1	Early to Late Maastrichtian Environmental Changes in the Indian Ocean Compared with
2	Tethys and South Atlantic
3	Paula Mateo ^{1*} , Gerta Keller ¹ , Jahnavi Punekar ¹ and Jorge E. Spangenberg ²
4	
5	¹ Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA
6	² Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015, Switzerland
7	*Corresponding author: mmateo@princeton.edu (email address); Guyot Hall, Princeton
8	University, Princeton, New Jersey 08544, USA (mailing address); +1(609)-917-4895 (phone
9	number)
10	
11	ABSTRACT: Planktic foraminiferal analysis, including species populations, diversity trends,
12	high-stress indices and stable isotopes of the latest Campanian through Maastrichtian in the
13	South Atlantic, Tethys and Indian oceans reveal four major climate and faunal events that ended
14	with the Cretaceous-Paleogene (K/Pg), formerly Cretaceous-Tertiary (K/T), mass extinction. The
15	prelude to these events is the late Campanian cooling that reached minimum temperatures in the
16	earliest Maastrichtian (base C31r) correlative with low primary productivity and species
17	diversity. Event-1 begins during the persistent cool climate of the early Maastrichtian (lower
18	C31r) when primary productivity rapidly increased accompanied by rapid species originations,

19	attributed to increased nutrient influx from increased upwelling, erosion during the sea-level fall
20	~70.6 Ma, and Ninety East Ridge volcanism. During Event-2 (upper C31r to lower C30n),
21	climate rapidly warmed by 2-3 °C in deep waters and peaked at 22 °C on land, primary
22	productivity remained high and diversification reached maximum for the entire Cretaceous. We
23	attribute this climate warming to intense Ninety East Ridge volcanic activity beginning ~69.5 Ma,
24	accompanied by rapid reorganization of intermediate oceanic circulation. Enhanced greenhouse
25	conditions due to the eruption of Deccan Phase-1 in India resulted in detrimental conditions for
26	planktic foraminifera marking the end of diversification. Global cooling resumed in Event-3
27	(C30n), species diversity declined gradually accompanied by dwarfing, decreased large
28	specialized species, increased small ecologically tolerant taxa, and ocean acidification. Event-3 is
29	mainly the result of enhanced weathering and volcanogenic CO ₂ adsorption by the oceans during
30	the preceding warm Event-2 that led to cooling and lower pH in the surface ocean. Event-4
31	marks the last 250 kyr of the Maastrichtian (C29r), which began with the largest Deccan
32	eruptions (Phase-2) that caused rapid climate warming of 4 °C in deep waters and 8 °C on land,
33	acid rain and ocean acidification leading to a major carbonate crisis preceding the K/T mass
34	extinction.

1 INTRODUCTION

38	The Maastrichtian (the last stage of the Late Cretaceous, 72.1-66.0 Ma; Gradstein et al.,
39	2012) is a 6.1-Myr time interval that experienced climate and biological extremes ranging from
40	maximum cooling to maximum warming and from maximum marine evolutionary diversity to
41	one of the largest mass extinctions in Earth's history at the Cretaceous/Tertiary (K/T; also known
42	as Cretaceous-Paleogene K/Pg) boundary (review in Keller et al., 2016a).
43	Despite this remarkable 6.1-Myr history of environmental changes, the Maastrichtian is
44	mostly known for the mass extinction. For the past 30 years, research has concentrated on the
45	K/T boundary centering on a contentious debate: was the mass extinction instantaneous and
46	caused by an asteroid impact or was it more gradual and the result of long-term environmental
47	changes with the asteroid impact the final coup de grace? There are multiple lines of evidence
48	that unquestionably support an impact on the Yucatan Peninsula, Mexico: 1) the global iridium
49	anomaly at the K/T boundary (Alvarez et al., 1980, Alvarez, 1983) that has become the hallmark
50	for all K/T mass extinction studies, 2) discovery of the impact crater on Yucatan (Hildebrand et
51	al., 1991), 3) global distribution of shocked quartz (e.g., Izett, 1990), 4) impact glass spherules
52	discovered throughout the region surrounding the Chicxulub crater (e.g., Smit et al., 1992, 1996;
53	Smit, 1999; Rocchia et al., 1996; Olsson et al., 1997; Norris et al., 1999; MacLeod et al., 2007;
54	Schulte et al., 2010; Keller et al., 2013), and 5) impact breccia in the Chicxulub crater and large

55	breccia and conglomerate deposits lacking impact glass but interpreted as generated by seismic
56	disturbance from the Chicxulub impact (e.g., Bralower et al., 1998; Arenillas et al., 2006;
57	Schulte et al., 2010). Likely environmental consequences of the Chicxulub impact have been
58	widely discussed (e.g., Schultz and D'Hondt, 1996; Tsujita, 2001; Kring, 2007; Vellekoop et al.,
59	2014). This is a formidable list of characteristics that unquestionably identify an impact on
60	Yucatan, but did this impact crash into Yucatan precisely at K/T time and cause the mass
61	extinction as widely inferred? There is stratigraphic, geochemical, sedimentary and fossil
62	evidence that indicates this impact predates the mass extinction by about 100 kyr (Keller, 2014,
63	and references therein). This is a key issue in this ongoing debate over the cause of the K/T mass
64	extinction.
65	Various advances over the past 10 years have shown that Deccan Trap volcanism in India
66	could have been a critical source of environmental stress leading to the K/T mass extinction: (1)
67	Deccan eruptions were most intense during magnetochron C29r spanning the K/T boundary
68	(Chenet et al., 2007, 2008, 2009); (2) high-precision age based on U-Pb geochronology revealed
69	that 80 % of Deccan eruptions occurred over the ~750 kyr (duration of C29r) with accelerating
70	intensity across the K/T boundary (Schoene et al., 2015); (3) documentation of the mass
71	extinction in intertrappean sediments in India (Keller et al., 2011) between the longest lava flows
72	recorded on Earth (Self et al. 2008): (4) rapid climate warming during C29r below the K/T

boundary due to large inputs of volcanogenic greenhouse gases (reviews in Punekar et al., 2014a;
Keller et al, 2016a). Based on these studies, it was suggested that the Chicxulub impact might
have accelerated Deccan volcanism leading to the mass extinction (Richards et al., 2015; Renne
et al., 2015). With this changing perspective, a better understanding of the preceding
Maastrichtian environmental changes is imperative and the focus of this study.

78 One of the first detailed studies on Campanian to early Maastrichtian climate is from 79 Shatsky Rise, Pacific Ocean: stable isotope records based on planktic and benthic foraminifera 80 revealed ~2.5 °C and ~4 °C cooling in surface and bottom waters, respectively (Douglas and 81 Savin, 1975). Subsequent studies on Seymour Island, Antarctica, and ODP Site 690 in the 82 Weddell Sea reported ~2 °C cooling in surface and bottom waters during the early Maastrichtian 83 (Barrera et al., 1987; Barrera and Huber, 1990; Barrera, 1994). The first high-resolution study of 84 Maastrichtian climate and associated faunal turnovers in planktic foraminifera was based on 85 South Atlantic DSDP Site 525A (Li and Keller, 1998a, b; Abramovich and Keller, 2003). These 86 studies revealed that the generally cool Maastrichtian climate was interrupted by two rapid warm 87 events: 1) at the early to late Maastrichtian transition (also known as mid-Maastrichtian event) 88 with a 2-3 °C warming of surface and bottom waters, and 2) in the latest Maastrichtian below the 89 K/T boundary (C29r) when surface and bottom waters warmed rapidly by 4 °C. An updated 90 high-resolution stable isotope record for the late Campanian to early Maastrichtian at Site 525A

91	confirmed the observed cooling and warming events (Friedrich et al., 2009). Since Li and Keller
92	(1998a, b), the latest Maastrichtian C29r rapid marine warming has been documented globally
93	(e.g., Barrera and Savin, 1999; MacLeod et al., 2005; Isaza-Londoño et al., 2006; Tobin et al.,
94	2012; Thibault and Husson, 2016) and recently linked to the main phase of Deccan volcanism
95	(reviews in Punekar et al., 2014a; Keller et al, 2016a). Some studies correlate the Maastrichtian
96	terrestrial and marine climate records demonstrating that the same extreme climate changes
97	occurred also on land (Nordt et al., 2003; Wilf et al., 2003).
98	In addition to the climate record, various studies focused on Maastrichtian primary
99	productivity, sea-level fluctuations and the marine biotic response to climate changes based on
100	planktic foraminifera (e.g., Li and Keller 1998a, c; Zepeda, 1998; Premoli Silva and Sliter, 1999;
101	Li et al., 2000; MacLeod et al., 2001; Olsson et al., 2001; Abramovich and Keller, 2002, 2003;
102	Abramovich et al., 2003, 2010; Hart, 2007; Punekar et al., 2014b) and nannofossils (e.g., Eshet
103	and Almogi-Labin, 1996; Friedrich et al., 2005; Thibault and Gardin, 2007, 2010; Gardin et al.,
104	2012; Thibault, 2016; Thibault and Husson, 2016). A particular focus of these studies is the early
105	to late Maastrichtian warming and associated minor extinctions (review in Keller et al., 2016a) as
106	well as the rapid warming during C29r and associated diversity decline (review in Punekar et al.,
107	2014a).

108	The eruption of Large Igneous Provinces (LIPs) have been shown to be a direct cause for
109	climate change (both cooling and warming), acid rains, ocean acidification and large inputs of
110	toxic metals, as well as an indirect cause for anoxia and changes in sea-level and oceanic
111	circulation disruptions, leading to major faunal turnovers including mass extinctions (e.g.,
112	Siberian Traps and Permo-Triassic, Central Atlantic (CAMP) and the Triassic-Jurassic, Deccan
113	Traps and Cretaceous-Tertiary) (Wignall, 2001; Courtillot and Renne, 2003; Bond and Wignall,
114	2014; Courtillot and Fluteau, 2014). During the Maastrichtian, Ninety East Ridge volcanism in
115	the Indian Ocean was active (e.g., Duncan, 1978, 1991; Pringle et al., 2008; Krishna et al., 2012)
116	and overlapped the eruption of Deccan phase-1 in India (Chenet et al., 2009; Schöbel et al.,
117	2014) potentially contributing to the climate and faunal changes recorded during this time.
118	The main objective of this study is to evaluate the environmental effects of climate
119	change and major volcanic eruptions on marine planktic foraminifer diversity during the
120	Maastrichtian. We test the hypothesis that volcanism was the main driver of the evolutionary
121	diversification in the early Maastrichtian, the likely cause for the early to late Maastrichtian
122	climate warming, and the latest Maastrichtian warming (C29r) and high-stress environments. We
123	focus on five localities from the Indian Ocean (Ninety East Ridge Site 217, Cauvery Basin, SE
124	India), Tethys (El Kef and Elles, Tunisia) and South Atlantic (Site 525A) (Fig. 1). Analyses
125	concentrate on: 1) high-resolution quantitative analysis of planktic foraminifera to determine

126 biostratigraphy and assess the timing and nature of faunal turnovers at Site 217; 2) update 127 taxonomy of the Tethys and South Atlantic sites, and extend the Cauvery Basin record through 128 the early Maastrichtian to compare diversity trends through the Maastrichtian; 3) oxygen and 129 carbon stable isotopes of planktic and benthic foraminifera at Site 217 to evaluate changes in 130 climate and productivity compared with Site 525A; 4) planktic foraminiferal indices, including 131 diversity, dwarfing, planktic/benthic ratio and fragmentation index, to gain a deeper 132 understanding of the changing environment and associated faunal responses; and 5) correlation 133 of sedimentation records, hiatus distribution and sea-level changes across regions Indian, Tethys 134 and South Atlantic oceans to understand regional and global effects of climate and ocean 135 circulation changes.

136

137 2 MATERIALS AND METHODS

138

DSDP Site 217 (8°55.57'N, 90°32.33'E) is located in the Indian Ocean on the northernmost part of the Ninety East Ridge at a water depth of 3010 m (Von der Borch et al., 141 1974). Ninety East Ridge is interpreted as a volcanic chain formed by the northward migration of 142 the Indian plate over the Kerguelen mantle plume that was active from the late Cretaceous to the 143 Paleogene (e.g., Duncan, 1978, 1991; Pringle et al., 2008; Krishna et al., 2012). With the passage

144	over the mantle plume, lithospheric uplift led to the formation of volcanic islands and the
145	deposition of thick ash sequences and shallow water sediments overlying the basement (Moore et
146	al., 1974; Thompson et al., 1974; Coffin, 1992); passage beyond the mantle plume led to rapid
147	subsidence as the oceanic lithosphere cooled (Sclater and Fisher, 1974; Luyendyk, 1977; Coffin,
148	1992). Based on a linear progression rate of 118 km/Myr, an age of ~80 Ma was estimated for
149	the location of Site 217 at the time of its position over the mantle plume (Pringle et al., 2008),
150	which is consistent with the Campanian age of the oldest sediments recovered with shallow
151	water affinities overlying the basement (Von der Borch et al., 1974). A progressive deepening to
152	a depth of ~1000 m is recorded during the early to late Maastrichtian as indicated by the
153	transition to foraminifera-rich nannofossil ooze (Von der Borch et al., 1974; Tantawy et al.,
154	2009).
155	Samples were taken every ~50 cm from cores 17 to 21; planktic foraminifera were
156	originally analyzed by Alfonso Pardo and published in Tantawy et al. (2009). For this study, the
157	species identifications were updated and additional size fractions were analyzed to focus on the
158	very small (38-63 μ m), small (63-150 μ m) and larger (>150 μ m) size fractions as environmental
159	indicators. In addition, sample resolution was increased and additional samples were added to
160	extend the record through core 23. A total of 70 samples were analyzed.

161	For paleontological analyses, samples were processed in the laboratory following the
162	procedure described by Keller et al. (2002). Samples were soaked overnight in 3 % hydrogen
163	peroxide solution to oxidize organic carbon. After disaggregation of sediment particles, the
164	samples were washed through >63 μ m and >38 μ m sieves to obtain clean foraminiferal residues.
165	Washed residues were oven dried at 50 °C. Quantitative planktic species analyses were
166	performed based on aliquots of 300 specimens in the 38–63 μ m, 63-150 μ m and >150 μ m size
167	fractions, with the remaining residues in each sample fraction examined for rare species. All
168	specimens were identified based on standard taxonomic concepts (Robaszynski et al., 1983-
169	1984; Nederbragt, 1991) and mounted on microslides for a permanent record.
170	Oxygen and carbon isotope analyses were performed on monospecific benthic
171	foraminiferal tests (Gavelinella beccariformis and Cibicidoides species) in laboratories at
172	Karlsruhe University, Germany, and at the University of Lausanne, Switzerland. At the
173	Karlsruhe laboratory, the data were obtained using a fully automated preparation system
174	(MultiCarb) connected on-line to an isotope ratio mass spectrometer (Optima, Micromass
175	Limited UK). All carbon and oxygen isotope values are reported relative to the VPDB standard,

- 176 with reproducibility better than 0.1 % (2 σ). At the UNIL laboratory, analyses were performed
- 177 for cores 21-23 with a Thermo Fisher Scientific (Bremen, Germany) GasBench II connected to a
- 178 Thermo Fisher Scientific Delta Plus XL IRMS, in continuous He-flow mode. Analytical

179 uncertainty (2 σ) monitored by replicate analyses of the international calcite standard NBS-19 180 ($\delta^{13}C = +1.95 \%$, $\delta^{18}O = -2.20 \%$) and the laboratory standard Carrara Marble ($\delta^{13}C = +2.05 \%$, 181 $\delta^{18}O = -1.70 \%$) was better than $\pm 0.05 \%$ for $\delta^{13}C$ and $\pm 0.1 \%$ for $\delta^{18}O$. Results from both 182 laboratories are comparable based on replicate analyses.

