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In bacteria such as Escherichia coli, DNA is compacted into a nucleoid near the cell center,
while ribosomes—molecular complexes that translate messenger RNAs (mRNAs) into proteins—are
mainly localized to the poles. We study the impact of this spatial organization using a minimal
reaction-diffusion model for the cellular transcriptional-translational machinery. While genome-wide
mRNA-nucleoid segregation still lacks experimental validation, our model predicts that ∼ 90% of
mRNAs are segregated to the poles. In addition, our analysis reveals a “circulation” of ribosomes
driven by the flux of mRNAs, from synthesis in the nucleoid to degradation at the poles. We show
that our results are robust with respect to multiple, biologically relevant factors, such as mRNA
degradation by RNase enzymes, different phases of the cell division cycle and growth rates, and the
existence of non-specific, transient interactions between ribosomes and mRNAs. Finally, we confirm
that the observed nucleoid size stems from a balance between the forces that the chromosome
and mRNAs exert on each other. This suggests a potential global feedback circuit in which gene
expression feeds back on itself via nucleoid compaction.

I. INTRODUCTION

The cytoplasm of many bacterial cells exhibits a strik-
ing spatial organization: rather than filling the entire cell
volume, the DNA forms a condensed structure called a
“nucleoid” that is generally localized near midcell (Fig. 1)
[1, 2]. Moreover, ribosomes—large molecular complexes
that translate messenger RNAs (mRNAs) into proteins—
are observed to be anti-localized from the nucleoid [2].
These observations raise two natural questions: (1) What
physical processes are responsible for this subcellular or-
ganization? (2) How does this internal structure influence
the basic processes of mRNA transcription and protein
translation in the cell?

In the model bacterium Escherichia coli (E. coli), ∼
1.5mm of supercoiled DNA are compacted into a∼ 1µm3

nucleoid volume [3], thus forming a dense DNA mesh with
average pore diameter ∼ 50 nm. As a result, free ribo-
somes, with diameter ∼ 20 nm, can readily diffuse into
the nucleoid [4], while polysomes, molecular complexes
composed of mRNAs with multiple bound ribosomes and
having an effective diameter & 50 nm, anti-localize from
the nucleoid due to excluded-volume effects. In vivo mea-
surements of mRNA mobility suggest a typical diffusion
coefficient of D ∼ 0.05µm2/s, implying that mRNAs
formed in the nucleoid by transcription from DNA can
diffuse out of the nucleoid to the ribosome-rich regions
in a few seconds—a time significantly shorter than the
typical mRNA lifetime of ∼ 5min [2, 5]. These observa-
tions suggest that most mRNAs formed in the nucleoid
diffuse out of the nucleoid to the ribosome-rich regions
where ribosomes and mRNAs are colocalized, and where
the bulk of translation occurs.

In recent years, the idea that mRNA localization may
play a functional role in bacteria [6, 7] has inspired a vari-
ety of measurements of mRNA localization. These stud-
ies have provided evidence for multiple, mRNA-specific
localization patterns, such as localization within the cell

cytoplasm [8], to the cell membrane or to the cell poles
[9], and at the nascent septum separating daughter cells
[7]. However, such experiments have proven to be chal-
lenging [10, 11] and limited to specific mRNAs [12, 13].
As a result, genome-wide ribosome-mRNA colocalization
still lacks experimental validation. In this study, we em-
ploy known reaction-diffusion properties of mRNAs, ribo-
somes, and the nucleoid to predict the physical origin and
the extent of overall, genome-wide mRNA localization.

Our approach also describes non-specific, transient in-
teractions between ribosomes and mRNAs. In this re-
gard, recent studies in E. coli [2] and Caulobacter cres-
centus [14] observed an increase of the diffusion coefficient
of non-translating ribosomes under depletion of the pool
of mRNAs, which has been interpreted as evidence for
non-specific, transient bindings between ribosomes and
mRNA molecules in [14]. On the other hand, another
study in E. coli reported that the diffusion coefficient
of non-translating ribosomes is not affected by mRNA
depletion [4]. Here, we show that if transient ribosome-
mRNA interactions are significantly faster than other rel-
evant time scales, the reaction-diffusion equations can be
substantially simplified by treating such interactions as a
local Poisson process. Finally, we consider the opposing
forces exerted by the compressed nucleoid and by polarly
localized mRNAs and confirm that the observed nucleoid
size results from the balance of these dominant forces,
and we present a simple analytical formula for the degree
of nucleoid compaction under different physiological con-
ditions, e.g. for different amounts of DNA and mRNA in
the cell.

II. RESULTS

We describe the coupled dynamics of ribosomes and
mRNAs in an E. coli cell using a minimal, 1D reaction-
diffusion model. We introduce a coordinate x running
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FIG. 1: Schematic of the spatial organization of transcrip-
tion and translation in E. coli. mRNAs (black solid curves)
are transcribed in the nucleoid—the condensed DNA chromo-
some at the cell center (gray solid curve). Ribosomes (red
circles) bind to mRNAs forming polysomes, i.e. mRNAs with
multiple bound ribosomes. Polysomes diffuse preferentially
out of the nucleoid due to excluded-volume effects. Eventu-
ally the mRNA molecules are degraded (black dashed lines).
In our 1D model, the coordinate x runs along the long axis
of the cell and, assuming symmetry, we model only the right
half of the cell (0 ≤ x ≤ `).

along the long axis of the cell and, given the approx-
imate left-right symmetry of a typical E. coli cell, we
consider only the right half, from x = 0 at the cell center
to x = ` at the right cell pole (Fig. 1). In vitro mea-
surements of the assembly dynamics of the translation-
initiation complex suggest that the in vivo binding rate of
30S ribosomal subunits to mRNAs is significantly larger
than the unbinding rate, thus implying that the majority
of mRNAs have a 30S subunit bound at the translation-
initiation site [15]. If so, translation is largely governed
by the dynamics of 50S ribosomal subunits, and therefore
we initially consider only the 50S units, which we refer to
simply as “ribosomes”. We further assume that ribosomes
may undergo transient, non-specific binding to mRNAs;
extended versions of our model including the two ribo-
somal subunits and disallowing non-specific ribosome-
mRNA interactions are presented later, and they con-
firm qualitatively the results obtained with the simple
model discussed here—see Supporting Information, sec-
tions S10 and S14, for details. The 1D concentration of
free (F) ribosomes, cF(x), denotes the number of F ri-
bosomes per unit length in an infinitesimal slice of the
cell perpendicular to the x axis. Similarly, ρm,n(x) is the
1D concentration of mRNAs with m transiently bound
(B) [14] ribosomes and n translating (T) ribosomes. As
shown in section S1, the average number of ribosomes
per mRNA, m+ n ∼ 12, is well below the maximum to-
tal number of ribosomes, m + n ∼ 100, that could be
linearly packed onto a typical mRNA. Thus, we consider
only mRNA species with m ≤ mmax, n ≤ nmax, where
mmax and nmax are some maximal numbers of allowed ri-
bosomes per mRNA, chosen large enough to account for
all typical mRNA species present in the cell. Importantly,
this choice reduces the number of mRNA species present
in our model, thus making it computationally tractable.

The resulting reaction-diffusion equation for the F-

ribosome concentration is

∂cF(x, t)

∂t
= DF

[
∂2cF(x, t)

∂x2
vF(x)− cF(x, t)

d2vF(x)

dx2

]

−kB

oncF(x, t)
∑

m

∑

n

ρm,n(x, t)+k
B

off

∑

m

∑

n

mρm,n(x, t)

−kT

oncF(x, t)
∑

m

∑

n

ρm,n(x, t)+k
T

off

∑

m

∑

n

nρm,n(x, t)

+β
∑

m

∑

n

(m+ n) ρm,n(x, t),(1)

where only mRNA species with allowed values of 0 ≤ m ≤
mmax and 0 ≤ n ≤ nmax are considered. The first term
on the right-hand side (RHS) represents diffusion includ-
ing excluded-volume effects due to the condensed DNA
(Fig. 1). In this term, DF is the diffusion coefficient for F
ribosomes, which incorporates crowding effects due to ri-
bosomes, mRNAs and other macromolecules, while vF(x)
is the fractional volume available to an F ribosome within
the DNA mesh at position x (Fig. S1), see sections S2
and S4 for details. The first term in the second line repre-
sents F ribosomes binding to all possible mRNA species
with m B ribosomes and n T ribosomes, and thus becom-
ing B ribosomes. This term is proportional to the F→ B
transition rate kB

on and to the total density of mRNA.
In principle, kB

on should decrease with the ribosome oc-
cupancy number m + n: however, here m + n is much
smaller than the maximum packing density, thus this ef-
fect is small, see above. The next term in the second line
describes a B ribosome unbinding from an mRNA, where
kB

off denotes the unbinding rate and the multiplicity fac-
tor m accounts for multiple B ribosomes on the mRNA.
Similarly, the third line represents transitions between F
and T ribosomes, where kT

on is assumed independent of
m, n (see above). Since measurements suggest that the
lifetime of the B state is significantly shorter than that of
the T state [14], here the F→ B→ T transition is incor-
porated into the F→ T transition, with an effective rate
kT

on. Finally, the last line represents B and T ribosomes
being freed from mRNA molecules as these are degraded
at rate β [16].

The 1D reaction-diffusion equations for the mRNA
densities are

∂ρm,n(x, t)

∂t
=

D

[
∂2ρm,n(x, t)

∂x2
vm+n(x)− ρm,n(x, t)

d2vm+n(x)

dx2

]

− kB

oncF(x, t)ρm,n(x, t)− kB

off mρm,n(x, t)

− kT

oncF(x, t)ρm,n(x, t)− kT

off nρm,n(x, t)

+ kB

oncF(x, t)ρm−1,n(x, t) + kB

off (m+ 1) ρm+1,n(x, t)

+ kT

oncF(x, t)ρm,n−1(x, t) + kT
off (n+ 1) ρm,n+1(x, t)

+δm,0 δn,0 α(x)− β ρm,n(x, t). (2)

Here D is the average mRNA diffusion coefficient in the
cytoplasm, and vm+n(x) is the fractional available volume
within the nucleoid for an mRNA with m + n attached
ribosomes (Fig. S1), see section S4 for details. The third
and fourth lines represent binding and unbinding of B
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FIG. 2: DNA fluorescence along the long cell axis for 3µm-
long E. coli cells grown in glucose minimal media. Cells
were stained with SYTOX Orange and imaged at exponen-
tial phase. Fluorescence for a few representative cells (gray),
and resulting average fluorescence over 35 cells with standard
error of the mean (red), both symmetrized and normalized to
unit area. Left inset: nucleoid vs. cell length, where the gray
area includes cells with length with 5% of 3µm. Right inset:
ribosomal protein S2-YFP (green) and nucleoid (red). Scale
bar: 1µm.

and T ribosomes from mRNAs of species m, n, while
the fifth line represents B ribosomes binding to mRNAs
of species m− 1, n or unbinding from mRNAs of species
m+1, n. Similarly, the terms in the sixth line represent T
ribosomes binding and unbinding from mRNAs of species
m,n − 1 and m,n + 1. Finally, the last line represents
transcription of initially ribosome-free mRNAs according
to the nucleoid profile α(x), and mRNA degradation at
rate β.

As transcriptional and translational time scales
(. 1min) are fast compared to cell doubling times
(& 20min), we focus on steady-state conditions. At
steady state, in Eq. (1) we enforce a constraint
on the total number of ribosomes, 2

∫ `
0
dx[cF(x) +∑mmax

m=0

∑nmax

n=0 (m + n)ρm,n(x)] = Ntot, and we
set a no-flux boundary condition at the cell pole,
[dcF(x)/dx vF(x)− cF(x) dvF(x)/dx]|x=l = 0, see section
S2. Similarly, in Eq. (2) we impose no-flux bound-
ary conditions at the cell pole and at the cell center,
[dρm,n(x)/dx vm+n(x)−ρm,n(x) dvm+n(x)/dx]|x=0,l = 0,
the latter reflecting the left-right symmetry of the cell.
According to this symmetry, the flux of F ribosomes at
midcell must also vanish, and this follows directly from
the boundary conditions above—see section S5.

We fix the model parameters from experimental data
as follows. We considered E. coli cells in glucose minimal
media with a ∼ 1/h growth rate, see section S3, and fo-
cused on the mid-phase of the division cycle by selecting

cells with length within 5% of a typical, medium length
of 2 ` = 3µm, compare left inset in Fig. 2. We then
rescaled the resulting DNA fluorescence profiles to a cell
length of 2 `, and we estimated the nucleoid profile along
the long cell axis by averaging over multiple cells, see
main panel in Fig. 2 and section S4. The F ribosome dif-
fusion coefficient was taken to be DF = 0.4µm2/s, while
the diffusion coefficient of mRNAs was set at the aver-
age diffusion coefficient of polysomes, D = 0.05µm2/s
[2, 4]. These diffusion coefficients were obtained from
measurements of mean square displacements of free and
mRNA-bound ribosomal subunits in living E. coli cells
[2], and thus include the effects of cytoplasmic crowding.
The F-ribosome available volume vF(x) was estimated
from the concentration profiles of free ribosomal subunits
[4], and similarly for the mRNA available-volume profiles
vm+n(x) (section S4). The mRNA degradation rate was
taken to be β = 3 × 10−3/s, corresponding to a mean
mRNA lifetime of ∼ 5min [5]. The total mRNA pro-
duction rate αtot = 2

∫ `
0
dxα(x) was obtained from the

total number of mRNAs per cell via the relation αtot/β =
NmRNA = 5×103 [17], while the profile of mRNA produc-
tion α(x) was chosen to be proportional to the DNA den-
sity ϕ(x), see section S4 for details. The average time for
a ribosome to complete protein translation is estimated
to be τT = 40 s [18], so we took the T → F transition
rate to be kT

off = 1/τT = 2.5 × 10−2/s. To set the other
transition rates we used the observation that ∼ 80% of
ribosomes are T ribosomes [2], with non-T ribosomes es-
timated to spend ∼90% of their time as B ribosomes and
∼10% of their time as F ribosomes, where the 90%:10%
division of non-T ribosomes between B and F ribosomes
is inferred from ribosome diffusion rates in Caulobacter
crescentus [14]. Global equilibrium between T and F ri-
bosomes at steady state requires the F → T transition
rate kT

on to satisfy NF ρ k
T
on = NT k

T

off , where NF and NT

are the total number of F and T ribosomes, respectively,
and ρ ' 1.7 × 103/µm is the average total mRNA ax-
ial density [17]. Also, in the equilibrium condition above
we neglected the rate βNT at which mRNA-bound T ri-
bosomes are freed by mRNAs that are being degraded,
because this rate is much smaller than NTk

T

off . According
to the estimate above for the average number of F, T,
and B ribosomes, we have NT/NF = 80%/(20% × 10%),
which yields kT

on = 6 × 10−4µm/s. The total number
of ribosome in the cell was taken to be Ntot = 6 × 104

[2]. As for the the binding-unbinding rates kB
on, kB

off of
the F ↔ B transition, the equilibrium condition reads
NF ρ k

B
on = NB k

B

off where, since the F ↔ B transition
occurs on timescales not longer than ∼ 1 s [14], we ne-
glected the mRNA-decay term βNB � NB k

B

off . To-
gether with the estimation above for the average num-
ber of F, T, and B ribosomes NF/NB = 2%/18%, this
equilibrium condition provides an estimate for the ratio
kB

on/k
B

off ' 5.4×10−3 µm, but it does not specify the indi-
vidual values of kB

on, kB

off . However, because the timescale
of the F↔ B transition is significantly shorter than other
relevant timescales [14], these processes can be treated in
the limit where they are at rapid equilibrium. In this
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FIG. 3: Steady-state mRNA and polysome distributions. To-
tal mRNA density ρtot(x) (red) and density ρm,n(x) of mR-
NAs with m transiently bound (B) ribosomes and n trans-
lating (T) ribosomes for 0 ≤ m ≤ mmax = 8 and 0 ≤ n ≤
nmax = 24 (gray). The density ρ0,0(x) of ribosome-free mR-
NAs (green) and the density ρ8,24(x) of mRNAs with the
largest number of T and B ribosomes considered (blue) are
also shown. The profiles ρm,n(x), ρ0,0(x), and ρ8,24(x) are
normalized to unit area. Inset: distribution of mRNA species,
shown as a heat map of the number Nm,n of mRNAs with m
B ribosomes and n T ribosomes in the right half of the cell.
The maximal number of T ribosomes per mRNA used in our
model, nmax = 24, is indicated.

limit, the problem can be significantly simplified, and
the set of 1 + (mmax + 1)(nmax + 1) reaction-diffusion
Eqs. (1), (2) reduces to a set of nmax+2 equations which
completely characterize the solution cF(x) and ρm,n(x)
for any m and 0 ≤ n ≤ nmax. Importantly, these rapid-
equilibrium equations depend on kB

on, kB

off only through
their ratio—see section S6 for details.

We numerically solved Eqs. (1), (2) at steady state
in the rapid-equilibrium limit for B ribosomes, by fixing
the maximal number of allowed T ribosomes per mRNA
at nmax = 24, see section S6 for details. The resulting
mRNA profiles and ribosome concentrations are shown
in Figs. 3 and 4, respectively. As shown in Fig. 3, the
total mRNA profile ρtot(x) =

∑∞
m=0

∑nmax

n=0 ρm,n(x) is
markedly localized outside the nucleoid region—most of
the mRNAs are segregated from the nucleoid because of
excluded volume. Indeed, the density profiles ρm,n(x)
show that the more ribosomes an mRNA has bound,
the more segregated the mRNA is from the nucleoid, see
Fig. S2 for details. Since mRNAs are generated at the
nucleoid, the strong segregation of mRNAs away from
the nucleoid at steady state must result from the ma-
jority of mRNAs being loaded with ribosomes so that
excluded volume biases their diffusion away from the
nucleoid. This conclusion is confirmed in the inset of
Fig. 3, which shows a heat map of the total number
Nm,n =

∫ `
0
dxρm,n(x) of mRNAs of species m,n. Most

mRNAs are loaded with ∼10 T ribosomes and ∼2 B ribo-
somes. These average loading numbers are in agreement
with the experimental estimates above for the ribosome
numbers [2, 17]: The number of T ribosomes per mRNA
is NT/NmRNA ∼ (80%Ntot)/NmRNA ∼ 10, and a similar
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FIG. 4: Steady-state ribosome concentrations and ribosome
fluxes. Top: Concentrations cT(x), cB(x), and cF(x) of trans-
lating (T), transiently bound (B), and free (F) ribosomes in
the right half of the cell (compare Fig. 1). Bottom: Fluxes
of T, B, and F ribosomes along the cell’s long axis depicted
in the top panel. The arrow length is proportional to local
ribosome flux, and the arrows in the legends correspond to a
flux of 20/s.

estimate yields ∼2 B ribosomes per mRNA. In addition,
the inset shows that the chosen value nmax = 24 is large
enough to encompass all typical mRNA species that are
present.

Since each ribosome has a linear size of ∼ 20 nm [19],
the effective size of an mRNA molecule with ∼10 bound
ribosomes is significantly larger than the pore size of the
DNA mesh in the nucleoid, which we estimate to be ∼
50 nm, see section S4 for details. Thus, the majority of
mRNAs experience strong excluded-volume effects which
push them out of the nucleoid region.

