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Abstract

Hepatitis B virus (HBV) infections are a global health problem afflicting approximately 360 

million patients. Of these individuals, 15–20 million are co-infected with hepatitis delta virus 

(HDV). Progress towards curative therapies has been impeded by the highly restricted host 

tropism of HBV, which is limited to productive infections in humans and chimpanzees. Here, we 

will discuss different approaches that have been taken to study HBV and HDV infections in vivo. 

The development of transgenic and humanized mice has lead to deeper insights into HBV 

pathogenesis. An improved understanding of the determinants governing HBV and HDV species 

tropism will aid the construction of a small animal model with inheritable susceptible to HBV/

HDV.
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Introduction

Hepatitis B virus (HBV) is a global health problem affecting an estimated 360 million 

chronic carriers. Persistent infection frequently results in liver disease, including fibrosis, 

cirrhosis and hepatocellular carcinoma (HCC). Liver pathogenesis is accelerated and 

exacerbated in the approximately 15–20 million individuals co-infected with HBV and 

hepatitis delta virus (HDV).

A prophylactic vaccine is available and anti-HBV drugs can efficiently suppress the virus. 

However, these drug regimens rarely eradicate the HBV to completely cure the patient. 

Therefore, chronically infected patients with an active disease are usually treated for life 

with anti-viral agents, resulting in significant morbidity and costs, not to mention the risk of 

emerging mutants and viral re-activation. Currently, there are no treatments that directly act 

on HDV. Rather, the use of IFN is the standard of care. However, since HDV requires HBV 
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for producing infectious virions, it is thought that eliminating HBV would also cure HDV 

[1,2].

Our understanding of the intricate interplay between HBV/HDV and the human host as well 

as the development of new curative therapeutics have been impeded by the lack of a small 

animal model that is genetically tractable, immunocompetent, mimics the disease 

phenotypes caused by HBV and HDV, and is conducive to high-throughput use. Here, we 

discuss existing models that have been used to study HBV and HDV in vivo. Furthermore, 

we highlight blocks in the HBV and HDV lifecycles in non-permissive species, such as 

rodents, that potentially need to be overcome in order to create models with inheritable 

susceptibility to infection.

The host range of HBV and HDV

HBV belongs to the Hepadnaviridae family, which is divided into two genera, 

orthohepadnaviruses and avihepadnaviruses, infecting mammals and birds, respectively. 

HBV appears to robustly infect only higher primates, specifically humans and chimpanzees. 

Undoubtedly, the chimpanzee model has played a critical role in the characterization of 

HBV, defining the natural course of infection, including the host immune response and 

consequences of persistent infection, such as liver inflammation [3]. HDV infection in 

chimpanzees has been studied by using the envelope proteins from HBV. Chronic infection 

occurs with liver inflammation, cirrhosis, fibrosis, and HCC development [4–6]. However, 

studies in chimpanzees are hampered by their limited availability, high costs, and ethical 

concerns, which have led to a ban on the use of these animals for biomedical research in 

most countries, making the development of suitable alternatives critical. Due to these 

limitations and the lack of adequate cell culture systems, viruses genetically related to HBV 

have been widely used as alternatives (Figure 1).

Woodchuck hepatitis virus (WHV) was first identified in a colony of woodchucks at the 

Penrose Zoo in Philadelphia, where animals presented with liver disease including cirrhosis, 

fibrosis, and HCC, which is reminiscent of the disease progression observed with HBV in 

humans [7]. HDV virions pseudotyped with WHV envelope proteins can infect woodchuck 

hepatocytes, causing liver disease and HCC [8]. Additionally, woodchucks have been used 

for testing the ability of nucleoside analogs (NA) to suppress viremia and to investigate how 

mutations in the reverse transcriptase (RT) domain of the viral polymerase can lead to NA 

resistance [9,10]. However, woodchucks are limited in their use as a model organism 

because of their genetic diversity as an outbred species, and the scarcity of reagents to 

monitor their immune response to infection.

Duck hepatitis B virus (DHBV), another related hepadnavirus, has been instrumental in 

deciphering the mechanism of HBV replication and the formation of covalently closed 

circular DNA (cccDNA), the stable template for all HBV transcripts. In a series of seminal 

papers, the study of DHBV has provided the basis of understanding: (i) the synthesis of both 

the (+) and (−) strands of relaxed circular DNA (rcDNA); (ii) the RT activity of the viral 

polymerase and its covalent attachment to the (−) strand of rcDNA in the cytosol up until the 

viral genome separates from the polymerase and moves into the host nucleus; (iii) the 
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mechanism by which the pool of cccDNA increases in the host nucleus [11–16]. However, a 

major drawback with DHBV is that the pathology is not the same as that observed with 

HBV in humans.