Species diversity was estimated based on cumulative species richness: number of species theoretically present in any given sample from first evolutionary appearance to extinction, ignoring any temporary exclusion (Abramovich and Keller, 2002). Species dwarfing estimates were based on the number of 150-250 μ m specimens in the >150 μ m size fraction of each sample. The planktic/benthic foraminiferal ratio was based on the number of benthic foraminifera associated with the aliquot of 300 planktic foraminifera used for the quantitative species analysis in the 63-150 μ m size fraction.

The fragmentation index (FM) was analyzed based on aliquots of approximately 500-700 foraminifera and fragments in the >63 µm size fraction. Three categories were identified based on the quality of preservation: 1) nearly perfect tests (good), 2) partially damaged, imperfect tests with holes (fair), and 3) fragments, less than two-thirds of an entire test (poor) (Punekar et al., 2016). The FM index was calculated as fragments% = (fragments/8)/[(fragments/8) +whole tests] (Williams et al., 1985; Malmgren, 1987). Based on the assumption that each test

196	breaks into an average of 8 fragments, the equation requires the total number of counted
197	fragments to be divided by 8 to estimate the original number of whole tests.
198	At the Cauvery Basin, India, we chose the Kali-H subsurface core previously analyzed in
199	Keller et al. (2016b) for the upper Maastrichtian and extended this record through the lower
200	Maastrichtian concentrating on species diversity and ranges from first to last appearances. To
201	insure that the same species concepts were used in faunal analyses, species identifications were
202	updated for the Tunisian sections in Elles and El Kef (Li and Keller, 1998c; Abramovich and
203	Keller, 2002) and South Atlantic DSDP Site 525A (Li and Keller, 1998a).
204	
205	3 BIOSTRATIGRAPHY
206	
207	3.1 Ninety East Ridge DSDP Site 217, Indian Ocean
208	
209	High-resolution planktic foraminiferal biostratigraphy is a powerful tool for relative age
210	dating and to assess the continuity of sediment deposition. In this study, we apply the Cretaceous
211	foraminiferal (CF) biozonation of Li and Keller (1998a) and correlate the results with localities
212	from the Indian, Tethys and South Atlantic oceans (Fig. 2).

213 The Maastrichtian interval at DSDP Site 217 spans zones CF8 to CF2 and was analyzed 214 in two size fractions, >150 μ m to evaluate relative abundances of larger specialized species and 215 63-150 μ m to evaluate the smaller ecological generalist taxa.

216 Zone CF8 is defined by the first appearance (FA) of Globotruncana aegyptiaca at the 217 base and the FA of Gansserina gansseri at the top (Fig. 2). At Site 217, a 5 m core gap prevents 218 full assessment of zone CF8 and only the upper part may be present, assuming that the first 219 appearance of G. aegyptiaca occurs below the analyzed interval (Fig. 3). Nine species appear 220 above the core gap based on both size fractions (>150 µm, 63-150 µm). These species 221 originations are part of the gradual diversification event that began in zone CF8 and was 222 previously observed at Elles and El Kef, Tunisia, and South Atlantic DSDP Site 525A (Li and 223 Keller, 1998a, c).

Zone CF7 spans the interval between the FA of *G. gansseri* at the base and the FA of *Contusotruncana contusa* at the top (Fig. 2). At Site 217, a gradual increase in the relative abundance of *Gublerina rajagopalani* from 6.5 % to 16 % is observed in the >150 μ m size fraction (Fig. 3) and in *Heterohelix planata* from 23 % to 45 % in the 63-150 μ m size fraction (Fig. 4). These species have been shown to tolerate and thrive in a wide range of environmental conditions (i.e., dominant in high-stress environments affected by temperature, salinity, nutrients and oxygen variations in which large specialized species struggle to survive), thus their increasing population abundances suggest increasing stressed environments (e.g., Pardo and
Keller, 2008; Keller and Abramovich, 2009).

233 Zone CF6 is defined by the FA of C. contusa at the base and the last appearance (LA) of 234 Globotruncana linneiana at the top. The latter species also marks the base of zone CF5 and the 235 FA of Racemiguembelina fructicosa defines the top (Fig. 2). At Site 217, zone CF6 is at least 236 partially present, but zone CF5 is not recognized due to a core gap and likely hiatus as just ~2 m 237 of sediments represent the combined CF6-CF5 interval (Figs. 3, 4). In contrast, these two zones 238 span 8 m and 5 m in the Cauvery Basin of SE India (Keller et al., 2016b), 6.5 m and 9.5 m at 239 South Atlantic Site 525A, (Li and Keller, 1998a), 4 m and 13 m at El Kef, and 4.5 m and 6.5 m 240 at Elles, Tunisia (Li and Keller, 1998c), respectively. However, at Site 525A and the Tunisian 241 sections, zone CF6 is condensed (~5 m) suggesting widespread erosion between CF5 and CF6, 242 coincident with a sea-level fall and major sequence boundary (SB) dated at 69.4 Ma (Fig. 2) 243 (Haq et al., 1987; Haq, 2014).

Zone CF4 spans the interval from the FA of *R. fructicosa* at the base to the FA of *Pseudoguembelina hariaensis* at the top (Fig. 2). At Site 217, a minor extinction event is marked by the disappearances of *Contusotruncana fornicata*, *C. plummerae* and *Globotruncana bulloides* (Fig. 3). These species disappearances, frequently including *Archeoglobigerina cretacea*, have also been recognized at Site 525A, Madagascar, Israel, Egypt, Tunisia, Poland

249	and SE India (Li and Keller, 1998a, c; Abramovich et al., 1998, 2002, 2010; Dubicka and Peryt,
250	2012; Meilijson et al., 2014; Punekar et al., 2014b; Keller et al., 2016b). Zone CF4 is marked by
251	decreased abundance of Rugoglobigerina rotundata from 10 % to 3 % and R. rugosa from 5 %
252	to 2 %, and increased abundance of G. rajagopalani from 10 % to 43.5 % followed by a rapid
253	decrease to 20 % towards the top of CF4 (Fig. 3). In the smaller size fraction (63-150 μm), major
254	species variations include decreased abundance of <i>H. planata</i> parallel to increased abundances of
255	Globigerinelloides yaucoensis from 19 % to 54.5 % and G. asper from 14 % to 36 %, reaching
256	minimum values at the CF4/CF3 boundary (Fig. 4).
257	The CF4/CF3 boundary is marked by a hiatus as suggested by the abrupt decrease in all
258	larger (>150 μ m) species abundances (Fig. 3) and increase in very small stress-tolerant species
259	(e.g., globigerinellids, globotruncanellids, hedbergellids, guembelitrids, Fig. 4). A hiatus at the
260	CF4/CF3 transition coincides with a major sea-level fall and SB ~66.8 Ma (Haq et al., 1987; Haq,
261	2014) and is recorded worldwide (e.g., SE India, Keller et al., 2016b; Madagascar, Abramovich
262	et al., 2002; Israel, Abramovich et al., 1998; Fig. 2).
263	Zone CF3 is defined by the FA of <i>P. hariaensis</i> at the base and the LA of <i>G. gansseri</i> at
264	the top (Fig. 2). At Site 217, G. rajagopalani and Pseudoguembelina palpebra dominate and
265	Abathomphalus mayaroensis is common in the >150 µm size fraction of zone CF3 assemblages
266	(Fig 3). Dwarfed specimens are common in several horizons (424.08 m, 424.59 m, 425.19 m,

426.70 m, 432.96 m, and 441.58 m). In the smaller size fraction (63-150 μm) *Heterohelix*, *Globigerinelloides*, and *Globotruncanella* (*havanensis*, *petaloidea*) species dominate (Fig. 4).
The disaster opportunist *Guembelitria cretacea* records increased abundances from 1 % to 5 %
on average. These faunal changes indicate continued and even increasing high-stress
environments during zone CF3 compared with zone CF4 (e.g., Pardo and Keller, 2008; Keller
and Abramovich, 2009).

The CF3/CF2 transition is represented by a hiatus marked by abrupt changes in the relative abundances of larger species (Fig. 3) and smaller species (Fig. 4). This hiatus coincides with a sea-level fall ~66.25 Ma (Haq et al., 1987; Haq, 2014) and is commonly observed in the Indian and Tethys Oceans (e.g., Abramovich et al., 1998, 2002; Keller, 2005; Tantawy et al., 2009; Punekar et al., 2014b; Fig. 2).

278 Zone CF2 spans the interval from the LA of G. gansseri at the base to the FA of 279 Plummerita hantkeninoides at the top (Fig. 2). At Site 217, this zone is marked by decreased abundance of Gublerina rajagopalani from 27 % to 10 % and increased Pseudoguembelina 280 281 palpebra from 12 % to 20 % in the >150 µm size fraction (Fig. 3). In the 63-150 µm size fraction, 282 abruptly increase (e.g., Heterohelix, *Globigerinella*, Globotruncanella, small species 283 Hedbergella). Pseudoguembelina costulata, a surface dweller, dominates both the larger and the 284 smaller size fractions towards the top of the section, with peak abundances of 31 % and 20 %,

285	respectively. This change is accompanied by a rapid increase in the abundance of Guembelitria
286	species in the 38-63 μ m size fraction suggesting severe high-stress environments just before the
287	KTB hiatus (Fig. 4).
288	At Site 217, a major hiatus (~2 Myr) spans from the upper part of zone CF2 through the
289	latest Maastrichtian zone CF1 and early Danian zones P0, P1a, P1b and lower P1c (Fig. 2). On a
290	global basis, erosion is less extensive in this interval but marked by repeated short hiatuses. This
291	erosion pattern is commonly attributed to rapid climate changes, periods of global cooling,
292	intensified bottom-water circulation, and sea-level fluctuations across the K/T transition (e.g.,
293	MacLeod and Keller, 1991; Keller et al., 2013; Mateo et al., 2016).
294	
295	3.2 Correlation: Indian, Tethys and South Atlantic Oceans
296	
297	Biostratigraphic correlation of localities across the Indian, Tethys and South Atlantic
298	oceans compared with major sea-level changes and volcanic eruptions in India (Deccan Traps)
299	and Ninety East Ridge reveal similarities and differences in sedimentation related to these events
300	(Fig. 2). Although the current study concentrates on the Maastrichtian, the early Paleocene
301	(Danian) record is also shown as it illustrates the pivotal change in sediment deposition and
302	erosion pattern that began in the late Maastrichtian zone CF3.

303	The early Maastrichtian sediment record across the regions is remarkably continuous
304	despite major sea-level fluctuations, Ninety East Ridge volcanic eruptions and associated climate
305	changes (Fig. 2). The only significant interruption coincides with the sea-level fall and sequence
306	boundary (SB) at ~69.4 Ma (Haq, 2014) correlative with zone CF5. The likely reasons for the
307	reduced sediment erosion include lower magnitude of sea-level changes, overall higher
308	Cretaceous oceans inundating continents, higher rate of carbonate sedimentation and relatively
309	low levels of volcanic eruptions.
310	In contrast, sedimentation is highly fragmented during the latest Maastrichtian beginning
311	in zone CF3 and continuing through the early Danian, except for areas protected from erosion,
312	particularly in Tunisia (Fig. 2). Sediment erosion (hiatus) generally coincides with sea-level
313	changes in zones CF4/CF3, CF3/CF2, KTB, P1a/P1b, P1b/P1c and P1c/P2. On Ninety East
314	Ridge, Southeast India (Cauvery Basin), Madagascar and South Atlantic, erosion removed
315	sediments spanning most of the early Danian and frequently through the KTB and zones CF1-
316	CF2. This massive erosion is also observed in the North Atlantic (Keller et al., 2013; Mateo et al.,
317	2016) and appears related to the significant sea-level fall at ~63.8 Ma, but a series of smaller sea-
318	level falls contributed to erosion that resulted in shorter hiatuses observed in the Tethys (e.g.,
319	Israel, Egypt) and many deep-sea sections. However, the major erosion observed during the
320	latest Maastrichtian through Danian can be attributed to the overall cooler climate (except for the

321 short warming in C29r), lower sea-level and higher frequency of sea-level falls beginning in CF3322 (C30n).

323

324 4 STABLE ISOTOPES: PRODUCTIVITY AND TEMPERATURE CHANGES

325

326 Carbon and oxygen isotopes of the benthic foraminifera Gavelinella beccariformis were 327 analyzed for the Maastrichtian at Site 217, except for zone CF8 where this species is rare and 328 Cibicidoides species were analyzed instead. Both of these species are commonly used to evaluate 329 deep-water changes in productivity and temperature (e.g., Shackleton 1987; Zachos et al., 1989; 330 Schrag et al., 1995; D'Hondt and Arthur, 2002). Although Site 217 has a fragmented record because of frequent core gaps, δ^{13} C and δ^{18} O trends are similar to Site 525A (Li and Keller, 331 1998a), except for zones CF8-CF7. At Site 217, δ^{13} C values are significantly higher in CF8 332 333 (+1.46 ‰) and fluctuating in CF7 (+0.90 to +1.93 ‰) compared to Site 525A (+0.33 ‰ and +0.50 to +1.17 ‰, respectively) (Fig. 5). At Site 525A, δ^{13} C values record an increase of +1.5 ‰ 334 335 through the early Maastrichtian that is not observed at Site 217 (Fig. 5). This difference likely 336 reflects higher, more stable primary productivity at Site 217 due to higher nutrient inputs from 337 Ninety East Ridge volcanism that began ~82 Ma (Coffin et al., 2002). Species effects are another

339

potential contributing factor to this difference because *G. beccariformis* at Site 217 is compared with *Anomalinoides acuta* at Site 525A (e.g., Friedrich et al., 2006).

