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Abstract— The problem of preserving privacy when a multi-
variate source is required to be revealed partially to multiple
users is modeled as a Gray-Wyner source coding problem with
K correlated sources at the encoder andK decoders in which
the kth decoder, k = 1, 2, ..., K, losslessly reconstructs thekth

source via a common link of rateR0 and a private link of rate
Rk. The privacy requirement of keeping each decoder oblivious
of all sources other than the one intended for it is introduced
via an equivocation constraint Ek at decoder k such that the
total equivocation summed over all decodersE ≥ ∆. The set of
achievable ({Rk}

K

k=1, R0,∆) rates-equivocation (K + 2)-tuples
is completely characterized. Using this characterization, two
different definitions of common information are presented and
are shown to be equivalent.

I. I NTRODUCTION

Information sources often need to be made accessible to
multiple legitimate users simultaneously. However, not all
data from the source should be accessible to all users. For
example, a computer retailer may need to share the annual
revenue of all computers sold with all the vendors but share
vendor-specific sale information only with a particular vendor.
Similarly, a business consulting firm may share general data
about a specific market with all clients associated with that
market but share client-specific strategies with only that client.
In both cases, one can view sharing the public (shared by all)
information via a common link and the private information
via a dedicated link. Maximizing the rate over the common
link allows the information source (retailer/consulting firm) to
share the most allowed publicly with all clients; however, the
privacy guarantee requires that no client has access to private
data of the other clients. This paper develops an abstract model
and a methodology to study this problem.

We model the problem of revealing partial source informa-
tion to multiple users while keeping the data specific to each
user private from other users as a Gray-Wyner source coding
problem with K correlated sources at the encoder andK
decoders in which thekth decoder,k = 1, 2, ...,K, losslessly
reconstructs thekth source via a common link of rateR0 and
a private link of rateRk. We model the privacy requirement
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of keeping each decoder oblivious of all sources other than
the one intended for it via an equivocation constraintEk at
decoderk such that the total equivocation summed over all
decodersE ≥ ∆.

Since privacy is an important aspect of this problem, it is
natural to understand the maximal total equivocation that is
achievable if the rate on the common link is set to the maxi-
mum achievable. On the other hand, imposing the constraint
of maximal total equivocation may lead to perhaps a different
limit on the maximal rate on the common link. In this paper,
we show that both requirements, which are formally different
definitions, yield the same formulation for the maximal rateon
the common link. In keeping with the literature, this common
rate is defined as thecommon information.

The common information of two correlated random vari-
ables has been defined independently by Wyner [1] and Gács-
Körner [2]. Wyner’s definition of common information as
applied to the two-user Gray-Wyner system (without privacy
constraints) is the minimum rate on the common link such
that the total information shared across all three links (one
common and two private) does not exceed the source entropy.
On the other hand, the Gács-Körner common information
is the maximal entropy of a random variable that two non-
interacting terminals can agree upon when one terminal has
access toXn and the other toY n where X and Y are
correlated random variables. For two correlated variablesX
andY , the Wyner common informationCW , the Gács-Körner
common informationCGK , and the mutual information of
the two variables are related asCGK ≤ I(X ;Y ) ≤ CW .
Recently, the authors in [3] have generalized Wyner’s def-
inition of common information toK variables, henceforth
referred to asB (X1, X2, . . . , XK) for K correlated variables.
While the definition naturally generalizes the two variable
common information, the resulting common information does
not satisfy a non-increasing property withK as expected.

In this paper, we present two different definitions of com-
mon information: the first is the maximal rate on the common
link for which the total equivocation is maximized, and the
second is the maximal rate on the common link such that each
user losslessly reconstructs its intended source at its entropy.
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Fig. 1. The generalized Gray-Wyner source network.

We show that both definitions lead to the same formulation
for common informationC (X1, X2, . . . , XK). We present
many properties ofC (X1, X2, . . . , XK) and specifically show
thatC (X1, X2, . . . , XK) ≤ B (X1, X2, . . . , XK). To the best
of our knowledge this is the first generalization of common
information that preserves the non-increasing property and one
whose form can be viewed as a natural generalization of the
Gács-Körner common information toK variables.

