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Individual animals behave differently from each other. This variability is a component
of personality and arises even when genetics and environment are held constant.
Discovering the biological mechanisms underlying behavioral variability depends on
efficiently measuring individual behavioral bias, a requirement that is facilitated by
automated, high-throughput experiments. We compiled a large data set of individual
locomotor behavior measures, acquired from over 183,000 fruit flies walking in Y-shaped
mazes. With this data set we first conducted a “computational ethology natural history”
study to quantify the distribution of individual behavioral biases with unprecedented
precision and examine correlations between behavioral measures with high power. We
discovered a slight, but highly significant, left-bias in spontaneous locomotor decision-
making. We then used the data to evaluate standing hypotheses about biological
mechanisms affecting behavioral variability, specifically: the neuromodulator serotonin
and its precursor transporter, heterogametic sex, and temperature. We found a variety
of significant effects associated with each of these mechanisms that were behavior-
dependent. This indicates that the relationship between biological mechanisms and
behavioral variability may be highly context dependent. Going forward, automation
of behavioral experiments will likely be essential in teasing out the complex causality
of individuality.

Keywords: handedness, fluctuating asymmetry, variability, high-throughput behavior, automation, ethology

INTRODUCTION

Individual animals exhibit idiosyncratic behavior, even when their genetics and rearing
environment are held constant. This variability is termed intragenotypic variability (Stamps
et al., 2013) and likely arises in part due to stochastic effects during development (Vogt, 2015;
Honegger and de Bivort, 2018), which, in a quantitative genetic framework, are classified as
microenvironmental plasticity (Morgante et al., 2015). Intragenotypic variability in animal behavior
is likely a major component of animal personality, an ecologically and evolutionarily important
dimension of variation (Freund et al., 2013; Bierbach et al., 2017). A single genotype giving rise
to a broad distribution of random phenotypes may constitute an adaptive evolutionary strategy,
termed “bet-hedging,” to increase the probability that for any fluctuation in the environment,
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some individuals will be fit, increasing the odds that a lineage
never goes extinct (Hopper, 1999). While bet-hedging has strong
theoretical foundations, in the context of animal behavior it
has limited evidence [but see Kain et al. (2015) and Akhund-
Zade et al. (2020)]. A challenge in studying bet-hedging is
that behavioral variability is difficult to measure; larger sample
sizes are needed to precisely estimate the variance of a trait,
compared to the mean. This is largely because the former requires
sampling phenotypes in the tail of a distribution, which are
rare by definition.

Increasing behavioral assay throughput via automation is
an effective way to attain the sample sizes needed to study
variability. This can be achieved through miniaturization and
parallelization of imaging platforms in a lab context (Kain et al.,
2012; Churgin et al., 2017; Pantoja et al., 2017; Stern et al.,
2017; Barlow et al., 2021). While the up-scaling of experiments
is easiest with small, lab-adapted animals, such approaches do
work with species beyond the common genetic models (Crall
et al., 2016, 2018; Bierbach et al., 2017; Ulrich et al., 2018).
Gains in data throughput can be achieved with the help of
robots that automate animal handling (Alisch et al., 2018),
move cameras between arenas (Alisch et al., 2018; Crall et al.,
2018) or track a single animal over long periods of time
(Johnson et al., 2020). Automation of analysis is also essential,
and innovations in animal centroid tracking (Panadeiro et al.,
2021), body-part tracking using neural networks (Hausmann
et al., 2021) and behavioral classification (Kabra et al., 2013;
Berman et al., 2014; Todd et al., 2017) constitute a rich tool
set for rapidly extracting behavioral measures from digital
data sets.

High-throughput, automated behavioral assays have been
used to investigate the variability of Drosophila behavior
(Mollá-Albaladejo and Sánchez-Alcañiz, 2021; Mueller et al.,
2021; Steymans et al., 2021; Werkhoven et al., 2021). The
species’ deep genetic toolkit facilitates the study of proximate
mechanisms controlling variability such as neurotransmitters
(Kain et al., 2012; Honegger et al., 2020), neural circuits
(Buchanan et al., 2015; Skutt-Kakaria et al., 2019; Honegger
et al., 2020; Linneweber et al., 2020), genes (Kain et al., 2012;
Ayroles et al., 2015; Wu et al., 2018), environmental variation
(Akhund-Zade et al., 2019), and social effects (Alisch et al.,
2018; Versace et al., 2020). Of these studies, the three that have
assayed the greatest number of individuals (Ayroles et al., 2015;
Buchanan et al., 2015; Skutt-Kakaria et al., 2019) all employed a
common behavioral assay: spontaneous locomotion in Y-shaped
mazes. As flies walk freely in these arenas, they make a left-
vs-right choice every time they cross through the center of
the maze. Individual flies make hundreds of such choices per
hour. This yields a large data set per individual, which in
combination with a high throughput of individuals, makes this
assay particularly amenable to the study of variability. Beyond the
number of left-right choices made and their average handedness,
the Y-maze assay also produces behavioral measures related
to the higher-organization of turn sequences and their timing
(Ayroles et al., 2015).