340 At Site 217, the CF6-CF5 interval is incomplete due to a core gap and possibly a hiatus. In zone CF4, δ^{13} C values range from +1.1 ‰ to +1.6 ‰ similar to Site 525A (+1.2 ‰ to 341 +1.7 ‰), suggesting sustained high primary productivity at both sites (Fig. 5). δ^{18} O values 342 343 increase from +0.1 ‰ to +0.7 ‰ towards the top of zone CF4 at Site 217 marking cooling also comparable to Site 525A where δ^{18} O values increase from +0.1 % to +0.5 % (Fig. 5). In zones 344 CF3-CF2, Site 217 δ^{13} C values vary from +0.9 ‰ to +1.7 ‰ similar to Site 525A (+1.2 to 345 +1.8 ‰); in zone CF2, Site 217 δ^{18} O values decrease from +0.3 ‰ to -0.5 ‰, also comparable 346 347 to Site 525A (+0.4 % to -0.3 %), indicating climate warming.

348

349 5 DIVERSITY TRENDS

350

Planktic foraminifera are characterized by major evolutionary diversification in the early Maastrichtian and the mass extinction at the K/T boundary (review in Li and Keller, 1998a). The cause for this diversification event has remained an enigma and its potential contribution to the mass extinction is rarely considered. We use species ranges and cumulative species richness in the Indian, Tethys and South Atlantic oceans to investigate the early Maastrichtian origination

356	event and the fate of the new species leading up to the mass extinction. In the Indian Ocean
357	Ninety East Ridge Site 217 (Fig. 6) and the Kali-H well from the Cauvery Basin, SE India (Fig.
358	7), sediment deposition and faunal changes occurred at depths of 500-1000 m (upper to middle
359	bathyal; Von der Borch et al., 1974; Tantawy et al., 2009) and 300-500 m (outer shelf to upper
360	bathyal; Keller et al., 2016b), respectively. The El Kef and Elles sections in Tunisia (Fig. 8) were
361	deposited in outer shelf to upper slope (300-500 m) and middle to outer shelf (200-300 m) depths,
362	respectively. These are the two most complete Maastrichtian sedimentary records known
363	worldwide (Fig. 2) (Li and Keller, 1998c; Abramovich and Keller, 2002). In the South Atlantic,
364	Site 525A (Fig. 9) sediment deposition during the Maastrichtian occurred in a middle bathyal
365	environment (~1000 m) (Li and Keller, 1998a). The paleodepth of these five localities thus yield
366	comparable marine settings spanning open-ocean to continental shelf environments that permit
367	assessment of species diversity, population abundances and faunal turnovers. Census data are
368	summarized in Table 1 as cumulative species diversity per biozone.
369	
370	5.1 Diversity Maximum: Early Maastrichtian

372 In the Indian Ocean, the early Maastrichtian zones CF8-CF5 reveal 14 species 373 originations at Site 217 (Fig. 6) and 16 species originations at the Cauvery Basin well Kali-H

374	(Fig. 7). Note that in these sections only part of zone CF8 is present but the number of species
375	originations not yet reached at these sites can still be estimated based on Tunisia and Site 525A.
376	At El Kef, 21 species originations occurred in the early Maastrichtian, which is comparable to
377	Elles with 18 species (Fig. 8). At Site 525A, 23 species originations are identified during this
378	interval (Fig. 9). Most of these species are also present in the Indian Ocean Site 217 and Kali-H
379	but the first appearances of some are not recorded because of incomplete core recovery. If we
380	add those first appearances, then species originations at Site 217 and Kali-H increase to 22 and
381	25 species, respectively (Table 1). Elles and Site 525A also show 7 and 6 species originations in
382	zones CF9-CF8b, indicating gradual diversification already beginning in the latest Campanian.
383	Most of the species originations occurred among subsurface and thermocline dwellers.
383 384	Most of the species originations occurred among subsurface and thermocline dwellers. The latter probably originated as subsurface dwellers that later migrated to thermocline depths
383 384 385	Most of the species originations occurred among subsurface and thermocline dwellers. The latter probably originated as subsurface dwellers that later migrated to thermocline depths during warm intervals and increased water mass stratification (Abramovich et al., 2003).
383 384 385 386	Most of the species originations occurred among subsurface and thermocline dwellers. The latter probably originated as subsurface dwellers that later migrated to thermocline depths during warm intervals and increased water mass stratification (Abramovich et al., 2003). Originations are likely due to a major increase in nutrient availability driving primary
 383 384 385 386 387 	Most of the species originations occurred among subsurface and thermocline dwellers. The latter probably originated as subsurface dwellers that later migrated to thermocline depths during warm intervals and increased water mass stratification (Abramovich et al., 2003). Originations are likely due to a major increase in nutrient availability driving primary productivity (Fig. 5) and faunal diversification (Hallock, 1987). Ninety East Ridge volcanism
 383 384 385 386 387 388 	Most of the species originations occurred among subsurface and thermocline dwellers. The latter probably originated as subsurface dwellers that later migrated to thermocline depths during warm intervals and increased water mass stratification (Abramovich et al., 2003). Originations are likely due to a major increase in nutrient availability driving primary productivity (Fig. 5) and faunal diversification (Hallock, 1987). Ninety East Ridge volcanism was probably a major contributor of nutrients in the Indian Ocean as suggested by the inferred
 383 384 385 386 387 388 389 	Most of the species originations occurred among subsurface and thermocline dwellers. The latter probably originated as subsurface dwellers that later migrated to thermocline depths during warm intervals and increased water mass stratification (Abramovich et al., 2003). Originations are likely due to a major increase in nutrient availability driving primary productivity (Fig. 5) and faunal diversification (Hallock, 1987). Ninety East Ridge volcanism was probably a major contributor of nutrients in the Indian Ocean as suggested by the inferred total number of species originations (22 at Site 217, 25 at Kali-H; Table 1) although recovery is
 383 384 385 386 387 388 389 390 	Most of the species originations occurred among subsurface and thermocline dwellers. The latter probably originated as subsurface dwellers that later migrated to thermocline depths during warm intervals and increased water mass stratification (Abramovich et al., 2003). Originations are likely due to a major increase in nutrient availability driving primary productivity (Fig. 5) and faunal diversification (Hallock, 1987). Ninety East Ridge volcanism was probably a major contributor of nutrients in the Indian Ocean as suggested by the inferred total number of species originations (22 at Site 217, 25 at Kali-H; Table 1) although recovery is incomplete for the base CF8-CF9 interval (Figs. 6, 7). Maximum diversity is reached during the

392	At El Kef, the diversity maximum is at the base of CF3, but the late Maastrichtian record is
393	suspect because of major faults in the area that complicate stratigraphy (Li and Keller, 1998c).
394	
395	5.2 Minor Extinction Event: Early to Late Maastrichtian
396	
397	A minor extinction event coincides with the end of climate warming in the early late
398	Maastrichtian and is commonly known as "mid-Maastrichtian event" (e.g., MacLeod, 1994;
399	Barrera and Savin, 1999; Li and Keller, 1998a, 1999; Nordt et al., 2003; Frank et al., 2005;
400	Friedrich et al., 2009; Keller et al., 2016a; Thibault, 2016). This mid-Maastrichtian event is also
401	observed in all sections analyzed for this study.
402	At Site 217, this minor extinction event is observed at the CF4/CF3 transition and marked
403	by the disappearances of Contusotruncana fornicata, C. plummerae and Globotruncana
404	bulloides, with Archeoglobigerina cretacea and Gublerina acuta disappearing in zone CF3
405	above the CF4/CF3 hiatus (Fig. 6). In the Cauvery Basin Kali-H well, this event also includes the
406	disappearances of C. fornicata, C. plummerae, as well as A. cretacea, G. acuta and
407	Globotruncana esnehensis. Because the latter two species are known to range higher in the
408	stratigraphic record (e.g., Li and Keller, 1998a; Abramovich and Keller, 2002; Abramovich et al.,
409	2002; Darvishzad et al., 2007; Huber et al., 2008; Punekar et al., 2014b), their early

410 disappearance in the Indian Ocean suggests regional differences (e.g., diachronous occurrences)
411 in species ranges.

412 At El Kef and Elles, the disappearances of C. fornicata and C. plummerae occur in zone 413 CF5, rather than CF4 (Fig. 8). At El Kef, this may be due to the incomplete Maastrichtian record 414 cut by major faults, but at Elles the late Maastrichtian is undisturbed, suggesting that the zone 415 CF4 index species R. fructicosa may be diachronous in the shallower middle shelf environment, 416 or that high-stress conditions were more severe in shallower environments (e.g., Leckie, 1987). 417 At Site 525A, C. fornicata, G. bulloides, C. plummerae, A. cretacea and Globotruncana 418 ventricosa gradually disappear in zone CF4 (Fig. 9). This minor extinction event has also been 419 recorded in Madagascar, Israel, Egypt and Poland (Abramovich et al., 2002, 2010; Dubicka and 420 Peryt, 2012; Punekar et al, 2014b; Keller et al., 2016a). From shallow to deep environments, this 421 faunal turnover seems to have been the result of global environmental perturbations that coincide 422 with the transition from warm to cool climate (Fig. 5) associated with reduced water mass 423 stratification, increased competition and biotic stress leading to the extinction of specialized 424 subsurface and thermocline dwelling species.

425

426 **5.3 Late Maastrichtian Diversity Decline preceding the Mass Extinction**

428	A major faunal turnover in species populations, but minor change in species diversity, is
429	generally observed in zone CF3 (Figs. 6-8) correlative with maximum cooling, suggesting
430	increased stress conditions as evident by the decreased relative abundances of specialist species
431	and increased abundance of generalist species more tolerant of environmental changes (further
432	discussed in Section 6.1). In zones CF2-CF1, diversity gradually decreased along with further
433	reduction in specialist species populations prior to the very rapid mass extinction at the K/T
434	boundary (Figs. 8, 9). Environmental changes in zones CF2-CF1 have been widely studied and
435	recently linked to the massive Deccan eruptions and volcanic degassing that led to climate
436	warming, eutrophication and ocean acidification contributing to this major biotic crisis (e.g.,
437	Punekar et al., 2014a, 2016; Font et al., 2014, 2016; Thibault, 2016).
438	
439	6 ENVIRONMENTAL EFFECTS
440	
441	6.1 Ecological Associations and Depth Ranking
442	

Planktic foraminiferal assemblages consist of three main ecological groups: specialists,
generalists and disaster opportunists. Specialists species, known as K-strategists, are diverse
species with large, complex tests, that tolerate a narrow range of environmental conditions, have

446 long life spans and produce a small number of offspring (Begon et al., 1996, 1998). A common 447 group of K-strategists includes species of the genera Abathomphalus, Archeoglobigerina, 448 Contusotruncana, Globotruncana, Globotruncanita, Gublerina, Planoglobulina, 449 Pseudoguembelina, Pseudotextularia, Racemiguembelina and Rugoglobigerina (Premoli Silva 450 and Sliter, 1999; Keller and Abramovich, 2009). These species are most abundant in stable 451 environments with oligotrophic conditions, which foster optimum assemblages with high species 452 diversity, a variety of test sizes, morphologies and ornamentation (e.g., Premoli Silva and Sliter, 453 1999; Pardo and Keller, 2008; Keller and Abramovich, 2009).

454 Generalist and disaster opportunist species are known as ecological R-strategists: low-455 diversity species assemblages with relatively small, simple tests, able to occupy a wide range of 456 ecological niches, have shorter life spans and produce larger numbers of offspring, thus 457 maximizing their chance for survival (Begon et al., 1996, 1998; Premoli Silva and Sliter, 1999; 458 Keller and Abramovich, 2009). Generalists are represented by species of the genera 459 Globigerinelloides, Globotruncanella, Hedbergella and Heterohelix. They tend to dominate 460 high-stress environments affected by temperature, salinity, nutrients and oxygen variations in 461 which large specialized species struggle to survive. Heterohelix species are common under 462 mesotrophic conditions in low oxygen environments, usually thriving during times of an 463 expanded oxygen minimum zone (OMZ) (Pardo and Keller, 2008), while Globigerinelloides

464	species are most abundant in extreme eutrophic conditions (Ashckenazi-Polivoda et al., 2011).
465	Disaster opportunists, such as Guembelitria species, thrived under the most severe biotic stress
466	conditions generally associated with mesotrophic to eutrophic conditions in shallow continental
467	shelves, upwelling areas and volcanically influenced regions (e.g., Kroon and Nederbragt, 1990;
468	Koutsoukos, 1994; Coccioni and Luciani, 2006; Pardo and Keller, 2008; Keller and Abramovich,
469	2009; Ashkenazi-Polivoda et al., 2014; Punekar et al., 2014a).
470	Planktic foraminifera also occupy a wide variety of ecological niches at various depths in
471	the water column. Previous studies determined species depth ranking in the water column based
472	on their oxygen and carbon isotopic signals and grouped them into surface, subsurface,
473	thermocline and deep dwellers (Abramovich et al., 2003, 2011; Ashkenazi-Polivoda et al., 2014).
474	Diversity and abundance changes for each depth group can be used to interpret changes in
475	climate and water mass stratification as well as paleoecology.
476	At Site 217, generalist species dominate the 63-150 μm size fraction, particularly
477	Heterohelix and Globigerinelloides species, which are most abundant from zone CF8 to CF5 and
478	from zone CF4 to CF3, respectively (Fig. 10), suggesting mesotrophic to eutrophic surface water
479	conditions. A significant increase, from 4 % to 13 %, in Globotruncanella species is observed in
480	zone CF3 in the predominantly smaller 63-150 μm size fraction, indicating dwarfing due to
481	increased biotic stress. Specialist species are the second-most abundant group in the assemblage

482	with dwarfed pseudoguembelinids dominating. Disaster opportunist Guembelitria cretacea is
483	present throughout the section but rare (<1 %) except for the upper part of zone CF4 through
484	CF3 and CF2 where relative abundances average 5 %; maximum peaks of 43 % are observed in
485	zone CF2 in the dwarfed 38-63 µm size fraction (Fig. 10). This increased abundance indicates
486	increasing environmental stress mainly in zones CF3-CF2 compared with the lower part of the
487	section. Overall, dwarfed specialists (pseudoguembelinids), a marked faunal turnover at the
488	CF4/CF3 transition, and presence of dwarfed Guembelitria with peak abundance in zone CF2
489	reveal increased biotic and environmental stress conditions from the early to the late
490	Maastrichtian.

491 The >150 µm size fraction is dominated by specialist species with different degrees of 492 environmental tolerance. Pseudoguembelinids, which are the only large surface dwellers with 493 significant abundance, appear to be the most tolerant as evident by their maximum abundance 494 (6.5 % to 32 %) during the increasingly high-stress environment of zones CF3-CF2 (Fig. 11). In 495 contrast, the subsurface and thermocline dwelling globotruncanids appear less tolerant of 496 environmental fluctuations as indicated by their permanent decrease beginning in zone CF3. A 497 similar lack of tolerance in CF3-CF2 environments is observed in the subsurface dwelling 498 rugoglobigerinids. Reduced abundance of subsurface dwellers appears to be the result of reduced 499 water mass stratification that led to decreased ecological niches and increased competition.