The paper is organized as follows. In Section II, we
present the system model. In Section III, we present the
rate-equivocation region, develop a formulation for common
information in two different ways, and present key properties.
In Section IV, we compare our formulation with theK-
variable generalization of Wyner’s common information in [3]
and illustrate with examples. We conclude in Section V.

II. SYSTEM MODEL

We consider the following source network. A centralized
encoder observesK discrete, memoryless correlated sources,
{Xn

k }
K
k=1 and is interested in communicating sourceXk to

decoderk in a lossless manner. The resources available at the
encoder comprise two types of noiseless rate-limited links.
There areK links of finite rate from the encoder to each of
the K decoders and there is a common link of finite rate to
all decoders. Figure 1 shows the source broadcasting network
in consideration.

An (n, {Mk}
K
k=1,M0) code for this model is defined by

(K + 1) encoding functions described as

f0 : Xn
1 × . . .Xn

K → {1, . . . ,M0}, (1)

fk : Xn
1 × . . .Xn

K → {1, . . . ,Mk}, k = 1, . . . ,K, (2)

andK decoding functions,

gk : {1, . . . ,M0} × {1, . . . ,Mk} → Xn
k , k = 1, . . . ,K.

We define the probability of error at decoderk as

Pe,k = Pr(Xn
k 6= gk(f0(X

n
), fk(X

n
))),

whereX
n
, {Xn

k }
K
k=1. We define the equivocation at decoder

k as
Ek =

1

n
H(X

n
\Xn

k |f0(X
n
), fk(X

n
)),

and the total equivocation asE =
∑K

k=1 Ek.
Remark 1: Informally,Ek captures the average uncertainty,

and hence privacy achievable, about the remaining(K − 1)
unintended sources at decoderk.

An ({Rk}
K
k=1, R0,∆) rate-equivocation(K + 2)-tuple

is achievable for the source network if there exists an
(n, {Mk}

K
k=1,M0) code such that,

M0 ≤ 2nR0 , (3)

Mk ≤ 2nRk , k = 1, . . . ,K (4)

Pe,k ≤ ǫk, k = 1, . . . ,K (5)

E ≥ ∆− ǫ. (6)

We denote byR the region of all achievable({Rk}
K
k=1, R0,∆)

rate-equivocation(K + 2)-tuples.

III. M AIN CONTRIBUTIONS

A. Rate-Equivocation Region

We state our first result in the following theorem. The proof
is presented in the appendix.

Theorem 1:The regionR of achievable rates-equivocation
(K + 2)-tuples for the source network shown in Figure 1 is
the union of all(k + 2)-tuples({Rk}

K
k=1, R0,∆) that satisfy

R0 ≥ I(X1, X2, . . . , XK ;W ), (7)

Rk ≥ H(Xk|W ), k = 1, 2, . . . ,K, (8)

∆ ≤
K
∑

k=1

H
(

X|W,Xk

)

(9)

where the union is over all auxiliary random variablesW
arbitrarily correlated with(X1, X2, . . . , XK), and whereX ≡
(X1, X2, . . . , XK).

Remark 2:The rate regionRG−W of the Gray-Wyner net-
work without additional equivocation constraints is the region
of (K + 1) rate tuples that satisfy (7) and (8).

B. Common Information ofK Correlated Variables

We now present two definitions for the common information
of K correlated random variables.

Definition 1: The common information ofK correlated
random variables,C1, is the maximal value ofR0, such that
({Rk}

K
k=1, R0,∆max) ∈ R, where

∆max,
K
∑

k=1

H(X|Xk).

Definition 2: The common information ofK correlated
random variables,C2, is the maximal value ofR0, such that
({H(Xk)−R0}

K
k=1, R0) ∈ RG−W .

We next state our second result.
Theorem 2:C1 andC2 are related as follows:

C1 = C2 = max
W−Xk−X̄\Xk,k=1,2,...,K

I (X1X2 . . . XK ;W ) .