Individual left-vs-right turning bias is correlated
with counterclockwise-vs-clockwise bias in open arenas

(Buchanan et al., 2015) indicating that the behavioral measures
in this assay are not entirely geometry-dependent. Humans
may exhibit a comparable form of locomotor bias in the
curvature of their trajectories when trying to walk straight
without visual feedback (Souman et al., 2009). The left-
right symmetry of this assay evokes the phenomenon of
fluctuating asymmetry, in which individual variation in the
extent of morphological asymmetry is used as a measure
of developmental stability (Van Valen, 1962; Debat et al.,
2011). Indeed, both left-vs-right turn bias in Y-mazes and
morphological traits examined for fluctuating asymmetry tend to
have average values (typically close to left-right symmetry) that
are robust across genotypes and selection (Pélabon et al., 2006;
Ayroles et al., 2015).

Here, we took advantage of the high precision and throughput
of the Y-maze assay to characterize the distribution of individual
behaviors and their variability along different experimental axes.
We collected nearly all the data from Y-maze experiments
conducted by lab members since this assay was devised in
2010. In descriptive analyses, we characterized the distribution
of individual Y-maze behavioral measures, and their correlations,
with unprecedented precision. In hypothesis-driven analyses,
we examined the effects on variability of manipulations of
serotonergic signaling, the gene white [previously shown to
affect phototactic variability; Kain et al. (2012)], sex, and
temperature. On the whole, these analyses reinforce the
finding that genotype and the choice of behavioral measure
itself have consistently large effects on measures of variability
(Akhund-Zade et al., 2019), though some environmental
manipulations can have large effects in a behavior-dependent
fashion.

RESULTS

We collected experimental records from hundreds of
experiments examining the Y-maze behavior of 183,496
individual flies (Figure 1). In total, these flies made 79.8 M
left-right choices. Four behavioral measures were recorded for
each fly (Ayroles et al., 2015): turn bias (percent of turns to
the right), number of turns, and turn switchiness. The last is a
measure of the degree to which flies alternate between left and
right turns, normalized by their turn bias. A fly making exactly
as many left (right) followed by right (left) turns as expected in a
binomial model has a switchiness value of 1. Lower switchiness
indicates fewer LR/RL turn sequences, and, conversely, longer
streaks of L or R turns. The fourth measure, turn clumpiness,
captures the non-uniformity of turn timing, i.e., the extent to
which flies made choices in bursts. We changed the formula
for the last measure midway through the data collection period
[compare Buchanan et al. (2015) and Werkhoven et al. (2021)],
making this measure hard to compare across experiments;
therefore we excluded it from further analysis. In addition to
behavioral data, the record for each fly also included metadata
about the experimental circumstances, including (Table 1): the
fly’s genotype, experimental conditions, temperature during
behavior, age of the fly, the experimenter who recorded the
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FIGURE 1 | Depiction of grand Y-maze data set (n = 183,496)—(A) Visualization of 183,496 flies (each dot is a fly). (B) Breakdown of flies into important metadata
categories. Height of each color segment indicates the number of flies with that metadata value. Bars align to panel (A).

behavioral data, the ID# of the array of arenas (“tray”) in which
it behaved, the ID# of the imaging box in which it behaved, the
date, the number of arenas in its tray, the software used to record
its behavior, the software used to produce its behavior measures,
and its sex. The proportions of all flies for five of these metadata
categories are shown in Figure 1B.

The size of our data set allows some of the most precise
estimation of behavioral distributions across individuals to-date.
We computed kernel density estimates of the distributions of turn
bias, number of turns and turn switchiness (Figures 2A,D,G).
The distributions of all measures are essentially unimodal, with
the distribution of handedness appearing roughly Gaussian
(Figure 2A). However, it deviates from that distribution in a
number of ways: it is denser at its mode and in tails corresponding
to strong turning biases around 0.1 and 0.9. This is reflected
in a kurtosis greater than three (Figure 2B; see below). The
empirical distribution of handedness is technically trimodal, with
small peaks corresponding to flies with biases very close to
0 and 1. Most flies in these peaks performed fewer than 50
turns, indicating that these peaks may be the consequence of
undersampling within these individuals.

To assess the precision of measures quantifying these
distributions we looked at the distribution of estimates (under
bootstrapping) of the mean, standard deviation, skewness and
kurtosis of the behavioral distributions (Figures 2B,E,H). These
were generally quite narrow, indicating precise estimation,
and generally broader for the higher-order statistics. This was
expected as the higher-order statistics have exponential terms
that render them more sensitive to sampling error. But their
precision did not always decrease monotonically (Figure 2H). To
extend this analysis, we computed the standardized moments of
each distribution, up to the 20th moment, for each behavioral
measure (Figures 2C,F,I). To our surprise, the data provided
robust estimates even of the 20th moment of turn bias and turn
switchiness. This was true even in 10-fold subsamples of the

turn switchiness data, but was not the case for number of turns
(Figure 2F) or odd moments of the turn bias data (Figure 2C).
This indicates that the reliability of estimates of high-order
distribution statistics depends on the underlying distribution, not
just the sample size.

