\documentclass[aps,prl,showpacs,twocolumn]{revtex4} %\documentclass[aps,prb,showpacs]{revtex4} \usepackage{bm,color,amsmath,amssymb,mathrsfs,latexsym,graphicx,psfrag} %\addtolength{\textwidth}{3pt} %\addtolength{\textheight}{0pt} \renewcommand{\theequation}{S\arabic{equation}} % boldsymbol (requires amsmath) \newcommand{\bs}[1]{\boldsymbol{#1}} % A command for inner product and bras and kets \newcommand{\braket}[2]{\left\langle #1 | #2 \right\rangle} \newcommand{\bra}[1]{\left\langle#1\right|} \newcommand{\ket}[1]{\left|#1\right\rangle} \newcommand{\bigket}[1]{\bigl|#1\bigr\rangle} \newcommand{\textket}[1]{|#1\rangle} % Various bracketing commands \newcommand{\of}[1]{\!\left(#1\right)} \newcommand{\sqof}[1]{\left[#1\right]} \newcommand{\cuof}[1]{\left\{#1\right\}} % commutator and anticommutator \newcommand{\comm}[2]{\left[#1,#2\right]} \newcommand{\anticomm}[2]{\left\{#1,#2\right\}} % sum on nearest neighbor bonds \newcommand{\bond}{\left\langle i, j \right\rangle} %\newcommand{\bondsum}{\sum_{\left\langle i, j \right\rangle}} \newcommand{\nbond}{\left\langle\left\langle i, j \right\rangle\right\rangle} % 1/2 \newcommand{\half}{$\frac{1}{2}$ } % simplifies using the up and down arrows to denote spin \newcommand{\up}{\uparrow} \newcommand{\dw}{\downarrow} % Theta function \newcommand{\tfunc}{\vartheta_1} % notation for vacuum, an empty set inside a ket \newcommand{\vac}{\left|\,0\,\right\rangle} % Absolute value \newcommand{\abs}[1]{\left|#1\right|} % Roman functions for real and imaginary parts \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} % Sets of up-spin and down-spin locations \newcommand{\bket}{\left\{z_1 \cdots z_{\num}\right\}} \newcommand{\wket}{\left\{w_1 \cdots w_{\num}\right\}} %Expectation values \newcommand{\expect}[1]{\left\langle#1\right\rangle} \def\ie{{\it i.e.},\ } \def\eg{{\it e.g.}\ } \def\ea{{\it et al.}} \newcommand{\Hamil}{{\cal H}} \newcommand{\bk}{{\mathbf k}} \newcommand{\bq}{{\mathbf q}} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \newcommand{\fig}[2]{\[width=#1]{#2}} \def\prl#1#2#3{Phys.\ Rev.\ Lett.\ {\bf #1}, #2 (#3)} \def\pra#1#2#3{Phys.\ Rev.\ A {\bf #1}, #2 (#3)} \def\prb#1#2#3{Phys.\ Rev.\ B {\bf #1}, #2 (#3)} \def\prbrc#1#2#3{Phys.\ Rev.\ B {\bf #1} [RC], #2 (#3)} \def\prd#1#2#3{Phys.\ Rev.\ D {\bf #1}, #2 (#3)} \def\pre#1#2#3{Phys.\ Rev.\ E {\bf #1}, #2 (#3)} \def\physrev#1#2#3{Phys. Rev. {\bf #1}, #2 (#3)} \def\npb#1#2#3{Nucl.\ Phys.\ B {\bf #1}, #2 (#3)} \def\npbfsold#1#2#3#4{Nucl.\ Phys.\ {\bf #1} [FS #2], #3, (#4)} \def\npbfs#1#2#3{Nucl.\ Phys.\ {\bf #1} [FS], #2, (#3)} \def\plb#1#2#3{Phys.\ Lett.\ B {\bf #1}, #2 (#3)} \def\physrep#1#2#3{Phys.\ Rep.\ {\bf #1}, #2 (#3)} \def\advphys#1#2#3{Adv.\ in Phys.\ {\bf #1}, #2 (#3)} \def\mpla#1#2#3{Mod.\ Phys.\ Lett.\ A {\bf #1}, #2 (#3)} \def\mplb#1#2#3{Mod.\ Phys.\ Lett.\ B {\bf #1}, #2 (#3)} \def\ijmpa#1#2#3{Int.\ J.\ Mod.\ Phys.\ A {\bf #1}, #2 (#3)} \def\ijmpb#1#2#3{Int.\ J.\ Mod.\ Phys.