenous Poisson point process assumption and converting
to polar coordinates, we have

Q1 =
1

πR2
D

∫ ǫ

0

∫ RD

0

∫ 2π

0

e−(1+rα)ǫ (1− 2q(r, θ) (23)

× K1 (2q(r, θ))) rdrdθfx0 (x0)dx0.
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On the other hand, the probability of the event that both
source-relay and source-destination channels are poor is given
by

P(x0 < ǫ, xi < ǫ) (24)

=

∫

D

(

1− e−(1+dα)ǫ
)(

1− e−(1+dαi )ǫ
)

pWi
(wi)dwi

=
2

R2
D

∫ RD

0

(

1− e−(1+dα)ǫ
)(

1− e−(1+rα)ǫ
)

rdr,

from which the third probability in (7) can be obtained. Recall
that from the Poisson distribution, we have

P (N = 0) = e−πR
2λφ .

Combining the above equation with (7), (23) and (24), the first
part of the theorem is proved.

To obtain the high SNR approximation, we first recall that
the use of the series representation of Bessel functions yields
the following [18]:

xK1(x) ≈ 1 +
x2

2

(

ln
x

2
+ c0

)

,

wherec0 = −ψ(1)
2 − ψ(2)

2 . An important observation is that
provided the transmission power is sufficient large,q(di, θi) →
0. By using this observation, the integralQ2 can be approxi-
mated as follows:

Q2 = e−(1+dαi )ǫ − e−(1+dαi )ǫ2q(di, θi)K1 (2q(di, θi))

≈ e−(1+dαi )ǫ − e−(1+dαi )ǫ
(
1 + 2q2(di, θi)

× [ln q(di, θi) + c0])

= −e−(1+dαi )ǫ
(
2q2(di, θi) [ln q(di, θi) + c0]

)

≈ −2q2(di, θi) [ln q(di, θi) + c0] , (25)

where the last step is obtained by applyingǫ → 0. Conse-
quently, a high-SNR approximation for the probabilityQ1 is
given by

Q1 ≈ − 2

πR2
D

∫ ǫ

0

∫ RD

0

∫ 2π

0

q2(r, θ) [ln q(r, θ) + c0] (26)

× rdrdθfx0 (x0)dx0.

When RD << d, all the relay-destination distances are
approximately the same as the source-destination distance, i.e.
ci ≈ d, ∀i ∈ {1, . . . , N}. With this approximation, we have

q(di, θi) ≈
√

(1 + dα)(1 + dαi )(ǫ − x0)

η
.

When the transmission power becomes infinite,ǫ goes to zero,
so asǫ − x0, sincex0 ≤ ǫ. As a result, the factorq(di, θi)
goes to zero when the transmission power becomes infinite.
By using this approximation, the probabilityQ1 in (7) can
now approximated as in (27), whereb0 = (1+d2)(ǫ−x0)

η
and

the second equation follows from the assumptionα = 2.
After some algebraic manipulations, the probabilityQ1 can
be approximated as in (28). For the special case ofα = 2,

the third probability in (7) can be obtained by applying the
following:

P(x0 < ǫ, xi < ǫ)

=
1

R2
D

∫ R2
D

0

(

1− e−(1+d2)ǫ
)(

1− e−(1+z)ǫ
)

dz

=
1

R2
D

(

1− e−(1+d2)ǫ
)(

R2
D − e−ǫ

1

ǫ

(

1− e−R
2
D
ǫ
))

≈ 1

R2
D
(1 + d2)ǫ

(

R2
D − (1− ǫ)

(

R2
D − 1

2
R4

Dǫ

))

=
1

2
(R2

D + 2)(1 + d2)ǫ2. (29)

Combining (8), (28) and (29), the second part of the theorem
can be proved. �

Proof of Proposition 1 :The starting point of the proof is to
treat the source-relay distances as constants and average out
the small scale fading channels in the expression for the outage
probability. Then the proof is completed by showing that the
outage probability is a decreasing function of the distance.
Particularly, because ofN ≥ 1, P(N = 0, Px0 < τ) = 0, and
the outage probability can be obtained from (7) as follows:

P̃ =

∫ ǫ

0

e−(1+dαi )ǫ (1− 2q(di, θi)K1 (2q(di, θi))) (30)

×fx0(x0)dx0 + P(x0 < ǫ, xi < ǫ),

wheredi andci have been treated as constants. Following steps
similar to those used in the proof of Theorem 1, the outage
probability can be approximated as follows:

P̃ ≈ −e2(1 + d2)ǫ2

2

[

ln ǫ− 1

2
+ ln e2 + 2c0

]

(31)

+(1 + d2)(1 + d2i )ǫ
2,

where e2 =
(1+dα)(1+dαi )

η
. The derivative of the outage

probability in terms ofdi is given by

∂P̃
∂di

≈ −2di(1 + d2)2ǫ2

2η

[

ln ǫ− 1

2
+ ln

(1 + dα)(1 + dαi )

η
+ 2c0

]

− e2(1 + d2)ǫ2

2

[

ln ǫ− 1

2
+

2di
(1 + dαi )

+ 2c0

]

+ 2(1 + d2)diǫ
2

≈ −2di(1 + d2)2ǫ2

2η
ln ǫ − e2(1 + d2)ǫ2

2
ln ǫ < 0,

which demonstrates that the outage probability is a decreasing
function of the source-relay distance. And the proof is
completed. �

Proof for Theorem 2 :Conditioned on the densityλφ, denote
Ri∗ as the relay that is closest to the source, andfdi∗ (r) as
the pdf of the corresponding shortest distance. The probability
Pdi∗ (di∗ > r) can be interpreted as the event that there is no
relay located in the disc, denoted asDr, with the source at its
origin andr as its radius. Consequently we have

Pdi∗ (di∗ > r) =
(µ(Dr))ke−µ(Dr)

k!

∣
∣
∣
∣
k=0

= e−πλφr
2

. (32)
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Q1 ≈ − 2

πR2
D

∫ ǫ

0

∫ RD

0

∫ 2π

0

b0(1 + rα)

[
1

2
ln(b0(1 + rα)) + c0

]

rdrdθfx0 (x0)dx0 (27)

= − 2

R2
D

∫ ǫ

0

∫ R2
D

0

b0(1 + z)

[
1

2
ln(b0(1 + z)) + c0

]

dzfx0(x0)dx0

= − 2

R2
D

∫ ǫ

0

1

b0

∫ b0(1+R
2
D
)

b0

t

[
1

2
ln t+ c0

]

dtfx0(x0)dx0,

Q1 ≈ − 2

R2
D

∫ ǫ

0

1

b0

[
1

4

(

b20(1 +R2
D)

2 ln(b0(1 +R2
D))− b20 ln b0 −

1

2
b20R

2
D(R

2
D + 2)

)

+
c0

2
b20R

2
D(R

2
D + 2)

]

fx0(x0)dx0

= − ηa1

2R2
D

[

R2
D(R

2
D + 2)

(
1

2

(1 + d2)2ǫ2

η2
ln

(1 + d2)ǫ

η
− 1

2

(1 + d2)2ǫ2

η2

)

(28)

+
(1 + d2)2ǫ2

2η2
((1 +R2

D)
2 ln(1 +R2

D) + 4e1R
2
D(R

2
D + 2))

]

.

On the other hand, the probabilityPdi∗ (di∗ > r) can be
expressed as

Pdi∗ (di∗ > r) = Pdi∗ (di∗ > r,N ≥ 1)+Pdi∗ (di∗ > r,N = 0),

which leads to

Pdi∗ (di∗ > r|N ≥ 1)

=
Pdi∗ (di∗ > r,N ≥ 1)

Pdi∗ (N ≥ 1)
(33)

=
Pdi∗ (di∗ > r) − Pdi∗ (di∗ > r,N = 0)

Pdi∗ (N ≥ 1)

=
e−πλφr

2 − e−πλφR
2
D

1− e−πλφR
2
D

.

Therefore the cumulative density function (CDF) ofdi∗ con-
ditioned onN ≥ 1 is [1− Pdi∗ (di∗ > r|N ≥ 1)], and the
corresponding pdf is given by

fdi∗ (r) = 2ζπλφre
−πλφr

2

, (34)

whereζ = 1

1−e−πλφR2
D

. Conditioned onN ≥ 1, the addressed

outage probability can be obtained from (7) as follows:

Pi = P (x0 + ηyi∗ (xi∗ − ǫ) < ǫ, xi∗ > ǫ|N ≥ 1)
︸ ︷︷ ︸

Q3

+P(x0 < ǫ, xi∗ < ǫ| ¯̄S ≥ 1). (35)

Following the steps similar to those used in the proof of
Theorem 1, the probabilityQ3 can be approximated as follows:

Q3 ≈
∫ RD

0

∫ ǫ

0

(
−2q2(r, θi) [ln q(r, θi) + c0]

