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ABSTRACT: Planktic foraminiferal analysis, including species populations, diversity trends, 11 

high-stress indices and stable isotopes of the latest Campanian through Maastrichtian in the 12 

South Atlantic, Tethys and Indian oceans reveal four major climate and faunal events that ended 13 

with the Cretaceous-Paleogene (K/Pg), formerly Cretaceous-Tertiary (K/T), mass extinction. The 14 

prelude to these events is the late Campanian cooling that reached minimum temperatures in the 15 

earliest Maastrichtian (base C31r) correlative with low primary productivity and species 16 

diversity. Event-1 begins during the persistent cool climate of the early Maastrichtian (lower 17 

C31r) when primary productivity rapidly increased accompanied by rapid species originations, 18 
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attributed to increased nutrient influx from increased upwelling, erosion during the sea-level fall 19 

~70.6 Ma, and Ninety East Ridge volcanism. During Event-2 (upper C31r to lower C30n), 20 

climate rapidly warmed by 2-3 °C in deep waters and peaked at 22 °C on land, primary 21 

productivity remained high and diversification reached maximum for the entire Cretaceous. We 22 

attribute this climate warming to intense Ninety East Ridge volcanic activity beginning ~69.5 Ma, 23 

accompanied by rapid reorganization of intermediate oceanic circulation. Enhanced greenhouse 24 

conditions due to the eruption of Deccan Phase-1 in India resulted in detrimental conditions for 25 

planktic foraminifera marking the end of diversification. Global cooling resumed in Event-3 26 

(C30n), species diversity declined gradually accompanied by dwarfing, decreased large 27 

specialized species, increased small ecologically tolerant taxa, and ocean acidification. Event-3 is 28 

mainly the result of enhanced weathering and volcanogenic CO2 adsorption by the oceans during 29 

the preceding warm Event-2 that led to cooling and lower pH in the surface ocean. Event-4 30 

marks the last 250 kyr of the Maastrichtian (C29r), which began with the largest Deccan 31 

eruptions (Phase-2) that caused rapid climate warming of 4 °C in deep waters and 8 °C on land, 32 

acid rain and ocean acidification leading to a major carbonate crisis preceding the K/T mass 33 

extinction. 34 

 35 

1 INTRODUCTION 36 
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 37 

 The Maastrichtian (the last stage of the Late Cretaceous, 72.1-66.0 Ma; Gradstein et al., 38 

2012) is a 6.1-Myr time interval that experienced climate and biological extremes ranging from 39 

maximum cooling to maximum warming and from maximum marine evolutionary diversity to 40 

one of the largest mass extinctions in Earth's history at the Cretaceous/Tertiary (K/T; also known 41 

as Cretaceous-Paleogene K/Pg) boundary (review in Keller et al., 2016a).  42 

 Despite this remarkable 6.1-Myr history of environmental changes, the Maastrichtian is 43 

mostly known for the mass extinction. For the past 30 years, research has concentrated on the 44 

K/T boundary centering on a contentious debate: was the mass extinction instantaneous and 45 

caused by an asteroid impact or was it more gradual and the result of long-term environmental 46 

changes with the asteroid impact the final coup de grace? There are multiple lines of evidence 47 

that unquestionably support an impact on the Yucatan Peninsula, Mexico: 1) the global iridium 48 

anomaly at the K/T boundary (Alvarez et al., 1980, Alvarez, 1983) that has become the hallmark 49 

for all K/T mass extinction studies, 2) discovery of the impact crater on Yucatan (Hildebrand et 50 

al., 1991), 3) global distribution of shocked quartz (e.g., Izett, 1990), 4) impact glass spherules 51 

discovered throughout the region surrounding the Chicxulub crater (e.g., Smit et al., 1992, 1996; 52 

Smit, 1999; Rocchia et al., 1996; Olsson et al., 1997; Norris et al., 1999; MacLeod et al., 2007; 53 

Schulte et al., 2010; Keller et al., 2013), and 5) impact breccia in the Chicxulub crater and large 54 
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breccia and conglomerate deposits lacking impact glass but interpreted as generated by seismic 55 

disturbance from the Chicxulub impact  (e.g.,  Bralower et al., 1998; Arenillas et al., 2006; 56 

Schulte et al., 2010). Likely environmental consequences of the Chicxulub impact have been 57 

widely discussed (e.g., Schultz and D'Hondt, 1996; Tsujita, 2001; Kring, 2007; Vellekoop et al., 58 

2014). This is a formidable list of characteristics that unquestionably identify an impact on 59 

Yucatan, but did this impact crash into Yucatan precisely at K/T time and cause the mass 60 

extinction as widely inferred? There is stratigraphic, geochemical, sedimentary and fossil 61 

evidence that indicates this impact predates the mass extinction by about 100 kyr (Keller, 2014, 62 

and references therein). This is a key issue in this ongoing debate over the cause of the K/T mass 63 

extinction.  64 

 Various advances over the past 10 years have shown that Deccan Trap volcanism in India 65 

could have been a critical source of environmental stress leading to the K/T mass extinction: (1) 66 

Deccan eruptions were most intense during magnetochron C29r spanning the K/T boundary 67 

(Chenet et al., 2007, 2008, 2009); (2) high-precision age based on U-Pb geochronology revealed 68 

that 80 % of Deccan eruptions occurred over the ~750 kyr (duration of C29r) with accelerating 69 

intensity across the K/T boundary (Schoene et al., 2015); (3) documentation of the mass 70 

extinction in intertrappean sediments in India (Keller et al., 2011) between the longest lava flows 71 

recorded on Earth (Self et al., 2008); (4) rapid climate warming during C29r below the K/T 72 
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boundary due to large inputs of volcanogenic greenhouse gases (reviews in Punekar et al., 2014a; 73 

Keller et al, 2016a). Based on these studies, it was suggested that the Chicxulub impact might 74 

have accelerated Deccan volcanism leading to the mass extinction (Richards et al., 2015; Renne 75 

et al., 2015). With this changing perspective, a better understanding of the preceding 76 

Maastrichtian environmental changes is imperative and the focus of this study. 77 

 One of the first detailed studies on Campanian to early Maastrichtian climate is from 78 

Shatsky Rise, Pacific Ocean: stable isotope records based on planktic and benthic foraminifera 79 

revealed ~2.5 °C and ~4 °C cooling in surface and bottom waters, respectively (Douglas and 80 

Savin, 1975). Subsequent studies on Seymour Island, Antarctica, and ODP Site 690 in the 81 

Weddell Sea reported ~2 °C cooling in surface and bottom waters during the early Maastrichtian 82 

(Barrera et al., 1987; Barrera and Huber, 1990; Barrera, 1994). The first high-resolution study of 83 

Maastrichtian climate and associated faunal turnovers in planktic foraminifera was based on 84 

South Atlantic DSDP Site 525A (Li and Keller, 1998a, b; Abramovich and Keller, 2003). These 85 

studies revealed that the generally cool Maastrichtian climate was interrupted by two rapid warm 86 

events: 1) at the early to late Maastrichtian transition (also known as mid-Maastrichtian event) 87 

with a 2-3 °C warming of surface and bottom waters, and 2) in the latest Maastrichtian below the 88 

K/T boundary (C29r) when surface and bottom waters warmed rapidly by 4 °C. An updated 89 

high-resolution stable isotope record for the late Campanian to early Maastrichtian at Site 525A 90 
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confirmed the observed cooling and warming events (Friedrich et al., 2009). Since Li and Keller 91 

(1998a, b), the latest Maastrichtian C29r rapid marine warming has been documented globally 92 

(e.g., Barrera and Savin, 1999; MacLeod et al., 2005; Isaza-Londoño et al., 2006; Tobin et al., 93 

2012; Thibault and Husson, 2016) and recently linked to the main phase of Deccan volcanism 94 

(reviews in Punekar et al., 2014a; Keller et al, 2016a). Some studies correlate the Maastrichtian 95 

terrestrial and marine climate records demonstrating that the same extreme climate changes 96 

occurred also on land (Nordt et al., 2003; Wilf et al., 2003). 97 

 In addition to the climate record, various studies focused on Maastrichtian primary 98 

productivity, sea-level fluctuations and the marine biotic response to climate changes based on 99 

planktic foraminifera (e.g., Li and Keller 1998a, c; Zepeda, 1998; Premoli Silva and Sliter, 1999; 100 

Li et al., 2000; MacLeod et al., 2001; Olsson et al., 2001; Abramovich and Keller, 2002, 2003; 101 

Abramovich et al., 2003, 2010; Hart, 2007; Punekar et al., 2014b) and nannofossils (e.g., Eshet 102 

and Almogi-Labin, 1996; Friedrich et al., 2005; Thibault and Gardin, 2007, 2010; Gardin et al., 103 