Since mRNAs are created by transcription in the nu-
cleoid but end up segregated away from the nucleoid,
there must be a flux of mRNAs toward the cell poles.
Given that new mRNAs are rapidly loaded with T ri-
bosomes at a rate kT

onNF/(2 `) = 6 × 10−4µm/s ×
1200/3µm ' 0.24/s, implying full occupation by ∼ 10
T ribosomes in ∼ 3 s, the poleward flux of mRNAs car-
ries with it a poleward flux of ribosomes. Since ribo-
somes are conserved in our model, reflecting the long
half-life of ribosomal components [20], there must be a
compensating flux of F ribosomes from the poles toward
the nucleoid. In Fig. 4 we show the steady-state con-
centration of F ribosomes cF(x), the concentrations of
T and B ribosomes, cT(x) =

∑∞
m=0

∑nmax

n=1 nρm,n(x),
cB(x) =

∑∞
m=1

∑nmax

n=0 mρm,n(x), the flux JF =
−DF[dcF(x)/dx vF(x)− cF(x) dvF(x)/dx] of F ribosomes,
and the fluxes JT and JB of T and B ribosomes, compare
Eqs. (S45), (S46). As expected from the observed segre-
gation of mRNAs, the T and B ribosomes are markedly
excluded from the nucleoid, and there is a net poleward
flux of T and B ribosomes. Notably, the effect of ex-
cluded volume in the nucleoid is so strong that mRNAs
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and their associated ribosomes flow from a low- to a high-
concentration region. By contrast, F ribosomes are small
enough to freely penetrate the nucleoid, and a flux of F ri-
bosomes is driven by the gradient of these ribosomes from
the poles to the nucleoid. Overall, these results illustrate
and quantify a “circular” flux for the ensemble of T, B,
and F ribosomes, compare Fig. 1: First, multiple F ribo-
somes bind to mRNAs made in the cell nucleoid. Each
mRNA is thus loaded with ∼ 10 T ribosomes and ∼ 2 B
ribosomes to become a polysome. Second, the effects of
excluded volume in the nucleoid result in a net flow of
these polysomes to the cell poles. Once polysomes reach
the poles, they ultimately decay and free their ribosomes.
This “pumping” of T and B ribosomes from the nucleoid
to the poles results in an excess of F ribosomes at the
poles, and thus in a diffusive return flux of F ribosomes
to the nucleoid.

The existence of a steady ribosome circulation implies
that there must be an external source of energy driving
these circular fluxes. There are two possible candidates
within our model: Process (A) is the non-equilibrium
creation and degradation of mRNAs, and Process (B) is
mRNA and F-ribosome binding in the nucleoid and sub-
sequent expulsion from the nucleoid by excluded-volume
effects. Process (A) should be strictly dependent on new
mRNA production, whereas Process (B) should persist
even in the limit where the mRNA production and degra-
dation rates are both low, with the total number of mR-
NAs fixed and equal to NmRNA. Therefore, we varied
the mRNA production and degradation rates together,
keeping the total mRNA number constant: The circula-
tion vanished as the mRNA rates slowed (Fig. S3), thus
identifying Process (A), the flux of new mRNAs from nu-
cleoid to pole, as the driver of ribosome circulation. This
conclusion is confirmed by an analytical estimate for the
poleward flux of T and B ribosomes, which is shown to be
proportional to the mRNA production rate, see section
S8 for details.

Before discussing other implications of our results, it
is worth considering that mRNA transcription takes a
finite amount of time. For the average mRNA length
of ∼ 3 × 103 nt discussed in section S1 and an average
mRNA elongation speed of ∼ 50 nt/s [21], we obtain
a typical transcription time of ∼ 1min, during which
nascent mRNAs are bound to DNA while being elon-
gated. We therefore extended our model to include these
nucleoid-bound mRNAs, whose axial densities we denote
by ρ∗m,n(x): these mRNAs turn into free mRNAs at a rate
γ = 1/(1min), see section S9 for details. Besides confirm-
ing the picture in the model with one mRNA species, this
extended model gives novel insights into the mechanism
of co-transcriptional translation, namely the observation
that ribosomes translate nascent mRNAs while these are
being transcribed in the nucleoid [22]. While it has been
previously hypothesized that most of the ribosomes in the
dense nucleoid region translate co-transcriptionally [2],
our analysis shows that only ∼ 34% of these ribosomes
carry out co-transcriptional translation, while a compa-
rable fraction of ∼ 37% translates post-transcriptionally,
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FIG. 5: Steady-state ribosomal-subunit concentrations and
fluxes for the model including 30S and 50S ribosomal subunits.
Top: Concentrations c70S(x), c30SB(x), c30S F(x), c′30S(x) of
70S, transiently bound (B) 30S, free (F) 30S subunits, and of
30S subunits bound to the translation-initiation site, respec-
tively. We also show the concentrations c50SB(x) and c50S F(x)
of B and F 50S subunits, respectively. Bottom: Fluxes
J70S(x), J30SB(x), J30S F(x) of 70S, B and F 30S subunits, and
flux J ′

30S(x) of 30S subunits bound to the translation-initiation
site. The fluxes J50SB(x), J50S F(x) of B and F 50S subunits
are also shown. Fluxes are represented along the cell’s long
axis depicted in the top panel, the arrow length is propor-
tional to local ribosome flux, and the arrows in the legends
correspond to a flux of 30/s.

mostly on polysomes loaded with a relatively small num-
ber of ribosomes. The extended model also allows us
to address the effects of co-transcriptional translation
on the protein-synthesis rate: introducing the efficiency
ε = 2 kT

off

∑∞
m=0

∑nmax

n=1 n
∫ `

0
dxρm,n(x)/Ntot, i.e. the av-

erage number of proteins translated per unit time per
ribosome, we find that co-transcriptional translation im-
plies a ∼ 3% increase in ribosome efficiency, under the
assumption of B ribosome binding to all transcripts, see
section S9 for details.

We then extended our model to take account of both
ribosomal subunits. During translation initiation, a 30S
subunit binds to the mRNA initiation site first, and then
a 50S subunit binds to the 30S subunit forming a trans-
lating 30S-50S (70S) pair [23]. To model this process
and the spatiotemporal dynamics of the two ribosomal
subunits, we introduce mRNA species with l B 30S sub-
units, m B 50S subunits, n 70S pairs, and no 30S sub-
unit at the initiation site, and denote their density by
ρl,m,n(x, t). Similarly, we denote by ρ′l,m,n(x, t) the den-
sity of mRNAs with l B 30S subunits, m B 50S subunits,
n 70S pairs, and a 30S subunit at the initiation site. As-
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suming rapid equilibrium for B 30S and 50S subunits,
we solved the reaction-diffusion equations for the mRNA
densities ρl,m,n(x), ρ′l,m,n(x), and for the concentrations
c30S F(x, t), c50S F(x, t) of free 30S and 50S subunits—see
section S10 for details. The results shown in Figs. 5, S18,
and S7 confirm the picture obtained with the simpler one-
subunit model. In particular, the mRNAs, both with and
without a 30S subunit on the translation-initiation site,
are strongly segregated from the nucleoid, and the larger
l, m, n, the stronger the segregation. In Fig. 5 we show
the concentrations and fluxes of the ribosomal subunits:
the 70S subunits, the B 30S and 50S subunits, and the
30S subunits bound to translation-initiation sites are all
strongly segregated from the nucleoid, compare Fig. 4,
while F 30S and 50S subunits are only slightly excluded
from the nucleoid. Note that the concentrations of F and
B 30S subunits are lower than the corresponding concen-
trations of F and B 50S subunits because for our choice
of parameters the majority of non-translating 30S sub-
units are bound to translation-initiation sites, thus reduc-
ing the number of F and B 30S subunits. The fluxes of
70S, B 30S and 50S subunits, and of 30S subunits bound
to translation-initiation sites are directed toward the cell
poles, while the compensating fluxes of F 30S and 50S
subunits are directed toward the cell center.

The two-subunit model was then extended to include
additional, biologically relevant features: In section S11
we incorporated in the model the mechanism of mRNA
degradation by RNase enzymes [16, 24], see Figs. S9-
S12, and in section S12 we extended the model to cells in
the late phase of their division cycle, see Figs. S14-S16.
We then extended the analysis above for glucose minimal
media to different growth rates: We imaged E. coli cells
in glycerol minimal and defined rich media, with growth
rates ∼ 0.5/h and ∼ 2/h, respectively, extracted the nu-
cleoid profiles, and present the resulting model predic-
tions in section S13, compare Figs. S17-S20. Finally, as
the existence of B ribosomes is an open question [2, 4, 14],
in section S14 we considered a version of the model with
two ribosomal subunits and no B subunits. Overall, these
results confirm all the qualitative features of the simpler,
two-subunit model discussed above.

So far, our analysis has shown that the excluded vol-
ume due to DNA localization at midcell segregates the
majority of mRNAs to the cell poles. In what follows,
we will extend this analysis and show that the converse
is also true, i.e. mRNA segregation to the poles causes
nucleoid compaction at midcell. Specifically, in section
S15 we show that mRNAs, like particles in a gas, ex-
ert an entropic force (pressure) on the nucleoid directed
towards the cell center, and that this force can be com-
puted directly from the reaction-diffusion Eqs. (1) and
(2). On the other hand, the natural tendency of the
compressed DNA polymer to increase its configurational
entropy results in a an effective “spring” force pushing
outward on the mRNAs. Exploiting the condition that
these two forces must balance at mechanical equilibrium,
we self-consistently determined the mRNA and F ribo-
some profiles, as well as the DNA density profile ϕ(x),

and the results are shown in Figs. S23 and S24. In par-
ticular, denoting by 2x0 the width of the nucleoid region
centered at midcell, the resulting value of 2x0 ≈ 1.43µm
matches well the experimentally observed nucleoid size in
Fig. 2. Finally, a simplified version of our analysis pro-
vides a straightforward prediction for the nucleoid width
under different physiological conditions: We assume that
mRNAs are uniformly distributed outside the nucleoid,
which they cannot penetrate, that the nucleoid is con-
fined in a region of width 2x0 centered at midcell, and
we neglect the small force exerted by F ribosomes on the
nucleoid (see section S15 for details). As a result, the nu-
cleoid size x0 can be determined by solving the following
force-balance equation:

NmRNA

2(`− x0)
=
π2

6

ξ2N2ν

(2πR2)2/3x
5/3
0

, (3)

where ξ = 200 nm is twice the estimated persistence
length of a segment of supercoiled DNA, N = 7.5 × 103

is the total number of such segments in the chromosome
[25], and R = 0.5µm is the radius of a circular cell slice.
In Fig. S25 we show the predicted nucleoid size for dif-
ferent values of the total number of mRNAs—the larger
the number of mRNAs, the more the nucleoid shrinks to-
wards midcell due to the entropic force exerted by the
polysomes.

III. DISCUSSION

The study of intracellular mRNA localization has at-
tracted growing interest in recent years [10–13]. In eu-
karyotic systems, mRNA localization is a well-established
mechanism for achieving a variety of functions, such as
the targeted expression of proteins to specific regions of
the cell, the control of intracellular signaling, or the par-
tition of mRNAs into daughter cells for cell-fate differen-
tiation [26, 27]. Some functional, mRNA-specific local-
ization patterns has also been observed in bacteria [6]:
Two examples are the membrane localization of mRNAs
which code for proteins transporting lactose into the cell
[9] and mRNA localization at the cell poles, which has
been shown to play a functional role in controlling sugar-
utilization genes [9, 28].

In this study, we analyze the extent of bacterial
genome-wide mRNA localization by means of a minimal
reaction-diffusion model for the transcriptional and trans-
lational machinery in E. coli. The experimental observa-
tion that ribosomes in E. coli are markedly localized to
the cell poles, and thus segregated from the nucleoid lo-
cated at the cell center [2], suggests that the majority
of mRNAs are also likely to be segregated from the nu-
cleoid. While experiments on mRNA localization in E.
coli have proven to be challenging [10, 11], and are limited
to specific mRNAs [12, 13], our model makes a novel pre-
diction for strong, genome-wide mRNA localization away
from the nucleoid, indicating that ∼ 90% of mRNAs are
typically located outside the nucleoid, and demonstrating
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that the total mRNA profile resembles that of translat-
ing ribosomes (compare Figs. 3, 4). A specific predic-
tion of our model is that mRNA segregation is due to
excluded-volume effects resulting from the condensed nu-
cleoid DNA. Overall, this result provides novel insights
into the mechanisms of mRNA segregation: While other
studies for specific mRNAs raised the possibility that
mRNA segregation may be associated with dynamical re-
arrangements of the nucleoid [29], our analysis indicates
that genome-wide mRNA segregation can arise entirely
from excluded-volume effects. Also, our result that seg-
regation primarily affects mRNAs loaded with multiple
ribosomes is in line with the recent experimental obser-
vation that mRNAs with multiple bound fluorescent pro-
teins localize to the cell poles in live E. coli cells [10].

Our model also reveals a “circulation” of ribosomes
within the cell driven by the flux of newly synthesized
mRNAs from the nucleoid to the poles: mRNA-bound
ribosomes flow from the nucleoid to the cell poles, where
they unbind from mRNAs and then diffuse back to the
nucleoid to bind newly synthesized mRNA molecules.
Using our model, we also analyze the extent of co-
transcriptional translation, namely the observation that
ribosomes translate mRNAs that are being transcribed
in the nucleoid [22]. Although it has been recently
hypothesized that most of the ribosomes in the DNA-
rich region translate co-transcriptionally [2], we find that
only about a third of these ribosomes carry out co-
transcriptional translation, whereas a slightly higher frac-
tion translates post-transcriptionally in polysomes with a
relatively small loading number.

We incorporated in our model the mechanism of mRNA
degradation by RNase enzymes, different phases of the
cell division cycle, different growth rates, and the effect
of non-specific, transient interactions between ribosomes
and mRNAs [2, 4, 14], showing that our results are stable
with respect to such variety of conditions.

Finally, we extended our analysis to study the conse-
quences of mRNA localization on nucleoid compaction.
Using our calculated ribosome and mRNA densities, we
confirmed that mRNA segregation to the poles quantita-
tively accounts for nucleoid compaction. Physically, the
observed nucleoid size reflects the balance of two com-
peting entropic forces—the compressive force that mR-
NAs (polysomes) at the poles exert on the DNA, and
the expansive force exerted by the DNA on these mR-
NAs. Our detailed analysis supports a simplified ana-
lytical formula (3) that predicts nucleoid size for differ-
ent physiological conditions, compare Fig. S25. Biologi-
cally, the compaction of the nucleoid by mRNAs creates a
potential global feedback circuit: gene expression drives
mRNA levels, which, by compacting the nucleoid, im-
pact transcription-factor access and hence gene expres-
sion [30].

To summarize, while localization of the transcriptional-
translational machinery is a well-known, functional mech-
anism in eukaryotes, the function of such localization in
bacteria is not yet well established. In this regard, our

model provides novel insights into the mechanisms gov-
erning the spatial structure of transcription and transla-
tion in bacteria, and can help guide the molecular manip-
ulation of these functions, with potentially broad appli-
cations in molecular synthetic biology and biotechnology.
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S1 Fraction of available ribosome binding sites

In this section, we will estimate the fraction of available ribosome binding sites on an mRNA chain by making use
of experimental data on mRNA synthesis and degradation in E. coli. To begin with, we estimate the average number
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of nucleotides per mRNA, which we quantify as the ratio between the total number of nucleotides synthesized per unit
time, and the total number of mRNAs synthesized per unit time. First, the number of nucleotides synthesized per unit
time is given by the number of active RNA polymerases (RNAPs), i.e. ∼ 1000 RNAP/cell, times the chain-elongation
rate at which a single RNAP synthesizes an mRNA, i.e. ∼ 50 nt/s [1], resulting in a rate of ∼ 5 × 104 nt/s. Second,
the total number of mRNAs synthesized per unit time is given by the total number of mRNAs NmRNA = 5 × 103

[2] times the mRNA degradation rate β = 3 × 10−3/s [3], and it is given by ∼ 15 mRNA/s. The resulting average
number of nucleotides per mRNA is ∼ 3 × 103 nt. Given that each ribosome covers ∼ 30 nt [4], we obtain that there
are on average ∼ 3× 103 nt/(30 nt) = 100 available ribosome binding spots per mRNA. Finally, we observe that there
is a total number of Ntot ∼ 6 × 104 ribosomes per cell [5], i.e. there are on average Ntot/NmRNA ∼ 12 ribosomes
per mRNA, which is only ∼ 12% of the number of available binding spots per mRNA, thus implying that the vast
majority of the ribosome binding sites are free.

S2 Diffusion equations in the presence of excluded volume

In this section we derive the diffusion equation for a population of F ribosomes, taking into account the effects of
excluded volume due to the nucleoid. The continuum limit of this equation can be derived starting from a discrete
version [6]. We divide the interval 0 ≤ x ≤ `, from midcell to the cell pole, into bins of width ∆x, where xi denotes the
position of bin i: Here, each bin represents a projection on the one-dimensional x axis of a three-dimensional section
of the cell obtained by slicing the cell perpendicularly to its long axis. The master equation for the F ribosome density
in bin i, cF(xi, t), can then be obtained by considering hopping of ribosomes between adjacent bins:

∂cF(xi, t)

∂t
= dF {[cF(xi−1, t) + cF(xi+1, t)]vF(xi)− cF(xi, t)[vF(xi−1) + vF(xi+1)]} , (S1)

where dF is the bare rate at which a ribosome hops from one site to another, and vF(x) is the fraction of available
volume at position x, i.e. the probability that a ribosome finds enough free volume to hop into the DNA mesh at
position x. The continuum limit of Eq. (S1) can be obtained by expanding cF(x, t) and vF(x) around x = xi, which
yields

∂cF(x, t)

∂t
= DF

[
∂2cF(x, t)

∂x2
vF(x)− cF(x, t)

d2vF(x)

dx2

]
, (S2)

where DF = dF∆x2 is the bare diffusion coefficient. The 1D F ribosome flux at position x is given by

JF(x) = −DF

[
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

]
. (S3)

Note that in the absence of reaction terms, the steady-state solution of Eq. (S1) is

cF(x) = C vF(x), (S4)

where the constant C depends on the total number of F ribosomes.

S3 E. coli nucleoid imaging analysis

E. coli strain AFS55 [5] which contains ribosomal protein S2-YFP was inoculated overnight in the media including
MOPS defined rich, glucose and glycerol minimal media (Teknova). Next day the overnight cultures were diluted by
a hundred fold in the same fresh media and grew in 37 ◦C.