500	Small heterohelicids generally dominate among generalists, H. globulosa, H. planata,
501	and H. (Paraspiroplecta) navarroensis, but Gublerina rajagopalani, a deep dweller, is the most
502	abundant species in the larger >150 μ m size fraction at Site 217 (Fig. 11). The high abundance of
503	this large, robust and thick-walled species may be attributed primarily to selective preservation
504	during carbonate dissolution. Noteworthy is the peak in the surface dweller Guembelitria in the
505	38-63 μ m size fraction in zone CF2 (Fig. 10) coincident with dominance of large surface
506	dwellers in the >150 μ m size fraction (Fig. 11b), which suggests further reduction in habitats for
507	deeper dwellers. Stable isotope ranking shows that Guembelitria thrived at the very sea-surface
508	(Pardo and Keller, 2008; Abramovich et al., 2011; Ashkenazi-Polivoda et al., 2014) where CO ₂
509	uptake from the air mitigates ocean acidification that affects other surface and subsurface
510	dwellers. All of these species population changes indicate increased high-stress environments
511	beginning in CF4, increasing through CF3 and further increasing in CF2, as a result of reduced
512	water mass stratification, reduced ecological niches and increased carbonate dissolution for
513	planktic foraminifera.

6.2 Dwarfing

517 Species dwarfing refers to size reductions as a result of high-stress environments 518 commonly associated with rapid climate change, perturbations in the water column and/or 519 mesotrophic conditions (Abramovich and Keller, 2003; Keller and Abramovich, 2009). It is a 520 survival response that enhances reproduction rates through early sexual maturation (i.e., 521 organisms reach reproductive adulthood much below normal size; MacLeod et al., 2000; Keller 522 and Abramovich, 2009).

523 At Site 217, there is a gradual trend throughout the section towards increased dwarfing 524 suggesting a progressive increase in high-stress environmental conditions (Fig. 12). In zone CF8, 525 the assemblage in the >150 μ m size fraction is dominated by specimens >250 μ m in size 526 averaging 72 %. From zones CF7 to CF3, specimens in the 150-250 µm group are more 527 abundant with an average of 52 %. In zone CF2, dwarfed specimens dominate averaging 60 % in 528 the 150-250 µm group but several horizons have <50 specimens (e.g., 424.08 m, 424.59 m, 529 425.19 m, 426.70 m, 432.96 m). This indicates more severe environmental conditions associated 530 with increased competition due to reduced water mass stratification and possibly carbonate 531 dissolution. Similar results have been reported from wells in the Cauvery Basin, India, where 532 planktic foraminifer diversity drops sharply and species tend to be dwarfed in the upper part of 533 zone CF3 pointing to high biotic stress (Keller et al., 2016b).

6.3 Dissolution (Fragmentation Index)

537	Preservation of planktic foraminiferal tests is mainly controlled by 1) seawater saturation
538	with respect to CaCO ₃ in the water column, and 2) the amount of organic matter buried in CaCO ₃
539	rich sediments (e.g., Emerson and Bender, 1981). Dissolution is assessed based on 1)
540	fragmentation index, 2) preferential preservation of robust planktic foraminiferal morphologies
541	(species-selective dissolution), and 3) planktic/benthic (P/B) ratio of foraminifera (e.g., Parker
542	and Berger, 1971; Thunell, 1976). The fragmentation index is calculated using the percentage of
543	planktic foraminiferal fragments relative to the total number of whole tests and consists of three
544	categories, "good", "fair" and "poor" based on the quality of preservation: good = nearly perfect
545	tests, fair = imperfect tests, and poor = fragments (Punekar et al., 2016).
546	At Site 217, the "fair" group is the most abundant resulting in ~58 % from zone CF8 to
547	the lower part of zone CF4 (Fig. 12). The "poor" group increases in the upper part of zone CF4
548	and dominates (91 %) in CF3. In contrast, zone CF2 is dominated by the "fair" group (~48 %),
549	similar to lower CF4. Just below the hiatus in CF2 at the top of the section, the "poor" group
550	dominates (70 %). The "good" group is a relatively minor component and maintains an average
551	of only 13 %.

552	These results indicate that dissolution effects are most severe in zone CF3, as also evident
553	by the dominance of robust, thick-walled and dissolution-resistant planktic species (e.g., G.
554	rajagopalani, P. palpebra and A. mayaroensis, Fig. 3). Climate cooling in zone CF3 and the
555	accompanying intensified bottom water circulation likely exacerbated effects of dissolution as
556	suggested by the fragmentation of most foraminifera in this interval. Relative abundance of
557	benthic compared to planktic foraminifera increase from 9 % in zones CF8-CF5 to 46 % in zone
558	CF4 and dominate in zones CF3-CF2 with an average of 61 % (Fig. 12). These results reveal that
559	at Site 217 increased dissolution actually started in zone CF4 and was persistent through CF2, as
560	benthic foraminifera are less vulnerable to dissolution than planktic foraminifera. Planktic
561	foraminifera dominate again (90 %) just below the KTB hiatus in zone CF2, coincident with
562	increased abundance of surface dwellers, including peak abundance of the disaster opportunist
563	Guembelitria cretacea (Figs. 10, 11). This suggests severe high-stress environmental conditions
564	detrimental to all but sea-surface dwellers. Ocean acidification and reduced water mass
565	stratification are likely contributors to the biotic stress that affected planktic foraminiferal
566	assemblages during zones CF4-CF2.
567	

7. MAASTRICHTIAN CLIMATE AND FAUNAL EVENTS

570	The Cretaceous greenhouse warming ended in the late Campanian with global cooling
571	that reached minimum temperatures in the earliest Maastrichtian (base C31r) accompanied by
572	low primary productivity and low diversity in planktic foraminifera (Fig. 13) (e.g., Li and Keller,
573	1998a; Huber et al., 2002; Friedrich et al., 2009). From the latest Campanian through the
574	Maastrichtian, four major climate and faunal events are identified in the South Atlantic, Tethys
575	and Indian Oceans: (1) minimum diversity in the late Campanian to earliest Maastrichtian
576	followed by unprecedented diversification for the Cretaceous reaching maximum in the early
577	Maastrichtian (Event-1, C31r), (2) a period of warming and stable high diversity (Event-2, upper
578	C31r to lower C30n), (3) return to global cooling and high-stress environments (Event-3, C30n),
579	and (4) rapid global warming and severe stress conditions in the late Maastrichtian preceding the
580	K/T mass extinction (Event-4, C29r). Here we summarize these climate and faunal events based
581	on stable isotopes and diversity records of South Atlantic Site 525A (Li and Keller, 1998a)
582	compared with diversity curves from four localities in the Tethys and Indian oceans (Fig. 13).
583	
584	7.1 Event-1: Early Maastrichtian Cooling and Diversification
585	
586	The prelude to Event-1 is the late Campanian climate cooling (C32n, zones CF9-CF8)

587 when bottom water temperatures dropped from 16 $^{\circ}$ C to 10 $^{\circ}$ C, surface water temperatures from

588 22 °C to 17 °C, and primary productivity and planktic foraminiferal diversity were relatively low 589 (Fig. 13) (Li and Keller, 1998a). Event-1 spans most of the early Maastrichtian (zones CF8b-CF6, 590 C31r) with steady cold bottom water temperatures and gradual cooling of surface waters. δ^{13} C 591 values rapidly increased by +1 ‰ and +1.4 ‰ in bottom and surface waters, respectively, 592 indicating a major increase in primary productivity. Increasing primary productivity in the early 593 Maastrichtian is also observed in northern middle to high latitudes as indicated by calcareous 594 nannofossils and benthic foraminiferal assemblages (Friedrich et al., 2005). At Site 217, primary 595 productivity was already high due to nutrient influx from Ninety East Ridge (Fig. 5). Planktic 596 foraminifera responded with rapid evolutionary diversification among subsurface and 597 thermocline dwellers (Fig. 13). Species originations vary from 45 % to 57 % (e.g., low of 35-42 598 to high of 55-61 species) among the five localities analyzed.

What could have caused the diversity decrease during the late Campanian cooling and the rapid diversification during the subsequent maximum cooling of the early Maastrichtian? The late Campanian cooling that ended the late Cretaceous greenhouse world is commonly attributed to a combination of declining atmospheric CO_2 related to decreasing oceanic crust production and the opening of ocean gateways that profoundly affected deep, intermediate and shallow waters circulation patterns (review in Linnert et al., 2014). Specialist planktic foraminifera were ill-suited to adapt to these environmental changes and many disappeared. By the earliest

606	Maastrichtian maximum cooling, decreased diversity, reduced competition and high nutrient
607	availability created favorable conditions for species originations (Li and Keller, 1998a, c). High
608	nutrient inputs were likely due to several factors including (1) increased temperature gradient
609	between equator and poles favoring development of zonal winds and thus coastal upwelling of
610	nutrient-rich waters (e.g., Vincent and Berger, 1985; Zachos et al., 1993), (2) increased erosion
611	and nutrient influx from the continents during the sea-level lowstand ~70.6 Ma (Haq, 2014), and
612	(3) nutrient inputs from Ninety East Ridge volcanic activity (e.g., Vermeij, 1995) active since
613	~82 Ma (Coffin et al, 2002; Pringle et al., 2008).
614	
615	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions
615 616	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions
615 616 617	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions Event-2, also known as mid-Maastrichtian event, begins near the end of the early
615 616 617 618	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions Event-2, also known as mid-Maastrichtian event, begins near the end of the early Maastrichtian and persists through upper zones CF6 to middle CF4 (C31n) (Fig. 13). Bottom and
615 616 617 618 619	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions Event-2, also known as mid-Maastrichtian event, begins near the end of the early Maastrichtian and persists through upper zones CF6 to middle CF4 (C31n) (Fig. 13). Bottom and surface waters warmed by 2-3 °C and terrestrial temperatures peaked at 22 °C (e.g., Li and
 615 616 617 618 619 620 	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions Event-2, also known as mid-Maastrichtian event, begins near the end of the early Maastrichtian and persists through upper zones CF6 to middle CF4 (C31n) (Fig. 13). Bottom and surface waters warmed by 2-3 °C and terrestrial temperatures peaked at 22 °C (e.g., Li and Keller, 1998a; Zepeda, 1998; Nordt et al., 2003; Thibault and Gardin, 2007). High primary
 615 616 617 618 619 620 621 	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions Event-2, also known as mid-Maastrichtian event, begins near the end of the early Maastrichtian and persists through upper zones CF6 to middle CF4 (C31n) (Fig. 13). Bottom and surface waters warmed by 2-3 °C and terrestrial temperatures peaked at 22 °C (e.g., Li and Keller, 1998a; Zepeda, 1998; Nordt et al., 2003; Thibault and Gardin, 2007). High primary productivity and maximum diversity in planktic foraminifera persisted through this interval (Li
 615 616 617 618 619 620 621 622 	7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions Event-2, also known as mid-Maastrichtian event, begins near the end of the early Maastrichtian and persists through upper zones CF6 to middle CF4 (C31n) (Fig. 13). Bottom and surface waters warmed by 2-3 °C and terrestrial temperatures peaked at 22 °C (e.g., Li and Keller, 1998a; Zepeda, 1998; Nordt et al., 2003; Thibault and Gardin, 2007). High primary productivity and maximum diversity in planktic foraminifera persisted through this interval (Li and Keller, 1998a). The cause for this warming, attributed to abrupt reorganization of

624 Keller, 1999), but recent studies suggest the cause could have been Ninety East Ridge volcanism 625 (Keller et al., 2016a). An intense phase of volcanic activity is recorded at DSDP Site 216 626 beginning ~69.5 Ma and spanning zones CF5-CF3 coincident with persistent maximum diversity, 627 high primary productivity, climate warming and increased water mass stratification favoring 628 planktic foraminiferal evolution (Keller, 2005; Tantawy et al., 2009). 629 Deccan volcanism began near the end of Event-2 at the base of C30n (~67.1 Ma, Schöbel 630 et al., 2014) further contributing to intense greenhouse warming and acid rains enhancing the 631 delivery of nutrients to the oceans, thus resulting in mesotrophic conditions in surface waters 632 favoring primary productivity. Faunal responses to these high-stress conditions include peak 633 abundance of the disaster opportunist Guembelitria cretacea, and onset of the terminal decrease 634 in large specialized globotruncanid species. 635 Enhanced weathering and probably waning volcanism eventually lowered volcanic CO₂ 636 levels in the atmosphere resulting in climate cooling (e.g., Dessert et al., 2001), as observed in 637 the upper part of zone CF4 (Fig. 13). Cooling would have further affected planktic foraminiferal 638 assemblages by leading to reduced water mass stratification as temperature gradients between

surface and deep waters decreased (e.g., Doney et al., 2012), thus resulting in reduced ecological
niches and disappearance of some species (e.g., minor extinction event), marking the end of
diversification.
7.3 Event-3: Late Maastrichtian Cooling and Diversity Decline

645	Renewed global cooling during the late Maastrichtian upper zone CF4 to CF3 (C30n)
646	marks Event-3 accompanied by sustained high primary productivity but increasingly high-stress
647	marine environments for planktic foraminifera as a result of reduced ecological niches
648	exacerbated by ocean acidification evident in increased carbonate dissolution effects (Figs. 12,
649	13). Faunal responses include species dwarfing, decreased populations of specialized species,
650	temporary exclusions, dominance by generalist and/or disaster opportunist species and general
651	diversity decrease, as observed in the Indian Ocean, Tethys and South Atlantic Oceans.
652	What caused the diversity decline during cooling in the late Maastrichtian instead of a
653	diversity increase as observed during the early Maastrichtian cooling? Volcanism was active on
654	Ninety East Ridge and in India (Deccan phase-1) but on relatively reduced levels during zone
655	CF3 (C30n; Keller, 2005; Chenet et al., 2009) and insufficient to sustain global warming but
656	sufficient to cause persistent ocean acidification, which stressed already reduced habitats. Large
657	amounts of volcanogenic CO ₂ adsorpt by the oceans changes seawater chemistry by lowering
658	carbonate ion (CO_3^{2-}) concentration, surface ocean pH and saturation states of calcium carbonate
659	minerals (Kump et al., 2009). The result is a carbonate crisis (i.e., decrease in CaCO ₃ production)

660	that significantly affects marine ecosystems, particularly marine calcifiers such as foraminifera
661	(reviews in Doney et al., 2009; Hönisch et al., 2012). At Site 217, dissolution due to surface
662	ocean acidification led to thinner planktic foraminiferal tests, thus more vulnerable to breakage
663	(e.g., Moy et al., 2009), resulting in the high fragmentation index observed in zone CF3 (Fig. 12).
664	Dissolution effects in other localities have not been routinely recorded and still have to be
665	evaluated, although similar effects have been observed in zones CF4-CF3 in the Cauvery Basin
666	(Keller et al., 2016b) and Site 525A (Punekar et al., unpublished data). Enhanced weathering and
667	a major sea-level fall (~66.8 Ma) accompanied by widespread erosion also contributed to global
668	cooling as well as increased nutrient input into the oceans leading to mesotrophic conditions,
669	detrimental to planktic foraminifera.
670	
671	7.4 Event-4: Latest Maastrichtian Rapid Climate Warming and Mass Extinction
672	
673	Event-4 marks the last 250 kyr of the Maastrichtian (zones CF2-CF1, C29r), beginning
674	with the largest Deccan eruptions (Phase-2) that caused rapid climate warming of 4 °C in bottom
675	and surface waters and 8 °C on land, acid rain and ocean acidification leading to a major
676	carbonate crisis thus contributing to the mass extinction (reviews in Punekar et al., 2014a; Keller
677	et al., 2016a). This event is not present at Site 217 and rarely present in other Indian Ocean