2012; Thibault, 2016; Thibault and Husson, 2016). A particular focus of these studies is the early 104 

to late Maastrichtian warming and associated minor extinctions (review in Keller et al., 2016a) as 105 

well as the rapid warming during C29r and associated diversity decline (review in Punekar et al., 106 

2014a). 107 
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 The eruption of Large Igneous Provinces (LIPs) have been shown to be a direct cause for 108 

climate change (both cooling and warming), acid rains, ocean acidification and large inputs of 109 

toxic metals, as well as an indirect cause for anoxia and changes in sea-level and oceanic 110 

circulation disruptions, leading to major faunal turnovers including mass extinctions (e.g., 111 

Siberian Traps and Permo-Triassic, Central Atlantic (CAMP) and the Triassic-Jurassic, Deccan 112 

Traps and Cretaceous-Tertiary) (Wignall, 2001; Courtillot and Renne, 2003; Bond and Wignall, 113 

2014; Courtillot and Fluteau, 2014). During the Maastrichtian, Ninety East Ridge volcanism in 114 

the Indian Ocean was active (e.g., Duncan, 1978, 1991; Pringle et al., 2008; Krishna et al., 2012) 115 

and overlapped the eruption of Deccan phase-1 in India (Chenet et al., 2009; Schöbel et al., 116 

2014) potentially contributing to the climate and faunal changes recorded during this time. 117 

 The main objective of this study is to evaluate the environmental effects of climate 118 

change and major volcanic eruptions on marine planktic foraminifer diversity during the 119 

Maastrichtian. We test the hypothesis that volcanism was the main driver of the evolutionary 120 

diversification in the early Maastrichtian, the likely cause for the early to late Maastrichtian 121 

climate warming, and the latest Maastrichtian warming (C29r) and high-stress environments. We 122 

focus on five localities from the Indian Ocean (Ninety East Ridge Site 217, Cauvery Basin, SE 123 

India), Tethys (El Kef and Elles, Tunisia) and South Atlantic (Site 525A) (Fig. 1). Analyses 124 

concentrate on: 1) high-resolution quantitative analysis of planktic foraminifera to determine 125 
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biostratigraphy and assess the timing and nature of faunal turnovers at Site 217; 2) update 126 

taxonomy of the Tethys and South Atlantic sites, and extend the Cauvery Basin record through 127 

the early Maastrichtian to compare diversity trends through the Maastrichtian; 3) oxygen and 128 

carbon stable isotopes of planktic and benthic foraminifera at Site 217 to evaluate changes in 129 

climate and productivity compared with Site 525A; 4) planktic foraminiferal indices, including 130 

diversity, dwarfing, planktic/benthic ratio and fragmentation index, to gain a deeper 131 

understanding of the changing environment and associated faunal responses; and 5) correlation 132 

of sedimentation records, hiatus distribution and sea-level changes across regions Indian, Tethys 133 

and South Atlantic oceans to understand regional and global effects of climate and ocean 134 

circulation changes. 135 

 136 

2 MATERIALS AND METHODS 137 

 138 

 DSDP Site 217 (8°55.57'N, 90°32.33'E) is located in the Indian Ocean on the 139 

northernmost part of the Ninety East Ridge at a water depth of 3010 m (Von der Borch et al., 140 

1974). Ninety East Ridge is interpreted as a volcanic chain formed by the northward migration of 141 

the Indian plate over the Kerguelen mantle plume that was active from the late Cretaceous to the 142 

Paleogene (e.g., Duncan, 1978, 1991; Pringle et al., 2008; Krishna et al., 2012). With the passage 143 
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over the mantle plume, lithospheric uplift led to the formation of volcanic islands and the 144 

deposition of thick ash sequences and shallow water sediments overlying the basement (Moore et 145 

al., 1974; Thompson et al., 1974; Coffin, 1992); passage beyond the mantle plume led to rapid 146 

subsidence as the oceanic lithosphere cooled (Sclater and Fisher, 1974; Luyendyk, 1977; Coffin, 147 

1992). Based on a linear progression rate of 118 km/Myr, an age of ~80 Ma was estimated for 148 

the location of Site 217 at the time of its position over the mantle plume (Pringle et al., 2008), 149 

which is consistent with the Campanian age of the oldest sediments recovered with shallow 150 

water affinities overlying the basement (Von der Borch et al., 1974). A progressive deepening to 151 

a depth of ~1000 m is recorded during the early to late Maastrichtian as indicated by the 152 

transition to foraminifera-rich nannofossil ooze (Von der Borch et al., 1974; Tantawy et al., 153 

2009). 154 

 Samples were taken every ~50 cm from cores 17 to 21; planktic foraminifera were 155 

originally analyzed by Alfonso Pardo and published in Tantawy et al. (2009). For this study, the 156 

species identifications were updated and additional size fractions were analyzed to focus on the 157 

very small (38-63 μm), small (63-150 μm) and larger (>150 μm) size fractions as environmental 158 

indicators. In addition, sample resolution was increased and additional samples were added to 159 

extend the record through core 23. A total of 70 samples were analyzed. 160 
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 For paleontological analyses, samples were processed in the laboratory following the 161 

procedure described by Keller et al. (2002). Samples were soaked overnight in 3 % hydrogen 162 

peroxide solution to oxidize organic carbon. After disaggregation of sediment particles, the 163 

samples were washed through >63 μm and >38 μm sieves to obtain clean foraminiferal residues. 164 

Washed residues were oven dried at 50 °C. Quantitative planktic species analyses were 165 

performed based on aliquots of 300 specimens in the 38–63 μm, 63-150 μm and >150 μm size 166 

fractions, with the remaining residues in each sample fraction examined for rare species. All 167 

specimens were identified based on standard taxonomic concepts (Robaszynski et al., 1983-168 

1984; Nederbragt, 1991) and mounted on microslides for a permanent record. 169 

 Oxygen and carbon isotope analyses were performed on monospecific benthic 170 

foraminiferal tests (Gavelinella beccariformis and Cibicidoides species) in laboratories at 171 

Karlsruhe University, Germany, and at the University of Lausanne, Switzerland. At the 172 

Karlsruhe laboratory, the data were obtained using a fully automated preparation system 173 

(MultiCarb) connected on-line to an isotope ratio mass spectrometer (Optima, Micromass 174 

Limited UK). All carbon and oxygen isotope values are reported relative to the VPDB standard, 175 

with reproducibility better than 0.1 ‰ (2σ). At the UNIL laboratory, analyses were performed 176 

for cores 21-23 with a Thermo Fisher Scientific (Bremen, Germany) GasBench II connected to a 177 

Thermo Fisher Scientific Delta Plus XL IRMS, in continuous He-flow mode. Analytical 178 
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uncertainty (2σ) monitored by replicate analyses of the international calcite standard NBS-19 179 

(δ
13

C = +1.95 ‰, δ
18

O = −2.20 ‰) and the laboratory standard Carrara Marble (δ
13

C = +2.05 ‰, 180 

δ
18

O = −1.70 ‰) was better than ± 0.05 ‰ for δ
13

C and ± 0.1 ‰ for δ
18

O. Results from both 181 

laboratories are comparable based on replicate analyses. 182 

 Species diversity was estimated based on cumulative species richness: number of species 183 

theoretically present in any given sample from first evolutionary appearance to extinction, 184 

ignoring any temporary exclusion (Abramovich and Keller, 2002). Species dwarfing estimates 185 

were based on the number of 150-250 μm specimens in the >150 μm size fraction of each sample. 186 

The planktic/benthic foraminiferal ratio was based on the number of benthic foraminifera 187 

associated with the aliquot of 300 planktic foraminifera used for the quantitative species analysis 188 

in the 63-150 μm size fraction.  189 

 The fragmentation index (FM) was analyzed based on aliquots of approximately 500-700 190 

foraminifera and fragments in the >63 μm size fraction. Three categories were identified based 191 

on the quality of preservation: 1) nearly perfect tests (good), 2) partially damaged, imperfect tests 192 

with holes (fair), and 3) fragments, less than two-thirds of an entire test (poor) (Punekar et al., 193 

2016). The FM index was calculated as                                         194 

             (Williams et al., 1985; Malmgren, 1987). Based on the assumption that each test 195 
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breaks into an average of 8 fragments, the equation requires the total number of counted 196 

fragments to be divided by 8 to estimate the original number of whole tests.  197 

 At the Cauvery Basin, India, we chose the Kali-H subsurface core previously analyzed in 198 

Keller et al. (2016b) for the upper Maastrichtian and extended this record through the lower 199 