The staining procedure is adopted from a previous publication [7]. Briefly, 100µL was taken when the OD reached
0.3 and stained with 1µL 50µM SYTOX Orange (Molecular Probes) for 10 min at 37 ◦C in darkness. Cells were
then washed twice with 1 mL fresh media and resuspended in 1 mL fresh media. 1µL of cells were placed on 1 %
low-melting agar pad (Calbiochem) made from the same media and imaged with inverted Nikon90i epifluorescent
microscope equipped with a 100 × 1.4 NA objective (Nikon) and Hamamazu Orca R2 CCD camera. NIS Elements
software (Nikon) was used to automate image acquisition for phase contrast, YFP and mCherry fluorescent channels.
Segmentation, quantification of fluorescence intensity, and cell-length measurements were further analyzed in MATLAB
using customized programs.
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S4 Available-volume profiles

In this section we estimate the available volume for ribosomes, mRNAs, and polysomes inside the nucleoid. To
estimate the DNA pore size inside the nucleoid, we recognize that the E. coli chromosome is characterized by a
branched, plectonemic structure of supercoiled DNA [8]: We denote by L the total length of the plectonemic DNA
polymer, and by V the volume wherein this polymer is confined. For simplicity, suppose that the DNA is arranged to
occupy the edges of a three-dimensional cubic lattice of total volume V . The volume is divided into M cubic pores
each with edge length a, so that V = Ma3. In addition, the DNA length is related to the pore size by L = 3 aM , thus
providing the estimate a =

√
3V/L. For an estimated total plectoneme length L = 1.5 mm [8] and a nucleoid volume

V = 1.2µm3 [5], the estimated pore size is a ' 50 nm.

We now provide a rough, dimensional estimate of the available volume for an F ribosome inside the nucleoid.
Continuing to use the simple cubic lattice model for the nucleoid, we estimate the excluded volume inside each cubic
pore of DNA: as the ribosome approaches one of the lattice edges, the excluded volume is given by the edge length a
times the area within the pore from which the center of mass of the ribosome is excluded when it approaches the edge,
i.e. 1/4 of a circle with the ribosome’s radius r ' 10 nm [9]. Multiplying by the total number of edges (12), we obtain
an estimate for the excluded volume, vexcl = 12 a πr2/4 = 3 a πr2. We then express the available-volume fraction in
the nucleoid, which we will denote by vin

F , in terms of the ratio between the excluded volume and the pore volume as

vin
F = exp

(
−κvexcl

a3

)
= exp

(
−κπr2 L

V

)
. (S5)

The numerical correction factor κ is introduced to improve our dimensional estimate, and is set by fitting our model
to the experimentally observed concentration profile of freely diffusing ribosomes. If we imagine dividing the cell
into two regions along the axial direction, the nucleoid region (in) and the polar region outside the nucleoid (out),
then according to section S2 the concentration of freely diffusing ribosomes satisfies cinF /cout

F = vin
F /v

out
F . Since the

concentration of freely diffusing ribosomes is, roughly speaking, about 10% larger outside the nucleoid than inside
[10], we have vin

F /v
out
F = vin

F ∼ 90%, where vout
F = 1 because there is no DNA in the out region. As a result, we obtain

κ = 0.25 in Eq. (S5).

The available-volume fraction for mRNAs loaded with m B ribosomes and n T ribosomes can be estimated along
the same lines. Since the excluded volume for a single ribosome depends on its two-dimensional cross section πr2

rather than on its volume, we introduce an effective radius rm+n for an mRNA of species m, n, where rm+n is chosen
to reproduce the overall cross section of the mRNA along with its ribosomes:

πr2
m+n = πr2

R + (m+ n)πr2, (S6)

and rR = 20 nm is a typical mRNA radius of gyration [11]. The mRNA excluded volume in the nucleoid vin
m+n is then

determined by replacing r with rm+n in Eq. (S5).

Finally, the smooth excluded-volume profiles vF(x), vm+n(x) shown in Fig. S1 were obtained from vin
F , vin

m+n as
follows. First, we introduce a local density of DNA length

ϕ(x) ∝ 1

1 + exp[ζ(x/`− 1/2)]
, (S7)

with ζ = 20: this density profile is shown in Fig. S1, it was chosen to reproduce the experimental axial DNA
fluorescence in Fig. 2, and normalized to the total DNA length per volume [5] by setting

1

`

∫ `

0

dxϕ(x) =
L

V
. (S8)

Second, we replaced L/V in Eq. (S5) with ϕ(x), and we obtained

vF(x) = exp[−κπr2ϕ(x)], (S9)

and similarly

vm+n(x) = exp[−κπr2
m+nϕ(x)]. (S10)

Denoting by

vR(x) = exp[−κπr2
Rϕ(x)] (S11)
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FIG. S1: Density of DNA length and available-volume profiles in 1D model of the E. coli transcriptional-translational machinery.
Density of DNA length ϕ(x) normalized to unit area, available-volume profile for free ribosomes vF(x) = exp[−κπr2ϕ(x)], and
available-volume profiles for polysomes with m transiently bound and n translating ribosomes vm+n(x) = exp[−κπr2

m+nϕ(x)]
for right half of cell (compare Fig. 1), where the arrow indicates the direction of increasing m+ n. Here the constant κ = 0.25
has been estimated by fitting the observed concentration profile of freely diffusing ribosomes [10], r = 10 nm is the ribosome
radius [9], and rm+n =

√
r2
R + (m+ n)r2, rR = 20 nm are the polysome effective radius and the mRNA radius of gyration [11],

respectively.

the available volume for a ribosome-free mRNA, Eqs. (S6), (S9), (S10) imply that the polysome available volume can
be rewritten as

vm+n(x) = vR(x)[vF(x)]m+n. (S12)

The factorized form of Eq. (S12) has a simple intuitive interpretation if we recall that available volumes vm+n(x)
represents the probability that an mRNA of species m, n finds enough free volume to hop into the DNA mesh at
position x, compare section S2. In this regard, Eq. (S12) treats the components of an mRNA of species m, n
independently: the hopping probability vm+n(x) is equal to the product of the hopping probability vR(x) for the bare
mRNA and of the hopping probability vF(x) for each of the m+ n ribosomes carried by the mRNA.

S5 Flux of free ribosomes at midcell

In this section we show that at steady state the no-flux boundary conditions at the cell poles for F ribosomes and
at the cell poles and midcell for mRNAs in Eqs. (1) and (2) imply that the flux of F ribosomes at midcell is also
zero. This absence of F-ribosome flux at midcell is a necessary physical condition due to the assumptions of ribosome
conservation and cell symmetry in our model.

First, we use Eq. (S3) to rewrite the diffusive term in Eq. (1) at steady state as

DF

[
d2cF(x)

dx2
vF(x)− cF(x)

d2vF(x)

dx2

]
= −dJF(x)

dx
, (S13)

we then integrate Eq. (1) at steady state with respect to x between x = 0 and x = `, and we obtain

JF(0) +

∫ `

0

dx

[
− kB

oncF(x)
∑

m

∑

n

ρm,n(x)+kB

off

∑

m

∑

n

mρm,n(x)− kT

oncF(x)
∑

m

∑

n

ρm,n(x)+kT

off

∑

m

∑

n

nρm,n(x) (S14)

+β
∑

m

∑

n

(m+ n) ρm,n(x)

]
= 0,

where we used Eq. (S13) and the no-flux boundary condition at the cell pole, JF(`) = 0, enforced in Eq. (1). We
now consider Eq. (2) at steady state. We rewrite the diffusion term as D d

dx

[
dρm,n(x)

dx vm+n(x)− ρm,n(x)dvm+n(x)
dx

]
,
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multiply both sides by m, sum with respect to m and n, and integrate with respect to x. We obtain

0 =

∫ `

0

dx
∑

n

[
− kB

oncF(x)

mmax−1∑

m=0

mρm,n(x)− kB

off

mmax∑

m=1

m2 ρm,n(x)

+ kB

oncF(x)

mmax∑

m=1

mρm−1,n(x) + kB

off

mmax−1∑

m=0

m(m+ 1) ρm+1,n(x)− β
mmax∑

m=0

mρm,n(x)

]

=

∫ `

0

dx
∑

n

[
kB

oncF(x)

mmax−1∑

m=0

ρm,n(x)− kB

off

mmax∑

m=1

mρm,n(x)− β
mmax∑

m=0

mρm,n(x)

]
, (S15)

where we wrote explicitly the summation bound in terms of mmax, and we obtained the third line by changing
summation variables in the first and second terms in the second line. Multiplying Eq. (2) by n, summing with respect
to m and n, integrating with respect to x and proceeding along the same lines, we obtain

∫ `

0

dx
∑

m

[
kT

oncF(x)

nmax−1∑

n=0

ρm,n(x)− kT

off

nmax∑

n=1

nρm,n(x)− β
nmax∑

n=0

nρm,n(x)

]
= 0. (S16)

Combining Eqs. (S14), (S15), and (S16), we obtain JF(0) = 0, i.e. there is no F-ribosome flux at midcell.

S6 Rapid equilibrium for transiently bound ribosomes

In this section, we consider the reaction-diffusion processes of ribosomes and mRNAs in the limit that transient
ribosome binding and unbinding is significantly faster than all other relevant processes. As a result, the statistics of
B ribosomes can be described entirely as a local Poisson process, without the need for a separate kinetic equation
for each mRNA species with a different number of B ribosomes. This substantially simplifies the reaction-diffusion
equations, with a major impact on computational tractability.

Let us consider Eq. (2), the reaction-diffusion equation for mRNAs from the main text, at steady state:

D

[
d2ρm,n(x)

dx2
vm+n(x)− ρm,n(x)

d2vm+n(x)

dx2

]

− kB
oncF(x)ρm,n(x)− kB

off mρm,n(x)− kT

oncF(x)ρm,n(x)− kT

off nρm,n(x)

+ kB
oncF(x)ρm−1,n(x) + kB

off(m+ 1) ρm+1,n(x) + kT

oncF(x)ρm,n−1(x) + kT
off (n+ 1) ρm,n+1(x)

+δm,0 δn,0 α(x)− β ρm,n(x) = 0. (S17)

In the rapid-equilibrium limit, where kB
on, kB

off are both large, we set

kB
on = λkB

on, k
B
off = λkB

off , (S18)

where λ� 1 and kB
on, kB

off are of order unity. We now consider Eq. (2) to leading order in λ, and we have

kB
off(m+ 1)ρm+1,n(x)− kB

oncF(x)ρm,n(x) = 0, 0 ≤ m ≤ mmax − 1, (S19)

which implies

ρm,n(x) =
1

m!

(
kB

oncF(x)

kB
off

)m
ρ0,n(x) ≡ ρm,n(x). (S20)

Equation (S20) implies that the distribution of B ribosomes at position x is Poissonian: this is a direct consequence
of the rapid-equilibrium limit, where at any position x binding and unbinding of B ribosomes dominates over all other
processes, such as binding-unbinding of T ribosomes and diffusion.

Now, we sum Eq. (S17) with respect to m = 0, . . . ,mmax, and we obtain the following conservation equation for
the density of mRNAs at position x

mmax∑

m=0

{
D
d

dx

[
dρm,n(x)

dx
vm+n(x)− ρm,n(x)

dvm+n(x)

dx

]
− kT

oncF(x)ρm,n(x)− kT

off nρm,n(x)

+kT

oncF(x)ρm,n−1(x) + kT
off (n+ 1) ρm,n+1(x)

}
+ δn,0 α(x)− β

mmax∑

m=0

ρm,n(x) = 0. (S21)
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Equations (S20) and (S21) to leading order in λ imply the following equation involving only ρ0,n:
mmax∑

m=0

[
−dJm,n(x)

dx
+ ωm,n(x)

]
+ δn,0α(x) = 0, (S22)

where we simplified the notation introducing the local flux of mRNAs of species m, n

Jm,n(x) = −D
(
dρm,n(x)

dx
vm+n(x)− ρm,n(x)

dvm+n(x)

dx

)
, (S23)

and defining

ωm,n(x) = −kT

oncF(x)ρm,n(x)− kT

off nρm,n(x) + kT

oncF(x)ρm,n−1(x) + kT
off (n+ 1)ρm,n+1(x)− βρm,n(x). (S24)

Using Eqs. (S12), (S20), and (S23), and setting

ρn(x) ≡ ρ0,n(x), (S25)

we compute explicitly the first term in Eq. (S22) for large mmax:
∞∑

m=0

dJm,n(x)

dx
=

−D d

dx

∞∑

m=0

(
dρm,n(x)

dx
vm+n(x)− ρm,n(x)

dvm+n(x)

dx

)
=

−D d

dx

∞∑

m=0

{[
1

m!
m

(
kB

oncF(x)

kB
off

)m−1
kB

on

kB
off

dcF(x)

dx
ρn(x) +

1

m!

(
kB

oncF(x)

kB
off

)m
dρn(x)

dx

]
vR(x)[vF(x)]m+n

− 1

m!

(
kB

oncF(x)

kB
off

)m
ρn(x)

(
dvR(x)

dx
[vF(x)]m+n + vR(x)(m+ n)[vF(x)]m+n−1 dvF(x)

dx

)}
=

−D d

dx

{
exp

(
kB

oncF(x)

kB
off

vF(x)

)
[vF(x)]n

[
kB

on

kB
off

ρn(x)vR(x)

(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)

+
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx
− nρn(x)vR(x)

1

vF(x)

dvF(x)

dx

]}
. (S26)

The sums with respect to m in the second line of Eq. (S26) are all of the form
∑∞
m=0 u

m/m!, and we calculated
them explicitly with a change of summation variables in some terms. The sum of ωm,n in Eq. (S22) can be computed
along the same lines as in Eq. (S26). We substitute Eq. (S26) in Eq. (S22), and we obtain the final set of nmax + 1
reaction-diffusion equations for ρn:

D
d

dx

{
exp

(
kB

oncF(x)

kB
off

vF(x)

)
[vF(x)]n

[
kB

on

kB
off

ρn(x)vR(x)

(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)
+
dρn(x)

dx
vR(x)

−ρn(x)
dvR(x)

dx
− nρn(x)vR(x)

1

vF(x)

dvF(x)

dx

]}
+ exp

(
kB

oncF(x)

kB
off

)
[−kT

oncF(x)ρn(x)− kT

off nρn(x)

+kT

oncF(x)ρn−1(x) + kT
off (n+ 1) ρn+1(x)− βρn(x)] + δn,0α(x) = 0. (S27)

Next, we derive the rapid-equilibrium equation for the concentration of F ribosomes starting from the reaction-
diffusion equation (1) in the main text. To achieve this, we introduce the subleading correction to ρm,n, setting

ρm,n(x) = ρm,n(x) +
1

λ
∆ρm,n(x). (S28)

We then substitute Eq. (S28) into Eq. (S17), and we obtain:

kB
off(m+ 1)ρm+1,n(x)− kB

oncF(x)ρm,n(x) =

kB
off(m+ 1)

[
ρm+1,n(x) +

1

λ
∆ρm+1,n(x)

]
− kB

oncF(x)

[
ρm,n(x) +

1

λ
∆ρm,n(x)

]
=

kB
off(m+ 1)∆ρm+1,n(x)− kB

oncF(x)∆ρm,n(x) (S29)
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where in the third line we observed that the terms of order λ cancel out because of Eq. (S20). Importantly, Eq. (S29)
implies that the term in the first line, which represents the current between mRNA species (m,n) and (m+ 1, n), can
be expressed in terms of the combination of subleading corrections to ρm,n in the last line.

Using Eqs. (S23), (S24), (S29) in Eq. (S17), we obtain the following set of equations

[kB
offm∆ρm,n(x)− kB

oncF(x)∆ρm−1,n(x)]− [kB
off(m+ 1)∆ρm+1,n(x)− kB

oncF(x)∆ρm,n(x)] =

−dJm,n(x)

dx
+ ωm,n(x) + δm,0δn,0α(x). (S30)

Exploiting the recursive structure of Eqs. (S30) [12], we solve them iteratively for the quantities kB
offm∆ρm,n(x) −

kB
oncF(x)∆ρm−1,n(x), and we obtain

kB
offmmax∆ρmmax,n(x)− kB

oncF(x)∆ρmmax−1,n(x) = −dJmmax,n(x)

dx
+ ωmmax,n(x), (S31)

kB
off(mmax − 1)∆ρmmax−1,n(x)− kB

oncF(x)∆ρmmax−2,n(x) = −dJmmax−1,n(x)

dx
+ ωmmax−1,n(x)

−dJmmax,n(x)

dx
+ ωmmax,n(x),

...

kB
offm∆ρm,n(x)− kB

oncF(x)∆ρm−1,n(x) =

mmax∑

p=m

[
−dJp,n(x)

dx
+ ωp,n(x)

]
,

...

kB
off∆ρ1,n(x)− kB

oncF(x)∆ρ0,n(x) =

mmax∑

p=1

[
−dJp,n(x)

dx
+ ωp,n(x)

]
. (S32)

Now, let us compute the RHS of Eq. (1) to leading order in λ. The second and third term on the RHS read

−kB
oncF(x)

mmax−1∑

m=0

nmax∑

n=0

ρm,n(x) + kB
off

mmax∑

m=1

nmax∑

n=0

mρm,n(x) =

nmax∑

n=0

mmax∑

m=1

[−kB

oncF(x)∆ρm−1,n(x) + kB

offm∆ρm,n(x)]

=

nmax∑

n=0

mmax∑

m=1

mmax∑

p=m

[
−dJp,n(x)

dx
+ ωp,n(x)

]

=

nmax∑

n=0

mmax∑

m=1

m

[
−dJm,n(x)

dx
+ ωm,n(x)

]
, (S33)

where in the first line we used Eq. (S29), in the second line we used Eqs. (S31), ..., (S32), and in the last line we
rewrote the double sum over m, p as a single sum over m by using the identity

mmax∑

m=1

mmax∑

p=m

ap =

mmax∑

m=1

mam, (S34)

which is valid for any sequence am. The first term in the last line of Eq. (S33) can be computed for large mmax along
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the lines of Eq. (S26):
nmax∑

n=0

mmax∑

m=1

m
dJm,n(x)

dx
=

−D d

dx

nmax∑

n=0

∞∑

m=1

{[
1

m!
m2

(
kB

oncF(x)

kB
off

)m−1
kB

on

kB
off

dcF(x)

dx
ρn(x) +

1

m!
m

(
kB

oncF(x)

kB
off

)m
dρn(x)

dx

]
vR(x)[vF(x)]m+n

− 1

m!
m

(
kB

oncF(x)

kB
off

)m
ρn(x)

(
dvR(x)

dx
[vF(x)]m+n + vR(x)(m+ n)[vF(x)]m+n−1 dvF(x)

dx

)}
=

−D d

dx

nmax∑

n=0

{
exp

(
kB

oncF(x)

kB
off

vF(x)

)
[vF(x)]n

[(
1 +

kB
oncF(x)

kB
off

vF(x)

)
kB

on

kB
off

dcF(x)

dx
ρn(x)vR(x)vF(x)

+
kB

oncF(x)

kB
off

dρn(x)

dx
vR(x)vF(x)− kB

oncF(x)

kB
off

ρn(x)
dvR(x)

dx
vF(x)

−k
B
oncF(x)

kB
off

(
1 +

kB
oncF(x)

kB
off

vF(x)

)
ρn(x)vR(x)

dvF(x)

dx
− kB

oncF(x)

kB
off

ρn(x)vR(x)n
dvF(x)

dx

]}
. (S35)

The second term in the last line of Eq. (S33) reads
nmax∑

n=0

mmax∑

m=1

mωm,n(x) = −β
nmax∑

n=0

mmax∑

m=1

mρm,n(x), (S36)

where we exchanged the sums with respect to n, m, and we observed that the only term in ωm,n that is nonzero when
summed with respect to m and n is the term proportional to β, see Eqs. (S24). The remaining terms in the RHS of
Eq. (1) can be computed by using Eqs. (S20) and (S25), by which we calculate the exponential sums with respect to
m. Using Eqs. (1), (S33), (S35), and (S36), we obtain the final equation for the concentration of F ribosomes in the
rapid-equilibrium limit

DF

[
d2cF(x)

dx2
vF(x)− cF(x)

d2vF(x)

dx2

]

+D
d

dx

nmax∑

n=0

{
exp

(
kB

oncF(x)

kB
off

vF(x)

)
[vF(x)]n

[(
1 +

kB
oncF(x)

kB
off

vF(x)

)(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)

× k
B
on

kB
off

ρn(x)vR(x) +
kB

oncF(x)

kB
off

(
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx

)
vF(x)− kB

oncF(x)

kB
off

ρn(x)vR(x)n
dvF(x)

dx

]}

+ exp

(
kB

oncF(x)

kB
off

)(
−kT

oncF(x)

nmax−1∑

n=0

ρn(x) + kT

off

nmax∑

n=1

nρn(x) + β

nmax∑

n=0

nρn(x)

)
= 0, (S37)

where the terms in the second and third line represent the diffusive flux of B ribosomes carried by diffusing mRNAs.