\ B {\bf #1}, #2 (#3)} \def\rmp#1#2#3{Rev.\ Mod.\ Phys.\ {\bf #1}, #2 (#3)} \def\jpc#1#2#3{J.\ Phys.\ C {\bf #1}, #2 (#3)} \def\jpa#1#2#3{J.\ Phys.\ A {\bf #1}, #2 (#3)} \def\physicac#1#2#3{Physica C {\bf #1}, #2 (#3)} \def\physicaa#1#2#3{Physica A {\bf #1}, #2 (#3)} \def\physicab#1#2#3{Physica B {\bf #1}, #2 (#3)} \def\physicae#1#2#3{Physica E {\bf #1}, #2 (#3)} \def\nature#1#2#3{Nature {\bf #1}, #2 (#3)} \def\science#1#2#3{Science {\bf #1}, #2 (#3)} \def\bams#1#2#3{Bull. Am. Math. Soc. {\bf #1}, #2 (#3)} \def\baps#1#2#3{Bull. Am. Phys. Soc. {\bf #1}, #2 (#3)} \def\cmp#1#2#3{Comm. Math. Phys. {\bf #1}, #2 (#3)} \def\jmp#1#2#3{J. Math. Phys. {\bf #1}, #2 (#3)} \def\jhep#1#2#3{J. High Ener. Phys. {\bf #1}, #2 (#3)} \def\jstatphys#1#2#3{J. Stat. Phys. {\bf #1}, #2 (#3)} \def\annphys#1#2#3{Ann. Phys (N.Y.) {\bf #1}, #2 (#3)} \def\pnas#1#2#3{Proc. Natl. Acad. Sci. U.S.A. {\bf #1}, #2 (#3)} \def\euro#1#2#3{Euro.\ Phys.\ Lett.\ {\bf #1}, #2 (#3)} \def\europjb#1#2#3{Euro.\ Phys.\ Jour.\ B {\bf #1}, #2 (#3)} \def\jpsj#1#2#3{J.\ Phys.\ Soc.\ Jpn.\ {\bf #1}, #1 (#3)} \def\ssc#1#2#3{Solid State Comm.\ {\bf #1}, #2 (#3)} \def\rpp#1#2#3{Rep. Prog. Phys.\ {\bf #1}, #2 (#3)} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\bea{\begin{eqnarray}} \def\eea{\end{eqnarray}} \def\Cal{\cal} \def\LSCO{La$_{2-x}$Sr$_x$CuO$_4$} \def\LCO{La$_2$CuO$_4$} \def\LCOplus{La$_2$CuO$_{4+\delta}$} \def\LSNiO{La$_{2-x}$Sr$_x$NiO$_{4+\delta}$} \def\LBCO{La$_{2-x}$Ba$_x$CuO$_4$} \def\YBCO{YBa$_2$Cu$_3$O$_{6+y}$} \def\BKBO{BaKBiO} \def\BSCCO{Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$} \def\C60{A$_x$C$_{60}$} \def\oxichloride{Ca$_{2-x}$Na$_x$CuO$_2$Cl$_2$} \def\LNSCO{La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_{4}$} \def\optimalLCO{La$_{1.85}$Sr$_{.15}$CuO$_4$} \def\VO{V$_2$O$_3$} \def\TMTSF{(TMTSF)$_2$X} \def\ET{BEDT...} \def\HgCu3{HgCa$_2$Cu$_3$O$_{8+y}$} \def\HgCu4{HgBa$_2$Ca$_3$Cu$_4$O$_{10+y}$} \def\TlCu{Tl$_2$Ba$_2$CuO$_{6+\delta}$} \def\TlCu3{Tl$_2$Ba$_2$Ca$_2$Cu$_3$O$_{10+y}$} \def\TlCu4{Tl$_2$Ba$_2$Ca$_3$Cu$_4$O$_{12+y}$} \def\TlCun{Tl$_2$Ba$_2$Ca$_{n-1}$Cu$_n$O$_{2n+4+y}$} \def\HgCun{HgBa$_2$Ca$_{n-1}$Cu$_n$O$_{2n+2+y}$} \def\BiCun{Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O$_y$} \def\BiCu3{Bi$_2$Sr$_2$Ca$_{2}$Cu$_3$O$_y$} \def\BiCaMnO{Bi$_{1-x}$Ca$_x$MnO$_3$} \def\NCCO{Ne$_{2-x}$Ce$_x$CuO$_{4\pm\delta}$} \def\8LSCO{La$_{1.88}$Sr$_{.12}$CuO$_4$} \def\110LNSCO{La$_{1.5}$Nd$_{0.4}$Sr$_{0.1}$CuO$_{4}$} \def\stage4LCO{La$_{2}$CuO$_{4+\delta}$} \def\Y248{YBa$_2$Cu$_4$O$_8$} \def\PCCO{Pr$_{2-x}$Ce$_x$CuO$_{4\pm\delta}$} \def\hty{high temperature superconductivity} \def\hts{high temperature superconductors} \def\HTS{High temperature superconductors} \def\htr{high temperature superconductor} \def\cdw{charge-density wave} \def\cdws{charge-density waves} \def\Cdws{Charge-density waves} \def\NbSe2{NbSe$_2$} \def\TaSe2{TaSe$_2$} \def\TiSe2{TiSe$_2$} \def\Tn{T_{\rm n}} \def\F{{\rm F}} \begin{document} \onecolumngrid \section{Explicit