Several other hepadnaviruses have been identified, such as ground squirrel hepatitis B virus 

(GSHBV), heron hepatitis B virus (HHBV) and woolly monkey hepatitis B virus 

(WMHBV). Each has a limited tropism and has not been extensively used as a surrogate 

model [17].

Viruses resembling orthohepadnaviruses in sequence and genome structure were recently 

identified in bats [18]. While these viruses cannot infect primary human hepatocytes (PHH) 

or Tupaia belangeri primary hepatocytes (TPH), HDV particles pseudotyped with tent bat 

HBV (TBHBV) can. Further investigation of these viruses’ tropism and pathogenicity is 

required to determine if bat HBVs can cause chronic infection.

A few studies suggest that HBV may have other zoonotic reservoirs. It was previously 

reported that HBV could be transmitted to Macaca mulatta, resulting in viremia, and that 

HBV could be passaged into naïve monkeys [19]. However, these results could not be 

reproduced. HBV infection had not been observed in any small Old World monkeys until 

the recent isolation of a hepadnavirus from the livers of M. fascicularis from Mauritius 

Island [20]. The isolated M. fascicularis HBV was most similar to HBV genotype D ayw3. 

Chronic HBV infections exist naturally in the M. fascicularis population on the Mauritius 

Island and have also developed in a related species, M. sylvanus, when experimentally 

challenged. However, further studies need to be conducted in order to understand the 

tropism and pathogenesis of these newly found hepadnavirus [21].

The study of related hepadnaviruses has provided great insight into hepadnavirus life cycle 

and pathogenesis. However, there are significant sequence differences between human HBV 

and related hepadnaviruses. For example, WHV has 70% nucleotide identity with HBV, 

while DHBV has only 40% identity [17]. This makes the potential usage of these surrogates 

for drug testing problematic as therapeutics are often highly virus-specific.

Host adaptation: xenotransplantation models

Human liver chimeric mice

As an alternative to using surrogate viruses, progress has been made in adapting the murine 

environment to support the replication of human HBV (Figure 2). Chimeric mice harboring 

human tissues permissive to HBV and HDV infection can be generated by engrafting human 

hepatocytes into suitable murine xenorecipients strains. The most commonly utilized and 

best characterized xenotransplantation models for HBV and HDV are human liver chimeric 

mice. To facilitate engraftment of human hepatocytes, xenorecipient strains must be 

immunodeficient to avoid graft rejection, and liver injury must be inducible by selective 

ablation of mouse hepatocytes in order for the promotion of human hepatocyte proliferation. 

Robust engraftment of human hepatocytes has been shown in a number of immunodeficient 

liver injury models. These include fumaryl acetoacetate hydrolase (FAH) deficient mice 

[22], mice harboring transgenes that are directly hepatotoxic, specifically the urokinase type 
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plasminogen activator driven by an albumin (Alb-uPA) [23] or major urinary protein 

promoter (MUP-uPA) [24], or transgenes whose hepatotoxic effect can be induced, such as 

an FK506 binding protein caspase 8 fusion protein (AFC8) [25] or herpes simplex thymidine 

kinase (HSK-TK) [26].

The resultant human liver chimeric mice are currently the only small animal model that 

supports the entire viral life cycle, as they are susceptible to HBV and HBV/HDV co-

infection [22,23]. HBV cccDNA and all viral intermediates have been detected in infected 

hepatocytes [23]. These models have also provided a platform to test the effect of anti-HBV 

therapies [27]. HDV was found to infect and persist in engrafted human hepatocytes for up 

to six weeks, with HDV viremia only occurring upon super-infection with HBV [28]. In 

addition, the above mouse models have been used to investigate the metabolic and 

toxicological response of the donor hepatocytes to drug compounds (reviewed in [29]).

While robust human hepatic chimerism can routinely be achieved with adult hepatocytes, 

this limits the analysis of host responses to often randomly selected donor lots. To minimize 

inter-experimental variability in infection due to differences in hepatocyte donor genotypes 

and to create a renewable source of human donor hepatocytes, stem cell-derived hepatocyte-

like cells (HLCs) have been pursued as a possible solution [30,31]. HLCs do not engraft 

efficiently in most xenorecipient models possibly due to their incomplete differentiation 

phenotype. However, recently it was shown that transplantation of HLCs into 

immunodeficient MUP-uPA mice yielded a sufficiently high hepatic chimerism to support 

hepatitis C virus infection [32]. While these results require independent confirmation, this 

system holds promise for systematically analyzing the impact of host polymorphisms on 

HBV and HDV infections in mice engrafted with patient-specific hepatocytes.