Let us now discuss the boundary conditions for the rapid-equilibrium equations: The boundary conditions for Eq.
(S27) are

[
dρn(x)

dx
vR(x)[vF(x)]n − ρn(x)

d[vR(x)[vF(x)]n]

dx

]∣∣∣∣
x=0,`

= 0. (S38)

In Eq. (S37), the no-flux condition boundary condition at the right pole reads
[
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

]∣∣∣∣
x=`

= 0. (S39)

while the constraint on total ribosome number can be written as

Ntot = 2

∫ `

0

dx

[
cF(x) +

∞∑

m=0

nmax∑

n=0

(m+ n)ρm,n(x)

]

= 2

∫ `

0

dx

[
cF(x) + exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

(
kB

oncF(x)

kB
off

+ n

)
ρn(x)

]
, (S40)
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where in the second line we summed with respect to m by using Eqs. (S20) and (S25).

Overall, the nmax + 2 reaction-diffusion equations (S27), (S37) and their boundary conditions (S38), (S39), (S40)
completely characterize the solution ρn(x), cF(x). Using Eqs. (S20) and (S25), we obtain from ρn(x) and cF(x) the full
set of mRNA concentrations ρm,n(x) for any m and 0 ≤ n ≤ nmax as well as all other physical quantities of interest,
such as the total mRNA concentration

ρtot(x) =
∞∑

m=0

nmax∑

n=0

ρm,n(x)

= exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

ρn(x), (S41)

the concentrations of T and B ribosomes

cT(x) =
∞∑

m=0

nmax∑

n=0

nρm,n(x)

= exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

nρn(x), (S42)

cB(x) =
∞∑

m=0

nmax∑

n=0

mρm,n(x)

=
kB

oncF(x)

kB
off

exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

ρn(x), (S43)

the total mRNA flux

JmRNA(x) =
∞∑

m=0

nmax∑

n=0

Jm,n(x)

= −D exp

(
kB

oncF(x)

kB
off

vF(x)

) nmax∑

n=0

[vF(x)]n

[
kB

on

kB
off

ρn(x)vR(x)

(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)

+
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx
− nρn(x)vR(x)

1

vF(x)

dvF(x)

dx

]
, (S44)

and the fluxes of T and B ribosomes

JT(x) =
∞∑

m=0

nmax∑

n=0

nJm,n(x)

= −D exp

(
kB

oncF(x)

kB
off

vF(x)

) nmax∑

n=0

n[vF(x)]n

[
kB

on

kB
off

ρn(x)vR(x)

(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)

+
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx
− nρn(x)vR(x)

1

vF(x)

dvF(x)

dx

]
, (S45)

JB(x) =

∞∑

m=0

nmax∑

n=0

mJm,n(x)

= −D exp

(
kB

oncF(x)

kB
off

vF(x)

) nmax∑

n=0

[vF(x)]n

[(
1 +

kB
oncF(x)

kB
off

vF(x)

)(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)

× k
B
on

kB
off

ρn(x)vR(x) +
kB

oncF(x)

kB
off

(
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx

)
vF(x)− kB

oncF(x)

kB
off

ρn(x)vR(x)n
dvF(x)

dx

]
. (S46)

The solution of the rapid-equilibrium equations allows for computing another important quantity, the ribosome
efficiency, which we define as the average number of proteins translated per unit time per ribosome. We thus estimate
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FIG. S2: Comparison of mRNA species inside versus outside the nucleoid. (A) Heat map of the number of mRNAs of species
m, n inside the nucleoid N in

m,n =
∫ `/2

0
ρm,n(x) in the right half of the cell as a function of the numbers m, n of transiently

bound and translating ribosomes, respectively. (B) Same plot as in the left panel for the number of mRNAs outside the nucleoid
Nout

m,n =
∫ `

`/2
ρm,n(x).

the total rate of protein production per cell in our model as the total rate at which T ribosomes fall of mRNAs after
completing translation, i.e.

Σ = 2 kT

off

∞∑

m=0

nmax∑

n=1

n

∫ `

0

dxρm,n(x)

= 2 kT

off

nmax∑

n=1

n

∫ `

0

dx exp

(
kB

oncF(x)

kB
off

)
ρn(x), (S47)

and we define the ribosome efficiency as ε = Σ/Ntot.

S7 mRNA species inside versus outside the nucleoid

In Fig. S2 we show the distribution of mRNA species in the nucleoid region and in the polar region as heat maps
for the numbers N in

m,n, Nout
m,n of mRNAs of species m, n for 0 ≤ x ≤ `/2 and l/2 ≤ x ≤ `, respectively.

S8 Estimate of ribosome flux

In this section we present an analytical estimate of the flux of mRNA-bound ribosomes flowing from the nucleoid
region toward one cell pole. The ribosome flux can be estimated by assuming that every newly synthesized mRNA
migrates from the nucleoid to the pole, and carries an average load of ribosomes, yielding an estimated ribosome flux

Jest
T+B =

αtot

2

NT +NB

NmRNA
, (S48)

where αtot = 2
∫ `

0
dxα(x) ∼ 17/s is the total mRNA transcription rate in the nucleoid region, and the second factor is

the average number of ribosomes carried by each mRNA, with NT = 4.8 × 104, NB = 1.1 × 104, NmRNA = 5 × 103.
Equation (S48) predicts a flow of Jest

T+B ∼ 100/s, in rough agreement with our numerical result JT+B = JT + JB ∼ 30/s
for the flux of T and B ribosomes at the nucleoid edge shown in Fig. 4. The factor of ∼ 3 discrepancy is not due
to our estimate of the mRNA flux Jest

mRNA ' αtot/2 ' 8.5/s, which agrees reasonably well with the numerical result
JmRNA ' 7/s at the edge of the nucleoid. Rather, the difference is due to the fact that mRNAs with fewer ribosomes
diffuse faster due to the strong dependence of the available volume factor vm,n on m + n, which means that most of
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FIG. S3: Fluxes of translating (T), transiently bound (B) and free (F) ribosomes along the cell’s long axis: The arrow length is
proportional to local ribosome flux, and the arrows in the legend correspond to a flux of 20/s. The fluxes are shown for different
values of mRNA degradation rate β, where β and the total mRNA production rate αtot are varied together, keeping the total
mRNA number constant.

the diffusive flux of mRNAs is due to polysomes with a number of ribosomes substantially smaller than average. Thus
our use of the average ribosome loading (NT +NB)/NmRNA in Eq. (S48) substantially overestimates the ribosome flux
carried by mRNAs. However, the estimate Jest

T+B in Eq. (S48) does correctly capture the full numerical result that
the ribosome flux is proportional to the total mRNA production rate αtot, see Fig. S3. This proportionality leads us
to conclude that ribosome circulation is driven by the flux of new mRNAs from the nucleoid to the poles, and not
by binding of mature mRNAs and F ribosomes in the nucleoid with subsequent expulsion from the nucleoid due to
excluded-volume effects as discussed in the main text.

S9 Model including nucleoid-bound mRNAs

In this section, we extend our model to include the fact that mRNAs remain bound to the nucleoid while being
transcribed. We introduce an additional set of nucleoid-bound mRNA species with m B ribosomes and n T ribosomes,
whose densities we denote by ρ∗m,n(x, t). The reaction-diffusion equations for the nucleoid-bound mRNA densities are

∂ρ∗m,n(x, t)

∂t
= − kB

oncF(x, t)ρ∗m,n(x, t)− kB
off mρ∗m,n(x, t)− kT

oncF(x, t)ρ∗m,n(x, t)− kT

off nρ
∗
m,n(x, t)

+ kB
oncF(x, t)ρ∗m−1,n(x, t)+ kB

off (m+ 1) ρ∗m+1,n(x, t)+ kT

oncF(x, t)ρ∗m,n−1(x, t)+ kT

off (n+ 1) ρ∗m,n+1(x, t)

+δm,0 δn,0 α(x)− β ρ∗m,n(x, t)− γ ρ∗m,n(x, t). (S49)

Since the mRNA species ρ∗m,n are bound to the nucleoid, there is no diffusion term. The terms in the first and second
lines on the RHS correspond to ribosome binding and unbinding as in Eq. (2). The first term in the last line represents
mRNA transcription, the second term co-transcriptional degradation [13], while the last term represents unbinding of
an mRNA from the nucleoid at rate γ. The dynamics of free mRNA species, i.e. mRNAs that are not bound to the
nucleoid, is still described by Eq. (2), where the mRNA-transcription term in the last line is replaced by the source
term γ ρ∗m,n(x), which represents a nucleoid-bound mRNA becoming a free mRNA:

∂ρm,n(x, t)

∂t
= D

[
∂2ρm,n(x, t)

∂x2
vm+n(x)− ρm,n(x, t)

d2vm+n(x)

dx2

]

− kB
oncF(x, t)ρm,n(x, t)− kB

off mρm,n(x, t)− kT

oncF(x, t)ρm,n(x, t)− kT

off nρm,n(x, t)

+ kB
oncF(x, t)ρm−1,n(x, t) + kB

off (m+ 1) ρm+1,n(x, t) + kT

oncF(x, t)ρm,n−1(x, t) + kT
off (n+ 1) ρm,n+1(x, t)

+γ ρ∗m,n(x, t)− β ρm,n(x, t). (S50)

We take the unbinding rate of nucleoid-bound mRNAs to be γ = 1/min, i.e. the inverse of the average time for mRNA
transcription, compare section II. Finally, the dynamics of F ribosomes is described by the analog of Eq. (1):
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∂cF(x, t)

∂t
= DF

[
∂2cF(x, t)

∂x2
vF(x)− cF(x, t)

d2vF(x)

dx2

]

−kB
oncF(x, t)

mmax−1∑

m=0

nmax∑

n=0

[ρm,n(x, t) + ρ∗m,n(x, t)] + kB
off

mmax∑

m=1

nmax∑

n=0

m [ρm,n(x, t) + ρ∗m,n(x, t)]

−kT

oncF(x, t)

mmax∑

m=0

nmax−1∑

n=0

[ρm,n(x, t) + ρ∗m,n(x, t)] + kT

off

mmax∑

m=0

nmax∑

n=1

n [ρm,n(x, t) + ρ∗m,n(x, t)]

+β

mmax∑

m=0

nmax∑

n=0

(m+ n)[ρm,n(x, t) + ρ∗m,n(x, t)]. (S51)

We now consider the steady state of the equations above for ρm,n, ρ∗m,n and cF, and we assume that B ribosomes
are in rapid equilibrium with F ribosomes. Proceeding along the lines of section S6, in the rapid-equilibrium limit we
have

ρm,n(x) =
1

m!

(
kB

oncF(x)

kB
off

)m
ρn(x), (S52)

ρ∗m,n(x) =
1

m!

(
kB

oncF(x)

kB
off

)m
ρ∗n(x), (S53)

where ρn(x) = ρ0,n(x), and ρ∗n(x) = ρ∗0,n(x). In the rapid-equilibrium limit, the densities ρn(x) satisfy the following
reaction-diffusion equation

D
d

dx

{
exp

(
kB

oncF(x)

kB
off

vF(x)

)
[vF(x)]n

[
kB

on

kB
off

ρn(x)vR(x)

(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)
(S54)

+
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx
− nρn(x)vR(x)

1

vF(x)

dvF(x)

dx

]}

+ exp

(
kB

oncF(x)

kB
off

)
[−kT

oncF(x)ρn(x)− kT

off nρn(x) + kT

oncF(x)ρn−1(x) + kT
off (n+ 1) ρn+1(x)− βρn(x) + γρ∗n(x)] = 0,

while ρ∗n(x) satisfies the following equation involving only reaction terms

exp

(
kB

oncF(x)

kB
off

)
[−kT

oncF(x)ρ∗n(x)− kT

off nρ
∗
n(x) + kT

oncF(x)ρ∗n−1(x) + kT
off (n+ 1) ρ∗n+1(x)− (β + γ)ρ∗n(x)] (S55)

+α(x) = 0.

Finally, the rapid-equilibrium reaction-diffusion equation for cF(x) reads

DF

[
d2cF(x)

dx2
vF(x)− cF(x)

d2vF(x)

dx2

]
(S56)

+D
d

dx

nmax∑

n=0

{
exp

(
kB

oncF(x)

kB
off

vF(x)

)
[vF(x)]n

[(
1 +

kB
oncF(x)

kB
off

vF(x)

)(
dcF(x)

dx
vF(x)− cF(x)

dvF(x)

dx

)

× k
B
on

kB
off

ρn(x)vR(x) +
kB

oncF(x)

kB
off

(
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx

)
vF(x)− kB

oncF(x)

kB
off

ρn(x)vR(x)n
dvF(x)

dx

]}

exp

(
kB

oncF(x)

kB
off

){
− kT

oncF(x)

nmax−1∑

n=0

[ρn(x) + ρ∗n(x)] + kT

off

nmax∑

n=1

n [ρn(x) + ρ∗n(x)]

+β

nmax∑

n=0

n[ρn(x) + ρ∗n(x)]

}
= 0.

For both free and nucleoid-bound mRNAs, we enforce no-flux boundary conditions at the cell pole and at the cell
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center
[
dρn(x)

dx
vR(x)[vF(x)]n − ρn(x)

d[vR(x)[vF(x)]n]

dx

]∣∣∣∣
x=0,`

= 0, (S57)

[
dρ∗n(x)

dx
vR(x)[vF(x)]n − ρ∗n(x)

d[vR(x)[vF(x)]n]

dx

]∣∣∣∣
x=0,`

= 0. (S58)

For ribosome concentrations, we impose the no-flux boundary condition at the cell pole, Eq. (S39), and a constraint
on the total number of ribosomes

Ntot = 2

∫ `

0

dx

{
cF(x) +

∞∑

m=0

nmax∑

n=0

(m+ n)[ρm,n(x) + ρ∗m,n(x)]

}

= 2

∫ `

0

dx

{
cF(x) + exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

(
kB

oncF(x)

kB
off

+ n

)
[ρn(x) + ρ∗n(x)]

}
. (S59)

Finally, the ribosome efficiency reads

Σ = 2 kT

off

∞∑

m=0

nmax∑

n=1

n

∫ `

0

dx[ρm,n(x) + ρ∗m,n(x)]

= 2 kT

off

nmax∑

n=1

n

∫ `

0

dx exp

(
kB

oncF(x)

kB
off

)
[ρn(x) + ρ∗n(x)]. (S60)

We solved numerically Eqs. (S54), (S55), and (S56) for ρn, ρ∗n and cF, by fixing the maximal number of allowed T
ribosomes per mRNA at nmax = 24. The resulting mRNA profiles and ribosome concentrations are shown in Figs. S4
and S5, respectively. The results confirm the qualitative behavior of the model with only free mRNAs, see Figs. 3 and
4. The plots of ρtot(x) and ρ∗tot(x) =

∑∞
m=0

∑nmax

n=0 ρ∗m,n(x) in Fig. S4 show that the large majority, i.e. ∼ 83% , of
mRNAs are free, while the remaining ∼ 17 % of mRNAs are bound to the nucleoid, where the latter fraction constitutes
also an estimate for the percentage of mRNAs that are degraded co-transcriptionally [13]. Free mRNAs are strongly
segregated from the nucleoid, while nucleoid-bound mRNAs, are by construction localized in the nucleoid region. For
free mRNAs, the larger m, n, the stronger the segregation away from the nucleoid, and the overall free polysome
distribution is still peaked around ∼10 T ribosomes and ∼2 B ribosomes per mRNA as in Fig. 3. For nucleoid-bound
mRNAs, the vast majority of mRNAs have low m,n, with the distribution peaked at m ∼ 1 and n ∼ 3− 4, reflecting
the somewhat lower concentration of F ribosomes in the nucleoid (Fig. S5) and, more importantly, the limited time
for T ribosomes to bind before the mRNAs become free. The localization pattern of these typical bound mRNAs
matches the profile of the nucleoid, i.e. the profile of mRNA production. By contrast, the spatial distributions of the
few bound mRNA species with large m,n are strongly peaked at the edge of the nucleoid, reflecting the higher density
of free ribosomes outside versus inside the nucleoid.

Figure S5 shows the steady-state concentrations, cT(x) and cB(x), of T and B ribosomes loaded on free mRNAs,
given by Eqs. (S42) and (S43), the concentration of F ribosomes cF(x), as well as the fluxes JT(x), JB(x) given by Eqs.
(S45), (S46), and JF(x). The figure also shows the concentrations of T and B ribosomes loaded on nucleoid-bound
mRNAs, c∗T(x) =

∑∞
m=0

∑nmax

n=1 nρ∗m,n(x) and c∗B(x) =
∑∞
m=1

∑nmax

n=0 mρ∗m,n(x), respectively. While T and B ribosomes
loaded on free mRNAs are strongly excluded from the nucleoid, F ribosomes can penetrate the nucleoid region. In
addition, the concentration profiles above provide an estimate of the fractions of ribosomes in the nucleoid region that
translate mRNAs co-transcriptionally and post-transcriptionally. The number of ribosomes that translate co- and post-
transcriptionally is Nco = 2

∑∞
m=0

∑nmax

n=1 n
∫ `/2

0
dxρ∗m,n(x) ∼ 3.6×103 and Npost = 2

∑∞
m=0

∑nmax

n=1 n
∫ `/2

0
dxρm,n(x) ∼

3.9 × 103, respectively, while the total number of ribosomes in the nucleoid region Nin ∼ 1.1 × 104 can be obtained
by replacing ` with `/2 in the expression (S59) for the total number of ribosomes in the cell. Thus, Nco/Nin ∼ 34 %
of ribosomes carry out co-transcriptional translation in the DNA-rich region, while a fraction of Npost/Nin ∼ 37 %
translates post-transcriptionally. As shown in Fig. S4A, the larger the loading number of a free mRNA, the stronger
its nucleoid segregation: it follows that such post-transcriptional translation in the nucleoid occurs mostly on free
mRNAs loaded with a relatively small number of ribosomes, which could be either newly transcribed mRNAs that
did not have time to diffuse out of the nucleoid, or old mRNAs with small loading number which penetrated into the
nucleoid. Figure S5 also shows that there is a net poleward flux of T and B ribosomes loaded on free mRNAs and a
net flux of F ribosomes toward the cell center, in agreement with the model with only free mRNAs. Finally, T and B
ribosomes loaded on nucleoid-bound mRNAs are localized approximately uniformly throughout the nucleoid region.
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FIG. S4: Steady-state mRNA and polysome distributions for the extended model including both free and nucleoid-bound
mRNAs, where we fixed the maximal number of allowed translating (T) ribosomes per mRNA at n ≤ nmax = 24, and we show
mRNA species with m ≤ 8 transiently bound (B) ribosomes. (A) mRNA and polysome distribution for free mRNAs. Total
mRNA density ρtot(x) (red) and density ρm,n(x) of mRNAs with m B ribosomes and n T ribosomes (gray). The density ρ0,0(x)
of ribosome-free mRNAs (green) and the density ρ8,24(x) of mRNAs with the largest number of B, T ribosomes considered
(blue) are also shown. The profiles ρm,n(x), ρ0,0(x), and ρ8,24(x) are normalized to unit area. Inset: distribution of mRNA
species, shown as a heat map of the number Nm,n =

∫ `

0
dxρm,n(x) of mRNAs with m B ribosomes and n T ribosomes in the

right half of the cell. The maximal number of allowed T ribosomes per mRNA, nmax = 24, is also marked. (B) Same as panel
A for nucleoid-bound mRNAs, with N∗m,n =

∫ `

0
dxρ∗m,n(x) .
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FIG. S5: Steady-state ribosome concentrations and ribosome fluxes for the extended model including both free and nucleoid-
bound mRNAs. (A) Concentrations and fluxes for translating (T) and transiently bound (B) ribosomes loaded on free mRNAs,
and for free (F) ribosomes. On the top, we show the concentrations cT(x), cB(x), and cF(x) of T, B, and F ribosomes, for
the right half of the cell. Bottom: Fluxes of T, B, and F ribosomes along the cell’s long axis depicted in the top panel,
where the arrow length is proportional to local ribosome flux, and the arrows in the legends correspond to a flux of 30/s. (B)
Concentrations c∗T(x), c∗B(x) of T and B ribosomes loaded on nucleoid-bound mRNAs.

