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A GEOMETRIC APPROACH TO INELASTIC COLLAPSE∗

Bernard Chazelle,†Kritkorn Karntikoon,† and Yufei Zheng†

Abstract. We show in this note how to interpret logarithmic spiral tilings as one-
dimensional particle systems undergoing inelastic collapse. By deforming the spirals ap-
propriately, we can simulate collisions among particles with distinct or varying coefficients
of restitution. Our geometric constructions provide a strikingly simple illustration of a widely
studied phenomenon in the physics of dissipative gases: the collapse of inelastic particles.

1 Introduction

Collisions in a granular gas preserve momentum but not kinetic energy. Interactions are
dissipative, with the velocities of two colliding particles governed by a nonnegative matrix
( p qq p ), for p ≤ 1/2 and p+ q = 1. When the coefficient of restitution, defined as r = 1− 2p,
is less than 1, the collisions are inelastic and the particles may collapse to a single point in a
finite amount of time: this intriguing phenomenon of inelastic collapse was first investigated
in one dimension by Bernu & Mazighi [2] and McNamara & Young [6]. Further studies and
extensions to a larger number n of particles were given in [1, 2, 3, 4, 5, 6, 7, 8]. In the case
n = 3, inelastic collapse requires r < 7 − 4

√
3 [4, 6, 7], while in general the requirement

is that n & 2(ln 2)/(1 − r). Matching constructions for large n exist but entail intricate
eigenvalue estimates [1, 2]. We rederive these bounds by simple geometric means, and we
also extend them to other types of collisions. Our particle systems are derived from one-
dimensional projections of spiral tilings of a disk (see §2). Using different spirals allows the
presence of particles with different coefficients of restitution (see §3). The notable feature
of our arguments is to be entirely geometric.

2 The Inelastic Collapse of Identical Particles

We describe the dynamics of n identical particles moving towards the center of a disk and
colliding along the way. The one-dimensional system is derived by projection to a line. We
begin with the geometry of the system, which is a quadrilaterial tiling of the complex unit
disk by logarithmic spirals.

2.1 Spiral tilings

Fix 0 < λo < 1 and let Cα =
{
λ
|ϕ−α|
o eiϕ |ϕ ∈ R

}
. The curve Cα consists of two logarithmic

spirals running clockwise and counterclockwise from the point eiα. The family {Cα}0≤α<2π
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forms two foliations of the unit complex disk D (minus the origin). Whereas no pair of
spirals going in the same direction meet, the other pairs intersect infinitely often along the
diameter bisecting their starting points. Fix an integer n > 2 and write θ = π/n. We rectify
the spiral Cα by creating the vertices λ|kθ−α|o eikθ for all k ∈ Z; then we join consecutive pairs
by straightline segments, which produces the polygonal spiral CRα in Figure 1(i).

Figure 1: (i) The spirals Cα and CRα , for α = 0 and θ = π/3; (ii) an (n, λ)-tiling for a system of
2n = 12 colliding particles.

The collection of polygonal curves
{
CR2jθ | 0 ≤ j < n

}
forms an infinite sequence of

nested concentric similar 2n-gons Pk := λeiθPk−1, where λ = λθo and P0 is the outer “star"
shown in Figure 1(ii): its vertices eilθλ(1−(−1)l)/2 run in counterclockwise order (0 ≤ l < 2n).
To ensure that the shape is indeed a star, every other vertex of P0 needs to be reflex,
which requires that λ < cos θ. This partitions the polygon P0 into an infinite collection of
similar convex quadrilaterals, which forms an (n, λ)-tiling. We define the fundamental ratio
ρ := ae/ac of the (n, λ)-tiling and justify its name by noting that it is independent of the
polygon Pk used to define it. Referring to Figure 1(ii), we observe that ac = 1− λ cos θ and
ae = λ cos θ − λ2 and that, for any 0 < λ < cos θ,

ρ =
λ(cos θ − λ)
1− λ cos θ

and 0 < ρ < 1 . (1)

2.2 Particles traveling in a disk

Place two particles at each one of the n outer vertices of P0 and set them in motion along
the two incident edges with a speed equal to bc. We show below that the particles will
zigzag toward the center (as in the trajectory c, b, e, f, g, . . .) provided that the coefficient of
restitution r is equal to ρ < 1, where r = 1 − 2p; recall that, whenever two particles with
velocities u, v ∈ C collide, they bounce away from each other and update their velocities as
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follows: (
u
v

)
←

(
p q
q p

)(
u
v

)
; (2)

where 0 < p < q < 1 and p+ q = 1.