678	localities due to a major hiatus. The K/T boundary is also missing in the South Atlantic (DSDP
679	Site 525A) and is fragmented in the Tethys (Egypt and Israel) although the best records are
680	preserved in Tunisia (Fig. 2). This interval has been discussed in several recent publications in
681	which Deccan volcanism is directly associated to the K/T mass extinction in India (Keller et al.,
682	2011; Gertsch et al., 2011), U-Pb dating of lava flows narrow the main phase of eruptions to just
683	250 kyr below the KTB (Schoene et al., 2015), and global faunal and geochemical studies point
684	to Deccan volcanism as a major trigger of the K/T mass extinction (e.g., Font et al., 2014, 2016;
685	Punekar et al., 2014a, 2016), whereas others proposed a link between accelerated Deccan
686	volcanism and the Chicxulub impact (Richards et al., 2015; Renne et al., 2015).
687	
688	8 CONCLUSIONS
688 689	8 CONCLUSIONS
688 689 690	8 CONCLUSIONS From the latest Campanian through the Maastrichtian, four major climate and faunal
688 689 690 691	8 CONCLUSIONS From the latest Campanian through the Maastrichtian, four major climate and faunal events are identified that ultimately ended with the K/T mass extinction.
688 689 690 691 692	 8 CONCLUSIONS From the latest Campanian through the Maastrichtian, four major climate and faunal events are identified that ultimately ended with the K/T mass extinction. Event-1: Maximum cooling in the early Maastrichtian (zones CF8b-lower CF6; C31r) is
688 689 690 691 692 693	 8 CONCLUSIONS From the latest Campanian through the Maastrichtian, four major climate and faunal events are identified that ultimately ended with the K/T mass extinction. Event-1: Maximum cooling in the early Maastrichtian (zones CF8b-lower CF6; C31r) is associated with rapid planktic foraminiferal species originations reaching maximum
688 689 690 691 692 693 694	 8 CONCLUSIONS From the latest Campanian through the Maastrichtian, four major climate and faunal events are identified that ultimately ended with the K/T mass extinction. Event-1: Maximum cooling in the early Maastrichtian (zones CF8b-lower CF6; C31r) is associated with rapid planktic foraminiferal species originations reaching maximum Cretaceous diversity as a result of increased nutrient input due to enhanced upwelling,

696	•	Event-2: Warming during the early/late Maastrichtian transition (mid-Maastrichtian
697		event; CF5 to lower CF4; upper C31r-C31n) is attributed to Ninety East Ridge volcanic
698		activity that records an intense phase of eruptions at Site 216 in zones CF5-CF3.
699		Warming led to increased water mass stratification that sustained maximum diversity.
700	•	A minor extinction event ends Event 2 and marks the onset of increasingly more stressful
701		marine conditions for planktic foraminifera particularly specialized species living in
702		subsurface and thermocline depths.
703	•	Event-3: Return to maximum cooling in zone CF3 (C30n) increased stress conditions for
704		marine calcifiers leading to reduced specialized species populations, dwarfing, and
705		dominance of smaller ecological generalists able to tolerate ongoing environmental
706		changes. The global cooling and faunal turnover likely resulted from increased CO2
707		uptake by the oceans as a result of Ninety East Ridge and Deccan Trap volcanism,
708		increased weathering after the greenhouse warming in the early-late Maastrichtian
709		transition, ocean acidification and mesotrophic conditions.
710	•	Event-4: Massive Deccan volcanic eruptions (phase-2) in zones CF2-CF1 spanning the
711		last 250 kyr of the Maastrichtian (C29r) coincident with increasingly high-stress
712		environments, decreasing abundance of large specialized species and dominance of the

713	disaster opportunist Guembelitria cretacea. In the Indian Ocean, South Atlantic and
714	eastern Tethys a major KTB hiatus is present.
715	• Positive and negative effects observed in planktic species diversification and population
716	abundance variations through the Maastrichtian can be linked to volcanism. Positive
717	effects correlate with increased nutrient input, increased water mass stratification and
718	increased ecological niches during climate warming. Negative effects can be linked to
719	increased tempo and rate of volcanism resulting in ocean acidification, carbonate crisis
720	and extinction.
721	
722	ACKNOWLEDGMENTS
723	
724	This study is based upon work supported by Princeton University, Geosciences
725	Department Tuttle and Scott funds; the US National Science Foundation through the
726	Continental Dynamics Program (Leonard Johnson), Sedimentary Geology and Paleontology
727	Program (Richard Lane) and Office of International Science & Engineering's India Program
728	under NSF Grants EAR-0207407, EAR-0447171 and EAR-1026271. We thank India's Oil
729	and Natural Gas Corporation for permission to publish analysis of the Cauvery Basin core.

- 730 Special thanks to the reviewers, Nicolas Thibault and Sarit Ashckenazi-Polivoda, and editors,
- 731 David Bond and Thomas Algeo, for their insightful comments and suggestions.

732 **REFERENCES**

734	Abramovich, S., and Keller, G., 2002. High stress late Maastrichtian paleoenvironment:
735	inference from planktonic foraminifera in Tunisia. Palaeogeography, Palaeoclimatology,
736	Palaeoecology, 178, 145-164, doi:10.1016/S0031-0182(01)00394-7.
737	Abramovich, S., and Keller, G., 2003. Planktonic foraminiferal response to the latest
738	Maastrichtian abrupt warm event: A case study from South Atlantic DSDP Site 525A.
739	Marine Micropaleontology, 48(3-4), 225-249, doi:10.1016/S0377-8398(03)00021-5.
740	Abramovich, S., Almongi-Labin, A., and Benjamini, C., 1998. Decline of the Maastrichtian
741	pelagic ecosystem based on planktic foraminifera assemblage changes: implication for the
742	terminal Cretaceous faunal crisis. Geology, 26, 63-66, doi:10.1130/0091-
743	7613(1998)026b0063:DOTMPEN2.3.CO;2.
744	Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Stüben, D., Berner, Z.,
745	Ramanivosoa, B., and Randriamanantenasoa, A., 2002. Age and paleoenvironment of the
746	Maastrichtian-Paleocene of the Mahajanga Basin, Madagascar: a multidisciplinary
747	approach. Marine Micropaleontology, 47, 17-70, doi:10.1016/S0377-8398(02)00094-4.
748	Abramovich, S., Keller, G., Stüben, D., and Berner, Z., 2003. Characterization of late Campanian
749	and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on

- stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 202, 1-29,
 doi:10.1016/S0031-0182(03)00572-8.
- 752 Abramovich, S., Yovel-Corem, S., Almogi-Labin, A., and Benjamini, C., 2010. Global climate
- change and planktic foraminiferal response in the Maastrichtian. Paleoceanography, 25,

754 PA2201, doi:10.1029/2009PA001843.

- Abramovich, S., Keller, G., Berner, Z., Cymbalista, M., and Rak, C., 2011. Maastrichtian
- planktic foraminiferal biostratigraphy and paleoenvironment of Brazos River, Falls County,
- 757 Texas. In: Keller, G., Adatte, T. (Eds.), The End-Cretaceous Mass Extinction and the
- 758 Chicxulub Impact in Texas. Society for Sedimentary Geology Special Publication 100, pp.
- 759 123-156, ISBN: 978-1-56576-308-1.
- Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V., 1980. Extraterrestrial cause for the
 Cretaceous-Tertiary extinction. Science, 208, 1095-1108, doi:
 10.1126/science.208.4448.1095.
- Alvarez, L.W., 1983. Experimental evidence that an asteroid impact led to the extinction of
 many species 65 million years ago. Proceedings of the National Academy of Sciences,
 80(2), 627-642.
- 766 Arenillas, I., Arz, J.A., Grajales-Nishimura, J.M., Murillo-Muneton, G., Alvarez, W., Camargo-
- 767 Zanguera, A., Molina, E., and Rosales-Dominguez, C., 2006. Chicxulub impact event is

768	Cretaceous/Paleogene boundary in age: New micropaleontological evidence. Earth and
769	Planetary Science Letters, 249, 241-257, doi:10.1016/j.epsl.2006.07.020.
770	Ashckenazi-Polivoda, S., Abramovich, S., Almogi-Labin, A., Schneider-Mor, A., Feinstein, S.,
771	Püttmann, W., and Berner, Z., 2011. Paleoenvironments of the latest Cretaceous oil shale
772	sequence, Southern Tethys, Israel, as an integral part of the prevailing upwelling system.
773	Palaeogeography, Palaeoclimatology, Palaeoecology, 305(1), 93-108,
774	doi:10.1016/j.palaeo.2011.02.018.
775	Ashckenazi-Polivoda, S., Rak, C., Almogi-Labin, A., Zsolt, B., Ovadia, O., and Abramovich, S.,
776	2014. Paleoecology of the K-Pg mass extinction survivor Guembelitria (Cushman):
777	isotopic evidence from pristine foraminifera from Brazos River, Texas (Maastrichtian).
778	Paleobiology, 40(1), 24-33, doi:10.1666/13317.
779	Barrera, E., 1994. Global environmental changes preceding the Cretaceous-Tertiary boundary:
780	Early-late Maastrichtian transition. Geology, 22(10), 877-880, doi: 10.1130/0091-
781	7613(1994)022<0877:GECPTC>2.3.CO;2.
782	Barrera, E., and Huber, B.T., 1990. Evolution of Antarctic waters during the Maastrichtian:
783	Foraminifer oxygen and carbon isotope ratios, Leg 113. In: Barker, P.F., Kennett, J.P.
784	(Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 113. College Station,
785	Texas, Ocean Drilling Program, pp. 813-827.

786	Barrera, E., and Savin, S.M., 1999. Evolution of late Campanian-Maastrichtian marine climates
787	and oceans. In: Barrera, E., Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-
788	Climate System. Geological Society of America Special Papers, 332, pp. 245-282.
789	Barrera, E., Huber, B.T., Savin, S.M., and Webb, P.N., 1987. Antarctic marine temperatures:
790	Late Campanian through early Paleocene. Paleoceanography, 2(1), 21-47,
791	doi:10.1029/PA002i001p00021.
792	Begon, M., Mortimer, M., and Thompson, D.J., 1996. Population Ecology: A Unified Study of
793	Plants and Animals. Cambridge, UK, Blackwell, 247 p.
794	Begon, M., Harper, J.L., and Townsend, C.R., 1998. Ecology: Individuals, Populations and
795	Communities. Boston, Blackwell Science, 1068 p.
796	Bond, D.P.G., and Wignall, P.B., 2014. Large igneous provinces and mass extinctions: An
797	update. In: Keller, G., Kerr, A.C. (Eds.), Volcanism, Impacts, and Mass Extinctions:
798	Causes and Effects. Geological Society of America Special Paper, 505, 29-55,
799	doi:10.1130/2014.2505(02).
800	Bralower, T.J., Paull, C.K., and Leckie, R.M., 1998. The Cretaceous-Tertiary boundary cocktail:
801	Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology,
802	26(4), 331-334, doi:10.1130/0091-7613(1998)026<0331:TCTBCC>2.3.CO;2.

803	Burnett, J., 1998. Upper Cretaceous. In: Bown, P.R. (Ed.), Calcareous Nannofossil
804	Biostratigraphy. Chapman & Hall, Cambridge, pp. 132-199.
805	Chenet, AL., Quidelleur, X., Fluteau, F., Courtillot, V., and Bajpai, S., 2007. 40K/40Ar dating
806	of the main Deccan large igneous province: Further evidence of Cretaceous-Tertiary
807	boundary age and short duration. Earth and Planetary Science Letters, 263, 1-15,
808	doi:10.1016/j.epsl.2007.07.011.
809	Chenet, AL., Fluteau, F., Courtillot, V., Gérard, M., and Subbarao, K.V., 2008. Determination
810	of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic
811	secular variation: results from a 1200-m-thick section in the Mahabaleshwar escarpment.
812	Journal of Geophysical Research: Solid Earth, 113(B4), doi:10.1029/2006JB004635.
813	Chenet, AL., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S.F.R., Subbarao,
814	K.V., and Thordarson, T., 2009. Determination of rapid Deccan eruptions across the
815	Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from
816	analysis of eight new sections and synthesis for a 3500-m-thick composite section. Journal
817	of Geophysical Research: Solid Earth, 114(B6), doi:10.1029/2008JB005644.
818	Coccioni, R., and Luciani, V., 2006. Guembelitria irregularis bloom at the K-T boundary:
819	morphological abnormalities induced in planktonic foraminifera by impactrelated extreme

- 820 environmental stress? In: Cockell, C., Gilmour, I., Koeberl, C. (Eds.), Biological Processes
- 821 Associated with Impact Events. Springer-Verlag, Berlin, pp. 179-196.
- 822 Coffin, M.F., 1992. Emplacement and subsidence of Indian Ocean plateaus and submarine ridges.
- 823 In: Duncan, R.A., et al. (Eds.), Synthesis of results from scientific drilling in the Indian
- 824 Ocean, 115-125, doi:10.1029/GM070p0115.
- 825 Coffin, M.F., Pringle, M.S., Duncan, R.A., Gladczenko, T.P., Storey, M., Müller, R.D., and
- Gahagan, L.A., 2002. Kerguelen hotspot magma output since 130 Ma. Journal of Petrology,
- 827 43(7), 1121-1137, doi:10.1093/petrology/43.7.1121.
- 828 Courtillot, V., and Fluteau, F., 2014. A review of the embedded time scales of flood basalt
- 829 volcanism with special emphasis on dramatically short magmatic pulses. In: Keller, G.,
- 830 Kerr, A.C. (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects.
- 831 Geological Society of America Special Paper, 505, SPE505-15, doi:10.1130/2014.2505(15).
- 832 Courtillot, V., and Renne, P.R., 2003. On the ages of flood basalt events. Comptes Rendus
- 833 Geoscience, 335(1), 113-140, doi:10.1016/S1631-0713(03)00006-3.
- 834 Culver, S.J., 2003. Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a
- review. Marine Micropaleontology, 47(3), 177-226, doi:10.1016/S0377-8398(02)00117-2.