Maastrichtian concentrating on species diversity and ranges from first to last appearances. To 200 

insure that the same species concepts were used in faunal analyses, species identifications were 201 

updated for the Tunisian sections in Elles and El Kef (Li and Keller, 1998c; Abramovich and 202 

Keller, 2002) and South Atlantic DSDP Site 525A (Li and Keller, 1998a). 203 

 204 

3 BIOSTRATIGRAPHY 205 

 206 

3.1 Ninety East Ridge DSDP Site 217, Indian Ocean 207 

  208 

 High-resolution planktic foraminiferal biostratigraphy is a powerful tool for relative age 209 

dating and to assess the continuity of sediment deposition. In this study, we apply the Cretaceous 210 

foraminiferal (CF) biozonation of Li and Keller (1998a) and correlate the results with localities 211 

from the Indian, Tethys and South Atlantic oceans (Fig. 2). 212 
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 The Maastrichtian interval at DSDP Site 217 spans zones CF8 to CF2 and was analyzed 213 

in two size fractions, >150 μm to evaluate relative abundances of larger specialized species and 214 

63-150 μm to evaluate the smaller ecological generalist taxa. 215 

 Zone CF8 is defined by the first appearance (FA) of Globotruncana aegyptiaca at the 216 

base and the FA of Gansserina gansseri at the top (Fig. 2). At Site 217, a 5 m core gap prevents 217 

full assessment of zone CF8 and only the upper part may be present, assuming that the first 218 

appearance of G. aegyptiaca occurs below the analyzed interval (Fig. 3). Nine species appear 219 

above the core gap based on both size fractions (>150 μm, 63-150 μm). These species 220 

originations are part of the gradual diversification event that began in zone CF8 and was 221 

previously observed at Elles and El Kef, Tunisia, and South Atlantic DSDP Site 525A (Li and 222 

Keller, 1998a, c). 223 

 Zone CF7 spans the interval between the FA of G. gansseri at the base and the FA of 224 

Contusotruncana contusa at the top (Fig. 2). At Site 217, a gradual increase in the relative 225 

abundance of Gublerina rajagopalani from 6.5 % to 16 % is observed in the >150 μm size 226 

fraction (Fig. 3) and in Heterohelix planata from 23 % to 45 % in the 63-150 μm size fraction 227 

(Fig. 4). These species have been shown to tolerate and thrive in a wide range of environmental 228 

conditions (i.e., dominant in high-stress environments affected by temperature, salinity, nutrients 229 

and oxygen variations in which large specialized species struggle to survive), thus their 230 
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increasing population abundances suggest increasing stressed environments (e.g., Pardo and 231 

Keller, 2008; Keller and Abramovich, 2009).  232 

 Zone CF6 is defined by the FA of C. contusa at the base and the last appearance (LA) of 233 

Globotruncana linneiana at the top. The latter species also marks the base of zone CF5 and the 234 

FA of Racemiguembelina fructicosa defines the top (Fig. 2). At Site 217, zone CF6 is at least 235 

partially present, but zone CF5 is not recognized due to a core gap and likely hiatus as just ~2 m 236 

of sediments represent the combined CF6-CF5 interval (Figs. 3, 4). In contrast, these two zones 237 

span 8 m and 5 m in the Cauvery Basin of SE India (Keller et al., 2016b), 6.5 m and 9.5 m at 238 

South Atlantic Site 525A, (Li and Keller, 1998a), 4 m and 13 m at El Kef, and 4.5 m and 6.5 m 239 

at Elles, Tunisia (Li and Keller, 1998c), respectively. However, at Site 525A and the Tunisian 240 

sections, zone CF6 is condensed (~5 m) suggesting widespread erosion between CF5 and CF6, 241 

coincident with a sea-level fall and major sequence boundary (SB) dated at 69.4 Ma (Fig. 2) 242 

(Haq et al., 1987; Haq, 2014). 243 

 Zone CF4 spans the interval from the FA of R. fructicosa at the base to the FA of 244 

Pseudoguembelina hariaensis at the top (Fig. 2). At Site 217, a minor extinction event is marked 245 

by the disappearances of Contusotruncana fornicata, C. plummerae and Globotruncana 246 

bulloides (Fig. 3). These species disappearances, frequently including Archeoglobigerina 247 

cretacea, have also been recognized at Site 525A, Madagascar, Israel, Egypt, Tunisia, Poland 248 
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and SE India (Li and Keller, 1998a, c; Abramovich et al., 1998, 2002, 2010; Dubicka and Peryt, 249 

2012; Meilijson et al., 2014; Punekar et al., 2014b; Keller et al., 2016b). Zone CF4 is marked by 250 

decreased abundance of Rugoglobigerina rotundata from 10 % to 3 % and R. rugosa from 5 % 251 

to 2 %, and increased abundance of G. rajagopalani from 10 % to 43.5 % followed by a rapid 252 

decrease to 20 % towards the top of CF4 (Fig. 3). In the smaller size fraction (63-150 μm), major 253 

species variations include decreased abundance of H. planata parallel to increased abundances of 254 

Globigerinelloides yaucoensis from 19 % to 54.5 % and G. asper from 14 % to 36 %, reaching 255 

minimum values at the CF4/CF3 boundary (Fig. 4). 256 

The CF4/CF3 boundary is marked by a hiatus as suggested by the abrupt decrease in all 257 

larger (>150 μm) species abundances (Fig. 3) and increase in very small stress-tolerant species 258 

(e.g., globigerinellids, globotruncanellids, hedbergellids, guembelitrids, Fig. 4). A hiatus at the 259 

CF4/CF3 transition coincides with a major sea-level fall and SB ~66.8 Ma (Haq et al., 1987; Haq, 260 

2014) and is recorded worldwide (e.g., SE India, Keller et al., 2016b; Madagascar, Abramovich 261 

et al., 2002; Israel, Abramovich et al., 1998; Fig. 2). 262 

 Zone CF3 is defined by the FA of P. hariaensis at the base and the LA of G. gansseri at 263 

the top (Fig. 2). At Site 217, G. rajagopalani and Pseudoguembelina palpebra dominate and 264 

Abathomphalus mayaroensis is common in the >150 μm size fraction of zone CF3 assemblages 265 

(Fig 3). Dwarfed specimens are common in several horizons (424.08 m, 424.59 m, 425.19 m, 266 
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426.70 m, 432.96 m, and 441.58 m). In the smaller size fraction (63-150 μm) Heterohelix, 267 

Globigerinelloides, and Globotruncanella (havanensis, petaloidea) species dominate (Fig. 4). 268 

The disaster opportunist Guembelitria cretacea records increased abundances from 1 % to 5 % 269 

on average. These faunal changes indicate continued and even increasing high-stress 270 

environments during zone CF3 compared with zone CF4 (e.g., Pardo and Keller, 2008; Keller 271 

and Abramovich, 2009). 272 

The CF3/CF2 transition is represented by a hiatus marked by abrupt changes in the 273 

relative abundances of larger species (Fig. 3) and smaller species (Fig. 4). This hiatus coincides 274 

with a sea-level fall ~66.25 Ma (Haq et al., 1987; Haq, 2014) and is commonly observed in the 275 

Indian and Tethys Oceans (e.g., Abramovich et al., 1998, 2002; Keller, 2005; Tantawy et al., 276 

2009; Punekar et al., 2014b; Fig. 2). 277 

 Zone CF2 spans the interval from the LA of G. gansseri at the base to the FA of 278 

Plummerita hantkeninoides at the top (Fig. 2). At Site 217, this zone is marked by decreased 279 

abundance of Gublerina rajagopalani from 27 % to 10 % and increased Pseudoguembelina 280 

palpebra from 12 % to 20 % in the >150 μm size fraction (Fig. 3). In the 63-150 μm size fraction, 281 

small species abruptly increase (e.g., Heterohelix, Globigerinella, Globotruncanella, 282 

Hedbergella). Pseudoguembelina costulata, a surface dweller, dominates both the larger and the 283 

smaller size fractions towards the top of the section, with peak abundances of 31 % and 20 %, 284 
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respectively. This change is accompanied by a rapid increase in the abundance of Guembelitria 285 

species in the 38-63 μm size fraction suggesting severe high-stress environments just before the 286 

KTB hiatus (Fig. 4). 287 

At Site 217, a major hiatus (~2 Myr) spans from the upper part of zone CF2 through the 288 

latest Maastrichtian zone CF1 and early Danian zones P0, P1a, P1b and lower P1c (Fig. 2). On a 289 

global basis, erosion is less extensive in this interval but marked by repeated short hiatuses. This 290 

erosion pattern is commonly attributed to rapid climate changes, periods of global cooling, 291 

intensified bottom-water circulation, and sea-level fluctuations across the K/T transition (e.g., 292 