We next make use of the model with nucleoid-bound mRNAs to study the contribution of co-transcriptional trans-
lation to ribosome efficiency. To do so, we remove co-transcriptional translation by fiat in our model by eliminating
binding of T ribosomes to nucleoid-bound mRNAs, but still allowing rapid-equilibrium binding and unbinding of B
ribosomes to these mRNAs. First, without co-transcriptional translation the first four terms on the left-hand side
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(LHS) of Eq. (S55) vanish: as a result, one has

exp

(
kB

oncF(x)

kB
off

)
ρ∗n(x) = δn,0α(x)/(β + γ). (S61)

Substituting this in the reaction-diffusion equation (S54) for ρn(x), we recover the intuitive result that the reaction-
diffusion equations and boundary conditions for the two mRNA species with no co-transcriptional translation are
equivalent to those for free mRNAs only, Eq. (S27), with a reduced rate of mRNA production, α(x)→ α(x)γ/(β+γ),
accounting for the decay of some mRNAs before transcription is complete. Second, in the absence of co-transcriptional
translation the terms proportional to ρ∗ in the reaction-diffusion equation (S56) vanish, and the reaction-diffusion
equation for cF also reduces to Eq. (S37) for the model with free mRNAs only. Finally, let us consider the boundary
conditions of Eq. (S56) in the absence of co-transcriptional translation: While the no-flux condition at the cell pole,
Eq. (S39), still holds, the constraint (S59) on the total number of ribosomes should be modified to take account of
the fact that there are no T ribosomes on nucleoid-bound mRNAs:

Ntot = 2

∫ `

0

dx

{
cF(x) +

∞∑

m=0

nmax∑

n=0

[(m+ n)ρm,n(x) +mρ∗m,n(x)]

}

= 2

∫ `

0

dx

{
cF(x) + exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

(
kB

oncF(x)

kB
off

+ n

)
ρn(x) +

kB
oncF(x)

kB
off

exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

ρ∗n(x)

}

= 2

∫ `

0

dx

[
cF(x)

(
1 +

kB
on

kB
off

α(x)

β + γ

)
+ exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

(
kB

oncF(x)

kB
off

+ n

)
ρn(x)

]
, (S62)

where in the second line we used Eqs. (S52) and (S53), and in the third line we substituted Eq. (S61). The constraint
(S62) for the total ribosome number and its analog (S40) for the model with no nucleoid-bound mRNAs differ by the
term proportional to α(x): intuitively, this term represents the total number of B ribosomes carried by mRNAs that
are being transcribed in the nucleoid.

We will now estimate the ribosome efficiency, thus quantifying the change in efficiency due to the loss of co-
transcriptional translation. Without co-transcriptional translation, ribosomes are not allowed to translate nucleoid-
bound mRNAs, thus the expression for the total rate of protein production Σ is given by Eq. (S47), and the ribosome
efficiency is given by ε = Σ/Ntot = 1.88× 10−2/s, which is ∼3% smaller than the efficiency ε = 1.94× 10−2/s in the
case with co-transcriptional translation. This loss of efficiency is mostly due to the fact that nucleoid-bound mRNAs
carry B ribosomes: indeed, compared to the case with co-transcriptional translation, this additional fraction of B
ribosomes implies a reduced pool of F ribosomes, thus decreasing the F → T rate, and consequently the ribosome
efficiency.

S10 Model including 30S and 50S ribosomal subunits

In this section, we extend our model to include the fact that each bacterial ribosome is composed of a 30S and a 50S
subunit. In section S10A we introduce the reaction-diffusion equations for the two-subunit model, whose parameters
will be discussed in section S10B. In section S10C we discuss the rapid-equilibrium approximation for B 30S and 50S
subunits, and in section S10D we present the numerical solution of the resulting reaction-diffusion equations.

A. Reaction-diffusion equations

The reaction-diffusion equations for the mRNA densities are
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∂ρl,m,n(x, t)

∂t
= D

[
∂2ρl,m,n(x, t)

∂x2
vl+m+n(x)− ρl,m,n(x, t)

d2vl+m+n(x)

dx2

]

−k30S
on c30S F(x, t)ρl,m,n(x, t)− k30S

off l ρl,m,n(x, t)

−k50S
on c50S F(x, t)ρl.m,n(x, t)− k50S

off mρl,m,n(x, t)

+k30S
on c30S F(x, t)ρl−1,m,n(x, t) + k30S

off (l + 1) ρl+1,m,n(x, t)

+k50S
on c50S F(x, t)ρl,m−1,n(x, t) + k50S

off (m+ 1) ρl,m+1,n(x, t)

−k70S
off nρl,m,n(x, t) + k70S

off (n+ 1) ρl,m,n+1(x, t)

−k′ 30S
on c30S F(x, t)ρl,m,n(x, t) + k′ 30S

off ρ′l,m,n(x, t) + k′ 50S
on c50S F(x, t)ρ′l,m,n−1(x, t)

+δl,0 δm,0 δn,0 α(x)− β ρl,m,n(x, t), (S63)

∂ρ′l,m,n(x, t)

∂t
= D

[
∂2ρ′l,m,n(x, t)

∂x2
v′l+m+n(x)− ρ′l,m,n(x, t)

d2v′l+m+n(x)

dx2

]

−k30S
on c30S F(x, t)ρ′l,m,n(x, t)− k30S

off l ρ′l,m,n(x, t)

−k50S
on c50S F(x, t)ρ′l.m,n(x, t)− k50S

off mρ′l,m,n(x, t)

+k30S
on c30S F(x, t)ρ′l−1,m,n(x, t) + k30S

off (l + 1) ρ′l+1,m,n(x, t)

+k50S
on c50S F(x, t)ρ′l,m−1,n(x, t) + k50S

off (m+ 1) ρ′l,m+1,n(x, t)

−k70S
off nρ′l,m,n(x, t) + k70S

off (n+ 1) ρ′l,m,n+1(x, t)

+k′ 30S
on c30S F(x, t)ρl,m,n(x, t)− k′ 30S

off ρ′l,m,n(x, t)− k′ 50S
on c50S F(x, t)ρ′l,m,n(x, t)

−β ρ′l,m,n(x, t). (S64)

In both Eqs. (S63) and (S64), the terms in the first line represent mRNA diffusion, where vl+m+n, v′l+m+n are
the available-volume profiles for mRNAs without or with a 30S subunit occupying the translation-initiation site,
respectively. The second, third, fourth, and fifth line represent binding and unbinding of 30S and 50S subunits at
rates k30S

on , k30S
off and k50S

on , k50S
off respectively, compare Eq. (2). The terms in the sixth line represent unbinding of

70S pairs [14] at rate k70S
off . The first two terms in the seventh line represent a 30S subunit binding and unbinding

the mRNA translation-initiation site at rates k′ 30S
on , k′ 30S

off respectively, while the third term represents a 50S subunit
binding to the 30S subunit on the initiation site at rate k′ 50S

on and forming a T 70S pair. Finally, the terms in the last
line of Eq. (S63) represent mRNA transcription and degradation, and the term in the last line of Eq. (S64) represents
mRNA degradation. The reaction-diffusion equation for the concentration of free 30S subunits reads

∂c30S F(x, t)

∂t
= DF

[
∂2c30S F(x, t)

∂x2
vF(x)− c30S F(x, t)

d2vF(x)

dx2

]

−k30S
on c30S F(x, t)

lmax−1∑

l=0

mmax∑

m=0

nmax∑

n=0

[ρl,m,n(x, t) + ρ′l,m,n(x, t)] + k30S
off

lmax∑

l=1

mmax∑

m=0

nmax∑

n=0

l [ρl,m,n(x, t) + ρ′l,m,n(x, t)]

+k70S
off

lmax∑

l=0

mmax∑

m=0

nmax∑

n=1

n [ρl,m,n(x, t) + ρ′l,m,n(x, t)]

−k′ 30S
on c30S F(x, t)

lmax∑

l=0

mmax∑

m=0

nmax∑

n=0

ρl,m,n(x, t) + k′ 30S
off

lmax∑

l=0

mmax∑

m=0

nmax∑

n=0

ρ′l,m,n(x, t)

+β

lmax∑

l=0

mmax∑

m=0

nmax∑

n=0

[(l + n) ρl,m,n(x, t) + (l + n+ 1)ρ′l,m,n(x, t)]. (S65)

In Eq. (S65), only mRNA species with allowed values of 0 ≤ l ≤ lmax, 0 ≤ m ≤ mmax, and 0 ≤ n ≤ nmax are
considered. The terms in the second line represent 30S subunits transiently binding and unbinding mRNAs, compare
Eq. (1). The third line represents unbinding of a 30S subunit coming from a 70S pair, while the two terms in
the fourth line represent a 30S subunit binding and unbinding the initiation site, respectively. Finally, the last line
represent 30S subunits being freed from mRNA molecules as these are degraded. The reaction-diffusion equation for
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the concentration of free 50S subunits reads

∂c50S F(x, t)

∂t
=

DF

[
∂2c50S F(x, t)

∂x2
vF(x)− c50S F(x, t)

d2vF(x)

dx2

]

−k50S
on c50S F(x, t)

lmax∑

l=0

mmax−1∑

m=0

nmax∑

n=0

[ρl,m,n(x, t) + ρ′l,m,n(x, t)] + k50S
off

lmax∑

l=0

mmax∑

m=1

nmax∑

n=0

m [ρl,m,n(x, t) + ρ′l,m,n(x, t)]

+k70S
off

lmax∑

l=0

mmax∑

m=0

nmax∑

n=1

n[ρl,m,n(x, t) + ρ′l,m,n(x, t)]− k′ 50S
on c50S F(x, t)

lmax∑

l=0

mmax∑

m=0

nmax−1∑

n=0

ρ′l,m,n(x, t)

+β

lmax∑

l=0

mmax∑

m=0

nmax∑

n=0

(m+ n)[ρl,m,n(x, t) + ρ′l,m,n(x, t)]. (S66)

The terms in the second line represent 50S subunits transiently binding and unbinding mRNAs. In the third line, the
first term represents unbinding of a 50S subunit coming from a 70S pair, and the second term represents a 50S subunit
binding the 30S subunit on the initiation site. Finally, the term in the fourth line represents 50S subunits being freed
from degraded mRNAs.

We consider Eqs. (S63)-(S66) at steady state, and in Eqs. (S63), (S64) we set a no-flux boundary condition at the
cell pole and at the cell center:

[
dρl,m,n(x)

dx
vl+m+n(x)− ρl,m,n(x)

dvl+m+n(x)

dx

]∣∣∣∣
x=0,`

= 0, (S67)

[
dρ′l,m,n(x)

dx
v′l+m+n(x)− ρ′l,m,n(x)

dv′l+m+n(x)

dx

]∣∣∣∣
x=0,`

= 0. (S68)

In Eqs. (S65), (S66), we set no-flux boundary conditions at the cell pole
[
dc30S F(x)

dx
vF(x)− c30S F(x)

dvF(x)

dx

]∣∣∣∣
x=`

= 0, (S69)
[
dc50S F(x)

dx
vF(x)− c50S F(x)

dvF(x)

dx

]∣∣∣∣
x=`

= 0, (S70)

and we enforce a constraint on the total number of 30S and 50S ribosomal subunits

2

∫ `

0

dx

{
c30S F(x) +

lmax∑

l=0

mmax∑

m=0

nmax∑

n=0

[
(l + n)ρl,m,n(x) + (l + n+ 1)ρ′l,m,n(x)

]}
= N30S tot, (S71)

2

∫ `

0

dx

{
c50S F(x) +

lmax∑

l=0

mmax∑

m=0

nmax∑

n=0

(m+ n)
[
ρl,m,n(x) + ρ′l,m,n(x)

]}
= N50S tot. (S72)

B. Model parameters

The model parameters in Eqs. (S63)-(S72) are fixed as follows: The diffusion coefficients D, DF, the degradation
rate β, and the ribosomal available volume vF(x) are taken to be the same as in the model with one ribosomal unit,
see section II. Assuming for simplicity a radius of 10 nm for both the 30S and 50S subunits, the available volume
vl+m+n(x) is given by Eq. (S12). It follows that the available volume for mRNAs with an additional 30S subunit at
the initiation site is v′l+m+n(x) = vl+m+n+1(x). We fixed N30S tot and N50S tot from the total number of ribosomes
and from the 30S:50S stoichiometric ratio, which can be estimated as follows: First, every 30S or 50S subunit includes
one 16S or one 23S ribosomal RNA (rRNA), respectively. As a result, the 30S:50S ratio can be estimated from the
stoichiometry of 16S- and 23S-rRNA transcript abundances, which is found to be close to 1:1 [15]. Second, the 1:1
ratio above is generally supported by studies of the abundance of ribosomal proteins in the two subunits. Third, the
experimental observation that ∼ 80% of 30S ribosomal subunits are engaged in translation [5], with similar results
for 50S subunits [16], implies that the great majority of ribosomes must come as pairs of 30S and 50S subunits, thus
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confirming a 30S:50S ratio close to 1:1. We thus assume a 1:1 ratio of 30S:50S subunits. Consequently, for a total
ribosome number of Ntot = 6 × 104 [5], we obtain N30S tot = N50S tot = Ntot. The transient-binding rates k30S

on , k30S
off ,

k50S
on , k50S

off will be assumed to be significantly faster than any other relevant time scale, and they will be treated in
the rapid-equilibrium limit as in section S6. In section S10C, we will show that in this limit the reaction-diffusion
equations depend only on the ratio between the binding and the unbinding rates, which can be computed along the
lines of section II, providing the estimate k50S

on /k50S
off ' k30S

on /k30S
off ' 5.4× 10−3 µm. The binding constant k′ 30S

on of 30S
subunits on the initiation site is estimated as follows: An in vitro kinetic analysis of the assembly of the 30S initiation
complex quantified the binding rate of 30S subunits to a single mRNA as k3D c3D, i.e. the rate is proportional to the
three-dimensional 30S concentration c3D, and to an associated rate constant k3D. The value of k3D was estimated from
the slope of the 30S-subunit binding rate as a function of the three-dimensional 30S concentration, and was found to
be k3D ∼ 0.1µm3/s [17]. The 30S binding rate in our one-dimensional model is then obtained by dividing k3D by the
area of the two-dimensional cell slice perpendicular to the cell axis: k′ 30S

on = k3D/(πR
2) = 0.13µm/s, where R = 0.5µm

is the radius of a circular cell slice. The unbinding rate of 30S subunits from the initiation site k′ 30S
off = 2/s is taken

from the same in vitro kinetic analysis [17]. The rate of unbinding of 70S pairs can be estimated along the same lines
as kT

off in the model for one ribosomal unit in section II, yielding k70S
off = kT

off . Finally, the binding rate of 50S subunits
to 30S subunits on the initiation site can be obtained from the other parameters by imposing the conservation of the
total number of 30S and 50S subunits:

k70S
off N70S − k′ 30S

on N30S Fρ+ k′ 30S
off ` ρ′ = 0, (S73)

k70S
off N70S − k′ 50S

on N50S Fρ′ = 0, (S74)

where N30S F, N50S F, and N70S are the total number of F 30S and 50S subunits and 70S pairs, and ρ, ρ′ are the average
total axial densities of mRNAs without or with a 30S subunit on the initiation site, respectively. Equation (S73)
imposes the balance between the overall binding and unbinding rates of 30S subunits in the cell: The first term in the
LHS represents the total rate at which 30S subunits in a 70S pair unbind from mRNAs, while the second and the third
term are the total rates at which 30S subunits bind and unbind from the translation-initiation site, respectively. Note
that the rates of binding and unbinding of transiently bound 30S subunits do not appear in Eq. (S73) because the sum
of these rates is zero. Denoting by N30S′ the number of 30S subunits bound to the translation-initiation site, in Eq.
(S73) we omitted the rate β(N70S +N30S′) at which 70S subunits and 30S subunits bound to the translation-initiation
site are freed by mRNAs that are degraded, because this rate is significantly smaller than k70S

off N70S. Equation (S74)
represents the balance between the total binding and unbinding rates of 50S subunits. Similarly to Eq. (S73), we
omitted the term βN70S � k70S

off N70S associated with mRNA decay. The rate k′ 50S
on at which 50S subunits bind to

30S subunits on the translation-initiation site is then determined as follows: We set N30S F = N50S F = 2 %Ntot and
N70S = 80 %Ntot [5, 16], we use the fact that the mRNA densities ρ and ρ′ are related by the constraint on the total
mRNA number ρ+ ρ′ = NmRNA/(2 `), and we solve Eqs. (S73) and (S74) for ρ, ρ′, and k′ 50S

on .

C. Rapid equilibrium for transiently bound 30S and 50S subunits

In this section we will derive the reaction-diffusion equations assuming that B 30S and 50S subunits are in rapid
equilibrium with their F counterparts. We present only the main steps of the derivation, which follows along the lines
of the rapid-equilibrium approximation for the model with one ribosomal subunit discussed in section S6.

In the rapid-equilibrium limit, we set

k30S
on = λk30S

on , k30S
off = λk30S

off , (S75)
k50S

on = λk50S
on , k50S

off = λk50S
off , (S76)

where λ� 1 and the boldface binding-unbinding rates are of order unity.