Lemma 1. The 2n particles travel along the edges of the tiling through pairwise collisions
if and only if the fundamental ratio ρ is equal to the coefficient of restitution r. If each
particle spends one unit of time on the boundary ∂P0, then it travels on ∂Pk for a duration
of δk, where δ = λ2/ρ. The total travel time is bounded if and only if λ < 1

cos θ − tan θ, in
which case it is equal to 1/(1− δ).

Proof. For convenience, we tilt the tiling by θ to put b and f on the X-axis (Figure 2).
Two particles travel from c and h to b with velocity u and v respectively. The first one
bounces at b and proceeds with velocity u′ = pu + qv. Since ux = vx and uy = −vy, we
have u′x = ux and u′y = −ruy; therefore |slope(u′)| = r|slope(u)|. By similarity, bc and ef
are parallel; hence |slope(u′)| = r|slope(ef)|. The consistency of the particle collision with
the tiling means that u′ should be parallel to the segment be. The condition thus becomes
|slope(be)| = r|slope(ef)|; hence r = mf/mb = ρ.

Figure 2: How colliding particles follow the edges of the (n, λ)-tiling. The coefficient of restitution
must be equal to the ratio ρ = mf/mb.

If the particle travels from c to b in one unit of time, then uy = ac and u′y =
−ruy = −rac. It follows that the time δ for the particle to bounce from b to e is equal to
me/|u′y| = 1

rme/ac = λ2/r. More generally, δ is the ratio between the time spent on be
and that spent on cb. By symmetry, the same ratio δ holds between the travel times along
any two consecutive edges on the trajectory. This follows from the fact that the travel time
along an edge is itself a ratio length/speed and that, from one boundary ∂Pk to the next,
∂Pk+1, the ratio between consecutive lengths is independent of k and the same is true of
consecutive speeds. This implies a travel time of δk on ∂Pk. Convergence implies that δ < 1,
which, by (1), means that λ must be less than the smaller root of λ2 cos θ− 2λ+cos θ (since
the larger one exceeds 1). This gives us the inequality λ < (1− sin θ)/ cos θ. Note that this
condition is not implied by the previous requirement that 0 < λ < cos θ.
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By (1), setting r = ρ for any λ < cos θ produces a valid particle system traveling
inward through the (n, λ)-tiling. Of course, the interesting question is whether this holds
for any value of the coefficient of restitution. We address this issue below in the context of
one-dimensional systems.

2.3 One-dimensional collapse

The real parts of the 2n particles’ positions in the unit disk D describe a one-dimensional
particle system. To see why, notice the linear transition (2) governing collisions in the
complex plane applies to both the real and the complex parts of the particle velocities,
and constant velocities in the complex plane result in constant velocities along the real
axis. It is useful to distinguish between the positive particles, those numbered 1, . . . , n
counterclockwise around D, from the others, the negative particles. The name comes from
the fact that the positive (resp. negative) particles always remain in the upper (resp. lower)
complex halfplane. Each positive particle j is naturally paired with the negative particle
2n + 1 − j, since their trajectories are conjugate. Particles can only collide with other
particles of the same sign or with their conjugates; in the latter case, the collision does not
alter the motion along the real axis. This shows that the real-axis motion of the positive
particles alone constitutes a bona fide one-dimensional collision system over n particles with
the same coefficient of restitution.

Theorem 1. Fix any integer n > 2, and write θ = π/n and r0 = (1 − sin θ)/(1 + sin θ).
Given any positive coefficient of restitution r ≤ r0, there is a scaling factor λ such that
the line projection of the (n, λ)-tiling forms the trajectory of a one-dimensional n-particle
system exhibiting inelastic collapse. The collapse time is r/

(
r − λ2

)
for any r < r0 and

λ = q cos θ − (q2 cos2 θ − r)1/2, where q = (1 + r)/2.