836	Darvishzad, B., Ghasemi-Nejad, E., Ghourchaei, S., and Keller, G., 2007. Planktonic
837	foraminiferal biostratigraphy and faunal turnover across the Cretaceous-Tertiary boundary
838	in southwestern Iran. Journal of Sciences, Islamic Republic of Iran, 18(2), 139-149.
839	Dessert, C., Dupré, B., François, L.M., Schott, J., Gaillardet, J., Chakrapani, G., and Bajpai, S.,
840	2001. Erosion of Deccan Traps determined by river geochemistry: impact on the global
841	climate and the 87 Sr/86 Sr ratio of seawater. Earth and Planetary Science Letters, 188(3),
842	459-474, doi:10.1016/S0012-821X(01)00317-X.
843	D'Hondt, S., and Arthur, M.A., 2002. Deep water in the late Maastrichtian ocean.
844	Paleoceanography, 17(1), doi:10.1029/1999PA000486.
845	Doney, S.C., Fabry, V.J., Feely, R.A., and Kleypas, J.A., 2009. Ocean acidification: The other
846	CO2 problem. Annual Review of Marine Science, 1, 169-192,
847	doi:10.1146/annurev.marine.010908.163834.
848	Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M.,
849	Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman,
850	W.J., Talley, L.D., 2012. Climate change impacts on marine ecosystems. Marine Science, 4,
851	11-37, doi:10.1146/annurev-marine-041911-111611.
852	Douglas, R.G., and Savin, S.M., 1975. Oxygen and carbon isotope analyses of Tertiary and

853 Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean.

- 854 Initial reports of the deep sea drilling project, 32, 509-520,
 855 doi:10.2973/dsdp.proc.32.115.1975.
- 856 Dubicka, Z., and Peryt, D., 2012. The Lower/Upper Maastrichtian boundary interval in the
- 857 Lublin Syncline (SE Poland, Boreal realm): new insight into foraminiferal stratigraphy.
- 858 Newsletters on Stratigraphy, 45(2), 139-150, doi:10.1127/0078-0421/2012/0018.
- 859 Duncan, R.A., 1978. Geochronology of basalts from the Ninetyeast Ridge and continental
- dispersion in the eastern Indian Ocean. Journal of Volcanology and Geothermal Research,
- 861 4, 283-305, doi:10.1016/0377-0273(78)90018-5.
- 862 Duncan, R.A., 1991. Age distribution of volcanism along aseismic ridges in the eastern Indian
- 863 Ocean. Proceedings of the Integrated Ocean Drilling Program, 121, 507-517,
- doi:10.2973/odp.proc.sr.121.162.1991.
- 865 Emerson, S., and Bender, M., 1981. Carbon fluxes at the sediment-water interface of the deep-
- sea: calcium carbonate preservation. Journal of Marine Research, 39, 139-162.
- 867 Eshet, Y., and Almogi-Labin, A., 1996. Calcareous nannofossils as paleoproductivity indicators
- in Upper Cretaceous organic-rich sequences in Israel. Marine Micropaleontology, 29(1),
- 869 37-61, doi:10.1016/0377-8398(96)00006-0.
- 870 Font, E., Fabre, S., Nédélec, A., Adatte, T., Keller, G., Veiga-Pires, C., Ponte, J., Mirão, J.,
- 871 Khozyem, H., and Spangenberg, J.E., 2014. Atmospheric halogen and acid rains during the

- 872 main phase of Deccan eruptions: magnetic and mineral evidence. In: Keller, G., Kerr, A.C.
- 873 (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geological Society
- of America Special Paper, 505, 353-368, doi:10.1130/2014.2505(18).
- 875 Font, E., Adatte, T., Sial, A.N., de Lacerda, L.D., Keller, G., and Punekar, J., 2016. Mercury
- anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology, 44(2), 171-
- 877 174, doi: 10.1130/G37451.1.
- 878 Frank, T.D., and Arthur, M.A., 1999. Tectonic forcings of Maastrichtian ocean- climate
 879 evolution. Paleoceanography, 14(2), 103-117, doi:10.1029/1998PA900017.
- 880 Frank, T.D., Thomas, D.J., Leckie, R.M., Arthur, M.A., Brown, P.R., Jones, K., and Lees, J.A.,
- 881 2005. The Maastrichtian record from Shatsky Rise (northwest Pacific): a tropical
- perspective on global ecological and oceanographic changes. Paleoceanography, 20,
- 883 PA1008, doi:10.1029/2004PA001052.
- 884 Friedrich, O., Herrle, J.O., and Hemleben, C., 2005. Climatic changes in the Late Campanian-
- 885 Early Maastrichtian: Micropaleontological and stable isotopic evidence from an
- epicontinental sea. The Journal of Foraminiferal Research, 35(3), 228-247,
- doi:10.2113/35.3.228.
- Friedrich, O., Schmiedl, G., and Erlenkeuser, H., 2006. Stable isotope composition of Late
 Cretaceous benthic foraminifera from the southern South Atlantic: Biological and

- 890 environmental effects. Marine Micropaleontology, 58, 135-157,
 891 doi:10.1016/j.marmicro.2005.10.005.
- 892 Friedrich, O., Herrle, J.O., Wilson, P.A., Cooper, M.J., Erbacher, J., and Hemleben, C., 2009.
- 893 Early Maastrichtian carbon cycle perturbation and cooling event: Implications from the
- South Atlantic Ocean. Paleoceanography, 24(2), PA2211, doi:10.1029/2008PA001654
- 895 Gardin, S., Galbrun, B., Thibault, N., Coccioni, R., and Premoli Silva, I., 2012.
- Biomagnetochronology for the upper Campanian–Maastrichtian from the Gubbio area,
- 897 Italy: new results from the Contessa Highway and Bottaccione sections. Newsletters on
 898 Stratigraphy, 45, 75-100, doi:10.1127/0078-0421/2012/0014.
- 899 Gertsch, B., Keller, G., Adatte, T., Garg, R., Prasad, V., Fleitmann, D., and Berner, Z., 2011.
- 900 Environmental effects of Deccan volcanism across the Cretaceous–Tertiary transition in
- 901 Meghalaya, India. Earth and Planetary Science Letters, 310, 272-285,
 902 doi:10.1016/j.epsl.2011.08.015.
- 903 Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G., 2012. The geologic time scale 2012.
- 904 Boston, USA, Elsevier, pp. 1176, doi:10.1016/B978-0-444-59425-9.00004-4.
- 905 Hallock, P., 1987. Fluctuations in the trophic resource continuum: a factor in global diversity
- 906 cycles? Paleoceanography, 2, 457-471, doi:10.1029/PA002i005p00457.

907	Haq, B.U., Hardenbol, J., and Vail, P.R., 1987. Chronology of fluctuating sea levels since the
908	Triassic. Science, 235(4793), 1156-1167, doi:10.1126/science.235.4793.1156.

- 909 Haq, B.U., 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58,
- 910 doi:10.1016/j.gloplacha.2013.12.007.
- 911 Hart, M.B., 2007. Late Cretaceous climates and foraminiferid distributions. In: Williams, M.,
- 912 Haywood, A.M., Gregory, F.J., Schmidt, D.N. (Eds.), Deep-Time Perspectives on Climate
- 913 Change: Marrying the Signal From Computer Models and Biological Proxies. Geological
- 914 Society Special Publication, 2, 235-250.
- 915 Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, A., Jacobsen, S.B., and
- 916 Boynton, W.V., 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact
- 917 crater on the Yucatan Peninsula, Mexico. Geology, 19(9), 867-871, doi:10.1130/0091-
- 918 7613(1991)019<0867:CCAPCT>2.3.CO;2.
- 919 Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump,
- 920 L., Martindale, R.C., Greene, S.E., Kiessling, G., Ries, J., Zachos, J.C., Royer, D.L., Barker,
- 921 S., Marchitto, T.M., Jr., Moyer, R., Pelejero, C., Ziveri1, P., Foster, G.L., and Williams, B.,
- 922 2012. The geological record of ocean acidification. Science, 335(6072), 1058-1063,
- 923 doi:10.1126/science.1208277.

924	Huber, B.T., Norris, R.D., and MacLeod, K.G., 2002. Deep-sea paleotemperature record of
925	extreme warmth during the Cretaceous. Geology, 30(2), 123-126, doi:10.1130/0091-
926	7613(2002)030<0123:DSPROE>2.0.CO;2.
927	Huber, B.T., MacLeod, K.G., and Tur, N.A., 2008. Chronostratigraphic framework for upper
928	Campanian-Maastrichtian sediments on the Blake Nose (subtropical North Atlantic).
929	Journal of Foraminiferal Research, 38, 162-182, doi:10.2113/gsjfr.38.2.162.
930	Husson, D., Galbrun, B., Laskar, J., Hinnov, L.A., Thibault, N., Gardin, S., and Locklair, R.E.,
931	2011. Astronomical calibration of the Maastrichtian (late Cretaceous). Earth and Planetary
932	Science Letters, 305, 328-340, doi:10.1016/j.epsl.2011.03.008.
933	Isaza-Londoño, C., MacLeod, K.G., and Huber, B.T., 2006. Maastrichtian North Atlantic
934	warming, increasing stratification, and foraminiferal paleobiology at three timescales.
935	Paleoceanography, 21, PA1012, doi:10.1029/2004PA001130.
936	Izett, G.A., 1990. The Cretaceous/Tertiary boundary interval, Raton Basin, Colorado and New
937	Mexico, and its content of shock-metamorphosed minerals; Evidence relevant to the K/T
938	boundary impact-extinction theory. Geological Society of America Special Papers, 249, 1-
939	100, doi:10.1130/SPE249-p1.
940	Keller, G., 2005. Biotic effects of late Maastrichtian mantle plume volcanism: Implications for
941	impacts and mass extinctions. Lithos, 79(3-4), 317-341, doi:10.1016/j.lithos.2004.09.005.

942	Keller,	G.,	2014.	Deccan	volcanism,	the	Chicxulub	impact,	and	the	end-Cretaceous	mass
-----	---------	-----	-------	--------	------------	-----	-----------	---------	-----	-----	----------------	------

- 943 extinction: Coincidence? Cause and effect? In: Keller, G., Kerr, A.C. (Eds.), Volcanism,
- 944 Impacts, and Mass Extinctions: Causes and Effects. Geological Society of America Special
- 945 Paper, 505, 57-89, doi:10.1130/2014.2505(03).
- 946 Keller, G., and Abramovich, S., 2009. Lilliput effect in late Maastrichtian planktic foraminifera:
- 947 Response to environmental stress. Palaeogeography, Palaeoclimatology, Palaeoecology,
- 948 284, 47-62, doi:10.1016/j.palaeo.2009.08.029.
- 949 Keller, G., Adatte, T., Burns, S.J., and Tantawy, A.A., 2002. High-stress paleoenvironment
- 950 during the late Maastrichtian to early Paleocene in central Egypt. Palaeogeography,
- 951 Palaeoclimatology, Palaeoecology, 187, 35-60, doi:10.1016/S0031-0182(02)00504-7.
- 952 Keller, G., Bhowmick, P.K., Upadhyay, H., Dave, A., Reddy, A.N., Jaiprakash, B.C., and Adatte,
- 953 T., 2011. Deccan volcanism linked to the Cretaceous-Tertiary boundary (KTB) mass
- 954 extinction: New evidence from ONGC wells in the Krishna-Godavari Basin, India. Journal
- 955 of the Geological Society of India, 78, 399-428, doi:10.1007/s12594-011-0107-3.
- 956 Keller, G., Khozyem, H.M., Adatte, T., Malarkodi, N., Spangenberg, J.E., and Stinnesbeck, W.,
- 957 2013. Chicxulub Impact Spherules in the North Atlantic and Caribbean: age constraints and
- 958 Cretaceous-Tertiary boundary hiatus. Geological Magazine, 150(05), 885-907,
- 959 doi:10.1017/S0016756812001069.

960 Keller, G., Punekar, J., and Mateo, P., 2016a. Upheavals during the late Maastrichtian
961 Volcanism, climate and faunal events preceding the end-Cretaceous mass extinction
962 Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 137-15
963 doi:10.1016/j.palaeo.2015.06.034.
Keller, G., Jaiprakash, B.C., and Reddy, A.N., 2016b. Maastrichtian to Eocene subsurfac
965 stratigraphy of the Cauvery basin and correlation with Madagascar. Journal of th
966 Geological Society of India, 87(1), 5-34, doi:10.1007/s12594-016-0370-4.
67 Koutsoukos, E.A.M., 1994. Early stratigraphic record and phylogeny of the planktonic genu
968 Guembelitria Cushman, 1933. Journal of Foraminiferal Research, 24, 288-295
969 doi:10.2113/gsjfr.24.4.288.
970 Kring, D.A., 2007. The Chicxulub impact event and its environmental consequences at th
971 Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecolog
972 255(1), 4-21, doi:10.1016/j.palaeo.2007.02.037.
973 Krishna, K.S., Abraham, H., Sager, W.W., Pringle, M.S., Frey, F., Gopala Rao, D., an
2012 Levchenko, O.V., 2012. Tectonics of the Ninetyeast Ridge derived from spreading record
975 in adjacent oceanic basins and age constraints of the ridge. Journal of Geophysica
976 Research, 117, B04101, doi: 10.1029/2011JB008805.

977	Kroon, D., and Nederbragt, A.J., 1990. Ecology and paleoecology of triserial planktic
978	foraminifera. Marine Micropaleontology, 16, 25-38, doi:10.1016/0377-8398(90)90027-J.
979	Kump, L., Bralower, T., and Ridgwell, A., 2009. Ocean acidification in deep time.
980	Oceanography, 22(4), 94-107.
981	Leckie, R.M., 1987. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of
982	open ocean and epicontinental sea assemblages. Micropaleontology, 33(2), 164-176, doi:
983	10.2307/1485491.
984	Li, L., and Keller, G., 1998a. Maastrichtian climate, productivity and faunal turnovers in planktic
985	foraminifera of South Atlantic DSDP Sites 525A and 21. Marine Micropaleontology, 33(1-
986	2), 55-86, doi:10.1016/S0377-8398(97)00027-3.
987	Li, L., and Keller, G., 1998b. Abrupt deep-sea warming at the end of the Cretaceous. Geology,
988	26, 995-998, doi:10.1130/0091-7613(1998)026<0995:ADSWAT>2.3.CO;2.
989	Li, L., and Keller, G., 1998c. Diversification and extinction in Campanian-Maastrichtian planktic
990	foraminifera of northwestern Tunisia. Eclogae Geologicae Helvetiae, 91(1), 75-102.
991	Li, L., and Keller, G., 1999. Variability in Late Cretaceous climate and deep waters: evidence
992	from stable isotopes. Marine Geology, 161, 171-190, doi:10.1016/S0025-3227(99)00078-X

993	Li, L., Keller, G., Adatte, T., and Stinnesbeck, W., 2000. Late Cretaceous sea-level changes in
994	Tunisia: a multi-disciplinary approach. Journal of the Geological Society of London, 157,
995	447-458, doi:10.1144/jgs.157.2.447.
996	Linnert, C., Robinson, S.A., Lees, J.A., Bown, P.R., Pérez-Rodríguez, I., Petrizzo, M.R., Falzoni,
997	F., Littler, K., Arz, J.A., and Russell, E.E., 2014. Evidence for global cooling in the Late
998	Cretaceous. Nature communications, 5, 4194, doi:10.1038/ncomms5194.
999	Luyendyk, B.P., 1977. Deep Sea Drilling on the Ninetyeast Ridge: Synthesis and a Tectonic
1000	Model. In: Heirtzler, J.R., Bolli, H.M., Davies, T.A., Saunders, J.B., Sclater, J.C. (Eds.),
1001	Indian Ocean Geology and Biostratigraphy. American Geophysical Union, Washington,
1002	D.C., doi: 10.1029/SP009p0165.
1003	MacLeod, K.G., 1994. Bioturbation, inoceramid extinction, and mid-Maastrichtian ecological

- 1004 change. Geology, 22, 139-142, doi:10.1130/0091-7613(1994)022<0139:BIEAMM>
 1005 2.3.CO;2.
- 1006 MacLeod, K.G., Huber, B.T., Pletsch, T., Röhl, U., and Kucera, M., 2001. Maastrichtian
- 1007 foraminiferal and paleoceanographic changes on Milankovitch timescales.
- 1008 Paleoceanography, 16(2), 133-154., doi:10.1029/2000PA000514.