MacLeod and Keller, 1991; Keller et al., 2013; Mateo et al., 2016). 293 

 294 

3.2 Correlation: Indian, Tethys and South Atlantic Oceans 295 

 296 

 Biostratigraphic correlation of localities across the Indian, Tethys and South Atlantic 297 

oceans compared with major sea-level changes and volcanic eruptions in India (Deccan Traps) 298 

and Ninety East Ridge reveal similarities and differences in sedimentation related to these events 299 

(Fig. 2). Although the current study concentrates on the Maastrichtian, the early Paleocene 300 

(Danian) record is also shown as it illustrates the pivotal change in sediment deposition and 301 

erosion pattern that began in the late Maastrichtian zone CF3. 302 



 18 

 The early Maastrichtian sediment record across the regions is remarkably continuous 303 

despite major sea-level fluctuations, Ninety East Ridge volcanic eruptions and associated climate 304 

changes (Fig. 2). The only significant interruption coincides with the sea-level fall and sequence 305 

boundary (SB) at ~69.4 Ma (Haq, 2014) correlative with zone CF5. The likely reasons for the 306 

reduced sediment erosion include lower magnitude of sea-level changes, overall higher 307 

Cretaceous oceans inundating continents, higher rate of carbonate sedimentation and relatively 308 

low levels of volcanic eruptions.  309 

In contrast, sedimentation is highly fragmented during the latest Maastrichtian beginning 310 

in zone CF3 and continuing through the early Danian, except for areas protected from erosion, 311 

particularly in Tunisia (Fig. 2). Sediment erosion (hiatus) generally coincides with sea-level 312 

changes in zones CF4/CF3, CF3/CF2, KTB, P1a/P1b, P1b/P1c and P1c/P2. On Ninety East 313 

Ridge, Southeast India (Cauvery Basin), Madagascar and South Atlantic, erosion removed 314 

sediments spanning most of the early Danian and frequently through the KTB and zones CF1-315 

CF2. This massive erosion is also observed in the North Atlantic (Keller et al., 2013; Mateo et al., 316 

2016) and appears related to the significant sea-level fall at ~63.8 Ma, but a series of smaller sea-317 

level falls contributed to erosion that resulted in shorter hiatuses observed in the Tethys (e.g., 318 

Israel, Egypt) and many deep-sea sections. However, the major erosion observed during the 319 

latest Maastrichtian through Danian can be attributed to the overall cooler climate (except for the 320 
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short warming in C29r), lower sea-level and higher frequency of sea-level falls beginning in CF3 321 

(C30n).  322 

 323 

4 STABLE ISOTOPES: PRODUCTIVITY AND TEMPERATURE CHANGES 324 

 325 

 Carbon and oxygen isotopes of the benthic foraminifera Gavelinella beccariformis were 326 

analyzed for the Maastrichtian at Site 217, except for zone CF8 where this species is rare and 327 

Cibicidoides species were analyzed instead. Both of these species are commonly used to evaluate 328 

deep-water changes in productivity and temperature (e.g., Shackleton 1987; Zachos et al., 1989; 329 

Schrag et al., 1995; D’Hondt and Arthur, 2002). Although Site 217 has a fragmented record 330 

because of frequent core gaps, δ
13
C and δ

18
O trends are similar to Site 525A (Li and Keller, 331 

1998a), except for zones CF8-CF7. At Site 217, δ
13

C values are significantly higher in CF8 332 

(+1.46 ‰) and fluctuating in CF7 (+0.90 to +1.93 ‰) compared to Site 525A (+0.33 ‰ and 333 

+0.50 to +1.17 ‰, respectively) (Fig. 5). At Site 525A, δ
13

C values record an increase of +1.5 ‰ 334 

through the early Maastrichtian that is not observed at Site 217 (Fig. 5). This difference likely 335 

reflects higher, more stable primary productivity at Site 217 due to higher nutrient inputs from 336 

Ninety East Ridge volcanism that began ~82 Ma (Coffin et al., 2002). Species effects are another 337 
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potential contributing factor to this difference because G. beccariformis at Site 217 is compared 338 

with Anomalinoides acuta at Site 525A (e.g., Friedrich et al., 2006). 339 

 At Site 217, the CF6-CF5 interval is incomplete due to a core gap and possibly a hiatus. 340 

In zone CF4, δ
13

C values range from +1.1 ‰ to +1.6 ‰ similar to Site 525A (+1.2 ‰ to 341 

+1.7 ‰), suggesting sustained high primary productivity at both sites (Fig. 5). δ
18

O values 342 

increase from +0.1 ‰ to +0.7 ‰ towards the top of zone CF4 at Site 217 marking cooling also 343 

comparable to Site 525A where δ
18

O values increase from +0.1 ‰ to +0.5 ‰ (Fig. 5). In zones 344 

CF3-CF2, Site 217 δ
13

C values vary from +0.9 ‰ to +1.7 ‰ similar to Site 525A (+1.2 to 345 

+1.8 ‰); in zone CF2, Site 217 δ
18

O values decrease from +0.3 ‰ to −0.5 ‰, also comparable 346 

to Site 525A (+0.4 ‰ to −0.3 ‰), indicating climate warming. 347 

 348 

5 DIVERSITY TRENDS 349 

 350 

 Planktic foraminifera are characterized by major evolutionary diversification in the early 351 

Maastrichtian and the mass extinction at the K/T boundary (review in Li and Keller, 1998a). The 352 

cause for this diversification event has remained an enigma and its potential contribution to the 353 

mass extinction is rarely considered. We use species ranges and cumulative species richness in 354 

the Indian, Tethys and South Atlantic oceans to investigate the early Maastrichtian origination 355 
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event and the fate of the new species leading up to the mass extinction. In the Indian Ocean 356 

Ninety East Ridge Site 217 (Fig. 6) and the Kali-H well from the Cauvery Basin, SE India (Fig. 357 

7), sediment deposition and faunal changes occurred at depths of 500-1000 m (upper to middle 358 

bathyal; Von der Borch et al., 1974; Tantawy et al., 2009) and 300-500 m (outer shelf to upper 359 

bathyal; Keller et al., 2016b), respectively. The El Kef and Elles sections in Tunisia (Fig. 8) were 360 

deposited in outer shelf to upper slope (300-500 m) and middle to outer shelf (200-300 m) depths, 361 

respectively. These are the two most complete Maastrichtian sedimentary records known 362 

worldwide (Fig. 2) (Li and Keller, 1998c; Abramovich and Keller, 2002). In the South Atlantic, 363 

Site 525A (Fig. 9) sediment deposition during the Maastrichtian occurred in a middle bathyal 364 

environment (~1000 m) (Li and Keller, 1998a). The paleodepth of these five localities thus yield 365 

comparable marine settings spanning open-ocean to continental shelf environments that permit 366 

assessment of species diversity, population abundances and faunal turnovers. Census data are 367 

summarized in Table 1 as cumulative species diversity per biozone. 368 

 369 

5.1 Diversity Maximum: Early Maastrichtian 370 

  371 

 In the Indian Ocean, the early Maastrichtian zones CF8-CF5 reveal 14 species 372 

originations at Site 217 (Fig. 6) and 16 species originations at the Cauvery Basin well Kali-H 373 
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(Fig. 7). Note that in these sections only part of zone CF8 is present but the number of species 374 

originations not yet reached at these sites can still be estimated based on Tunisia and Site 525A. 375 

At El Kef, 21 species originations occurred in the early Maastrichtian, which is comparable to 376 

Elles with 18 species (Fig. 8). At Site 525A, 23 species originations are identified during this 377 

interval (Fig. 9). Most of these species are also present in the Indian Ocean Site 217 and Kali-H 378 

but the first appearances of some are not recorded because of incomplete core recovery. If we 379 

add those first appearances, then species originations at Site 217 and Kali-H increase to 22 and 380 

25 species, respectively (Table 1). Elles and Site 525A also show 7 and 6 species originations in 381 

zones CF9-CF8b, indicating gradual diversification already beginning in the latest Campanian.  382 

Most of the species originations occurred among subsurface and thermocline dwellers. 383 

The latter probably originated as subsurface dwellers that later migrated to thermocline depths 384 

during warm intervals and increased water mass stratification (Abramovich et al., 2003). 385 

Originations are likely due to a major increase in nutrient availability driving primary 386 

productivity (Fig. 5) and faunal diversification (Hallock, 1987). Ninety East Ridge volcanism 387 

was probably a major contributor of nutrients in the Indian Ocean as suggested by the inferred 388 

total number of species originations (22 at Site 217, 25 at Kali-H; Table 1) although recovery is 389 

incomplete for the base CF8-CF9 interval (Figs. 6, 7). Maximum diversity is reached during the 390 