Dual engraftment of human hepatocytes and a human immune system (HIS) in mice

The usually highly immunocompromised status of human liver chimeric mice currently 

precludes mechanistic analysis of interactions of HBV and/or HDV with the human immune 

system. To overcome this, protocols have been established to co-engraft human liver cells 

and components of a human immune system in a single murine xenorecipient. While donor 

matching would be desirable, this can currently only be achieved logistically with 

hematopoietic stem cells (HSCs) and hepatoblasts derived from the same fetal donor. 

Injection of HSCs gives rise to multilineage engraftment with human immune cells. 

However, similar to HLCs, fetal hepatoblasts engraft poorly in the commonly used Alb-uPA 

mice [33]. Engraftment efficiency appears to be strain-dependent as some studies report 

more robust engraftment with these fetal progenitor cells in AFC8 mice [25]. However, 

similar to liver transplantation in humans, close donor matching may not be imperative as it 

was recently shown that extensive humanization of both the liver and the immune system 

can been achieved through the use of allogeneic adult hepatocytes and HSCs without any 

overt rejection [34,35]. Dually engrafted mice mounted virus-specific immune responses 

following HBV infection, resulting in human-specific liver fibrosis [36]. While this first 

report established an important proof-of-concept for the approach, independent validations 

and further refinements of xenorecipient and humanization protocols are necessary. 

Importantly, since human immune responses are generally weak in HSC-transplanted mice, 
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further modifications will be needed to improve both the cellular complexity and 

functionality of engrafted HIS mice (reviewed in [37]). Such dually engrafted humanized 

mice may also be suitable for dissecting the mechanisms of exacerbated viral hepatitis 

during HBV and HDV co-infections.

The HBV life-cycle is blocked at multiple steps in rodent cells

An animal model with inheritable susceptibility to HBV would overcome the technical and 

logistical difficulties of xenotransplantation models. The challenge is to systematically 

identify and overcome restrictions to HBV infection in non-permissive species. Because of 

the vast number of experimental tools and ease with which genetic manipulations can be 

performed, mice may be a preferred target species. However, mice are not naturally 

susceptible to HBV infection and interspecies transmission is presumably blocked at 

multiple steps (Figure 3). The mechanism by which HBV enters hepatocytes is incompletely 

understood. Radiolabelled preS1 peptides, the part of the viral envelope that is critical for 

HBV uptake, but not control peptides are retained specifically in the livers of mice [38]. 

This demonstrates that attachment of HBV and HDV to hepatocytes, presumably via 

interaction with heparan sulfate proteoglycans, is support in mice. While HBV binding to 

hepatocytes in non-permissive species appears to occur, subsequent steps including binding 

of specific receptors, virion internalization, and membrane fusion, may all be blocked in 

mouse hepatocytes. Recently, human sodium taurocholate co-transporting polypeptide 

(NTCP or SLC10A1) was identified as a receptor for HBV and HDV [39,40]. Importantly, 

while expression of human NTCP in human hepatoma cell lines facilitates uptake of HBV 

and HDV, the murine NTCP orthologue does not. Residues critical for HBV and HDV 

uptake have been mapped and are not conserved in the murine NTCP orthologue [41]. This 

may partially explain the differences in the susceptibility of mice and humans. Furthermore, 

expression of human NTCP in murine cells only enables infection with HDV but is not 

sufficient for HBV uptake [41,42]. This argues for the existence of additional entry factors 

or post-entry blocks. Conceivably, additional human-specific host factors are needed or 

dominant negative murine factors need to be eliminated in order to establish HBV infection 

in murine hepatocytes.