- 1009 MacLeod, K.G., Huber, B.T., and Isaza-Londoño, C., 2005. North Atlantic warming during 1010 "global" cooling at the end of the Cretaceous. Geology, 33, 437-440,
- 1011 doi:10.1130/G21466.1.
- 1012 MacLeod, K.G., Whitney, D.L., Huber, B.T., and Koeberl, C., 2007. Impact and extinction in
- 1013 remarkably complete Cretaceous-Tertiary boundary sections from Demerara Rise, tropical
- 1014 western North Atlantic. Geological Society of America Bulletin, 119(1-2), 101-115,
- 1015 doi:10.1130/B25955.1.
- 1016 MacLeod, N., 1996. Testing patterns of Cretaceous-Tertiary planktonic foraminiferal extinction

1017 at El Kef (Tunisia). Geological Society of America Special Paper, 307, 287-302.

- 1018 MacLeod, N., and Keller, G., 1991. Hiatus distributions and mass extinctions at the
- 1019 Cretaceous/Tertiary boundary. Geology, 19, 497-501, doi: 10.1130/0091-
- 1020 7613(1991)019b0497:HDAMEAN2.3.CO;2.
- 1021 MacLeod, N., Ortiz, N., Fefferman, N., Clyde, W., Schulter, C., and MacLean, J., 2000.
- 1022 Phenotypic response of foraminifera to episodes of global environmental change. In:
- 1023 Culver, S.J., Rawson, P. (Eds.), Biotic Response to Global Environmental Change: The
- 1024 Last 145 Million Years. Cambridge, UK, Cambridge University Press, pp. 51-78.

- 1025 Malmgren, B.A., 1987. Differential dissolution of Upper Cretaceous planktonic foraminifera
- 1026 from a temperate region of the South Atlantic Ocean. Marine Micropaleontology, 11(4),
- 1027 251-271, doi:10.1016/0377-8398(87)90001-6.
- 1028 Mateo, P., Keller, G., Adatte, T., and Spangenberg, J.E., 2016. Mass wasting and hiatuses during
- 1029 the Cretaceous-Tertiary transition in the North Atlantic: Relationship to the Chicxulub
- 1030 impact? Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 96-115,
- 1031 doi:10.1016/j.palaeo.2015.01.019.
- 1032 Meilijson, A., Ashckenazi-Polivoda, S., Ron-Yankovich, L., Illner, P., Alsenz, H., Speijer, R.P.,
- 1033 Almogi-Labin, A., Feinstein, S., Berner, Z., Püttmann, W., and Abramovich, S., 2014.
- 1034 Chronostratigraphy of the Upper Cretaceous high productivity sequence of the southern
- 1035 Tethys, Israel. Cretaceous Research, 50, 187-213, doi:10.1016/j.cretres.2014.04.006.
- 1036 Moore, D.G., Curray, J.R., Raitt, R.W., and Emmel, F.J., 1974. Stratigraphic-seismic sections
- 1037 correlations and implications to Bengal fan history. In: von der Borch, C.C., Slater, J.G., et
- 1038 al. (Eds.), Initial Reports of the Deep Sea Drilling Project, 22. U.S. Government Printing
- 1039 Office, Washington, pp. 403-412, doi:10.2973/dsdp.proc.22.116.1974.
- 1040 Moy, A.D., Howard, W.R., Bray, S.G., and Trull, T.W., 2009. Reduced calcification in modern
- 1041 Southern Ocean planktonic foraminifera. Nature Geoscience, 2(4), 276-280,
- 1042 doi:10.1038/ngeo460.

- 1043 Nederbragt, A.J., 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae
 1044 (planktic foraminifera). Micropaleontology, 37(4), 329-372, doi:10.2307/1485910.
- 1045 Nordt, L., Atchley, S., and Dworkin, S., 2003. Terrestrial evidence for two greenhouse events in
- 1046
 the latest Cretaceous.
 GSA
 Today,
 13(12),
 4-9,
 doi:10.1130/1052

 1047
 5173(2003)013<4:TEFTGE>2.0.CO;2.
- 1048 Norris, R.D., Huber, B.T., and Self-Trail, J., 1999. Synchroneity of the KT oceanic mass
- 1049 extinction and meteorite impact: Blake Nose, western North Atlantic. Geology, 27(5), 419-

1050 22, doi:10.1130/0091-7613(1999)027<0419:SOTKTO>2.3.CO;2.

- 1051 Olsson, R.K., Miller, K.G., Browning, J.V., Habib, D., and Sugarmann, P.J., 1997. Ejecta layer
- 1052 at the Cretaceous-Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg
- 1053 174AX). Geology, 25(8), 759-62, doi:10.1130/0091-
- 1054 7613(1997)025<0759:ELATCT>2.3.CO;2.
- 1055 Olsson, R.K., Hemleben, C., Berggren, W.A., and Huber, B.T., 1999. Atlas of Paleocene
- 1056 Planktonic Foraminifera. Smithsonian Contributions to Paleobiology, 85. Washington, DC,
- 1057 Smithsonian Institution Press, pp. 252.
- 1058 Olsson, R.K., Wright, J.D., and Miller, K.G., 2001. Paleobiogeography of Pseudotextularia
- 1059 *elegans* during the latest Maastrichtian global warming event. Journal of Foraminiferal
- 1060 Research, 31, 275-282, doi:10.2113/31.3.275.

- 1061 Pardo, A., and Keller, G., 2008. Biotic effects of environmental catastrophes at the end of the
- 1062 Cretaceous: Guembelitria and Heterohelix blooms. Cretaceous Research, 29(5-6), 1058-
- 1063 1073, doi:10.1016/j.cretres.2008.05.031.
- 1064 Parker, F.L., and Berger, W.H., 1971. Faunal and solution patterns of planktonic foraminifera in
- 1065 surface sediments of the South Pacific. Deep Sea Research and Oceanographic Abstracts,
 1066 18(1), 73-107, doi:10.1016/0011-7471(71)90017-9.
- 1067 Premoli Silva, I., and Sliter, W.V., 1999. Cretaceous paleoceanography: evidence from
- 1068 planktonic foraminiferal evolution. Special Papers-Geological Society of America, 301-328.
- 1069 Pringle, M.S., Frey, F.A., and Mervine, E.M., 2008. A simple linear age progression for the
- 1070 Ninetyeast Ridge, Indian Ocean: new constraints on Indian plate tectonics and hotspot
- 1071 dynamics. Eos Transactions AGU Fall Meeting Supplementary Abstract 89, p. T54B-03.
- 1072 Punekar, J., Mateo, P., and Keller, G., 2014a. Effects of Deccan volcanism on paleoenvironment
- 1073 and planktic foraminifera: A global survey. In: Keller, G., Kerr, A.C. (Eds.), Volcanism,
- 1074 Impacts, and Mass Extinctions: Causes and Effects. Geological Society of America Special
- 1075 Paper, 505, 91-116, doi: 10.1130/2014.2505(04).
- 1076 Punekar, J., Keller, G., Khozyem, H.M., Hamming, C., Adatte, T., Tantawy, A.A., and
- 1077 Spangenberg, J., 2014b. Late Maastrichtian-early Danian high-stress environments and

- delayed recovery linked to Deccan volcanism. Cretaceous Research, 49, 63-82.
 doi:10.1016/j.cretres.2014.01.002.
- 1080 Punekar, J., Keller, G., Khozyem, H. M., Adatte, T., Font, E., and Spangenberg, J., 2016. A
- 1081 multi-proxy approach to decode the end-Cretaceous mass extinction. Palaeogeography,
- 1082 Palaeoclimatology, Palaeoecology, 441, 116-136, doi:10.1016/j.palaeo.2015.08.025.
- 1083 Renne, P.R., Sprain, C.J., Richards, M.A., Self, S., Vanderkluysen, L., and Pande, K., 2015.
- State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced
 by impact. Science, 350(6256), 76-78, doi:10.1126/science.aac7549.
- 1086 Richards, M.A., Alvarez, W., Self, S., Karlstrom, L., Renne, P.R., Manga, M., Sprain, C.J., Smit,
- 1087 J., Vanderkluysen, L., and Gibson, S.A., 2015. Triggering of the largest Deccan eruptions
- 1088 by the Chicxulub impact. Geological Society of America Bulletin, 127(11-12), 1507-1520,
- doi:10.1130/B31167.1.
- 1090 Robaszynski, F., Caron, M., Gonzalez Donoso, J.M., and Wonders, A.A.H., 1983-1984. Atlas of
- 1091 Late Cretaceous globotruncanids. Micropaleontology, 26(3-4), 145-305.
- 1092 Rocchia, R., Robin, E., Froget, L., and Gayraud, J., 1996. Stratigraphic distribution of
- 1093 extraterrestrial markers at the Cretaceous–Tertiary boundary in the Gulf of Mexico area:
- 1094 Implications for the temporal complexity of the event. In: Ryder, G., Fastovsky, D.,

1095	Gartner, S. (Eds.), The Cretaceous-Tertiary event and other catastrophes in Earth History.
1096	Geological Society of America, Special Papers, 307, 279-286.
1097	Schöbel, S., deWall, H., Ganerød, M., Pandit, M.K., and Rolf, C., 2014. Magnetostratigraphy and
1098	40Ar-39Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central
1099	western India: significance and correlation with the main Deccan Large Igneous Province
1100	sequences. Journal of Asian Earth Sciences, 89, 28-45, doi:10.1016/j.jseaes.2014.03.022.
1101	Schoene, B., Samperton, K.M., Eddy, M.P., Keller, G., Adatte, T., Bowring, S.A., Khadri, S.F.R.,
1102	and Gertsch, B., 2015. U-Pb geochronology of the Deccan Traps and relation to the end-
1103	Cretaceous mass extinction. Science, 347, 182-184, doi:10.1126/science.aaa0118.
1104	Schrag, D.P., DePaolo, D.J., and Richter, F.M., 1995. Reconstructing past sea surface
1105	temperatures from oxygen isotope measurements of bulk carbonate. Geochimica et
1106	Cosmochimica Acta, 59, 2265-2278, doi:10.1016/0016-7037(95)00105-9.
1107	Schultz, P.H., and D'Hondt, S., 1996. Cretaceous-Tertiary (Chicxulub) impact angle and its
1108	consequences. Geology, 24(11), 963-967; doi:10.1130/0091-7613(1996)
1109	024<0963:CTCIAA>2.3.CO;2.
1110	Sclater, J.G., and Fisher, R.L., 1974. Evolution of the East Central Indian Ocean, with Emphasis
1111	on the Tectonic Setting of the Ninetyeast Ridge. Geological Society of America Bulletin,
1112	85(5), 683-702, doi:10.1130/0016-7606(1974)85<683:E01ECI>2.0.CO;2.

1113	Scotese, C.R., 2013. Map Folio 16, KT Boundary (65.5 Ma, latest Maastrichtian), PALEOMAP
1114	PaleoAtlas for ArcGIS, volume 2, Cretaceous, PALEOMAP Project, Evanston, IL.
1115	Self, S., Jay, A.E., Widdowson, M., and Keszthelyi, L.P., 2008. Correlation of the Deccan and
1116	Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth? Journal of
1117	Volcanology and Geothermal Research, 172, 3-19, doi:10.1016/j.jvolgeores.2006.11.012.
1118	Shackleton, N.J., 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews,
1119	6(3-4), 183-190, doi:10.1016/0277-3791(87)90003-5.
1120	Smit, J., 1999. The global stratigraphy of the Cretaceous/Tertiary boundary impact ejecta.
1121	Annual Review of Earth and Planetary Sciences, 27, 75-91,
1122	doi:10.1146/annurev.earth.27.1.75.
1123	Smit, J., Montanari, A., Swinburne, N.H.M., Alvarez, W., Hildebrand, A.R., Margolis, S.V.,
1124	Claeys, P., Lowrie, W., and Asaro, F., 1992. Tektite-bearing, deep-water clastic unit at the
1125	Cretaceous-Tertiary boundary in northeastern Mexico. Geology, 20, 99-103.
1126	Smit, J., Roep, T.B., Alvarez, W., Montanari, A., Claeys, P., Grajalesnishimura, J.M., and
1127	Bermudez, J., 1996. Coarse-grained clastic sandstone complex at the K/T boundary around
1128	the Gulf of Mexico: Deposition by tsunami waves induced by the Chicxulub impact? In:
1129	Ryder, G., Fastovsky, D., Gartner, S. (Eds.), The Cretaceous-Tertiary Event and other

- Catastrophes in Earth History. Geological Society of America Special Paper, 307, 151-182,
 doi:10.1130/0-8137-2307-8.151.
- 1132 Stüben, D., Kramar, U., Harting, M., Stinnesbeck, W., and Keller, G., 2005. High-resolution
- 1133 geochemical record of Cretaceous-Tertiary boundary sections in Mexico: New constraints
- 1134 on the K/T and Chicxulub events. Geochimica et Cosmochimica Acta, 69(10), 2559-2579,
- 1135 doi:10.1016/j.gca.2004.11.003.
- 1136 Tantawy, A.A., Keller, G., and Pardo, A., 2009. Late Maastrichtian volcanism in the Indian
- 1137 Ocean: effects on calcareous nannofossils and planktic foraminifera. Palaeogeography,
- 1138 Palaeoclimatology, Palaeoecology, 284, 63-87, doi:10.1016/j.palaeo.2009.08.025.
- 1139 Thibault, N., 2016. Calcareous nannofossil biostratigraphy and turnover dynamics in the late
- 1140 Campanian–Maastrichtian of the tropical South Atlantic. Revue de Micropaléontologie,
- 1141 59(1), 57-69, doi:10.1016/j.revmic.2016.01.001.
- 1142 Thibault, N., and Gardin, S., 2007. The late Maastrichtian nannofossil record of climate change
- in the South Atlantic DSDP Hole 525A. Marine Micropaleontology, 65, 163–184,
- doi:10.1016/j.marmicro.2007.07.004.
- 1145 Thibault, N., and Gardin, S., 2010. The calcareous nannofossil response to the end-Cretaceous
- 1146 warm event in the Tropical Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology,
- 1147 291, 239-252, doi: 10.1016/j.palaeo.2010.02.036.