To leading order in λ, we obtain

[k30S
off (l + 1)ρl+1,m,n(x)− k30S

on c30S F(x)ρl,m,n(x)]− [k30S
off l ρl,m,n(x)− k30S

on c30S F(x)ρl−1,m,n(x)]

+[k50S
off (m+ 1)ρl,m+1,n(x)− k50S

on c50S F(x)ρl,m,n(x)]− [k50S
off mρl,m,n(x)− k50S

on c50S F(x)ρl,m−1,n(x)] = 0. (S77)

The four terms in the LHS of Eq. (S77) represent the mRNA current between species (l,m) and the four species
(l+ 1,m), (l− 1,m), (l,m+ 1) and (l,m− 1), thus implying that the sum of the four currents is zero. Note that this
condition does not necessarily imply that each current vanishes. Indeed, there could be solutions ρl,m,n(x) involving net
nonequilibrium currents between pairs of mRNA species, that would still satisfy the current-balance condition (S77).
However, if we assume that the 30S and 50S transient binding and unbinding is a purely spontaneous, equilibrium
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process that is not coupled to any external drive or energy source, all the individual currents between mRNA species
must vanish

k30S
off (l + 1)ρl+1,m,n(x)− k30S

on c30S F(x)ρl,m,n(x) = 0, l ≤ lmax − 1, (S78)

k50S
off (m+ 1)ρl,m+1,n(x)− k50S

on c50S F(x)ρl,m,n(x) = 0, m ≤ mmax − 1. (S79)

Equations (S78) and (S79) can now be solved along the lines of Eq. (S19) for one ribosomal unit, and their solution
is analogous to Eq. (S20), providing the following leading-order expression for ρl,m,n(x):

ρl,m,n(x) =
1

l!m!

(
k30S

on c30S F(x)

k30S
off

)l(
k50S

on c50S F(x)

k50S
off

)m
ρ0,0,n(x) ≡ ρl,m,n(x). (S80)

Proceeding along the same lines, we obtain the leading-order expression for ρ′l,m,n(x):

ρ′l,m,n(x) =
1

l!m!

(
k30S

on c30S F(x)

k30S
off

)l(
k50S

on c50S F(x)

k50S
off

)m
ρ′0,0,n(x) ≡ ρ′l,m,n(x), (S81)

Next, we derive the reaction-diffusion equations for

ρn(x) ≡ ρ0,0,n(x) (S82)

and for

ρ′n(x) ≡ ρ′0,0,n(x). (S83)

Proceeding along the lines of Eqs. (S21)-(S27), we introduce the local fluxes of mRNAs

Jl,m,n(x) = −D
(
dρl,m,n(x)

dx
vl+m+n(x)− ρl,m,n(x)

dvl+m+n(x)

dx

)
, (S84)

J ′l,m,n(x) = −D
(
dρ′l,m,n(x)

dx
v′l+m+n(x)− ρ′l,m,n(x)

dv′l+m+n(x)

dx

)
, (S85)

and we define

ωm,n(x) = −k70S
off nρl,m,n(x) + k70S

off (n+ 1)ρl,m,n+1(x)− k′ 30S
on c30S F(x)ρl,m,m(x) + k′ 30S

off ρ′l,m,n(x)

+k′ 50S
on c50S F(x)ρ′l,m,n−1(x)− βρl,m,n(x), (S86)

ω′m,n(x) = −k70S
off nρ′l,m,n(x) + k70S

off (n+ 1)ρ′l,m,n+1(x) + k′ 30S
on c30S F(x)ρl,m,m(x)− k′ 30S

off ρ′l,m,n(x)

−k′ 50S
on c50S F(x)ρ′l,m,n(x)− βρ′l,m,n(x). (S87)

We sum Eqs. (S63) and (S64) with respect to l = 0, . . . , lmax and m = 0, . . . ,mmax, and we obtain the following
reaction-diffusion equations to leading order in λ

lmax∑

l=0

mmax∑

m=0

[
−dJl,m,n(x)

dx
+ ωl,m,n(x)

]
+ δn,0α(x) = 0, (S88)

lmax∑

l=0

mmax∑

m=0

[
−
dJ ′l,m,n(x)

dx
+ ω′l,m,n(x)

]
= 0. (S89)

Proceeding along the lines of Eqs. (S26) and (S27), we rewrite Eq. (S88) as a reaction-diffusion equations for ρn(x):

D
d

dx

{
exp

[(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)
vF(x)

]
[vF(x)]n

[
ρn(x)vR(x)

[
vF(x)

d

dx

(
k30S

on c30S F(x)

k30S
off

(S90)

+
k50S

on c50S F(x)

k50S
off

)
− dvF(x)

dx

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)]
+
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx

−nρn(x)vR(x)
1

vF(x)

dvF(x)

dx

]}
+ exp

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)[
− nk70S

off ρn(x)

+k70S
off (n+ 1)ρn+1(x)− k′ 30S

on c30S F(x)ρn(x) + k′ 30S
off ρ′n(x) + k′ 50S

on c50S F(x)ρ′n−1(x)− βρn(x)
]

+ δn,0 α(x) = 0.
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Similarly, Eq. (S89) implies the following reaction-diffusion equations for ρ′n(x):

D
d

dx

{
exp

[(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)
vF(x)

]
[vF(x)]n+1

[
ρ′n(x)vR(x)

[
vF(x)

d

dx

(
k30S

on c30S F(x)

k30S
off

(S91)

+
k50S

on c50S F(x)

k50S
off

)
− dvF(x)

dx

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)]
+
dρ′n(x)

dx
vR(x)− ρ′n(x)

dvR(x)

dx

−(n+ 1)ρ′n(x)vR(x)
1

vF(x)

dvF(x)

dx

]}
+ exp

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)[
− k70S

off nρ′n(x)

+k70S
off (n+ 1)ρ′n+1(x) + k′ 30S

on c30S F(x)ρn(x)− k′ 30S
off ρ′n(x)− k′ 50S

on c50S F(x)ρ′n(x)− βρ′n(x)
]

= 0.

We now derive the rapid-equilibrium reaction-diffusion equation for the ribosome concentration c30S F(x): We intro-
duce the subleading corrections to ρl,m,n and ρ′l,m,n, setting

ρl,m,n(x) = ρl,m,n(x) +
1

λ
∆ρl,m,n(x), (S92)

ρ′l,m,n(x) = ρ′l,m,n(x) +
1

λ
∆ρ′l,m,n(x). (S93)

We rewrite the steady-state reaction-diffusion equations (S63) for ρl,m,n(x) as follows:

[k30S
off (l + 1) ∆ρl+1,m,n(x)− k30S

on c30S F(x)∆ρl,m,n(x)]− [k30S
off l∆ρl,m,n(x)− k30S

on c30S F(x)∆ρl−1,m,n(x)]

+[k50S
off (m+ 1) ρl,m+1,n(x)− k50S

on c50S F(x)ρl,m,n(x)]− [k50S
off mρl,m,n(x)− k50S

on c50S F(x)ρl,m−1,n(x)]

+D
d

dx

(
dρl,m,n(x)

dx
vl+m+n(x)− ρl,m,n(x)

dvl+m+n(x)

dx

)
− k70S

off nρl,m,n(x) + k70S
off (n+ 1) ρl,m,n+1(x)

−k′ 30S
on c30S F(x)ρl,m,n(x) + k′ 30S

off ρ′l,m,n(x) + k′ 50S
on c50S F(x)ρ′l,m,n−1(x) + δl,0 δm,0 δn,0 α(x)− β ρl,m,n(x) = 0, (S94)

where in the first two lines we collected all the terms involving fast processes related to B 30S and 50S subunits, and
in the last two lines we collected all the remaining terms describing slow processes, such as diffusion and unbinding of
70S pairs. Also, in the first line we used Eq. (S92), and we observed that the terms to leading order in λ cancel out
because of Eq. (S80). To derive the reaction-diffusion for c30S F(x), we sum Eq. (S94) with respect to m = 0, . . . ,mmax,
and we obtain to leading order in λ:

[k30S
off l∆ρ30S

l,n (x)− k30S
on c30S F(x)∆ρ30S

l−1,n(x)]− [k30S
off (l + 1)∆ρ30S

l+1,n(x)− k30S
on c30S F(x)∆ρ30S

l,n (x)] =
mmax∑

m=0

[
−dJl,m,n(x)

dx
+ ωl,m,n(x)

]
+ δl,0δn,0α(x), (S95)

where

∆ρ30S
l,n (x) =

mmax∑

m=0

∆ρl,m,n(x), (S96)

and the superscript ‘30S’ refers to the fact that ∆ρ30S
l,n is the total subleading density of mRNAs with l 30S subunits,

i.e. it results from a sum over all contributions of 50S subunits in the RHS of Eq. (S96). Intuitively, by summing Eq.
(S94) with respect to m, we averaged out the contribution of 50S subunits, thus obtaining the overall current between
mRNA species with l 30S subunits and species with l − 1 and l + 1 30S subunits, compare the two terms in the LHS
of Eq. (S95), respectively. Given that the contribution of 50S subunits has been averaged out, Eq. (S95) now has
the same form as Eq. (S30) for a single ribosomal unit, and it can thus be solved iteratively along the lines of Eqs.
(S31)-(S32): the result is

k30S
off l∆ρ30S

l,n (x)− k30S
on c30S F(x)∆ρ30S

l−1,n(x) =

lmax∑

p=l

mmax∑

m=0

[
−dJp,m,n(x)

dx
+ ωp,m,n(x)

]
, 1 ≤ l ≤ lmax. (S97)

Importantly, to derive the reaction-diffusion equation for c30S F(x), it is not necessary to determine all the currents
between mRNA species (l,m) and species (l+ 1,m), (l− 1,m), (l,m+ 1) and (l,m− 1) that appear in Eq. (S77): the
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average current in Eq. (S97) is all we need. Indeed, let us consider the second line of Eq. (S65): the terms involving
ρl,m,n can be rewritten in terms of the current in Eq. (S97) as follows:

−k30S
on c30S F(x)

lmax−1∑

l=0

mmax∑

m=0

nmax∑

n=0

ρl,m,n(x) + k30S
off

lmax∑

l=1

mmax∑

m=0

nmax∑

n=0

l ρl,m,n(x) =

−k30S
on c30S F(x)

lmax−1∑

l=0

mmax∑

m=0

nmax∑

n=0

∆ρl,m,n(x) + k30S
off

lmax∑

l=1

mmax∑

m=0

nmax∑

n=0

l∆ρl,m,n(x) =

lmax∑

l=1

nmax∑

n=0

[k30S
off l∆ρ30S

l,n (x)− k30S
on c30S F(x)∆ρ30S

l−1,n(x)] =

lmax∑

l=1

lmax∑

p=l

mmax∑

m=0

nmax∑

n=0

[
−dJp,m,n(x)

dx
+ ωp,m,n(x)

]
=

lmax∑

l=1

l

mmax∑

m=0

nmax∑

n=0

[
−dJl,m,n(x)

dx
+ ωl,m,n(x)

]
, (S98)

where in the second line we used Eqs. (S80) and (S92) and we observed that the terms of order λ cancel out, in the
third line we used Eq. (S96), in the fourth line we used Eq. (S97), and in the fifth line we used the identity (S34).
Similarly, the terms in the second line of Eq. (S65) involving ρ′l,m,n read:

−k30S
on c30S F(x)

lmax−1∑

l=0

mmax∑

m=0

nmax∑

n=0

ρ′l,m,n(x) + k30S
off

lmax∑

l=1

mmax∑

m=0

nmax∑

n=0

l ρ′l,m,n(x) =

lmax∑

l=1

l

mmax∑

m=0

nmax∑

n=0

[
−
dJ ′l,m,n(x)

dx
+ ω′l,m,n(x)

]
. (S99)

We now compute explicitly the RHS of Eqs. (S98) and (S99) for large lmax, mmax along the lines of Eqs. (S35) and
(S36), we substitute the result in Eq. (S65), and we obtain the final reaction-diffusion equation for the concentration
of F 30S subunits

DF

[
d2c30S F(x)

dx2
vF(x)− c30S F(x)

d2vF(x)

dx2

]
(S100)

+D
d

dx

nmax∑

n=0

{
exp

[(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)
vF(x)

]
[vF(x)]n

[(
1 +

k30S
on c30S F(x)

k30S
off

vF(x)

)
k30S

on

k30S
off

ρn(x)vR(x)

×
(
dc30S F(x)

dx
vF(x)− c30S F(x)

dvF(x)

dx

)
+
k50S

on

k50S
off

ρn(x)vR(x)vF(x)
k30S

on c30S F(x)

k30S
off

(
dc50S F(x)

dx
vF(x)− c50S F(x)

dvF(x)

dx

)

+
k30S

on c30S F(x)

k30S
off

(
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx

)
vF(x)− k30S

on c30S F(x)

k30S
off

ρn(x)vR(x)n
dvF(x)

dx

]}

+D
d

dx

nmax∑

n=0

{
exp

[(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)
vF(x)

]
[vF(x)]n+1

[(
1 +

k30S
on c30S F(x)

k30S
off

vF(x)

)
k30S

on

k30S
off

ρ′n(x)vR(x)

×
(
dc30S F(x)

dx
vF(x)− c30S F(x)

dvF(x)

dx

)
+
k50S

on

k50S
off

ρ′n(x)vR(x)vF(x)
k30S

on c30S F(x)

k30S
off

(
dc50S F(x)

dx
vF(x)− c50S F(x)

dvF(x)

dx

)

+
k30S

on c30S F(x)

k30S
off

(
dρ′n(x)

dx
vR(x)− ρ′n(x)

dvR(x)

dx

)
vF(x)− k30S

on c30S F(x)

k30S
off

ρ′n(x)vR(x)(n+ 1)
dvF(x)

dx

]}

+ exp

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

){
k70S

off

nmax∑

n=1

n[ρn(x) + ρ′n(x)] + β

nmax∑

n=1

[nρn(x) + (n+ 1)ρ′n(x)]

−k′ 30S
on c30S F(x)

nmax∑

n=0

ρn(x) + k′ 30S
off

nmax∑

n=0

ρ′n(x)

}
= 0.

In Eq. (S100), the terms in the second, third, and fourth lines represent the diffusive flux of B 30S subunits carried
by diffusing mRNAs with no 30S subunits on the initiation site, and the terms in the fifth, sixth and seventh lines
represent the diffusive flux of B 30S subunits carried by mRNAs with a 30S unit at the initiation site.
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The reaction-diffusion equation for the concentration of F 50S subunits can be obtained along the same lines as Eq.
(S100), and it reads

DF

[
d2c50S F(x)

dx2
vF(x)− c50S F(x)

d2vF(x)

dx2

]
(S101)

+D
d

dx

nmax∑

n=0

{
exp

[(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)
vF(x)

]
[vF(x)]n

[(
1 +

k50S
on c50S F(x)

k50S
off

vF(x)

)
k50S

on

k50S
off

ρn(x)vR(x)

×
(
dc50S F(x)

dx
vF(x)− c50S F(x)

dvF(x)

dx

)
+
k30S

on

k30S
off

ρn(x)vR(x)vF(x)
k50S

on c50S F(x)

k50S
off

(
dc30S F(x)

dx
vF(x)− c30S F(x)

dvF(x)

dx

)

+
k50S

on c50S F(x)

k50S
off

(
dρn(x)

dx
vR(x)− ρn(x)

dvR(x)

dx

)
vF(x)− k50S

on c50S F(x)

k50S
off

ρn(x)vR(x)n
dvF(x)

dx

]}

+D
d

dx

nmax∑

n=0

{
exp

[(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

)
vF(x)

]
[vF(x)]n+1

[(
1 +

k50S
on c50S F(x)

k50S
off

vF(x)

)
k50S

on

k50S
off

ρ′n(x)vR(x)

×
(
dc50S F(x)

dx
vF(x)− c50S F(x)

dvF(x)

dx

)
+
k30S

on

k30S
off

ρ′n(x)vR(x)vF(x)
k50S

on c50S F(x)

k50S
off

(
dc30S F(x)

dx
vF(x)− c30S F(x)

dvF(x)

dx

)

+
k50S

on c50S F(x)

k50S
off

(
dρ′n(x)

dx
vR(x)− ρ′n(x)

dvR(x)

dx

)
vF(x)− k50S

on c50S F(x)

k50S
off

ρ′n(x)vR(x)(n+ 1)
dvF(x)

dx

]}

+ exp

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

){
k70S

off

nmax∑

n=1

n[ρn(x) + ρ′n(x)] + β

nmax∑

n=1

n [ρn(x) + ρ′n(x)]

−k′ 50S
on c50S F(x)

nmax−1∑

n=0

ρ′n(x)

}
= 0.

The boundary conditions for Eqs. (S90), (S91), (S100) and (S101) are obtained from Eqs. (S67)-(S72) and from
the leading-order expressions (S80) and (S81) for the mRNA densities. The boundary conditions for Eqs. (S90) and
(S91) read

[
dρn(x)

dx
vR(x)[vF(x)]n − ρn(x)

d[vR(x)[vF(x)]n]

dx

]∣∣∣∣
x=0,`

= 0, (S102)

[
dρ′n(x)

dx
vR(x)[vF(x)]n+1 − ρ′n(x)

d[vR(x)[vF(x)]n+1]

dx

]∣∣∣∣
x=0,`

= 0. (S103)

The no-flux boundary conditions for Eqs. (S100) and (S101) are given by Eqs. (S69) and (S70), while the constraints
(S71), (S72) on the total number of 30S and 50S ribosomal subunits read

2

∫ `

0

dx

{
c30S F(x) + exp

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

) nmax∑

n=0

[(
k30S

on c30S F(x)

k30S
off

+ n

)
ρn(x)

+

(
k30S

on c30S F(x)

k30S
off

+ n+ 1

)
ρ′n(x)

]}
= N30S tot, (S104)

2

∫ `

0

dx

{
c50S F(x) + exp

(
k30S

on c30S F(x)

k30S
off

+
k50S

on c50S F(x)

k50S
off

) nmax∑

n=0

(
k50S

on c50S F(x)

k50S
off

+ n

)
[ρn(x) + ρ′n(x)]

}
= N50S tot. (S105)

Overall, Eqs. (S69), (S70), (S90), (S91), (S100), (S101) and (S102)–(S105) characterize the steady-state behavior of
the reaction-diffusion model with two ribosomal subunits in the rapid-equilibrium limit. Compared to the model with
a single ribosomal subunit discussed in section II, this two-submit model provides a more realistic characterization of
the transcriptional-translational process, describing explicitly the assembly and disassembly of 70S pairs on mRNA
molecules. More realistic models describing the internal degrees of freedom of ribosomes and mRNAs could be obtained
with full molecular-dynamics simulations, rather than with reaction-diffusion equations for local concentrations. Even
if they are likely to be limited to a single ribosome and mRNA molecule, such molecular-dynamics simulations may be
useful for describing several interesting features of the transcriptional-translational machinery on a microscopic level,
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such as recycling of ribosomes which translate mRNA molecules forming loops, where initiation and termination sites
are in close proximity [18].