In our studies of turn bias in Y-mazes (Ayroles et al., 2015;
Buchanan et al., 2015; Akhund-Zade et al., 2019; Werkhoven
et al., 2021), we operated under the assumption that the mean
turn bias was 0.5 in all genotypes. For example, this assumption
was the basis of a decision to not model the interaction of
genetic variation for the mean and variability of turn bias in
Ayroles et al. (2015). On close examination of this measure in
our new data set, we found evidence that the mean turn bias
may not be 0.5 (Figure 3). The mean of turn bias in the grand
data set was 0.496 (Figure 3A), indicating a slight left bias to
Y-maze turn choices. This slight left bias was also present in the
distribution of genotype, sex and experimenter (Figures 3B–D)
mean turn biases, suggesting that the apparent left bias in
the grand mean is not likely attributable to imbalance among
the metadata covariates. Indeed, a linear model with 11 meta
variables as predictors (all but date, which renders the model rank
deficient) and 636 coefficients has a turn bias intercept of 0.485
(SE 0.0099). The apparent effect of experimenter (Figure 3D)
was not strongly seen in the above model (lowest p-value = 0.04
across 10 experimenters; nor in a model with only genotype
and experimental condition as the other predictors: lowest
p-value = 0.11). In contrast, 47/569 genotypes have significant
effects (p < 0.05) in a linear model where genotype is the
sole predictor of turn bias (Figure 3E). This is a significant
enrichment, and supports the conclusion that the average turn
bias is under biological control.

Since our behavioral data was multidimensional (turn bias,
number of turns and turn switchiness were measured for each
fly), we were also able to investigate the joint distributions and
correlations of these measures. We first tested whether there
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TABLE 1 | Y-maze data set variables.

Data variable name Notes

flyID Number linking this fly’s data to other digital records

handedness Turn bias behavioral measure

numTurns Number of turns behavioral measure

switchiness Turn switchiness behavioral measure

lev_handedness Levene-transformed turn bias, for linear modeling of variability in turn bias

lev_numTurns Levene-transformed number of turns, for linear modeling of variability in number of turns

lev_switchiness Levene-transformed turn switchiness, for linear modeling of variability in turn switchiness

genotype String indicating the genotype of fly

expCond
5htpagar
5htpagar25
5htpagar50
5htpnormal
5htppotato10
5htppotato25
5htppotato50
aMWnormal
agar
amwagar
amwpotato10
amwpotato20
amwpotato25
amwpotato50
ctrlaanormal
ctrlaapotato
d10gal80heatshock
d14gal80heatshock
d1gal80heatshock
d3gal80heatshock
d4gal80heatshock
d5gal80heatshock
d6gal80heatshock
d7gal80heatshock
d8gal80heatshock
d9gal80heatshock
darkreared
gal80heatshock
grownat18
grownat20
grownat23
grownat25
grownat30
heritability
intenseenrichment
irtest
mildenrichment
normal
potato
ru486
ru486control
single

String indicating the experimental conditions
Flies reared on agar media supplemented with 10 mM 5-HTP
Flies reared on agar media supplemented with 25 mM 5-HTP
Flies reared on agar media supplemented with 50 mM 5-HTP
Flies reared on cornmeal-dextrose media supplemented with 10 mM 5-HTP
Flies reared on potato media supplemented with 10 mM 5-HTP
Flies reared on potato media supplemented with 25 mM 5-HTP
Flies reared on potato media supplemented with 50 mM 5-HTP
Flies reared on cornmeal-dextrose media supplemented with 10 mM aMW
Flies reared on control agar media
Flies reared on control agar media supplemented with 15 mg/mL ascorbic acid
Flies reared on potato media supplemented with 10 mM aMW
Flies reared on potato media supplemented with 20 mM aMW
Flies reared on potato media supplemented with 25 mM aMW
Flies reared on potato media supplemented with 50 mM aMW
Flies reared on control potato media
Flies reared on control potato media supplemented with 15 mg/mL ascorbic acid
Flies subjected to heat-shock at day 10 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 14 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 1 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 3 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 4 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 5 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 6 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 7 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 8 of development (Ayroles et al., 2015)
Flies subjected to heat-shock at day 9 of development (Ayroles et al., 2015)
Flies reared in darkness
Flies subjected to heat-shock post-eclosion, prior to behavioral assay
Flies reared in incubators at 18◦C
Flies reared in incubators at 20◦C
Flies reared in incubators at 23◦C
Flies reared in incubators at 25◦C
Flies reared in incubators at 30◦C
Flies are the progeny of single parents selected for turn biases (Buchanan et al., 2015)
Flies reared in high intensity enrichment population cage (Akhund-Zade et al., 2019)
Fly behavior was measured using infrared rather than white illumination
Flies reared in mild intensity enrichment vials (Akhund-Zade et al., 2019)
Standard rearing conditions
Flies reared on potato media
Flies reared on media supplemented with ru486
Flies reared on ru486 control media
Flies reared in single housing