Following productive entry into human cells, the HBV genome is uncoated and the relaxed 

circular genome (rcDNA) is inserted into the nucleus. Here, cccDNA, which serves as the 

transcriptional template for all four viral gene products, is formed through poorly defined 

mechanisms. There is little experimental evidence that these steps are supported in murine 

cells. In mice stably expressing the HBV genome, pre-genomic HBV RNAs are transcribed 

off the transgenic integrant, but cccDNA does not form [43,44]. Conceivably, human-

specific factors may be missing or rodent-specific factors may limit formation and/or 

maintenance of cccDNA. However, the block does not seem to be absolute as it was shown 

that in HBV transgenic mice lacking hepatocyte nuclear factor (HNF) 1α, cccDNA becomes 

detectable [45]. The latter data are peculiar but require independent validation. Notably, later 

steps of the HBV life-cycle, including virion assembly and egress, are supported in mouse 

cells as experimental inoculation of serum from HBV transgenic mice causes persistent 

HBV infection in chimpanzees [46].
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Short of having a mouse model with inheritable susceptibility to HBV, mice expressing a 

larger than genome size HBV transgene have contributed substantially to our understanding 

of HBV viral replication but have also provided insight into immunobiology and 

pathogenesis, specifically the role of cytotoxic T lymphocytes in viral pathogenesis [47]. In 

addition, HBV transgenic mice expressing subgenomic fragments have provided great 

insights into the contribution of HBV proteins to viral life-cycle and pathogenesis. For 

example, the role of the large (L) HBV envelope protein in the secretion of the small (S) 

envelope protein was ascertained by overexpressing L in mice, resulting in the retention of S 

in the ER and reduced secretion from hepatocytes [48,49]. Similarly, constitutive expression 

of the HBx protein in a CD1 transgenic mouse was shown to promote the development of 

HCC [50].

HDV genome propagation is closely tied to productive HBV replication, as HDV requires 

the HBsAg for packaging of infectious virions. Little is known about whether the HDV life 

cycle is fully supported in mice post-entry. What is known is that when HDV cDNA and 

RNA are injected hydrodynamically, a single round of replication and HDAg production are 

observed in murine hepatocytes [51]. HDV virions pseudotyped with WHV envelope 

proteins have also been used to infect CB17 and CB17/SCID mice [52]. It was observed that 

these infections led to an increase in HDV genomic RNA detection post-infection. Detection 

of the viral antigenomic RNA was also observed, indicating that the viral replication cycle is 

at least partially supported in murine cells. Additionally, HDAg was detected in hepatocytes 

throughout the murine liver. No viral spread was detected, and viral clearance occurred 10–

20 days post-infection, indicating that helper virus super-infection was needed for viral 

persistence and spread. This is further corroborated by recent studies showing that delta 

antigen accumulates in human NTCP-expressing murine cell lines following HDV infection 

[41,42]. Transgenic mouse models for HDV RNA replication have also been created. HDAg 

has been expressed in several tissues, including skeletal muscle and hepatocytes, but no 

pathology was observed. This lends support to HDV being non-cytopathic [53].

Conclusions

To deepen the understanding of HBV and HDV biology and address the lack of a curative 

treatment for chronic hepatitis B, animal models are needed. This issue is particularly 

pressing in light of the highly restricted access to the chimpanzee model, which is the only 

non-human species readily permissive to HBV and HDV infections. To create more 

tractable animal models, a number of distinct but putatively complementary approaches 

likely need to be pursued, including a search for better surrogates as well as viral and host 

adaption approaches. Such a multipronged effort will likely produce a plethora of 

complementary models each with their own unique strengths and weaknesses. To ensure the 

relevance of emerging models, any development efforts need to demonstrate that new and 

refined models accurately reflect important hallmarks of HBV and HDV infection as 

observed in patients.
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Highlights

• HBV and HDV have a narrow host range limited to humans and chimpanzees.

• Human immune system and liver chimeric mice are powerful tools for studying 

the host response to HBV and HDV.

• The HBV life-cycle is blocked at multiple steps in murine hepatocytes.

• The discovery of human NTCP as a receptor may aid in the development of an 

inbred animal model with inheritable susceptibility for HBV and HDV.
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Figure 1. Host range of Hepatitis B virus (HBV) and related surrogate hepadnaviruses
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Figure 2. Host adaptation approaches to render mice permissive to HBV and HDV infections
I. Genetic humanization of the mouse through knowledge of what host factors are necessary 

for supporting the HBV life-cycle. II. Creation of a human immune system engrafted, 

human liver chimeric and dual engrafted mice for the investigation of lymphotropic and 

hepatotropic pathogens respectively.
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Figure 3. The HBV life-cycle is blocked at several steps in murine cells
Green checks represent those steps that are also supported in murine hepatocytes. Red 

question marks and red/white dashes indicate those steps that are most likely or are known 

not to be supported in murine hepatocytes.
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