- 1148 Thibault, N., and Husson, D., 2016. Climatic fluctuations and sea-surface water circulation
- 1149 patterns at the end of the Cretaceous era: Calcareous nannofossil evidence.
- 1150 Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 152-164,
- doi:10.1016/j.palaeo.2015.07.049.
- 1152 Thompson, G., Bryan, W.B., Frey, F.A., and Sung, A.C., 1974. Petrology and geochemistry of
- basalts and related rocks from sites 214, 215, 217 DSDP Leg 22, Indian Ocean In: von der
- Borch, C.C., Slater, J.G., et al. (Eds.), Initial Reports of the Deep Sea Drilling Project, 22.
- 1155 U.S. Government Printing Office, Washington, pp. 459-468,
 1156 doi:10.2973/dsdp.proc.22.119.1974.
- 1157 Thunell, R.C., 1976. Optimum indices of calcium carbonate dissolution, in deep-sea sediments.
- 1158 Geology, 4(9), 525-528, doi: 10.1130/0091-7613(1976)4<525:OIOCCD>2.0.CO;2.
- 1159 Tobin T.S., Ward P.D., Steig E.J., Olivero E.B., Hilburn I.A., Mitchell R.N., Diamond M.R.,
- 1160 Raub T.D., and Kirschvink J.L., 2012. Extinction patterns, δ^{18} O trends, and
- 1161 magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links
- 1162 with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 350-352,
- 1163 180-188, doi:10.1016/j.palaeo.2012.06.029.

- 1164 Tsujita, C.J., 2001. The significance of multiple causes and coincidence in the geological record:
- from clam clusters to Cretaceous catastrophe. Canadian Journal of Earth Sciences, 38(2),
- 1166 271-292, doi:10.1139/e00-048.
- 1167 Vellekoop, J., Sluijs, A., Smit, J., Schouten, S., Weijers, J.W., Damsté, J.S.S., and Brinkhuis, H.,
- 1168 2014. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-
- 1169 Paleogene boundary. Proceedings of the National Academy of Sciences, 111(21), 7537-
- 1170 7541, doi:10.1073/pnas.1319253111.
- 1171 Vermeij, G.J., 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21(02),
 1172 125-152, doi:10.1017/S0094837300013178.
- 1173 Vincent, E., and Berger, W.H., 1985. Carbon dioxide and polar cooling in the Miocene: The
- 1174 Monterey hypothesis. In: Sundquist, E.T., Broecker, W.S. (Eds.), The Carbon Cycle and
- 1175 Atmospheric CO: Natural Variations Archean to Present. American Geophysical Union,
- 1176 Washington, D.C., pp. 455-468, doi:10.1029/GM032p0455.
- 1177 Von der Borch, C.C., Sclater, J. G., Gartner Jr., S., Hekinian, R., Johnson, D.A., McGowran, B.,
- 1178 Pimm, A.C., Thompson, R.W., Veevers, J.J., and Waterman, L.S., 1974. Site 217. Initial
- 1179 Reports of the Deep Sea Drilling Project, 22. U.S. Government Printing Office,
- 1180 Washington, pp. 267-324, doi:10.2973/dsdp.proc.22.108.1974.

- 1181 Wignall, P.B., 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews,
- 1182 53(1-2), 1-33, doi:10.1016/S0012-8252(00)00037-4.
- 1183 Wilf, P., Johnson, K.R., and Huber, B.T., 2003. Correlated terrestrial and marine evidence for
- 1184 global climate changes before mass extinction at the Cretaceous-Paleogene boundary.
- 1185 Proceedings of the National Academy of Sciences of the United States of America, 100(2),
- 1186 599-604, doi:10.1073/pnas.0234701100.
- 1187 Williams, D.F., Healy-Williams, N., and Laschak, P., 1985. Dissolution and water-mass patterns
- in the southeast Indian Ocean, Part I: Evidence from Recent to late Holocene foraminiferal
- assemblages. Geological Society of America Bulletin, 96(2), 176-189, doi:10.1130/0016-
- 1190 7606(1985)96<176:DAWPIT>2.0.CO;2.
- 1191 Zachos, J.C., Arthur, M.A., and Dean, W.E., 1989. Geochemical evidence for suppression of
- pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature, 337, 61- 64.
- 1193 Zachos, J.C., Lohmann, K.C., Walker, J.C., and Wise, S.W., 1993. Abrupt climate change and
- transient climates during the Paleogene: A marine perspective. The Journal of Geology,
- 1195 101(2), 191-213.
- 1196 Zepeda, M.A., 1998. Planktonic foraminiferal diversity, equitability and biostratigraphy of the
- 1197 uppermost Campanian-Maastrichtian, ODP leg 122, hole 762C, Exmouth Plateau, NW

1198 Australia, eastern Indian ocean. Cretaceous Research, 19(2), 117-152,

doi:10.1006/cres.1997.0097.

1200 FIGURE CAPTIONS

1201

1202 Figure 1: Paleolocation (66 Ma) of Maastrichtian sections, Reunion and Kerguelen hotspots and

1203 Deccan volcanism discussed in this study. Paleomap from Scotese (2013).

1204

1205	Figure 2: Maastrichtian-early Paleocene biostratigraphy for planktic foraminifera is based on the
1206	zonation scheme of Keller et al. (2002) and Li and Keller (1998a) and plotted against the
1207	magnetic polarity time scale of Site 525A. Other zonal schemes are shown for comparison. Note
1208	the overall correlation of hiatuses and sea-level events, particularly the increased number of
1209	erosion events beginning in C30n, correlative with the onset of Deccan volcanism, reflecting
1210	increased climate variability, intensified currents and erosion.
1211	
1212	Figure 3: Maastrichtian biostratigraphy and relative species abundances of planktic foraminifera
1213	(>150 µm size fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean.
1214	
1215	Figure 4: Maastrichtian biostratigraphy and relative species abundances of planktic foraminifera

1216 (63-150 µm size fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean. Note increased

- abundance of *Guembelitria cretacea* in zone CF3 (dark purple) and abundance peaks in the 3863 μm size fraction (light purple), indicating increasingly high-stress environments in zone CF3.
- 1220 Figure 5: Maastrichtian stable isotopic data of benthic foraminifera (Gavelinella beccariformis
- 1221 and *Cibicidoides* species) recording climate and productivity changes in bottom waters at Ninety
- 1222 East Ridge DSDP Site 217, Indian Ocean, as compared with South Atlantic DSDP Site 525A (Li
- 1223 and Keller, 1998a). Note the warm-cool transition in CF4 (from low to high δ^{18} O values). The
- 1224 low-resolution record at Site 525A (Li and Keller; 1998a) is consistent with high-resolution
 1225 records by Li and Keller (1998b) and Friedrich et al. (2009).
- 1226
- 1227 Figure 6: Biostratigraphy of Maastrichtian planktic foraminifera at Ninety East Ridge DSDP Site
- 1228 217, Indian Ocean. Species ranges based on composite occurrences in the >150 µm and 63-150
- 1229 µm size fractions. Index species marked in red. Note rapid species originations in zones CF8-
- 1230 CF6 and a minor extinction event in zone CF4.
- 1231

1232 Figure 7: Biostratigraphy of Maastrichtian planktic foraminifera in Kali-H well, Cauvery Basin,

- 1233 India (Keller et al., 2016b; this study). Index species marked in red. Note rapid species
- 1234 originations in zones CF8-CF6 and a minor extinction event in zone CF4.
1235

Figure 8: Biostratigraphy of Maastrichtian planktic foraminifera at Elles and El Kef, Tunisia (Li
and Keller, 1998c; Abramovich and Keller, 2002). Note rapid species originations in zones CF8CF6 and a minor extinction event in zone CF5.

1239

- 1240 Figure 9: Biostratigraphy of Maastrichtian planktic foraminifera at DSDP Site 525A, South
- 1241 Atlantic Ocean (Li and Keller, 1998a). Note rapid species originations in zones CF8-CF6 and a
- 1242 minor extinction event in zone CF4.

1243

- 1244 Figure 10: Maastrichtian ecological associations of planktic foraminifera (63-150 µm size
- 1245 fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean. Note increased abundance of the
- 1246 opportunist *Guembelitria* species (purple) and the generalist *Globotruncanella* species (green) in
- 1247 zone CF3 indicating increasingly high-stress environments and dwarfing.
- 1248
- Figure 11: A) Maastrichtian ecological associations and B) depth ranking of planktic
 foraminifera (>150 μm size fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean. Note
 increased abundance of surface and deep dwelling species in zone CF3 indicating reduced water

- mass stratification. Depth ranking based on oxygen and carbon stable isotopes (Abramovich et
 al., 2003, 2011; Ashkenazi-Polivoda et al., 2014).
- 1254

1255 Figure 12: Maastrichtian stable isotopic data of benthic foraminifera (Gavelinella beccariformis

- 1256 and Cibicidoides species), species richness, dwarfing, planktic/benthic foraminiferal ratio (63-
- 1257 150 µm) and fragmentation index in Ninety East Ridge DSDP Site 217, Indian Ocean. Note
- 1258 increased dwarfing, increased abundance of benthic foraminifera and increased fragmentation in
- 1259 zone CF3 indicating increasingly high-stress environments and dissolution.
- 1260

- 1262 planktic foraminifera at the South Atlantic DSDP Site 525A compared with species diversity
- 1263 from the Tethys (El Kef and Elles, Tunisia) and Indian Ocean (Site 217, Cauvery Basin). Four
- 1264 climatic and faunal events lead up to the K/T mass extinction revealing major upheavals in
- 1265 planktic foraminifera during the last 5 Myr of the Maastrichtian.

1266 TABLE CAPTIONS

1267

- 1269 Cauvery Basin well Kali-H, India (Keller et al., 2016b), El Kef and Elles, Tunisia (Li and Keller,
- 1270 1998c; Abramovich and Keller, 2002), and DSDP Site 525A (Li and Keller, 1998a). Note: N° of
- 1271 species per zone represent averages; some species may have been grouped or not recognized
- 1272 because of rarity, which may account for some variation in species richness. *Species that
- 1273 originate during the CF8a-CF5 diversification event (based on the complete records of Elles and
- 1274 Site 525A) but are not recorded, as the recovery of zone CF8a is incomplete.

Ages & Magnetic			Nor		Biozonations			Ninetyeast Ridge		SE India 1	Madagascar	Israel	Egypt	Tunisia		S. Atlantic	Sea Level	Volcanism
Polarity Hussen et al. 2011 Scherere et al. 2015		fos Bun 18	sils ett. 8	Plc Okson et al., 1999, Huber et al., 2008	Inktic for Uant Kell	aminifera Keller, 1998a Het al. 2002	Site 217 Tantawy et al., 2009 Bits study	Site 216 Relec 2005	Well KALI-H Keller et al., 2016b This study	Berivotra Abanovich A et.al., 2012	Ben Gurion Ben Gurion banovich et al., 199 Laher, 2015	Qreiya 8 Punekar et al., 2014b	El Kef U and Keller, 1998c	Elles Li and Keller, 1998 Abrumovich and Keller, 2002	Site 525A U and Keller, 1998a Abranovich and Keller, 2003	Events Haq. 2014 Rise Fall	Prospe et al., 2008 Obsert et al., 2009 Keller et al., 2011 "Schöbel et al., 2014 "Schoene et al., 2015	
Paleogene		C27-1			P1c	P1c(2)	P inconstant			Hiatus	Hiatus	3en Gurlon	P1c(2)			Hiatus	58 62.4	Deccan
	ne	63 - 0	500	5				Plc	P1c		P1c(2)			3847	P1c(2)		L	
	eoce	ĴÛ			P1b	P1c(1)					Hiatus		Hiatus	P1c	P1c	Hiatus	58 63.8	
	rly Pal	C28r		,									P1c(1)					
	Ea	65 - 65	100	5	P1a	P1b		Hiatus	Hiatus		volcanic	P1b	P1b	Ріб	Р1Б		65.0	Phase-3
		29r	CP	la	Pla	PlaCh Pla(1)	Program				Hiatus	P1a	Pla	Pla	P1a		65.7	65.552±0.026**
Cretaceous		- U	UCZ	0d	sist	(1) (1)	 Anorikeninoides G. gonsteri 	.0F2	02-01	CF3 CF3	CF2	CF2-CF1	- 90	CF2-CF1 CF2-CF1 CF3 CF3	CF2-CF1	CF2-CF1	66.25	Phase-2
	Itian	-	ž	gop	hariae	CF3		CF3	CF3		Hiatus CF3	CF3	CF3		CF3	58 66.8	66.28830.027**	
	L. Maastrich	n C30n	3	S	P.1			Hiatus	Hiatus	Hiatus	Hiatus	Hiatus	107150					Phase-1 67.12±0.44*
			1000		nayaroensis	CF4		CF4	CF4	CF4	CF4	CF4	CF4	CF4	CF4	CF4		e
	trichtian	69 -			AD	cre	G Innelana	CF5?	Basement	CF5	† CF5	1000	No data CFI CFI CFI	CF5	CF5	CF5	C 06.8	Ridg
				h	-	CFS		Hiatus		Hiatus	Hiatus	CFS		Hiatus	Hiatus	Hiatus	58 69.4	ast
		70-1	1	ŝ	R. fruct	CF6		CF6		CF6	CE6	No data		CF6	CF6	CF6		etye
	Maas	-10	10	0	alpetra	CF7	🕈 G. gamseri	CF7		CF7	a shallow marine barren			CF7	CF7	CF7	70.6	Nin
	ш	-63			P. po	CF8		CF8		CF8	terrestrial			CF8	CF8	CF8 CF8		

Figure 12 Click here to download high resolution image

Touris	Ninetyeast Ridge	SE India	Tur	nisia	South Atlantic	
Location	DSDP Site 217	Well Kali-H	El Kef	Elles	DSDP Site 525A	
Maximum diversity	60	61	56	59	55	
CF8 - N° of species	54	48	42	47	36	
CF7 - N° of species	58	54	49	51	45	
CF6 - N° of species	50	59	55	58	52	
CF5 - N° of species	59	60	53	58	53	
CF4 - N° of species	60	61	55	56	52	
CF3 - N° of species	56	56	54	52	51	
CF2 - N° of species	54	Hiatus	51	51	49	
CF1 - N° of species	Hiatus	Hiatus	49	47	45	
N° of species originations Early Maastrichtian Zones CF8b-CF5	14+8*=22	16+9*=25	21	18	23	
N° of species originations Early Maastrichtian Zones CF9-CF8a	Not	recovered	7	6		