expTemp Temperature during behavior acquisition (◦C)

age Middle of range of ages post-eclosion of fly in that experimental group. E.g., age = 6 typically reflects experimental flies
ranging from 4 to 8 days old

experimenterID Name of experimenter who collected the behavioral data

trayID Identifying # of the arena array tray in which the fly behaved

boxID Identifying # of the imaging box in which the fly behaved

date String encoding the date of the behavioral experiment

arrayFormat The number of mazes imaged per tray

mazeNum ID number of the maze the fly occupied within its tray

(Continued)
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TABLE 1 | (Continued)

Data variable name Notes

acquisition
Ymaze31

roitracker
autotracker
autotrackerv2
margo

Software used to collect that fly’s behavioral data
Custom LabView software
http://lab.debivort.org/neuronal-control-of-locomotor-handedness/y%20maze%20v3.1.vi
Custom LabView software similar to above
Custom MATLAB software, eventually published as MARGO
Custom MATLAB software, eventually published as MARGO
Custom MATLAB software: http://lab.debivort.org/MARGO/

analysis Software used to compute that fly’s behavioral measures

sex Fly’s sex. “Both” indicates that both males and females were used in this experimental group, in unspecified proportion

eyeColor State of the white genetic locus. See Figure 5. + indicates wild type, − null, and m mini-white alleles

might be a correlation between turn bias and number of turns,
specifically a negative correlation arising from higher sampling
error in estimating turn bias for flies making fewer turns. Counter
to this prediction, we observed a slight positive correlation
(r = 0.036; p = 4∗10−52). Incidentally, we noticed the effects
of the discreteness of number of turns as a measure, and the
resulting limited values that turn bias can take on, as a fractal-
like (Trifonov et al., 2011) structure in the scatter plot of absolute
turn bias vs. number of turns (Figure 4A).

Next, we examined the joint distribution of turn switchiness
and number of turns (Figure 4B). This two-dimensional
distribution had two conspicuous features: an uncorrelated
mode containing the vast majority of the flies, and a
smaller mode exhibiting a negative linear relationship between
turn switchiness and number of turns. The flies in this
second mode were nearly all reared on potato flake media
[which was sometimes supplemented with drugs targeting the
neurotransmitter serotonin; Dierick and Greenspan (2007),
Kain et al. (2012), and Krams et al. (2021)]. Of these flies,
approximately 296 flies were reared on media including the
serotonin inhibitor aMW, 429 were reared on the serotonin
precursor 5-HTP, and 942 were reared on control media. Notably,
being reared on potato food was not a guarantee that a fly
fell in this part of the distribution; the vast majority of flies
in such rearing conditions fell in the predominant uncorrelated
mode of the joint distribution along with flies fed on standard
cornmeal-dextrose media.

Finally, we used the Y-maze data set to revisit several
previously examined hypotheses about the proximate
mechanisms regulating behavioral variability. We first asked
whether the distribution of measures of turn bias variability
across genotypes was consistent between the distribution seen
in Ayroles et al. (2015) and the other genotypes present in
our data set. The lines examined in that paper come from the
Drosophila Genome Reference Panel [DGRP; Mackay et al.
(2012)], a collection of inbred lines established from the natural
population of flies in Raleigh, NC USA. The remaining 339
genotypes in our data set come from a variety of sources, mostly
lab stocks, and include 165 lines expressing the transgenic driver
Gal4 (Brand and Perrimon, 1993) in neural circuit elements
(Jennett et al., 2012). Thus, these genotypes do not represent
a sample from a natural population. The distribution of their

genotype-wise variability in turn bias was largely similar to that
observed in DGRP lines (Figure 5A), with genotypes exhibiting
coefficients of variation in handedness ranging from less than 0.2
to more than 0.4.

Neuromodulation may have a special role in the control of
behavioral variability (Maloney, 2021), e.g., phototaxis (Kain
et al., 2012; Krams et al., 2021) and olfactory preference
(Honegger et al., 2020). We conducted experiments to see if
serotonin modulation controls variability of locomotor behaviors
in the Y-maze. Specifically, we measured the variability of turn
bias, number of turns and turn switchiness in DGRP lines which
were treated with alpha-MW (a serotonin synthesis inhibitor),
5-HTP (a biosynthetic precursor of serotonin) (Dierick and
Greenspan, 2007) or their respective control media. These
treatments generally had small effects on behavioral variability
across genotypes (ranging from a −10% to a 7% increase),
with the exception of the effect of 5-HTP on variability in the
number turns, which, in two versions of the experiment increased
variability by 16 and 25% (Figure 5B). Overall, these results
imply that although serotonin levels can affect the variability
of turn number, there is not a strong effect that is consistent
across behaviors.