Proof. Setting r = ρ in (1) yields the quadratic equation

λ2 − 2q(cos θ)λ+ r = 0; (3)

hence λ = q cos θ ±
√
q2 cos2 θ − r . The roots need to be real; hence sin θ ≤ p/q or,

equivalently, r ≤ r0. We verify that 0 < λ < cos θ, as required of a valid (n, λ)-tiling, which
is a consequence of

√
q2 cos2 θ − r < p cos θ. By Lemma 1, the collapse time is infinite if

δ = λ2/r ≥ 1 and equal to
∑

k≥0 δ
k = 1/(1 − δ) = r/(r − λ2) if δ < 1. The smaller root

of (3), if strictly smaller, always satisfies the latter condition while the larger one never does.
This follows from the fact that λ−λ+ = r, q cos θ ≥

√
r, and λ+ ≥ q cos θ; hence λ2+ ≥ r.

In our construction, the upper bound on the coefficient of restitution is (1−sin θ)/(1+
sin θ). As n goes to infinity, this gives us n & 2π/(1 − r), which matches the bounds
from [1, 2]. For n = 3, our construction rediscovers the classic bound of 7− 4

√
3 [4, 6, 7].

3 Distinct Coefficients of Restitution

Our construction does not require a fixed scaling λ. Instead of placing the vertices on
circles of radius λk for k ≥ 0, we can use an arbitrary decreasing radius sequence (λk)k≥0,
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with λ0 = 1. We assign a coefficient of restitution rk for the collisions at radius λk; the
dependency on k might reflect a gain or loss of elasticity after repeated collisions. For
notational convenience, let p = (1− r1)/2, λ = λ1, and µ = λ2. By reference to Figure 3, we
now kick a particle from a to b with velocity u = b − a (using complex numbers), and one
from c to b with velocity v = b− c. Post-collision, the first particle travels from b to d with
velocity u′ = pu+ (1− p)v = σ1(d− b), for some σ1 > 0; hence b− c+ p(c− a) = σ1(d− b).
Since a = 1, b = λeiθ, c = e2iθ, and d = µ, we divide the equation by eiθ and find that

λ− eiθ + 2ip sin θ = σ1
(
µe−iθ − λ);

therefore, λ− cos θ = σ1(µ cos θ − λ) and r1 = σ1µ. More generally, for k > 0, we replace λ
and µ by λk and λk+1, respectively, and we scale the relations by λk−1:

σk =
λk−1 cos θ − λk
λk − λk+1 cos θ

and rk =
cos θ − λk/λk−1
λk/λk+1 − cos θ

. (4)

Of course, we retrieve the relation r = ρ in (1) in the case λk = λk corresponding to having
fixed coefficients of restitution.

Figure 3: An irregular tiling with λk = 0.95kλ0.

3.1 Finite-time inelastic collapse

From the relation u′ = σ1(d − b), we see that the time spent crossing bd is precisely 1/σ1.
More generally, 1/σk is the time spent on the (k + 1)-st star polygon, given a unit travel
time on the previous polygon. It follows that the total travel duration is the sum of all the
products of the form 1/σ1 · · ·σk, which is

1 +

∞∑
k=1

k∏
j=1

λj − λj+1 cos θ

λj−1 cos θ − λj
. (5)
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By projection onto the real line, finite-time inelastic collapse is guaranteed if

λk+1 ≥
1 + c

cos θ
λk − cλk−1,

for some fixed c < 1. Again, we can check that, if λk = λk, then bounded travel time means
that λ < 1

cos θ − tan θ, as claimed in Lemma 1.

3.2 Red-blue particles

Consider two species of particles, blue and red. The blue particles collide together with the
coefficient of restitution r1 and the same is true of the red ones. Particles of different colors,
however, collide with the coefficient r2. Arrange the particles as usual, with the sequence
blue, blue, red, red, blue, blue, red, red, etc. Set the scaling factor λk = µj if k = 2j, and
λk = λµj if k = 2j + 1. By (4), we choose

r1 =
µ(cos θ − λ)
λ− µ cos θ

and r2 =
λ cos θ − µ
1− λ cos θ

.

Each factor in (5) is of the form

λj − λj+1 cos θ

λj−1 cos θ − λj
=

{
µ(1− λ cos θ)/(λ cos θ − µ) = µ/r2 if j is even
(λ− µ cos θ)/(cos θ − λ) = µ/r1 else .

The travel time is finite if µ2 < r1r2, which is

µ(λ− µ cos θ)(1− λ cos θ) < (cos θ − λ)(λ cos θ − µ).
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