(10)
Proof: From Definition 1, the achievable equivocationE

must satisfy

E ≥ ∆max=
K
∑

k=1

H(X|Xk)



On the other hand, any achievable({Rk}
K
k=1, R0, E) ∈ R also

satisfies

E ≤
K
∑

k=1

H(X|W,Xk).

We therefore, have the following constraint:

K
∑

k=1

H(X|W,Xk) ≥

K
∑

k=1

H(X|Xk)

which is equivalent to the followingK constraints:

I(X \Xk;W |Xk) = 0, k = 1, . . . ,K. (11)

Therefore, from Definition 1,C1 is equal to the maximalR0

subject to (11), which implies that

C1 = max
W−Xk−X\Xk,k=1,...,K

I(X1, . . . , XK ;W ).

From Definition 2, C2 is defined as the maximalR0

such thatRk + R0 = H(Xk), for k = 1, . . . ,K, and
({Rk}

K
k=1, R0) ∈ RG−W . We therefore have the following

constraints fork = 1, . . . ,K:

H(Xk) = Rk +R0 (12)

≥ H(Xk|W ) + I(X1, . . . , XK ;W ). (13)

These constraints are equivalent to

I(X \Xk;W |Xk) = 0, k = 1, . . . ,K.

Therefore,C2 can be written as follows:

C2 = max
W−Xk−X\Xk,k=1,...,K

I(X1, . . . , XK ;W ).

C. Common Information: Properties

We will now develop some properties of common infor-
mation ofK correlated random variables defined in Theorem
2.

Proposition 1: The common information ofK random vari-
ables,C (X1, X2, . . . , XK), is monotonically decreasing inK.

Proof: Consider an arbitraryW satisfying the Markov
chain relationship

W −Xk −X \Xk, k = 1, . . . ,K. (14)

First consider the following sequence of inequalities:

I(X1, . . . , XK−1, XK ;W )

= I(X1, . . . , XK−1;W ) + I(XK ;W |X1, . . . , XK−1) (15)

≤ I(X1, . . . , XK−1;W ) + I(X2, . . . , XK ;W |X1) (16)

= I(X1, . . . , XK−1;W ) (17)

where (17) follows from the Markov chain relationshipW −
X1− (X2, . . . , XK). Now consider the following sequence of

inequalities:

C(X1, . . . , XK)

= max
W−Xk−X\Xk, k=1,...,K

I(X1, . . . , XK ;W ) (18)

≤ max
W−Xk−X\Xk, k=1,...,K

I(X1, . . . , XK−1;W ) (19)

≤ max
W−Xk−X\(Xk,XK), k=1,...,(K−1)

I(X1, . . . , XK−1;W )

(20)

= C(X1, . . . , XK−1) (21)

where (19) follows from (17) and (20) follows from the fact
that the Markov chain relationshipW −Xk −X \Xk implies
the Markov chain relationshipW −Xk−X \(Xk, XK). Since
the random variableXK could be chosen arbitrarily from the
set (X1, . . . , XK), (21) shows that the common information
is monotonically decreasing inK.

Proposition 2: C (X1, X2, . . . , XK) is upper bounded
as

C (X1, X2, . . . , XK) ≤ min
i6=j,i,j=1,2,...,K

I (Xi;Xj) . (22)

Proof: We consider an arbitraryW satisfying (14), and
upper bound the following mutual information:

I(X1, . . . , XK ;W ) = I(Xi;W ) + I(X \Xi;W |Xi) (23)

= I(Xi;W ) (24)

≤ I(Xi;Xj ,W ) (25)

= I(Xi;Xj) + I(Xi;W |Xj) (26)

= I(Xi;Xj) (27)

where (24) follows from the Markov chain conditionW −
Xi−X\Xi, and (27) follows from the Markov chain condition
W−Xj−Xi. The choice of(i, j) was arbitrary, and therefore,
the common information is upper bounded by the minimum
of pairwise mutual information among all pairs, i.e.,

C(X1, . . . , XK) ≤ min
i6=j

I(Xi;Xj).