We previously determined that the effect of serotonin
on phototactic variability was dependent on the gene white,
which encodes a transmembrane transporter that imports
the serotonin precursor tryptophan into neurons. We scored
the flies in our Y-maze data set for their white genotype,
which could range from wild type to homozygous null,
with intermediate conditions of (likely) partial rescue by
the expression of the “mini-white” allele at non-endogenous
transgenic insertion sites (Klemenz et al., 1987). Lines with
homozygous null alleles at the endogenous white locus
exhibited higher variability in number of turns, with the
exception of lines that were also heterozygous for mini-
white at a transgenic locus. The molecular function of White
suggests that its disruption should produce a behavioral
phenotype like serotonin synthesis inhibition, which had
no effect in our pharmacological manipulations (whereas
feeding flies serotonin precursor increased variability, like white
disruption). White genetic disruption was associated with small
reductions in variability in turn bias and turn switchiness
(Figure 5C), consistent with the small decreases seen in the aMW
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FIGURE 2 | Estimation of statistics describing three Y-maze behavioral measures—(A) Kernel density estimate of the distribution of turn bias across all flies in the
data set. Gray interval is the 95% CI as estimated by bootstrap resampling. Orange line is the Gaussian distribution that best fits the data. (B) Violin plot of estimation
distributions of four statistical moments describing the distribution of turn bias. Each violin is a kernel density estimate of the distribution of each statistic’s value
across bootstrap samples from 1,000 replicates. (C) Average bootstrap estimate of the mean, variance, and subsequent 18 standardized moments of the
distribution of turn bias, as a function of the size of the data set. Darkest line corresponds to the complete grand Y-maze data set, and lighter lines random subsets.
Dotted line at |µ| /σ = 2 indicates the threshold for moment estimate significantly different from 0 at p = 0.05. (D–F) As in panels (A–C) for number of turns as the
behavioral measure. (G–I) As in panels (A–C) for turn switchiness as the behavioral measure. Note log y-axes in panels (C,E,F,H,I). Data from all 183,496 flies were
used in these analyses.

pharmacological experiments (Figure 4B). Overall, we found
some agreement in the effects of serotonin pharmacological
experiments and white disruption, but not perfect agreement,
suggestive of behavior-dependent complexity in the relationship
between white, serotonin, and variability.

It has been hypothesized that individuals of the heterogametic
sex will exhibit greater trait variability due to noise in gene
compensation (James, 1973), though a recent meta-analysis

found no significant sex-bias in the variances of 218 mouse
traits (Zajitschek et al., 2020). We fit linear models to
Levene-transformed turn bias, number of turns, and turn
switchiness data, with genotype and sex as predictors, to test for
the effect of sex on behavioral variability. Males had variability
that was −6.8% (p < 0.001), 7.5% (p < 0.001), and 1.8% (n.s.)
greater than that of females in turn bias, number of turns, and
turn switchiness respectively.
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FIGURE 3 | Mean turn bias appears slightly asymmetrical—(A) Violin plot of estimate distribution for the mean of turn bias across the grand data set, exhibiting an
apparent slight left-bias of 49.6%. Violin is a kernel density estimate (KDE) of this statistic from 1,000 bootstrap replicates. (B) Mean turn bias for each genotype
(points). Violin is the KDE of genotype means. Point color indicates the number of flies recorded for that genotype. (C) As in panel (B), but with flies grouped by sex.
The three points correspond, from top to bottom, to males only, females only and mixed sex. (D) As in panel (B), but with flies grouped by experimenter. Note: the
groups with the highest apparent right-bias have low sample sizes. (E) Histogram of p-values from a linear model with each genotype as a predictor. Brown bars
represent effects significant at p < 0.05. Dotted line indicates the expected distribution under the null model. Data from all 183,496 flies were used in these analyses.

FIGURE 4 | Correlations between behavior measures—(A) Turn bias magnitude vs. number of turns. Each point is a fly (n = 183,496). Fractal-like pattern at left is a
consequence of the limited turn bias values that are possible for a given discrete number of turns. r = 0.0357, p < 10−50. (B) Turn switchiness vs. turn bias
magnitude. Each point is a fly and colored on a scale depending on whether the flies were reared on cornmeal-dextrose agar media (black-cyan; n = 157,321) or
F4-24 potato flake media (black-red; n = 26,175). Point color value indicates sample size, with dark flies making fewer turns. Curvilinear features are a consequence
of limited switchiness values possible for a given turn bias magnitude, a constraint that arises most obviously in flies making fewer turns (dark points).