CF6/CF5 transition in Kali-H and Elles, and in the lower part of zone CF4 at Sites 217 and 525A. 391 
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At El Kef, the diversity maximum is at the base of CF3, but the late Maastrichtian record is 392 

suspect because of major faults in the area that complicate stratigraphy (Li and Keller, 1998c). 393 

 394 

5.2 Minor Extinction Event: Early to Late Maastrichtian 395 

 396 

 A minor extinction event coincides with the end of climate warming in the early late 397 

Maastrichtian and is commonly known as "mid-Maastrichtian event" (e.g., MacLeod, 1994; 398 

Barrera and Savin, 1999; Li and Keller, 1998a, 1999; Nordt et al., 2003; Frank et al., 2005; 399 

Friedrich et al., 2009; Keller et al., 2016a; Thibault, 2016). This mid-Maastrichtian event is also 400 

observed in all sections analyzed for this study.  401 

 At Site 217, this minor extinction event is observed at the CF4/CF3 transition and marked 402 

by the disappearances of Contusotruncana fornicata, C. plummerae and Globotruncana 403 

bulloides, with Archeoglobigerina cretacea and Gublerina acuta disappearing in zone CF3 404 

above the CF4/CF3 hiatus (Fig. 6). In the Cauvery Basin Kali-H well, this event also includes the 405 

disappearances of C. fornicata, C. plummerae, as well as A. cretacea, G. acuta and 406 

Globotruncana esnehensis. Because the latter two species are known to range higher in the 407 

stratigraphic record (e.g., Li and Keller, 1998a; Abramovich and Keller, 2002; Abramovich et al., 408 

2002; Darvishzad et al., 2007; Huber et al., 2008; Punekar et al., 2014b), their early 409 
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disappearance in the Indian Ocean suggests regional differences (e.g., diachronous occurrences) 410 

in species ranges.  411 

At El Kef and Elles, the disappearances of C. fornicata and C. plummerae occur in zone 412 

CF5, rather than CF4 (Fig. 8). At El Kef, this may be due to the incomplete Maastrichtian record 413 

cut by major faults, but at Elles the late Maastrichtian is undisturbed, suggesting that the zone 414 

CF4 index species R. fructicosa may be diachronous in the shallower middle shelf environment, 415 

or that high-stress conditions were more severe in shallower environments (e.g., Leckie, 1987). 416 

At Site 525A, C. fornicata, G. bulloides, C. plummerae, A. cretacea and Globotruncana 417 

ventricosa gradually disappear in zone CF4 (Fig. 9). This minor extinction event has also been 418 

recorded in Madagascar, Israel, Egypt and Poland (Abramovich et al., 2002, 2010; Dubicka and 419 

Peryt, 2012; Punekar et al, 2014b; Keller et al., 2016a). From shallow to deep environments, this 420 

faunal turnover seems to have been the result of global environmental perturbations that coincide 421 

with the transition from warm to cool climate (Fig. 5) associated with reduced water mass 422 

stratification, increased competition and biotic stress leading to the extinction of specialized 423 

subsurface and thermocline dwelling species. 424 

 425 

5.3 Late Maastrichtian Diversity Decline preceding the Mass Extinction 426 

 427 
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 A major faunal turnover in species populations, but minor change in species diversity, is 428 

generally observed in zone CF3 (Figs. 6-8) correlative with maximum cooling, suggesting 429 

increased stress conditions as evident by the decreased relative abundances of specialist species 430 

and increased abundance of generalist species more tolerant of environmental changes (further 431 

discussed in Section 6.1). In zones CF2-CF1, diversity gradually decreased along with further 432 

reduction in specialist species populations prior to the very rapid mass extinction at the K/T 433 

boundary (Figs. 8, 9). Environmental changes in zones CF2-CF1 have been widely studied and 434 

recently linked to the massive Deccan eruptions and volcanic degassing that led to climate 435 

warming, eutrophication and ocean acidification contributing to this major biotic crisis (e.g., 436 

Punekar et al., 2014a, 2016; Font et al., 2014, 2016; Thibault, 2016). 437 

 438 

6 ENVIRONMENTAL EFFECTS 439 

 440 

6.1 Ecological Associations and Depth Ranking 441 

 442 

 Planktic foraminiferal assemblages consist of three main ecological groups: specialists, 443 

generalists and disaster opportunists. Specialists species, known as K-strategists, are diverse 444 

species with large, complex tests, that tolerate a narrow range of environmental conditions, have 445 
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long life spans and produce a small number of offspring (Begon et al., 1996, 1998). A common 446 

group of K-strategists includes species of the genera Abathomphalus, Archeoglobigerina, 447 

Contusotruncana, Globotruncana, Globotruncanita, Gublerina, Planoglobulina, 448 

Pseudoguembelina, Pseudotextularia, Racemiguembelina and Rugoglobigerina (Premoli Silva 449 

and Sliter, 1999; Keller and Abramovich, 2009). These species are most abundant in stable 450 

environments with oligotrophic conditions, which foster optimum assemblages with high species 451 

diversity, a variety of test sizes, morphologies and ornamentation (e.g., Premoli Silva and Sliter, 452 

1999; Pardo and Keller, 2008; Keller and Abramovich, 2009).  453 

Generalist and disaster opportunist species are known as ecological R-strategists: low-454 

diversity species assemblages with relatively small, simple tests, able to occupy a wide range of 455 

ecological niches, have shorter life spans and produce larger numbers of offspring, thus 456 

maximizing their chance for survival (Begon et al., 1996, 1998; Premoli Silva and Sliter, 1999; 457 

Keller and Abramovich, 2009). Generalists are represented by species of the genera 458 

Globigerinelloides, Globotruncanella, Hedbergella and Heterohelix. They tend to dominate 459 

high-stress environments affected by temperature, salinity, nutrients and oxygen variations in 460 

which large specialized species struggle to survive. Heterohelix species are common under 461 

mesotrophic conditions in low oxygen environments, usually thriving during times of an 462 

expanded oxygen minimum zone (OMZ) (Pardo and Keller, 2008), while Globigerinelloides 463 
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species are most abundant in extreme eutrophic conditions (Ashckenazi-Polivoda et al., 2011). 464 

Disaster opportunists, such as Guembelitria species, thrived under the most severe biotic stress 465 

conditions generally associated with mesotrophic to eutrophic conditions in shallow continental 466 

shelves, upwelling areas and volcanically influenced regions (e.g., Kroon and Nederbragt, 1990; 467 

Koutsoukos, 1994; Coccioni and Luciani, 2006; Pardo and Keller, 2008; Keller and Abramovich, 468 

2009; Ashkenazi-Polivoda et al., 2014; Punekar et al., 2014a). 469 

Planktic foraminifera also occupy a wide variety of ecological niches at various depths in 470 

the water column. Previous studies determined species depth ranking in the water column based 471 

on their oxygen and carbon isotopic signals and grouped them into surface, subsurface, 472 

thermocline and deep dwellers (Abramovich et al., 2003, 2011; Ashkenazi-Polivoda et al., 2014). 473 

Diversity and abundance changes for each depth group can be used to interpret changes in 474 

climate and water mass stratification as well as paleoecology. 475 

 At Site 217, generalist species dominate the 63-150 μm size fraction, particularly 476 

Heterohelix and Globigerinelloides species, which are most abundant from zone CF8 to CF5 and 477 

from zone CF4 to CF3, respectively (Fig. 10), suggesting mesotrophic to eutrophic surface water 478 

conditions. A significant increase, from 4 % to 13 %, in Globotruncanella species is observed in 479 

zone CF3 in the predominantly smaller 63-150 μm size fraction, indicating dwarfing due to 480 

increased biotic stress. Specialist species are the second-most abundant group in the assemblage 481 



 28 

with dwarfed pseudoguembelinids dominating. Disaster opportunist Guembelitria cretacea is 482 

present throughout the section but rare (<1 %) except for the upper part of zone CF4 through 483 

CF3 and CF2 where relative abundances average 5 %; maximum peaks of 43 % are observed in 484 

zone CF2 in the dwarfed 38-63 μm size fraction (Fig. 10). This increased abundance indicates 485 

increasing environmental stress mainly in zones CF3-CF2 compared with the lower part of the 486 

section. Overall, dwarfed specialists (pseudoguembelinids), a marked faunal turnover at the 487 

CF4/CF3 transition, and presence of dwarfed Guembelitria with peak abundance in zone CF2 488 

reveal increased biotic and environmental stress conditions from the early to the late 489 