)

× fx0(x0)dx0fdi∗ (r)dr

≈ − (1 + d2)ǫ2

4

∫ RD

0

b1 [2 ln b1ǫ− 1 + 4c0] fdi∗ (r)dr,

whereb1 = (1+d2)(1+r2)
η

. By applying the pdffdi∗ (r) in (34),
the probability can be approximated as in (36), whereb3 =

2
∫ 1+R2

D

1
ln (1+d2)y

η
e−πλφydy and b4 = 1

π2λ2
φ

(γ(2, πλφ(1 +

R2
D))− γ(2, πλφ)).
On the other hand, we have

P(x0 < ǫ, xi∗ < ǫ|N ≥ 1) (37)

≈2πλφζ(1 + d2)ǫ2
∫ RD

0

(1 + r2)re−πλφr
2

dr

=ζ(1 + d2)ǫ2

(

1− (1 +R2
D)e

−πλφR
2
D +

1

πλφ
− e−πλφR

2

πλφ

)

,

where the approximation is obtained via(1 − e−x) ≈ x for
x → 0. Therefore, conditioned onN ≥ 1, an asymptotic
expression for the outage probability is given by

Pi ≈ −πλφζ(1 + d2)2ǫ2eπλφ

4η
[b3 + 2b4 ln ǫ− b4(1 − 4c0)] (38)

+

(

1− (1 +R2
D)e

−πλφR
2
D +

1

πλφ
− e−πλφR

2

πλφ

)

×ζ(1 + d2)ǫ2.

On noting that the two parametersb3 andb4 are not functions
of ǫ, the diversity gain can be obtained as follows:

− lim
P→∞

log Pi
logP

= − lim
P→∞

log
(
ǫ2 ln 1

ǫ

)

logP
= 2. (39)

And the theorem is proved. �

Proof of Theorem 3 :The proof can be completed by first
finding an upper bound of the outage probability and then
showing that the achievable diversity gain is the same as the
maximum diversity gain. The probability in (13) can be upper
bounded as follows:

Q5 ≤
n∏

i=1

P
(

zi <
τ − x0P

η
, xi > ǫ, i ∈ S̃

)

=

[

P
(

zi <
τ − x0P

η
, xi > ǫ

)]n

, (40)
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Q3 ≈ − (1 + d2)ǫ2

4

∫ RD

0

b1 [2 ln b1ǫ− 1 + 4c0] 2πλφζre
−πλφr

2

dr (36)

= −ζπλφ(1 + d2)2ǫ2eλφπ

4η

∫ 1+R2
D

1

y

[

2 ln
(1 + d2)y

η
+ 2 ln ǫ− 1 + 4c0

]

e−πλφydy

= −πλφζ(1 + d2)2ǫ2eπλφ

4η
[b3 + 2b4 ln ǫ− b4(1 − 4c0)] ,

where n = |S̃| is used for notational simplicity and the
condition i ∈ S̃ is removed sincexi > ǫ. Note that the
probability in (40) is exactly the same as (20) when treatingx0
as a constant. Therefore, following similar steps in the proof
in Theorem 1, the probabilityQ5 can be obtained as

Q5 ≈ 2n

R2n
D bn0

[
1

4

(
b20(1 +R2

D)
2 ln(b0(1 +R2

D))− b20 ln b0

−1

2
b20R

2
D(R

2
D + 2)

)

+
c0

2
b20R

2
D(R

2
D + 2)

]n

.

Define

E1 = E
x0<

x0
P

{

P

(

n
∑

i=1

zπ
S̃
(i) <

τ − x0P

η
, xπ

S̃
(i) > ǫ, 1 ≤ i ≤ n

)}

.

By first applying some algebraic manipulations toQ5, this
expectation can be written as follows:

E1 < − η

2nR2n
D

∫ (1+d2)ǫ
η

0

[β1t ln t+ β2t]
n
(a1 + ηt) dt (41)

= − a1η

2nR2n
D

n∑

k=0

(
n

k

)

βk1β
n−k
2

∫ (1+d2)ǫ
η

0

tn(ln t)kdt

− η2

2nR2n
D

n∑

k=0

(
n

k

)

βk1β
n−k
2

∫ (1+d2)ǫ
η

0

tn+1(ln t)kdt,

whereβ1 = R2
D(R

2
D + 2) andβ2 = (1 +R2

D)
2 ln(1 +R2

D) +
4e1R

2
D(R

2
D + 2). Note that

∫ ψ

0

tn(ln t)kdt = ψn+1
k+1∑

m=1

(−1)m+1 k!(lnψ)k−m+1

(k −m+ 1)!(n+ 1)m
.