Lastly, we examined the effect of temperature during
behavioral testing, with the hypothesis that flies would exhibit
higher variability at high temperature (32–33◦C) than at
room temperature (22–23◦C). This would be consistent with
a mechanism in which heat pushes neural circuits out of the
range in which physiological buffering keeps circuits operating
similarly despite latent developmental and genetic variability
(Tang et al., 2012; Rinberg et al., 2013). We examined this
specifically for genotypes that had paired experiments at low and
high temperature, and did not express any temperature-sensitive

effectors. We found that high temperature had no effect on
turn bias variability, but significantly decreased number of
turns variability and turn switchiness variability by 37 and 32%
respectively (Figure 5D). Temperature does affect the mean
number of turns, typically increasing it by making flies more
active. Our analysis controlled for this by assessing mean-
normalized variability (the coefficient of variation: µ/σ). Overall,
our analyses of the effects of potential proximate mechanisms
controlling variability revealed a complex picture with (often
small) effects of serotonergic regulation, white genotype, sex and
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FIGURE 5 | Factors potentially affecting behavioral variability—(A) Variability (measured as the coefficient of variation) of turn bias for DGRP genotypes (blue; n = 223
genotypes comprising 64,838 flies) and non-DGRP genotypes (black; n = 3466 genotypes comprising 118,658 flies). Violins are the KDE of genotype variabilities
(points). (B) Variability of turn bias (left), number of turns (middle), and turn switchiness (right) for DGRP genotypes in six pharmacological experimental conditions
targeting serotonin. Each point is a genotype in a particular experimental condition. Lines pair genotypes across a drug medium and its associated control medium.
Numbers at top indicate the effect size from control to drug treatment. Bold effect sizes are statistically significant and colored by the direction of their effect
(red = lower variability; cyan = higher). *p < 0.05; **p < 0.01; ***p < 0.001. n = 157 genotypes comprising 38,316 flies. (C) Violin plot of estimation distributions for
the variability of turn bias (magenta), number of turns (gold) and turn switchiness (turquoise) vs. genotype of the white gene.+ indicates wild type, + mw.hs the
“mini-white” allele typically used to mark a transgenic insertion, and - a null allele [typically w1118; Hazelrigg et al. (1984)]. white genotypes are ranked in estimated
order of expression disruption. The site of w+mw.hs insertion varied by line; the semi-colon notation in the panel label indicates that this site might be on a different
chromosome than the endogenous w locus. n = 85,551, 1,863, 75,866, 1,484, 14,888 and 3,844 flies, respectively. (D) Variability of turn bias (left), number of turns
(middle) and turn switchiness (right) for genotypes tested at 23 and 33◦C. Lines pair genotypes across temperature conditions. n = 11 genotypes comprising 10,060
flies. Effect sizes and significances indicated as in panel (B).

temperature. For all of these manipulations, the direction of effect
on variability was behavior-dependent.

DISCUSSION

We gathered Y-maze data collected by lab members back to
the origination of this assay 11 years ago. This large data set
comprised the behavioral measures of over 180,000 individual
flies that made a total of nearly 80 million left-right choices.
With it, we were able to estimate the distribution of three
measures of individual behavior with unprecedented precision,
even out to the 20th standardized statistical moment (Figure 2).

In exploratory analyses, we noticed two surprising patterns:
(1) a discrete change in the relationship between turn bias
magnitude and turn switchiness in a subset of animals that had
been reared on potato flake media used for pharmacological
experiments, and (2) that flies appear to have a slight left
bias in their Y-maze choices. Finally, we used our data set
to test several hypotheses pertaining to proximate control of
variability in behavior, finding significant behavior-dependent
effects of drugs targeting serotonin, mutation of the white gene
(which encodes a channel that imports serotonin precursor), sex
and temperature. Compared to the effects of genotype and the
choice of behavior measure, the effects of these manipulations
were generally small and context-dependent, underscoring the
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complexity of relationships between axes of biological regulation
and behavioral variability.

Admittedly, a motivation for this study was the desire to
explore a very large data set reflecting the work over many years
of many lab colleagues. In that spirit, it is fun to think about how
throughput might be expanded another order of magnitude in
the coming years. One possibility is robotic fly-handling (Alisch
et al., 2018), which has yet to be deployed at scale in support of a
large screen. Another possibility is tracking flies using capacitive
sensors (Itskov et al., 2014) instead of with cameras. This would
remove the need for long optical axes that force our behavior
boxes to be tall, allowing a dense, vertical packing of arenas within
a minimal bench footprint.