Maastrichtian. 490 

 The >150 μm size fraction is dominated by specialist species with different degrees of 491 

environmental tolerance. Pseudoguembelinids, which are the only large surface dwellers with 492 

significant abundance, appear to be the most tolerant as evident by their maximum abundance 493 

(6.5 % to 32 %) during the increasingly high-stress environment of zones CF3-CF2 (Fig. 11). In 494 

contrast, the subsurface and thermocline dwelling globotruncanids appear less tolerant of 495 

environmental fluctuations as indicated by their permanent decrease beginning in zone CF3. A 496 

similar lack of tolerance in CF3-CF2 environments is observed in the subsurface dwelling 497 

rugoglobigerinids. Reduced abundance of subsurface dwellers appears to be the result of reduced 498 

water mass stratification that led to decreased ecological niches and increased competition. 499 
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 Small heterohelicids generally dominate among generalists, H. globulosa, H. planata, 500 

and H. (Paraspiroplecta) navarroensis, but Gublerina rajagopalani, a deep dweller, is the most 501 

abundant species in the larger >150 μm size fraction at Site 217 (Fig. 11). The high abundance of 502 

this large, robust and thick-walled species may be attributed primarily to selective preservation 503 

during carbonate dissolution. Noteworthy is the peak in the surface dweller Guembelitria in the 504 

38-63 μm size fraction in zone CF2 (Fig. 10) coincident with dominance of large surface 505 

dwellers in the >150 μm size fraction (Fig. 11b), which suggests further reduction in habitats for 506 

deeper dwellers. Stable isotope ranking shows that Guembelitria thrived at the very sea-surface 507 

(Pardo and Keller, 2008; Abramovich et al., 2011; Ashkenazi-Polivoda et al., 2014) where CO2 508 

uptake from the air mitigates ocean acidification that affects other surface and subsurface 509 

dwellers. All of these species population changes indicate increased high-stress environments 510 

beginning in CF4, increasing through CF3 and further increasing in CF2, as a result of reduced 511 

water mass stratification, reduced ecological niches and increased carbonate dissolution for 512 

planktic foraminifera. 513 

 514 

6.2 Dwarfing 515 

 516 
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 Species dwarfing refers to size reductions as a result of high-stress environments 517 

commonly associated with rapid climate change, perturbations in the water column and/or 518 

mesotrophic conditions (Abramovich and Keller, 2003; Keller and Abramovich, 2009). It is a 519 

survival response that enhances reproduction rates through early sexual maturation (i.e., 520 

organisms reach reproductive adulthood much below normal size; MacLeod et al., 2000; Keller 521 

and Abramovich, 2009). 522 

 At Site 217, there is a gradual trend throughout the section towards increased dwarfing 523 

suggesting a progressive increase in high-stress environmental conditions (Fig. 12). In zone CF8, 524 

the assemblage in the >150 μm size fraction is dominated by specimens >250 μm in size 525 

averaging 72 %. From zones CF7 to CF3, specimens in the 150-250 μm group are more 526 

abundant with an average of 52 %. In zone CF2, dwarfed specimens dominate averaging 60 % in 527 

the 150-250 μm group but several horizons have <50 specimens (e.g., 424.08 m, 424.59 m, 528 

425.19 m, 426.70 m, 432.96 m). This indicates more severe environmental conditions associated 529 

with increased competition due to reduced water mass stratification and possibly carbonate 530 

dissolution. Similar results have been reported from wells in the Cauvery Basin, India, where 531 

planktic foraminifer diversity drops sharply and species tend to be dwarfed in the upper part of 532 

zone CF3 pointing to high biotic stress (Keller et al., 2016b). 533 

 534 
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6.3 Dissolution (Fragmentation Index)  535 

 536 

 Preservation of planktic foraminiferal tests is mainly controlled by 1) seawater saturation 537 

with respect to CaCO3 in the water column, and 2) the amount of organic matter buried in CaCO3 538 

rich sediments (e.g., Emerson and Bender, 1981). Dissolution is assessed based on 1) 539 

fragmentation index, 2) preferential preservation of robust planktic foraminiferal morphologies 540 

(species-selective dissolution), and 3) planktic/benthic (P/B) ratio of foraminifera (e.g., Parker 541 

and Berger, 1971; Thunell, 1976). The fragmentation index is calculated using the percentage of 542 

planktic foraminiferal fragments relative to the total number of whole tests and consists of three 543 

categories, "good", "fair" and "poor" based on the quality of preservation: good = nearly perfect 544 

tests, fair = imperfect tests, and poor = fragments (Punekar et al., 2016). 545 

 At Site 217, the "fair" group is the most abundant resulting in ~58 % from zone CF8 to 546 

the lower part of zone CF4 (Fig. 12). The "poor" group increases in the upper part of zone CF4 547 

and dominates (91 %) in CF3. In contrast, zone CF2 is dominated by the "fair" group (~48 %), 548 

similar to lower CF4. Just below the hiatus in CF2 at the top of the section, the "poor" group 549 

dominates (70 %). The "good" group is a relatively minor component and maintains an average 550 

of only 13 %.  551 
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These results indicate that dissolution effects are most severe in zone CF3, as also evident 552 

by the dominance of robust, thick-walled and dissolution-resistant planktic species (e.g., G. 553 

rajagopalani, P. palpebra and A. mayaroensis, Fig. 3). Climate cooling in zone CF3 and the 554 

accompanying intensified bottom water circulation likely exacerbated effects of dissolution as 555 

suggested by the fragmentation of most foraminifera in this interval. Relative abundance of 556 

benthic compared to planktic foraminifera increase from 9 % in zones CF8-CF5 to 46 % in zone 557 

CF4 and dominate in zones CF3-CF2 with an average of 61 % (Fig. 12). These results reveal that 558 

at Site 217 increased dissolution actually started in zone CF4 and was persistent through CF2, as 559 

benthic foraminifera are less vulnerable to dissolution than planktic foraminifera. Planktic 560 

foraminifera dominate again (90 %) just below the KTB hiatus in zone CF2, coincident with 561 

increased abundance of surface dwellers, including peak abundance of the disaster opportunist 562 

Guembelitria cretacea (Figs. 10, 11). This suggests severe high-stress environmental conditions 563 

detrimental to all but sea-surface dwellers. Ocean acidification and reduced water mass 564 

stratification are likely contributors to the biotic stress that affected planktic foraminiferal 565 

assemblages during zones CF4-CF2. 566 

 567 

7. MAASTRICHTIAN CLIMATE AND FAUNAL EVENTS 568 

  569 
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 The Cretaceous greenhouse warming ended in the late Campanian with global cooling 570 

that reached minimum temperatures in the earliest Maastrichtian (base C31r) accompanied by 571 

low primary productivity and low diversity in planktic foraminifera (Fig. 13) (e.g., Li and Keller, 572 

1998a; Huber et al., 2002; Friedrich et al., 2009). From the latest Campanian through the 573 

Maastrichtian, four major climate and faunal events are identified in the South Atlantic, Tethys 574 

and Indian Oceans: (1) minimum diversity in the late Campanian to earliest Maastrichtian 575 

followed by unprecedented diversification for the Cretaceous reaching maximum in the early 576 

Maastrichtian (Event-1, C31r), (2) a period of warming and stable high diversity (Event-2, upper 577 

C31r to lower C30n), (3) return to global cooling and high-stress environments (Event-3, C30n), 578 

and (4) rapid global warming and severe stress conditions in the late Maastrichtian preceding the 579 

K/T mass extinction (Event-4, C29r). Here we summarize these climate and faunal events based 580 

on stable isotopes and diversity records of South Atlantic Site 525A (Li and Keller, 1998a) 581 

compared with diversity curves from four localities in the Tethys and Indian oceans (Fig. 13).  582 

 583 

7.1 Event-1: Early Maastrichtian Cooling and Diversification  584 

  585 

 The prelude to Event-1 is the late Campanian climate cooling (C32n, zones CF9-CF8) 586 

when bottom water temperatures dropped from 16 °C to 10 °C, surface water temperatures from 587 
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22 °C to 17 °C, and primary productivity and planktic foraminiferal diversity were relatively low 588 

(Fig. 13) (Li and Keller, 1998a). Event-1 spans most of the early Maastrichtian (zones CF8b-CF6, 589 

C31r) with steady cold bottom water temperatures and gradual cooling of surface waters. δ
13

C 590 

values rapidly increased by +1 ‰ and +1.4 ‰ in bottom and surface waters, respectively, 591 

indicating a major increase in primary productivity. Increasing primary productivity in the early 592 