By using such a result, we have

E1 ≈ − a1η

2nR2n
D
βn1

(
(1 + d2)ǫ

η

)n+1 n!
(

ln (1+d2)ǫ
η

)n

(n+ 1)!
. (42)

On the other hand, the probability of having(N − n) relays
that cannot decode the source message is given by

P
(
xπ

S̃c (j) < ǫ, 1 ≤ j ≤ N − n
)
= (P (xi < ǫ))

N−n
. (43)

Again by applying stochastic geometry, we have

P (xi < ǫ) =

∫

D

(

1− eǫ(1+d
2
i )
)

pWi
(wi)dwi (44)

=
1

πR2
D

∫ RD

0

∫ 2π

0

(

1− eǫ(1+r
2)
)

rdrdθ

=
1

R2
D

(

R2
D − e−ǫ

ǫ

(

1− e−ǫR
2
D

))

.

By applying the high SNR approximation, we obtain

P (xi < ǫ) =
1

R2
D



R2
D − e−ǫ

ǫ



1−
∞∑

j=1

(−1)j
ǫjR

2j
D

j!









≈ 1

R2
D

(

R2
D − 1− ǫ

ǫ

(

ǫR2
D − ǫ2R4

D
2

))

≈ ǫ

(

1 +
R2

D
2

)

. (45)

Now the overall outage probability can be upper bounded as
follows:

PN < −
∑

Π

ǫN+1

(

1 +
R2

D
2

)N−n
a1η

2nR2n
D
βn1 (46)

×
(
(1 + d2)

η

)n+1 n!
(

ln (1+d2)ǫ
η

)n

(n+ 1)!
.

Following steps similar to those used in the proof of
Theorem 2, it can be proved that the achievable diversity
gain is (N + 1). (N + 1) is the maximum diversity gain
for the addressed network, which can be shown by using a
conventional cooperative network to obtain the upper bound,
and the theorem is proved. �

Proof of Theorem 2 :By ignoring the cost, the value ofSm
can be written as follows:

v(Sm) =
∑

j∈Sm

SNRSm
− SNRSm�j

SNRSm

(47)

=

∑

j∈Sm

Pmj |gj |2
1+cα

j

P |hdm|2
1+dα0m

+
∑

j∈Sm

Pmj |gj |2
1+cα

j

.

And the value ofSm after removingi can be written as
follows:

v(Sm�{i}) =

∑

j∈Sm,j 6=i
Pmj |gj |2
1+cα

j

P |hdm|2
1+dα0m

+
∑

j∈Sm,j 6=i
Pmj |gj |2
1+cαj

. (48)

On the other hand, the value ofSn can be easily obtained as
follows:

v(Sn) =

Pmi|gi|2
1+cα

i

P |hdm|2
1+dα0m

+ Pmi|gi|2
1+cα

i

, (49)

and the value ofSn after removingi is zero, i.e.,v(Sn�{i}) =
0. Consequently, the overall network benefit ofSm andSn can
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be obtained as follows:

v(Sm) + v(Sn�{i}) =
∑

j∈Sm,j 6=i
Pmj |gj |2
1+cα

j

P |hdm|2
1+dα0m

+
∑

j∈Sm

Pmj |gj |2
1+cα

j

(50)

+

Pmi|gi|2
1+cα

i

P |hdm|2
1+dα0m

+
∑

j∈Sm

Pmj |gj |2
1+cα

j

,

when the relayi leavesSn and joins inSm, and

v(Sm�{i}) + v(Sn) =
∑

j∈Sm,j 6=i
Pmj |gj |2
1+cα

j

P |hdm|2
1+dα0m

+
∑

j∈Sm,j 6=i
Pmj |gj |2
1+cα

j

(51)

+

Pmi|gi|2
1+cα

i

P |hdm|2
1+dα0m

+ Pmi|gi|2
1+cα

i

,

when the relayi leavesSm and joins inSn. Sinceφi(Sm) <
φi(Sn), we have

Pmj |gi|2
1+cα

i

P |hdm|2
1+dα0m

+
∑

j∈Sm

Pmj |gj |2
1+cα

j

<

Pmi|gi|2
1+cα

i

P |hdm|2
1+dα0m

+ Pmi|gi|2
1+cα

i

. (52)

Combining (49), (50) and (52), the proposition can be proved.
�
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