While increasing throughput through further automation
is an appealing possibility, and perhaps essential for certain
classes of experiments (like experimental selection for variability,
which would require testing thousands of individual flies
per generation for a year or more), it is not without
conceptual consequences. One of these is how to assess small
effects that are extremely statistically significant due to large
sample sizes. Two examples from this study are the apparent
slight left turn bias (Figure 3) and the significant positive
correlation between turn bias magnitude and number of turns
(Figure 4A). A turn bias of 0.496 compared to an expected
value of 0.5 is indeed a small discrepancy, but it might
nevertheless be biologically significant given the consistent
failure of artificial selection experiments to evolve directional
asymmetry in a variety of fly morphological characters (Carter
et al., 2009). Another aspect of working with large data
sets is that sampling error is likely to be small compared
to inadvertent biases in the data [Meng, 2018; see Bradley
et al. (2021) for an important example]. I.e., accuracy is
unlikely to improve with further observations, but instead
with the harder work of addressing systematic miscalibration,
misunderstandings of what is being measured, or structure in the
data leading to effects like Simpson’s paradox. A way forward
among these challenges may be to conduct experiments and
analyses under a variety of biological conditions, increasing
the odds that inferences generalize across contexts (Voelkl
et al., 2020), an approach that would also be boosted by
throughput and automation.

With caveats of big data in mind, we want to consider
possible errors that might explain the apparent slight (but
highly significant) left mean turn bias. All experimenters who
conducted these experiments are right-handed. It is formally
possible that chiral manipulation during the experimental set-
up imparted a slight chirality to turning in the Y-maze, though
we cannot think of a convincing mechanism by which this
would happen. We also cannot think of mechanisms by which
small, inevitable asymmetries in our behavioral rigs would
impart a consistent left bias to behaviors measured across
several generations of rigs and tracking software versions.
Arguments in favor of the apparent left turn bias being real
are previous reports of small mean asymmetries in wing size
and shape (Klingenberg et al., 1998), possible indirect effects
of conspicuously asymmetrical anatomical features like the gut,
or the contribution of the Asymmetric Body, a small neuropil

abutting the premotor Central Complex that is consistently larger
in the right hemisphere (Wolff and Rubin, 2018).

While we found that our data set allowed the precise
estimation of the distribution of individual behavioral scores,
we also saw that the stability of higher-order moment estimates
depended strongly on the behavioral distribution in question
(Figure 2). Thus, there is not necessarily a simple rule for how
large a sample is needed to estimate higher order statistics of
its distribution. In the joint distribution of turn bias magnitude
and turn switchiness, we observed two distinct modes between
these measures, and, to our surprise, found that most of the
points falling in the rarer mode came from experiments where
flies were reared on potato flake food (Figure 4B). These flies
comprised a relatively small subset of multiple experiments, in
both control and drug conditions, from many genotypes. Thus,
rearing on potato media is the best explanatory variable we could
find for this mode of variation. We previously observed that
acutely switching flies from cornmeal-dextrose media to potato
media increased their variability in odor preference (Honegger
et al., 2020). Perhaps this perturbation also alters the correlation
structure (Lea et al., 2019), in a subset of flies, between turn
bias and turn switchiness. Since these measures may relate to
the paths animals take through natural environments, a food-
dependent change in turning might alter foraging statistics,
perhaps adaptively.

Finally, we used this large data set to examine hypotheses
about proximate mechanisms controlling variability. We found
many significant effects, such as 5-HTP or disruption of the white
locus increasing variability in number of turns, disruption of
white decreasing variability of turn bias and turn switchiness,
males exhibiting slightly lower variability in turn bias but higher
variability in number of turns, and conducting experiments at
high temperatures lowering variability in number of turns and
turn switchiness (Figure 5). We expected temperature to increase
variability per results in the crab stomatogastric ganglion (Tang
et al., 2012; Rinberg et al., 2013), but our high temperature
experiments did not push the flies to their critical thermal limits
(Kellermann et al., 2012). Thus, perhaps even higher temperature
manipulations might result in consistent increases in variability
across behaviors.

Our variability results indicate a complex, behavior-dependent
relationship between many biological mechanisms and
behavioral variability, which likely parallels the complexity
of mechanisms controlling the means of behavioral traits.
Experimental automation, and the high throughput it permits,
made these and other findings on behavioral individuality
feasible. However, individual projects drawing on tens of
thousands of flies have already identified genetic (Ayroles et al.,
2015) and neural circuit (Buchanan et al., 2015) regulators of
variability as well as complex gene x environment x behavior
interactions affecting variability (Akhund-Zade et al., 2019;
Versace et al., 2020). Inferences that were uniquely possible
with data from hundreds of thousands of flies include the slight
left-bias in turning and precise estimation of high statistical
moments of behavioral distributions. The enduring scientific
value of such results remains to be seen. Regardless, further
automation of behavioral assays will speed up both large and
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small scale projects and, more importantly, liberate researchers
from mindless, repetitive behavioral assays.

MATERIALS AND METHODS

Data and Analysis Code
All behavioral measures and metadata values, along with the
code underlying analyses are available at http://lab.debivort.org/
precise-quantification-of-behavioral-individuality/ and https://
zenodo.org/record/5784716.