Maastrichtian is also observed in northern middle to high latitudes as indicated by calcareous 593 

nannofossils and benthic foraminiferal assemblages (Friedrich et al., 2005). At Site 217, primary 594 

productivity was already high due to nutrient influx from Ninety East Ridge (Fig. 5). Planktic 595 

foraminifera responded with rapid evolutionary diversification among subsurface and 596 

thermocline dwellers (Fig. 13). Species originations vary from 45 % to 57 % (e.g., low of 35-42 597 

to high of 55-61 species) among the five localities analyzed. 598 

 What could have caused the diversity decrease during the late Campanian cooling and the 599 

rapid diversification during the subsequent maximum cooling of the early Maastrichtian? The 600 

late Campanian cooling that ended the late Cretaceous greenhouse world is commonly attributed 601 

to a combination of declining atmospheric CO2 related to decreasing oceanic crust production 602 

and the opening of ocean gateways that profoundly affected deep, intermediate and shallow 603 

waters circulation patterns (review in Linnert et al., 2014). Specialist planktic foraminifera were 604 

ill-suited to adapt to these environmental changes and many disappeared. By the earliest 605 
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Maastrichtian maximum cooling, decreased diversity, reduced competition and high nutrient 606 

availability created favorable conditions for species originations (Li and Keller, 1998a, c). High 607 

nutrient inputs were likely due to several factors including (1) increased temperature gradient 608 

between equator and poles favoring development of zonal winds and thus coastal upwelling of 609 

nutrient-rich waters (e.g., Vincent and Berger, 1985; Zachos et al., 1993), (2) increased erosion 610 

and nutrient influx from the continents during the sea-level lowstand ~70.6 Ma (Haq, 2014), and 611 

(3) nutrient inputs from Ninety East Ridge volcanic activity (e.g., Vermeij, 1995) active since 612 

~82 Ma (Coffin et al, 2002; Pringle et al., 2008).  613 

 614 

7.2 Event-2: Mid-Maastrichtian Warming, Maximum Diversity, Extinctions  615 

  616 

 Event-2, also known as mid-Maastrichtian event, begins near the end of the early 617 

Maastrichtian and persists through upper zones CF6 to middle CF4 (C31n) (Fig. 13). Bottom and 618 

surface waters warmed by 2-3 °C and terrestrial temperatures peaked at 22 °C (e.g., Li and 619 

Keller, 1998a; Zepeda, 1998; Nordt et al., 2003; Thibault and Gardin, 2007). High primary 620 

productivity and maximum diversity in planktic foraminifera persisted through this interval (Li 621 

and Keller, 1998a). The cause for this warming, attributed to abrupt reorganization of 622 

intermediate oceanic circulation, has long been an enigma (Frank and Arthur, 1999; Li and 623 
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Keller, 1999), but recent studies suggest the cause could have been Ninety East Ridge volcanism 624 

(Keller et al., 2016a). An intense phase of volcanic activity is recorded at DSDP Site 216 625 

beginning ~69.5 Ma and spanning zones CF5-CF3 coincident with persistent maximum diversity, 626 

high primary productivity, climate warming and increased water mass stratification favoring 627 

planktic foraminiferal evolution (Keller, 2005; Tantawy et al., 2009).  628 

 Deccan volcanism began near the end of Event-2 at the base of C30n (~67.1 Ma, Schöbel 629 

et al., 2014) further contributing to intense greenhouse warming and acid rains enhancing the 630 

delivery of nutrients to the oceans, thus resulting in mesotrophic conditions in surface waters 631 

favoring primary productivity. Faunal responses to these high-stress conditions include peak 632 

abundance of the disaster opportunist Guembelitria cretacea, and onset of the terminal decrease 633 

in large specialized globotruncanid species. 634 

 Enhanced weathering and probably waning volcanism eventually lowered volcanic CO2 635 

levels in the atmosphere resulting in climate cooling (e.g., Dessert et al., 2001), as observed in 636 

the upper part of zone CF4 (Fig. 13). Cooling would have further affected planktic foraminiferal 637 

assemblages by leading to reduced water mass stratification as temperature gradients between 638 

surface and deep waters decreased (e.g., Doney et al., 2012), thus resulting in reduced ecological 639 

niches and disappearance of some species (e.g., minor extinction event), marking the end of 640 

diversification. 641 
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   642 

7.3 Event-3: Late Maastrichtian Cooling and Diversity Decline 643 

  644 

 Renewed global cooling during the late Maastrichtian upper zone CF4 to CF3 (C30n) 645 

marks Event-3 accompanied by sustained high primary productivity but increasingly high-stress 646 

marine environments for planktic foraminifera as a result of reduced ecological niches 647 

exacerbated by ocean acidification evident in increased carbonate dissolution effects (Figs. 12, 648 

13). Faunal responses include species dwarfing, decreased populations of specialized species, 649 

temporary exclusions, dominance by generalist and/or disaster opportunist species and general 650 

diversity decrease, as observed in the Indian Ocean, Tethys and South Atlantic Oceans. 651 

What caused the diversity decline during cooling in the late Maastrichtian instead of a 652 

diversity increase as observed during the early Maastrichtian cooling? Volcanism was active on 653 

Ninety East Ridge and in India (Deccan phase-1) but on relatively reduced levels during zone 654 

CF3 (C30n; Keller, 2005; Chenet et al., 2009) and insufficient to sustain global warming but 655 

sufficient to cause persistent ocean acidification, which stressed already reduced habitats. Large 656 

amounts of volcanogenic CO2 adsorpt by the oceans changes seawater chemistry by lowering 657 

carbonate ion (CO3
2–

) concentration, surface ocean pH and saturation states of calcium carbonate 658 

minerals (Kump et al., 2009). The result is a carbonate crisis (i.e., decrease in CaCO3 production) 659 
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that significantly affects marine ecosystems, particularly marine calcifiers such as foraminifera 660 

(reviews in Doney et al., 2009; Hönisch et al., 2012). At Site 217, dissolution due to surface 661 

ocean acidification led to thinner planktic foraminiferal tests, thus more vulnerable to breakage 662 

(e.g., Moy et al., 2009), resulting in the high fragmentation index observed in zone CF3 (Fig. 12). 663 

Dissolution effects in other localities have not been routinely recorded and still have to be 664 

evaluated, although similar effects have been observed in zones CF4-CF3 in the Cauvery Basin 665 

(Keller et al., 2016b) and Site 525A (Punekar et al., unpublished data). Enhanced weathering and 666 

a major sea-level fall (~66.8 Ma) accompanied by widespread erosion also contributed to global 667 

cooling as well as increased nutrient input into the oceans leading to mesotrophic conditions, 668 

detrimental to planktic foraminifera. 669 

 670 

7.4 Event-4: Latest Maastrichtian Rapid Climate Warming and Mass Extinction 671 

  672 

 Event-4 marks the last 250 kyr of the Maastrichtian (zones CF2-CF1, C29r), beginning 673 

with the largest Deccan eruptions (Phase-2) that caused rapid climate warming of 4 °C in bottom 674 

and surface waters and 8 °C on land, acid rain and ocean acidification leading to a major 675 

carbonate crisis thus contributing to the mass extinction (reviews in Punekar et al., 2014a; Keller 676 

et al., 2016a). This event is not present at Site 217 and rarely present in other Indian Ocean 677 
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localities due to a major hiatus. The K/T boundary is also missing in the South Atlantic (DSDP 678 

Site 525A) and is fragmented in the Tethys (Egypt and Israel) although the best records are 679 

preserved in Tunisia (Fig. 2). This interval has been discussed in several recent publications in 680 

which Deccan volcanism is directly associated to the K/T mass extinction in India (Keller et al., 681 

2011; Gertsch et al., 2011), U-Pb dating of lava flows narrow the main phase of eruptions to just 682 

250 kyr below the KTB (Schoene et al., 2015), and global faunal and geochemical studies point 683 

to Deccan volcanism as a major trigger of the K/T mass extinction (e.g., Font et al., 2014, 2016; 684 

Punekar et al., 2014a, 2016), whereas others proposed a link between accelerated Deccan 685 

volcanism and the Chicxulub impact (Richards et al., 2015; Renne et al., 2015). 686 

 687 

8 CONCLUSIONS 688 

  689 

 From the latest Campanian through the Maastrichtian, four major climate and faunal 690 

events are identified that ultimately ended with the K/T mass extinction. 691 

 Event-1: Maximum cooling in the early Maastrichtian (zones CF8b-lower CF6; C31r) is 692 

associated with rapid planktic foraminiferal species originations reaching maximum 693 