proof of constraints and effective theories presented in Table I} In this appendix, we give a general derivation the constraints and effective theories shown in Table I. On a $C_m$ invariant line in a $C_n$ invariant system ($m$ being a factor of $n$), each band corresponds to a 1D representation of cyclic group $C_m$ (spinless), or double cyclic group $C^D_m$ (spinful). In either case, an eigenvalue of $C_m$ is in the form:\bea\alpha_p=\exp(i2\pi p/m+iF\pi/m),\eea where $p=0,1,...m-1$. Now suppose the $C_m$ eigenvalues of the conduction and valence bands are\bea u_c=\alpha_p,\\ \nonumber u_v=\alpha_q.\eea We have if $p=q$, then the two bands will \emph{not} cross on this $C_m$-invariant line because of the presence of a symmetry allowed a constant off-diagonal term $\delta|\psi_u\rangle\langle\psi_v|+h.c.$ which can always open a gap. If $p\neq q$, then the matrix representation of $C_m$, $\mathcal{C}_m$ is given by\bea\mathcal{C}_m=\exp(i\pi\frac{F+p+q}{m})\exp(i\pi\frac{p-q}{m}\sigma_z).\eea The transform of $H_{eff}(\bq)$ under $C_m$ is given by\bea\label{eq:temp1}\mathcal{C}_m{}H_{eff}(\bq)\mathcal{C}^{-1}_m&=&g(\bq)\sigma_z+f(\bq)\exp(i\pi\frac{p-q}{m}\sigma_z)\sigma_+\exp(-i\pi\frac{p-q}{m}\sigma_z)+h.c.\\ \nonumber&=&g(\bq)\sigma_z+f(\bq)e^{-i2\pi(p-q)/m}\sigma_++h.c.\eea In the basis of $q_\pm$, the $R_m\bq$ is given by\bea R_m(q_+,q_-)=(q_+e^{i2\pi/m},q_-e^{-i2\pi/m}).\label{eq:temp2}\eea Substituting Eq.(\ref{eq:temp1},\ref{eq:temp2}) into Eq.(1) in main text, we obtain\bea e^{-i2\pi(p-q)/m}f(q_+,q_-)=f(q_+e^{i2\pi/m},q_-e^{-i2\pi/m})\label{eq:temp3},\\ \nonumber g(q_+,q_-)=g(q_+e^{i2\pi/m},q_-e^{-i2\pi/m}).\eea This is the general constraint on $f,g$ by $C_m$ symmetry for a given pair of $(u_c,u_v)$. From Eq.(\ref{eq:temp3}) we learn that the forms of $f$ and $g$ only depend on $p-q$, or $u_c/u_v$. These results comprise the central column of Table I. To generate the last column from the general constraints Eq.(\ref{eq:temp3}), we start from an expansion of \bea f(q_+,q_-)=\sum_{n_1n_2}A_{n_1n_2}q_+^{n_1}q_-^{n_2},\eea where $A_{n_1n_2}$ is an arbitrary complex coefficient. Eq.(\ref{eq:temp3}) gives $A_{n_1n_2}=0$ if $n_2-n_1\neq p-q\;\textrm{mod}\;m$. Then we pick up $(n_1,n_2)$ with smallest $n_1+n_2$ and nonzero $A_{n_1n_2}$ to obtain the last column of Table I. Physically, one can easily understand Table I as the consequence of the `semi-conservation' of total angular momentum $J_z$. Here `semi-conservation' means that $J_z$ is only conserved up to a multiple of $m$. This is because in a lattice the continuous rotation symmetry downgrades to discrete rotation symmetry of order $m$. If $u_c/u_v=e^{i2\pi(p-q)/m}$, if means the conduction and valence bands differ by $\delta J_z=p-q$. Therefore, the off-diagonal term of the effective Hamiltonian, $|\psi_c\rangle\langle\psi_v|$, must couple a $k_-^{p-q}$ or $k_+^{m-p+q}$ to conserve the total angular momentum up to a multiple of $m$. \end{document}