Assays Over Time
Since the locomotor handedness Y-maze assay was developed,
there have been several changes to the experimental protocol.
While we are confident that the data collected through these
iterations are comparable, these changes potentially represent
confounding variables for the grand analysis presented here.
The structure of each fly’s assay is represented in our raw data
table by several entries (see Table 1 for definitions): expTemp,
trayID, boxID, arrayFormat, acquisition, and analysis. We found
no significant effects of these variables on mean the means or
variabilities of the behavioral measures analyzed in this study.

Typical Fly Handling
Unless otherwise indicated (via the expCond variable), the default
culture conditions were cornmeal-dextrose media containing
tegosept (Lewis, 1960) and incubation on the bench or in
incubators at 21–25◦C with 12/12 h light cycles. Our source
of media was Scientiis, LLC (Baltimore, MD, United States),
product ID: BuzzGro, until 2013, at which point we switched
to media produced by the Harvard Fly Food core facility. The
recipes are nominally the same between these sources. Flies were
generally anesthetized under CO2 to load them into y-mazes,
though a small portion of flies were anesthetized by ice or
loaded without anesthetization. Flies were given a period of 15–
30 min of acclimation to the Y-mazes after loading before data
collection began.

Pharmacological Experiments
Experimental flies receiving drug treatments were reared from
egg-laying in drug-supplemented media (or control media). Drug
media are indicated in the expCond metadata variable (see
Table 1). To supplement media, drug was added to distilled,
deionized water, which was then added to dry potato flake media,
or drug was added directly to agar media liquified momentarily
in a microwave oven. To attain the final concentrations of
aMW, the following concentrations were used per media
vial: 10 mM = 131 mg/60 mL; 25 mM = 327 mg/60 mL;
50 mM = 655 mg/60 mL. For 5-HTP, the following concentrations
were used: 10 mM = 10.1 mg/60 mL; 25 mM = 330 mg/60 mL;
50 mM = 661 mg/60 mL. Fifteen milligrams ascorbic acid
was added to each 60 mL media vial as an anti-oxidant in
5-HTP treated groups and their controls. The two 5-HTP
experiments presented in Figure 5 were conducted on potato
media and cornmeal-dextrose media (#2) but are otherwise
identical. To control for the average dose of experimental flies,

prior to drug experiments we measured the average number
of progeny to eclose following a 24 h parental egg-laying
session, on cornmeal-dextrose media, for each of the DGRP
lines (Akhund-Zade et al., 2020). The number of parental
animals for drug experiments was adjusted proportionally, line-
by-line, to target an identical number of progeny on the drug
media for each line.

Behavioral Assay
Data was collected in Y-shaped mazes arrayed in trays
(Buchanan et al., 2015; Alisch et al., 2018; Werkhoven et al.,
2019) and imaged in enclosed behavioral boxes (Werkhoven
et al., 2019) under diffuse white LED illumination typically
provided by custom LED boards (Knema LLC, Shreveport,
LA, United States). The number of Y-mazes per tray varied,
as indicated by the arrrayFormat variable. Individual Y-mazes
had 3-fold rotational symmetry, and ended in circular “cul-
de-sacs” where the fly could turn around before making a
subsequent choice. Trays were fabricated from three layers
of acrylic, making up the floor (clear), walls (black) and
a lid-holding layer (black). The surface of the floor layer
was roughened to encourage flies to walk on it, using
a random orbital sander and 200 grit sand paper until
2013 and a sand-blaster thereafter. Lids over each maze
were cut from clear acrylic. All acrylic parts were cut
to shape by a laser engraver. Schematics for trays and
imaging boxes are available at https://github.com/de-Bivort-
Lab/dblab-schematics/tree/master/Ymaze. Trays were imaged
in opaque enclosures constructed from aluminum extrusion
and laser-cut acrylic panels (https://github.com/de-Bivort-Lab/
dblab-schematics/tree/master/Behavioral%20Box). A variety of
USB digital cameras (often made by PointGrey) with resolution
exceeding 1 MP were used to capture video of behaving flies
for real-time tracking at 6–30 Hz. The default assay length
was 2 h. Fly centroids were computed in real time using
background subtraction implemented in a variety of custom
software environments coded in LabView or MATLAB. The
centroid tracking software used in recent experiments was
MARGO (Werkhoven et al., 2019).

Statistics and Analysis
Analysis was conducted in MATLAB 2017b (The Mathworks,
Natick, MA, United States) using custom functions. 95%
confidence intervals estimated by bootstrapping were estimated
as ± twice the standard deviation of values across bootstrap
replicates. For the analysis of the effect of temperature on
variability (Figure 5D), the 23◦C groups include experiments
conducted at 22◦C and the 33◦C groups include experiments
conducted at 32◦C. Genotypes were only included in the
temperature analysis if they had data recorded at both
temperatures and did not express any thermogenetic constructs.
Thus, most genotypes in this analysis were controls for
thermogenetic experiments or wild type lines. Significance in
the serotonin pharmacological and temperature experiments was
assessed by paired t-tests, and all reported p-values are nominal.
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