Proceeding along the lines of section S6, all physical quantities of interest can be expressed in terms of ρn, ρ′n, c30S F,
c50S F by using Eqs. (S80)-(S83). Some of these quantities are the total mRNA densities

ρtot(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

ρl,m,n(x), (S106)

ρ′tot(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

ρ′l,m,n(x), (S107)

the concentration of 70S subunits

c70S(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

n[ρl,m,n(x) + ρ′l,m,n(x)], (S108)

the concentrations of B 30S and 50S subunits

c30SB(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

l[ρl,m,n(x) + ρ′l,m,n(x)], (S109)

c50SB(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

m[ρl,m,n(x) + ρ′l,m,n(x)], (S110)

and the concentration of 30S subunits bound to the translation-initiation site c′30S(x) = ρ′tot(x). Other quantities are
the fluxes of F 30S and 50S subunits, that we denote by J30S F(x) and J50S F(x), and that are obtained from Eq. (S3)
by replacing cF with c30S F and c50S F, respectively, the flux of 70S subunits

J70S(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

n [Jl,m,n(x) + J ′l,m,n(x)], (S111)

the fluxes of B 30S and 50S subunits

J30SB(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

l [Jl,m,n(x) + J ′l,m,n(x)], (S112)

J50SB(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

m [Jl,m,n(x) + J ′l,m,n(x)], (S113)

and the flux of 30S subunits bound to the translation-initiation site

J ′30S(x) =
∞∑

l=0

∞∑

m=0

nmax∑

n=0

J ′l,m,n(x). (S114)

D. Results

We numerically solved Eqs. (S90), (S91), (S100), and (S101) by fixing the maximal number of allowed translating
70S pairs per mRNA at nmax = 24, and the results are shown in Figs. 5, S18, and S7. In addition to the features
of these results discussed in section II, here we observe that the total mRNA distributions in Fig. S18 have a dip at
x/` ∼ 0.4. This minimum is due to the fact that the total mRNA profile is the superposition of two peaks: One peak in
the nucleoid region due to mRNAs that are being transcribed and are nearly free of ribosomal subunits, and one peak
at the cell poles due to mRNAs loaded with multiple subunits, which are strongly excluded from the nucleoid. In Fig.
S18, there is an average number of ∼ 14 subunits, i.e. 30S, 50S and 70S pairs, per mRNA, implying excluded-volume
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FIG. S6: Steady-state mRNA distributions for the model including 30S and 50S ribosomal subunits, where we fixed the maximal
number of allowed translating (T) 30S-50S (70S) pairs per mRNA at n ≤ nmax = 24, and we show mRNA species with l ≤ 4 and
m ≤ 4 transiently bound (B) 30S and 50S subunits, respectively. (A) mRNA profiles for mRNAs with no 30S subunit bound
to the translation-initiation site. Total mRNA density ρtot(x) (red) and density ρl,m,n(x) of mRNAs with l B 30S subunits,
m B 50S subunits, and n 70S pairs (gray), where we show only the curves with l, m and n even for greater clarity. The
density ρ0,0,0(x) of ribosome-free mRNAs (green) and the density ρ4,4,24(x) of mRNAs with the largest number of B, T subunits
considered (blue) are also shown. The profiles ρl,m,n(x), ρ0,0,0(x), and ρ4,4,24(x) are normalized to unit area. (B) Same as panel
A for mRNAs with a 30S subunit bound to the initiation site.
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FIG. S7: Polysome distributions for the model including 30S and 50S ribosomal subunits, where we fixed the maximal number
of allowed translating (T) 30S-50S (70S) pairs per mRNA at n ≤ nmax = 24, and we show mRNA species with l ≤ 4 and m ≤ 4
transiently bound (B) 30S and 50S subunits, respectively. (A) distribution of mRNA species with no 30S subunit bound to the
translation-initiation site, shown as a heat map of the number Nl,m,n =
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0
dxρl,m,n(x) of mRNAs with l B 30S subunits, m

B 50S subunits, and n T 70S pairs in the right half of the cell. The diameter of each dot is proportional to Nl,m,n, where the
largest dot in the plot corresponds to Nl,m,n ∼ 1. (B) Same as panel A for the number N ′l,m,n =

∫ `

0
dxρ′l,m,n(x) of mRNAs with

a 30S subunit bound to the initiation site, where the largest dot in the plot corresponds to N ′l,m,n ∼ 20.

effects strong enough that the second peak shrinks toward the cell poles, thus leaving a dip between the cell center
and the poles—see also section S14.

We estimate the total translation rate in our model with two subunits as

Σ = 2 k70S
off

∞∑

l=0

∞∑

m=0

nmax∑

n=1

n

∫ `

0

dx[ρl,m,n(x) + ρ′l,m,n(x)] (S115)

and the translation efficiency as ε = Σ/N50S tot = 1.94 × 10−2/s, which is practically identical to the efficiency
ε = 1.94× 10−2/s for the model with a single ribosomal unit discussed in section II.

We conclude this section by discussing how our results pertain to in vivo conditions. In this regard, we recall
that all the model parameters discussed in section S10B have been estimated from in vivo observations, except the
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FIG. S8: Translation-rate increases ∂Σ/∂N30S tot and ∂Σ/∂N50S tot due to the addition of a 30S and a 50S subunit, respectively,
as functions of the unbinding rate k′ 30S

off of 30S subunits from the translation-initiation site. The in vitro value of the unbinding
rate k′ 30S

off = 2/s is marked on the top horizontal axis.

binding-unbinding rates of 30S subunits to the translation-initiation site, k′ 30S
on and k′ 30S

off , which have been estimated
in vitro [17]. First, we note that the higher concentration of solvated molecules present in vivo may significantly
affect the binding-unbinding rates: a relevant example is that of DNA-bound proteins, whose dimeric nature allows
for partial dissociation and thus enhanced exchange in the presence of competing proteins in solution [19–21]. It
is natural to hypothesize that the same mechanism might apply to 30S subunits bound to the translation-initiation
site, resulting in a significant increase in the unbinding rate k′ 30S

off in vivo compared to the in vitro value k′ 30S
off = 2/s

discussed in section S10B. Second, using the in vitro values of k′ 30S
on and k′ 30S

off and the solution of Eq. (S73), (S74),
we obtain that the fraction of mRNAs with a 30S subunit bound to the translation-initiation site is ρ′/(ρ+ρ′) ∼ 96 %,
i.e. the vast majority of mRNAs. It follows that the overall translation rate Σ is mostly limited by the number of
50S subunits rather than by the number of 30S subunits. Indeed, let us consider the quantities ∂Σ/∂N30S tot and
∂Σ/∂N50S tot, which represent the translation-rate increase due to the addition of a 30S or a 50S subunit, respectively.
These two translation-rate increases are shown in Fig. S8 as functions of the unbinding rate k′ 30S

off . For values of
the unbinding rate close to the in vitro value, we have ∂Σ/∂N30S tot � ∂Σ/∂N50S tot: in this case, there is a “waste”
of 30S subunits, i.e. the number of 30S subunits could be significantly reduced without significantly affecting the
translation rate. On the other hand, for larger values of k′ 30S

off & 103/s, the two translation-rate increases are similar,
i.e. ∂Σ/∂N30S tot ∼ ∂Σ/∂N50S tot: in this case, the 30S and 50S subunits are co-rate limiting for translation, reflecting
an efficient allocation of cellular resources which is generally expected in vivo [22, 23]. Overall, these observations
provide an example of how our model can be used to relate microscopic parameters such as the binding and unbinding
rates of ribosomal subunits to macroscopic observables such as subunit stoichiometries and ultimately to functional
performance, namely the protein-translation rate.

S11 mRNA degradation by RNAse enzymes

In this section, we incorporate in the two-subunit model above a more realistic description of mRNA degradation
based on the mechanism of mRNA decay suggested by in vivo studies in E. coli : mRNA degradation is triggered by
RNase enzymes, which target the 5′ end of mRNA and compete with ribosomes to bind the transcript and degrade it
[13]. In addition, RNase enzymes have been suggested to localize to the cell membrane [24]: In our one-dimensional
reaction-diffusion model, such a distribution of RNase on the three-dimensional membrane will result in an effective,
one-dimensional distribution of RNase on the long cell axis. To obtain this distribution, we model the cell as a cylinder
with two hemispherical endcaps of radius R, we assume that RNase is uniformly distributed on the membrane, and
we introduce the angle θ at the hemisphere center between a point on the hemisphere and the long cell axis, see
Fig. S9. Given an angle element dθ, we consider corresponding length element dx along the x axis. We consider
the amount of RNase along the θ angle, which is proportional to Rdθ, and we project it on the length element
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x
0 ℓ

FIG. S9: Modeled distribution of RNase on the cell membrane, and its projection on the long cell axis. RNase is uniformly
distributed on the membrane, and it is represented as an orange layer. The angle element dθ describes an arc on the cell
membrane (gray) which is then projected on the x axis, where it corresponds to the length element dx (blue).
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FIG. S10: Steady-state mRNA distributions for the model with 30S and 50S ribosomal subunits and spatially dependent
mRNA decay, where we fixed the maximal number of allowed translating (T) 30S-50S (70S) pairs per mRNA at n ≤ nmax = 24,
and we show mRNA species with l ≤ 4 and m ≤ 4 transiently bound (B) 30S and 50S subunits, respectively. (A) mRNA
profiles for mRNAs with no 30S subunit bound to the translation-initiation site. Total mRNA density ρtot(x) (red) and density
ρl,m,n(x) of mRNAs with l B 30S subunits, m B 50S subunits, and n 70S pairs (gray),where we show only the curves with l,
m, and n even for greater clarity. The density ρ0,0,0(x) of ribosome-free mRNAs (green) and the density ρ4,4,24(x) of mRNAs
with the largest number of B, T subunits considered (blue) are also shown. The profiles ρl,m,n(x), ρ0,0,0(x), and ρ4,4,24(x) are
normalized to unit area. (B) Same as panel A for mRNAs with a 30S subunit bound to the initiation site.

dx. As a result, in the hemispherical region ` − R ≤ x < ` we obtain an effective, one-dimensional RNase density
proportional to Rdθ

dx = 1/
√
σ(x), where σ(x) = π(R sin θ)2

πR2 = `−x
R

(
2− `−x

R

)
is the ratio between the cell cross section

in the hemispherical endcap and the cross section at midcell. In the central region 0 ≤ x < `−R, the effective RNase
density is constant, reflecting the uniform RNase distribution in the surrounding cylindrical cell membrane. The axial
RNase distribution above will result in an effective, space-dependent mRNA degradation rate β(x), which we will
assume to be proportional to the RNase profile:

β(x) =

{
β∗ 0 ≤ x < `−R,
β∗√
σ(x)

`−R ≤ x < `, (S116)

where the constant β∗ has been chosen so as to obtain an average mRNA decay rate (1/`)
∫ `

0
dx β(x) equal to the

uniform rate β = 3× 10−3/s of the model discussed in section II.

In addition, we observe that the hemispherical shape of the cell endcaps results in a reduced cross section of the cell
perpendicular to the long cell axis, and thus in a smaller available volume for both ribosomes and mRNAs at the cell
poles. It follows that in the polar region the available volume will be reduced by an amount equal to σ(x), and we set
vF(x)→ vF(x)σ(x) and vl+m+n(x)→ vl+m+n(x)σ(x).
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FIG. S11: Steady-state ribosomal-subunit concentrations and fluxes for the model with 30S and 50S ribosomal subunits and
spatially dependent mRNA decay. Top: Concentrations c70S(x), c30SB(x), c30S F(x), c′30S(x) of 70S, transiently bound (B) 30S,
free (F) 30S subunits, and of 30S subunits bound to the translation-initiation site, respectively. We also show the concentrations
c50SB(x) and c50S F(x) of B and F 50S subunits, respectively. Bottom: Fluxes J70S(x), J30SB(x), J30S F(x) of 70S, B and F 30S
subunits, and flux J ′30S(x) of 30S subunits bound to the translation-initiation site. The fluxes J50SB(x), J50S F(x) of B and F
50S subunits are also shown. Fluxes are represented along the cell’s long axis depicted in the top panel, the arrow length is
proportional to local ribosome flux, and the arrows in the legends correspond to a flux of 30/s.

Finally, the hemispherical shape of the cell endcaps modifies the binding rates. Indeed, consider a binding rate
kon and the binder concentration c(x) in our one-dimensional model. First, kon and c(x) can be related to the
three-dimensional binding rate and concentration k3D and c3D(~x) by equating the number of bindings per unit time:
konc(x) = k3Dc3D(~x). Second, the one- and three-dimensional concentrations are related by c(x) = c3D(~x)π(R sin θ)2 =
c3D(~x)σ(x)πR2. Putting everything together, we obtain that the binding rates in the model with hemispherical cell
endcaps are given by kon = k∗on/σ(x), where k∗on = k3D/(πR

2) is the binding rate for a cylindrical cell used in section
S10B.

The mRNA densities, ribosomal concentrations and fluxes, and polysome distributions for the model above with
spatially dependent mRNA decay are shown in Figs. S10, S11, and S12, respectively, where the maximal number of
allowed 70S pairs per mRNA has been fixed at nmax = 24.

S12 Results for the late phase of the cell division cycle

In this section we extend the results from the two-subunit model discussed in section S10 to a cell in the late phase
of its division cycle. To achieve this, we manually selected 21 dividing cells with a markedly double-lobed nucleoid,
rescaled their DNA fluorescence profiles to their median cell length of 2 ` ∼ 4.35µm, and estimated the nucleoid
profile along the long cell axis by averaging over multiple cells, see Fig. S13. We chose a density of DNA length
ϕ(x) ∝ 1/{1 + exp[ζ(x/` − 2/3)]}{exp[−3ζ/10(1/2 − x/`)2] + exp[−3ζ/10(1/2 + x/`)2]} to reproduce the average
DNA fluorescence profile in Fig. S13, and we adjusted the model parameters as follows in order to describe the late
phase of the cell cycle. The parameters that are intensive with respect to the cell length, such as the binding and
unbinding rates, the diffusion coefficients, and the mRNA decay rate, are taken to be the same as in the model with
2 ` = 3µm, see section S10B. On the other hand, extensive parameters were obtained by considering the corresponding
parameter values of the model with 2 ` = 3µm, and scaling them linearly with the cell length. As a result, we have
N30S tot = N50S tot = 8.7 × 104, NmRNA = 7.2 × 103, N30S F = N50S F = 2 %Ntot, and N70S = 80 %Ntot. The nucleoid
profile α(x) is proportional to ϕ(x), and its normalization is chosen to achieve the total number of mRNAs above, i.e.
αtot/β = NmRNA. Assuming that both the DNA plectonemic length L and the nucleoid volume V scale linearly with
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FIG. S12: Polysome distributions for the model with 30S and 50S ribosomal subunits and spatially dependent mRNA decay,
where we fixed the maximal number of allowed translating (T) 30S-50S (70S) pairs per mRNA at n ≤ nmax = 24, and we show
mRNA species with l ≤ 4 and m ≤ 4 transiently bound (B) 30S and 50S subunits, respectively. (A) distribution of mRNA
species with no 30S subunit bound to the translation-initiation site, shown as a heat map of the number Nl,m,n =

∫ `

0
dxρl,m,n(x)

of mRNAs with l B 30S subunits, m B 50S subunits, and n T 70S pairs. The diameter of each dot is proportional to Nl,m,n,
where the largest dot in the plot corresponds to Nl,m,n ∼ 1. (B) Same as panel A for the number N ′l,m,n =

∫ `

0
dxρ′l,m,n(x) of

mRNAs with a 30S subunit bound to the initiation site, where the largest dot in the plot corresponds to N ′l,m,n ∼ 20.
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FIG. S13: DNA fluorescence along the long cell axis for E. coli cells in the late phase of the division cycle in glucose minimal
media. Fluorescence for a few representative cells (gray), and resulting average fluorescence over 21 cells in the same phase
of the division cycle with standard error of the mean (red), both normalized to unit area. Inset: Representative cell near late
division phase, with ribosomal protein (green) and nucleoid (red). Scale bar: 1µm.

the cell length, the normalization of the DNA density (1/`)
∫ `

0
dxϕ(x) = L/V is the same as for 2 ` = 3µm.

With this choice of parameters, we solved the reaction-diffusion equations for the two-subunit model by fixing the
maximal number of allowed 70S pairs per mRNA at nmax = 28: the resulting mRNA densities, ribosomal concentrations
and fluxes, and polysome distributions are shown in Figs. S14, S15, and S16, respectively.

S13 Results for different growth rates

In this section we extend the results from the two-subunit model discussed in section S10 to cells with different
growth rates. In particular, we consider cells in glycerol minimal and defined rich media, with growth rates ∼ 0.56/h
and 2.3/h, respectively, whose DNA fluorescence profiles are shown in Fig. S17. We will thus consider a density of
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FIG. S14: Steady-state mRNA distributions in the model with 30S and 50S ribosomal subunits for a long cell in the late
phase of its division cycle, where we fixed the maximal number of allowed translating (T) 30S-50S (70S) pairs per mRNA at
n ≤ nmax = 28, and we show mRNA species with l ≤ 4 and m ≤ 4 transiently bound (B) 30S and 50S subunits, respectively.
(A) mRNA profiles for mRNAs with no 30S subunit bound to the translation-initiation site. Total mRNA density ρtot(x) (red)
and density ρl,m,n(x) of mRNAs with l B 30S subunits, m B 50S subunits, and n 70S pairs (gray), where we show only the
curves with l, m, and n even for greater clarity. The density ρ0,0,0(x) of ribosome-free mRNAs (green) and the density ρ4,4,28(x)
of mRNAs with the largest number of B, T subunits considered (blue) are also shown. The profiles ρl,m,n(x), ρ0,0,0(x), and
ρ4,4,28(x) are normalized to unit area. (B) Same as panel A for mRNAs with a 30S subunit bound to the initiation site.

DNA length ϕ(x) to reproduce the profiles in Fig. S17, and adjust all other parameters to the growth conditions along
the lines of section S12.

In glycerol minimal media, we selected cells in the mid-phase of the cell division cycle as follows. We considered a cell
length 2 ` given by `/`median glycerol = `glucose/`median glucose, where 2 `glucose = 3µm is the typical, medium length of
a cell in the mid-phase of the division cycle in glucose minimal media, see section II. We obtained 2 ` ∼ 3µm, selected
cells with length within 5% of 2 `, rescaled their DNA fluorescence profiles to a cell length of 2 `, and estimated the
nucleoid profile along the long cell axis by averaging over multiple cells, see Fig. S17A. Given that ` is close to `glucose,
and that Figs. S17A and 2 show that the nucleoid profile in glycerol minimal media is close to that in glucose minimal
media, all model parameters in glycerol minimal media will be close to those in glucose minimal media, and so will be
the model predictions.

Proceeding along the lines of the analysis in glycerol minimal media, for defined rich media we obtained 2 ` ∼ 3.5µm,
and we chose a density of DNA length ϕ(x) ∝ 1/{1 + exp[3/4 ζ(x/`− 2/3)]}{exp[−ζ/5(1/2−x/`)2] + exp[−ζ/5(1/2 +
x/`)2]} to reproduce the observed DNA fluorescence profile, compare Fig. S17B. The intensive model parameters
are the same as for 2 ` = 2 `glucose = 3µm, while we estimated the extensive parameters by scaling them with
respect to the cell length as in section S12. We obtained N30S tot = N50S tot = 7 × 104, NmRNA = 5.8 × 103,
N30S F = N50S F = 2 %Ntot, N70S = 80 %Ntot. In addition, the normalization of the mRNA-synthesis profile α(x) ∝ ϕ(x)

is given by αtot = βNmRNA, while the normalization of the DNA density (1/`)
∫ `

0
dxϕ(x) = L/V is the same as for

2 ` = 2 `glucose. With this choice of parameters, we solved the reaction-diffusion equations for the two-subunit model
by fixing the maximal number of allowed 70S pairs per mRNA at nmax = 28: the resulting mRNA densities, ribosomal
concentrations and fluxes, and polysome distributions are shown in Figs. S18, S19, and S20, respectively.