Cretaceous diversity as a result of increased nutrient input due to enhanced upwelling, 694 

costal erosion and/or volcanic activity.  695 
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 Event-2: Warming during the early/late Maastrichtian transition (mid-Maastrichtian 696 

event; CF5 to lower CF4; upper C31r-C31n) is attributed to Ninety East Ridge volcanic 697 

activity that records an intense phase of eruptions at Site 216 in zones CF5-CF3. 698 

Warming led to increased water mass stratification that sustained maximum diversity. 699 

 A minor extinction event ends Event 2 and marks the onset of increasingly more stressful 700 

marine conditions for planktic foraminifera particularly specialized species living in 701 

subsurface and thermocline depths. 702 

 Event-3: Return to maximum cooling in zone CF3 (C30n) increased stress conditions for 703 

marine calcifiers leading to reduced specialized species populations, dwarfing, and 704 

dominance of smaller ecological generalists able to tolerate ongoing environmental 705 

changes. The global cooling and faunal turnover likely resulted from increased CO2 706 

uptake by the oceans as a result of Ninety East Ridge and Deccan Trap volcanism, 707 

increased weathering after the greenhouse warming in the early-late Maastrichtian 708 

transition, ocean acidification and mesotrophic conditions. 709 

 Event-4: Massive Deccan volcanic eruptions (phase-2) in zones CF2-CF1 spanning the 710 

last 250 kyr of the Maastrichtian (C29r) coincident with increasingly high-stress 711 

environments, decreasing abundance of large specialized species and dominance of the 712 
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disaster opportunist Guembelitria cretacea. In the Indian Ocean, South Atlantic and 713 

eastern Tethys a major KTB hiatus is present. 714 

 Positive and negative effects observed in planktic species diversification and population 715 

abundance variations through the Maastrichtian can be linked to volcanism. Positive 716 

effects correlate with increased nutrient input, increased water mass stratification and 717 

increased ecological niches during climate warming. Negative effects can be linked to 718 

increased tempo and rate of volcanism resulting in ocean acidification, carbonate crisis 719 

and extinction. 720 
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FIGURE CAPTIONS 1200 

 1201 

Figure 1: Paleolocation (66 Ma) of Maastrichtian sections, Reunion and Kerguelen hotspots and 1202 

Deccan volcanism discussed in this study. Paleomap from Scotese (2013). 1203 

 1204 

Figure 2: Maastrichtian-early Paleocene biostratigraphy for planktic foraminifera is based on the 1205 

zonation scheme of Keller et al. (2002) and Li and Keller (1998a) and plotted against the 1206 

magnetic polarity time scale of Site 525A. Other zonal schemes are shown for comparison. Note 1207 

the overall correlation of hiatuses and sea-level events, particularly the increased number of 1208 

erosion events beginning in C30n, correlative with the onset of Deccan volcanism, reflecting 1209 

increased climate variability, intensified currents and erosion. 1210 

 1211 

Figure 3: Maastrichtian biostratigraphy and relative species abundances of planktic foraminifera 1212 

(>150 μm size fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean. 1213 

 1214 

Figure 4: Maastrichtian biostratigraphy and relative species abundances of planktic foraminifera 1215 

(63-150 μm size fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean. Note increased 1216 
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abundance of Guembelitria cretacea in zone CF3 (dark purple) and abundance peaks in the 38-1217 

63 μm size fraction (light purple), indicating increasingly high-stress environments in zone CF3. 1218 

 1219 

Figure 5: Maastrichtian stable isotopic data of benthic foraminifera (Gavelinella beccariformis 1220 

and Cibicidoides species) recording climate and productivity changes in bottom waters at Ninety 1221 

East Ridge DSDP Site 217, Indian Ocean, as compared with South Atlantic DSDP Site 525A (Li 1222 

and Keller, 1998a). Note the warm-cool transition in CF4 (from low to high δ
18

O values). The 1223 

low-resolution record at Site 525A (Li and Keller; 1998a) is consistent with high-resolution 1224 

records by Li and Keller (1998b) and Friedrich et al. (2009). 1225 

 1226 

Figure 6: Biostratigraphy of Maastrichtian planktic foraminifera at Ninety East Ridge DSDP Site 1227 

217, Indian Ocean. Species ranges based on composite occurrences in the >150 μm and 63-150 1228 

μm size fractions. Index species mar ed in red. Note rapid species originations in zones CF8-1229 

CF6 and a minor extinction event in zone CF4. 1230 

 1231 

Figure 7: Biostratigraphy of Maastrichtian planktic foraminifera in Kali-H well, Cauvery Basin, 1232 

India (Keller et al., 2016b; this study). Index species marked in red. Note rapid species 1233 

originations in zones CF8-CF6 and a minor extinction event in zone CF4. 1234 
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 1235 

Figure 8: Biostratigraphy of Maastrichtian planktic foraminifera at Elles and El Kef, Tunisia (Li 1236 

and Keller, 1998c; Abramovich and Keller, 2002). Note rapid species originations in zones CF8-1237 

CF6 and a minor extinction event in zone CF5. 1238 

 1239 

Figure 9: Biostratigraphy of Maastrichtian planktic foraminifera at DSDP Site 525A, South 1240 

Atlantic Ocean (Li and Keller, 1998a). Note rapid species originations in zones CF8-CF6 and a 1241 

minor extinction event in zone CF4. 1242 

 1243 

Figure 10: Maastrichtian ecological associations of planktic foraminifera (63-150 μm size 1244 

fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean. Note increased abundance of the 1245 

opportunist Guembelitria species (purple) and the generalist Globotruncanella species (green) in 1246 

zone CF3 indicating increasingly high-stress environments and dwarfing. 1247 

 1248 

Figure 11: A) Maastrichtian ecological associations and B) depth ranking of planktic 1249 

foraminifera (>150 μm size fraction) at Ninety East Ridge DSDP Site 217, Indian Ocean. Note 1250 

increased abundance of surface and deep dwelling species in zone CF3 indicating reduced water 1251 
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mass stratification. Depth ranking based on oxygen and carbon stable isotopes (Abramovich et 1252 

al., 2003, 2011; Ashkenazi-Polivoda et al., 2014). 1253 

 1254 

Figure 12: Maastrichtian stable isotopic data of benthic foraminifera (Gavelinella beccariformis 1255 

and Cibicidoides species), species richness, dwarfing, planktic/benthic foraminiferal ratio (63-1256 

150 μm) and fragmentation index in Ninety East Ridge DSDP Site 217, Indian Ocean. Note 1257 

increased dwarfing, increased abundance of benthic foraminifera and increased fragmentation in 1258 

zone CF3 indicating increasingly high-stress environments and dissolution. 1259 

 1260 

Figure 13: Late Campanian-Maastrichtian climate, productivity and diversity changes based on 1261 

planktic foraminifera at the South Atlantic DSDP Site 525A compared with species diversity 1262 

from the Tethys (El Kef and Elles, Tunisia) and Indian Ocean (Site 217, Cauvery Basin). Four 1263 

climatic and faunal events lead up to the K/T mass extinction revealing major upheavals in 1264 

planktic foraminifera during the last 5 Myr of the Maastrichtian.   1265 
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TABLE CAPTIONS 1266 

 1267 

Table 1: Maastrichtian planktic foraminiferal species census data summary at DSDP Site 217, 1268 

Cauvery Basin well Kali-H, India (Keller et al., 2016b), El Kef and Elles, Tunisia (Li and Keller, 1269 

1998c; Abramovich and Keller, 2002), and DSDP Site 525A (Li and Keller, 1998a). Note: N° of 1270 

species per zone represent averages; some species may have been grouped or not recognized 1271 

because of rarity, which may account for some variation in species richness. *Species that 1272 

originate during the CF8a-CF5 diversification event (based on the complete records of Elles and 1273 

Site 525A) but are not recorded, as the recovery of zone CF8a is incomplete. 1274 
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Location 
Ninetyeast Ridge SE India Tunisia South Atlantic 

DSDP Site 217 Well Kali-H El Kef Elles DSDP Site 525A 

Maximum diversity 60 61 56 59 55 

CF8 - N° of species 54 48 42 47 36 

CF7 - N° of species 58 54 49 51 45 

CF6 - N° of species 
59 

59 55 58 52 

CF5 - N° of species 60 53 58 53 

CF4 - N° of species 60 61 55 56 52 

CF3 - N° of species 56 56 54 52 51 

CF2 - N° of species 54 Hiatus 51 51 49 

CF1 - N° of species Hiatus Hiatus 49 47 45 

N° of species originations 

Early Maastrichtian   

Zones CF8b-CF5 

14+8*=22 16+9*=25 21 18 23 

N° of species originations 

Early Maastrichtian   

Zones CF9-CF8a 

Not recovered 7 6 
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