S14 Model with no transiently bound ribosomes

In this section we disallow both B 30S and B 50S subunits as follows: First, we set k30S
on /k30S

off = k50S
on /k50S

off = 0.
Second, we solve Eqs. (S73) and (S74) by setting N70S = 98 %Ntot, to take account of the increased number of 70S
pairs due to the absence of B subunits.

With this choice of parameters, we solve the reaction-diffusion equations (S90), (S91), (S100), and (S101). Given
that there are no B 30S nor B 50S subunits, the only nonzero mRNA densities and mRNA numbers are those with
l = m = 0, i.e. ρ0,0,n(x), ρ′0,0,n(x), N0,0,n and N ′0,0,n. In Fig. S21 we show the resulting mRNA profiles, the total
mRNA densities, and the mRNA numbers, for both mRNAs with and without a 30S subunit bound to the translation-
initiation site, while in Fig. S22 we show the concentrations and fluxes of ribosomal subunits. Overall, these results
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FIG. S15: Steady-state ribosomal-subunit concentrations and fluxes in the model including 30S and 50S ribosomal subunits
for a long cell, in the late phase of its division cycle. Top: Concentrations c70S(x), c30SB(x), c30S F(x), c′30S(x) of 70S, transiently
bound (B) 30S, free (F) 30S subunits, and of 30S subunits bound to the translation-initiation site, respectively. We also show
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and F 50S subunits are also shown. Fluxes are represented along the cell’s long axis depicted in the top panel, the arrow length
is proportional to local ribosome flux, and the arrows in the legends correspond to a flux of 30/s.
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FIG. S16: Polysome distributions in the model including 30S and 50S ribosomal subunits for a long cell in the late phase
of its division cycle, where we fixed the maximal number of allowed translating (T) 30S-50S (70S) pairs per mRNA at n ≤
nmax = 28, and we show mRNA species with l ≤ 4 and m ≤ 4 transiently bound (B) 30S and 50S subunits, respectively. (A)
distribution of mRNA species with no 30S subunit bound to the translation-initiation site, shown as a heat map of the number
Nl,m,n =

∫ `

0
dxρl,m,n(x) of mRNAs with l B 30S subunits, m B 50S subunits, and n T 70S pairs. The diameter of each dot

is proportional to Nl,m,n, where the largest dot in the plot corresponds to Nl,m,n ∼ 2. (B) Same as panel A for the number
N ′l,m,n =

∫ `

0
dxρ′l,m,n(x) of mRNAs with a 30S subunit bound to the initiation site, where the largest dot in the plot corresponds

to N ′l,m,n ∼ 30.
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FIG. S17: DNA fluorescence along the long cell axis for E. coli in glycerol minimal and defined rich media. (A) Glycerol
minimal media: fluorescence for a few representative cells (gray) and resulting average fluorescence over 81 cells with standard
error of the mean (red), both symmetrized and normalized to unit area. Inset: representative cell grown in glycerol minimal
media, with ribosomal protein (green) and nucleoid (red). Scale bar: 1µm. (B) Same as panel A for defined rich media, averaged
over 43 cells.
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FIG. S18: Steady-state mRNA distributions for the model including 30S and 50S ribosomal subunits for cells in defined rich
media with growth rate ∼ 2/h, compare Fig. S17B, where we fixed the maximal number of allowed translating (T) 30S-50S
(70S) pairs per mRNA at n ≤ nmax = 28, and we show mRNA species with l ≤ 4 and m ≤ 4 transiently bound (B) 30S and
50S subunits, respectively. (A) mRNA profiles for mRNAs with no 30S subunit bound to the translation-initiation site. Total
mRNA density ρtot(x) (red) and density ρl,m,n(x) of mRNAs with l B 30S subunits, m B 50S subunits, and n 70S pairs (gray),
where we show only the curves with l, m, and n even for greater clarity. The density ρ0,0,0(x) of ribosome-free mRNAs (green)
and the density ρ4,4,28(x) of mRNAs with the largest number of B, T subunits considered (blue) are also shown. The profiles
ρl,m,n(x), ρ0,0,0(x), and ρ4,4,28(x) are normalized to unit area. (B) Same as panel A for mRNAs with a 30S subunit bound to
the initiation site.

confirm those including B subunits. An important feature distinguishing the existence from the absence of B ribosomes
is the ribosome efficiency: without B ribosomes, this efficiency is ε = 2.39× 10−2/s, which is ∼ 23% higher than the
efficiency including B ribosomes, compare Section S10D. Put simply, as the total number of ribosomal subunits is
conserved in this comparison, the inclusion of transient ribosomal binding reduces the number of 30S and 50S subunits
that can form translating 70S pairs, thus lowering the ribosome efficiency. In addition, Fig. S21 shows that there is
an average number of ∼ 12 subunits, i.e. 30S and 70S, per mRNA. This average mRNA occupancy is smaller than
that obtained including B subunits in section S10D: The absence of B ribosomes thus implies that excluded-volume
effects are slightly weaker, and that the dip in the total mRNA profiles in Fig. S18 is no longer present in Fig. S21.
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FIG. S19: Steady-state ribosomal-subunit concentrations and fluxes in the model including 30S and 50S ribosomal subunits
for cells in defined rich media with growth rate ∼ 2/hr, compare Fig. S17B. Top: Concentrations c70S(x), c30SB(x), c30S F(x),
c′30S(x) of 70S, transiently bound (B) 30S, free (F) 30S subunits, and of 30S subunits bound to the translation-initiation site,
respectively. We also show the concentrations c50SB(x) and c50S F(x) of B and F 50S subunits, respectively. Bottom: Fluxes
J70S(x), J30SB(x), J30S F(x) of 70S, B and F 30S subunits, and flux J ′30S(x) of 30S subunits bound to the initiation site. The
fluxes J50SB(x), J50S F(x) of B and F 50S subunits are also shown. Fluxes are represented along the cell’s long axis depicted
in the top panel, the arrow length is proportional to local ribosome flux, and the arrows in the legends correspond to a flux of
30/s.
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FIG. S20: Polysome distributions for the model with 30S and 50S ribosomal subunits for cells in defined rich media with
growth rate ∼ 2/h, compare Fig. S17B, where we fixed the maximal number of allowed translating (T) 30S-50S (70S) pairs per
mRNA at n ≤ nmax = 28, and we show mRNA species with l ≤ 4 and m ≤ 4 transiently bound (B) 30S and 50S subunits,
respectively. (A) distribution of mRNA species with no 30S subunit bound to the translation-initiation site, shown as a heat
map of the number Nl,m,n =

∫ `

0
dxρl,m,n(x) of mRNAs with l B 30S subunits, m B 50S subunits, and n T 70S pairs. The

diameter of each dot is proportional to Nl,m,n, where the largest dot in the plot corresponds to Nl,m,n ∼ 1. (B) Same as panel
A for the number N ′l,m,n =

∫ `

0
dxρ′l,m,n(x) of mRNAs with a 30S subunit bound to the initiation site, where the largest dot in

the plot corresponds to N ′l,m,n ∼ 20.



33

0

1

2

3

4

5

0 0.25 0.5 0.75 1
0

2,000

4,000

ρ
0
,0
,n
(x
)
(1
/
µ
m
)

ρ
to

t
(x
)
(1
/
µ
m
)

x/ℓ

A

0

1

2

3

4

5

0 0.25 0.5 0.75 1
0

2,000

4,000

ρ
0
,0
,n
(x
)
(1
/
µ
m
)

ρ
to

t
(x
)
(1
/
µ
m
)

x/ℓ

A

0

100

0 8 16 nmax

N
0
,0
,n

n

0

1

2

3

4

5

0 0.25 0.5 0.75 1
0

2,000

4,000

ρ
′ 0
,0
,n
(x
)
(1
/
µ
m
)

ρ
′ to

t
(x
)
(1
/
µ
m
)

x/ℓ

B

0

1

2

3

4

5

0 0.25 0.5 0.75 1
0

2,000

4,000

ρ
′ 0
,0
,n
(x
)
(1
/
µ
m
)

ρ
′ to

t
(x
)
(1
/
µ
m
)

x/ℓ

B

0

100

0 8 16 nmax

N
′ 0
,0
,n

n

ρ0,0,n(x)
ρ0,0,0(x)
ρ0,0,28(x)

ρtot(x)
ρ′0,0,n(x)
ρ′0,0,0(x)
ρ′0,0,28(x)

ρ′tot(x)

FIG. S21: Steady-state mRNA distributions for the model including 30S and 50S ribosomal subunits, with no transiently bound
(B) 30S and 50S subunits. The maximal allowed number of 70S pairs per mRNA is nmax = 28. (A) mRNA profiles for mRNAs
with no 30S subunit bound to the translation-initiation site. Total mRNA density ρtot(x) (red) and density ρ0,0,n(x) of mRNAs
with n 70S pairs (gray). The density ρ0,0,0(x) of ribosome-free mRNAs (green) and the density ρ0,0,28(x) of mRNAs with the
largest number of 70S pairs considered (blue) are also shown. The profiles ρ0,0,n(x), ρ0,0,0(x), and ρ0,0,28(x) are normalized to
unit area. Inset: distribution N0,0,n =

∫ `

0
dxρ0,0,n(x) of mRNAs with n 70S pairs in the right half of the cell as a function of n.

(B) Same as panel A for mRNAs with a 30S subunit bound to the initiation site.
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FIG. S22: Steady-state ribosomal-subunit concentrations and fluxes for the model including 30S and 50S ribosomal subunits,
with no transiently bound (B) 30S and 50S subunits. Top: Concentrations c70S(x), c30S F(x) of 70S and free (F) 30S subunits,
concentration c′30S(x) of 30S subunits bound to the translation-initiation site, and concentration c50S F(x) of F 50S subunits, for
the right half of the cell. Bottom: Fluxes J70S(x), J30S F(x) of 70S and F 30S subunits, flux J ′30S(x) of 30S subunits bound to
the initiation site, and flux J50S F(x) of F 50S subunits. Fluxes are represented along the cell’s long axis depicted in the top
panel, the arrow length is proportional to local ribosome flux, and the arrows in the legends correspond to a flux of 5/s.

S15 Force balance between nucleoid and polysomes determines nucleoid size

In this section we will calculate the force exerted by polysomes and F ribosomes on the nucleoid as well as the
entropy of compaction of the nucleoid, and the resulting force-balance equation will allow us to determine the nucleoid
size.

For the sake of clarity, let us first focus on F ribosomes. We compute the total force exerted by the nucleoid on F
ribosomes, and the total force by F ribosomes on the nucleoid will necessarily be equal and opposite. To begin, we
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observe that the F-ribosome current (S3) is the sum of two terms which can be interpreted as follows: The first term,

JD(x) = −DFvF(x)
dcF(x)

dx
, (S117)

is the current due to the Brownian diffusion of F ribosomes from high- to low-concentration regions, and it is thus
proportional to the concentration gradient, with a space-dependent diffusion coefficient DFvF(x). The second term,

JDNA(x) = DFcF(x)
dvF(x)

dx
, (S118)

is the current due to the force locally exerted by the nucleoid on F ribosomes; it is proportional to the gradient of
vF(x), thus it represents the tendency of the nucleoid to push ribosomes from regions with lower available volume
to regions with higher available volume. The current JDNA(x) is thus the result of a net force f(x) applied by the
nucleoid on each F ribosome at position x, with the force and the current related by

JDNA(x) = µ(x)f(x)cF(x), (S119)

where the mobility µ(x) is related to the Brownian diffusion coefficient DFvF(x) by the Einstein relation

DFvF(x) = µ(x) kB T, (S120)

where kB is Boltzmann’s constant and T is the temperature [25]. From Eqs. (S118), (S119), and (S120) we obtain
f(x) = kB T

vF(x)
dvF(x)
dx . Multiplying f(x) by the local F ribosome concentration, integrating with respect to x, and

reversing the sign of the force, we obtain the total force exerted by F ribosomes in the right half of the cell on the
nucleoid, which reads −kB T

∫ `
0
dx cF(x)

vF(x)
dvF(x)
dx . Finally, the combined force exerted by both F ribosomes and polysomes

on the nucleoid is obtained by incorporating the mRNA concentrations ρm,n(x) and available volumes vm+n(x) in the
expression above, and summing over all mRNA species. We obtain

Fin = −kB T

∫ `

0

dx

[
cF(x)

vF(x)

dvF(x)

dx
+

mmax∑

m=0

nmax∑

n=0

ρm,n(x)

vm+n(x)

dvm+n(x)

dx

]
(S121)

= −kB T

∫ `

0

dx

{
cF(x)

vF(x)

dvF(x)

dx
+ exp

(
kB

oncF(x)

kB
off

) nmax∑

n=0

[
1

vR(x)

dvR(x)

dx
+

(
kB

oncF(x)

kB
off

+ n

)
1

vF(x)

dvF(x)

dx

]
ρn(x)

}
,

where the subscript ‘in’ denotes a force directed towards the inner part of the cell, and in the second line we used Eqs.
(S20) and (S25), which are valid in the rapid-equilibrium limit, to compute the sum with respect to m. Note that Fin

depends on the DNA profile ϕ(x) through the available volumes vF(x) and vR(x), compare Eqs. (S9) and (S11).

The force exerted by F ribosomes and polysomes results in the compaction of the nucleoid [8, 26]. At mechanical
equilibrium, this force must balance the “spring” force exerted by the compressed nucleoid, which can be estimated
in terms of the entropy of a self-avoiding DNA polymer. We approximate this entropy S by treating the plectonemic
chromosomal DNA as a sequence of N joined segments, each with length ξ, confined in a volume V , yielding the
confinement dependence of the entropy [27]

S = −kB
π2

2

ξ2N2ν

V 2/3
, (S122)

where ξ = 200 nm is twice the estimated persistence length of the plectoneme [8], the total number of monomers
N = L/ξ = 7.5× 103 is obtained as the ratio between the total plectoneme length L and the segment length ξ, and

ν = 0.592 (S123)

is the exponent describing the mean end-to-end distance for a self-avoiding polymer [27]. Given that the exponent
(S123) results from a numerical simulation where the polymer is represented as a self-avoiding walk on a cubic lattice
[27], the estimate (S122) applies to self-avoiding polymers whose thickness is comparable to the segment length. It
follows that for a DNA plectoneme the expression (S122) should be, in principle, modified to account for the difference
between the thickness and segment length. However, in what follows we will show that Eq. (S122) quantitatively
reproduces the observed nucleoid size, thus showing that the thickness correction above is negligible.

Proceeding along the lines of Eq. (S7), we assume that the DNA is confined in a cylindrical region at midcell: We
denote the length of this region by 2x0, and the DNA profile is ϕ(x) ∝ 1/{1+exp[ζ(x−x0)/`]}, where ϕ is normalized
according to the condition (S8) on the total DNA length. The volume V in Eq. (S122) can thus be estimated as
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FIG. S23: Steady-state mRNA and polysome distributions for the model including the force balance between nucleoid and
polysomes. Total mRNA density ρtot(x) (red) and density ρm,n(x) of mRNAs with m transiently bound (B) ribosomes and n
translating (T) ribosomes for 0 ≤ m ≤ mmax = 8 and 0 ≤ n ≤ nmax = 24 (gray). The density ρ0,0(x) of ribosome-free mRNAs
(green) and the density ρ8,24(x) of mRNAs with the largest number of T and B ribosomes considered (blue) are also shown.
The profiles ρm,n(x), ρ0,0(x), and ρ8,24(x) are normalized to unit area. Inset: distribution of mRNA species, shown as a heat
map of the number Nm,n of mRNAs with m B ribosomes and n T ribosomes in the right half of the cell. The maximal number
of T ribosomes per mRNA used in our model, nmax = 24, is indicated.

V = 2πR2x0, and the outward entropic force exerted by the nucleoid on F ribosomes and polysomes in each half of
the cell is obtained from the derivative of the entropy as

Fout =
1

2
T
∂S

∂x0

= kB T
π2

6

ξ2N2ν

(2πR2)2/3x
5/3
0

, (S124)

where the factor 1/2 in the first line results from the fact that we compute the outward force in one half of the cell.

In what follows we will thus use Eqs. (S121) and (S124), combine the resulting force-balance equation

Fin + Fout = 0 (S125)

with the reaction-diffusion Eqs. (S121) and (S124), and solve self-consistently for ρn(x), cF(x), and for the nucleoid
size x0. The results are shown in Figs. S23 and S24, where we show mRNA concentrations and polysome distributions,
the nucleoid profile ϕ(x), the calculated value of x0/` ≈ 0.5, as well as the F ribosome concentrations and fluxes.

Finally, we provide a simple analytical estimate for the nucleoid size as a function of the total number of mRNAs,
and other relevant parameters. Given that the ribosome-to-mRNA ratio is much larger than unity, compare section
II, we assume that mRNAs at the poles are fully excluded from the nucleoid by virtue of having a sufficient number
of bound ribosomes: we thus approximate the nucleoid profile in one half of the cell as a step function with the step
at x = x0, i.e. vm+n(x) is equal to zero for 0 ≤ x < x0 and to unity for x0 ≤ x ≤ 1. Given that the size of an F
ribosome is significantly smaller than that of a typical polysome, F ribosomes can easily penetrate the nucleoid, thus
the pressure that they exert on the nucleoid is much smaller than the force that polysomes exert on the nucleoid:
Indeed, in Eq. (S121) we denote the contribution to Fin given by F ribosomes and mRNAs by Fin F and Fin mRNA,
respectively, and for the reference conditions of Figs. 2-4, we have Fin F/(Fin F + Fin mRNA) ∼ 2 × 10−2. We thus
neglect the contribution by F ribosomes in the first line of Eq. (S121), and we obtain

Fin = −kB T

mmax∑

m=0

nmax∑

n=0

ρout
m,n

∫ `

0

dx
dvm+n(x)

dx

= −kB Tρ
out
tot , (S126)

where in the first line we used the fact that at equilibrium ρm,n(x)/vm+n(x) is independent of x, compare section S2,
and we denoted by ρout

m,n the concentration of mRNA species m, n outside the nucleoid, and by

ρout
tot =

NmRNA

2(`− x0)
(S127)
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FIG. S25: Nucleoid size as a function of number of mRNAs, as predicted by force balance between nucleoid and polysomes. We
plot the ratio x0/` between the nucleoid width and cell length as a function of the total number of mRNAs in the cell, from the
solution of Eq. (3), which relies on the simplifying assumption that mRNAs cannot penetrate the nucleoid. The mRNA number
NmRNA = 5 × 103 used for our analysis in glucose minimal media and the predicted nucleoid size x0/` ≈ 0.5 are indicated with
a dot.

the total mRNA concentration outside the nucleoid. Combining Eqs. (S124), (S125), (S126), and (S127) we obtain
Eq. (3), which can be solved numerically for the nucleoid size x0. The resulting values for the nucleoid size x0 are
shown in Fig. S25, where we plot x0/` as a function of the total mRNA number NmRNA keeping all other parameters
in Eq. (3) fixed.
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