IV. COMPARISON AND EXAMPLES

In [1] Wyner defines the common information of two
correlated random variables(X1, X2) as

B(X1, X2) = inf
X1→W→X2

I(X1, X2;W ).

One interpretation of this common information can be ob-
tained from the Gray-Wyner source network. The common
informationB(X1, X2) of two random variables is given as
the smallest value ofR0 such that(R1, R2, R0) ∈ RG−W

and R0 + R1 + R2 ≤ H(X1, X2). Recently, this notion of
common information was generalized toK correlated random
variables in [3]. The common information,B(X1, . . . , XK),
of K correlated random variables, as defined in [3], is given by
smallest value ofR0 such that({Rk}

K
k=1, R0) ∈ RG−W and

R0+
∑K

i=1 Rk ≤ H(X1, . . . , XK). The common information
B(X1, . . . , XK) is given as

B(X1, . . . , XK) = inf I(X1, . . . , XK ;W )



where the infimum is over all distributionsp(w, x1, . . . , xK)
that satisfy

∑

w∈W

p(w, x1, . . . , xK) = p(x1, . . . , xK) (28)

p(x1, . . . , xK |w) =
K
∏

k=1

p(xk|w). (29)

It was shown in [3] thatB(X1, . . . , XK) is monotonically
increasing inK. We believe that any intuitively satisfactory
measure of common information should satisfy the property
that the common information should decrease as the number
of random variables increases. In Proposition 1, we showed
that our measure of common information indeed satisfies this
property.

We next prove a property ofB(X1, . . . , XK) that helps us in
comparing it with our common informationC(X1, . . . , XK).

Proposition 3: B (X1, X2, . . . , XK) is lower bounded as
follows:

max
i6=j

I (Xi;Xj) ≤ B (X1, X2, . . . , XK) . (30)

Proof: To prove Proposition 3, consider an arbitraryW
satisfying the constraints (28)-(29) and the following sequence
of inequalities:

I(X1, . . . , XK ;W ) ≥ I(Xi;W ) (31)

≥ I(Xi;Xj) (32)

where (32) follows from the Markov chain relationshipXi −
W −Xj , and from the data processing inequality. In arriving
at (32), the choice of(i, j) was arbitrary, and therefore we can
maximize over all pairs(i, j) such thati 6= j to get the best
possible lower bound in this manner.

Using Propositions 2 and 3, we have the following:

C(X1, . . . , XK) ≤ min
i6=j

I(Xi;Xj)

≤ max
i6=j

I(Xi;Xj) ≤ B(X1, . . . , XK). (33)

We will now give two examples to illustrate the usefulness of
our definitionC(X1, . . . , XK) overB(X1, . . . , XK).

Example 1:Consider K = 3 random variables
(X1, X2, X3) such thatX1 ∼ Ber(1/2), X2 = X1 ⊕ N ,
whereN ∼ Ber(δ) andX3 is independent of(X1, X2). Since
X3 is independent of(X1, X2), these sources have nothing in
common and we should expect the ‘common information’ to
be zero. Note that for these sources,mini6=j I(Xi;Xj) = 0,
whereasmaxi6=j I(Xi;Xj) = 1− h(δ). Therefore, from (33),
we have

0 ≤ C(X1, X2, X3) ≤ 0 ≤ 1− h(δ) ≤ B(X1, X2, X3),

which implies that C(X1, X2, X3) = 0, whereas
B(X1, X2, X3) > 0 for any δ ∈ (0, 1/2).

Example 2:Consider K = 3 random variables
(X1, X2, X3) such thatX1 = (X0, X1p), X2 = (X0, X2p)
and X3 = (X0, X3p), where (X0, X1p, X2p, X3p)
are all mutually independent. SinceX0 appears to
be the only common part in all three sources, we

should expect the ‘common information’ to be equal
to the entropy of X0. Note that for these sources,
mini6=j I(Xi;Xj) = maxi6=j I(Xi;Xj) = H(X0). Therefore,
from (33), we have

0 ≤ C(X1, X2, X3) ≤ H(X0) ≤ B(X1, X2, X3),

It is straightforward to show that for these sources,

C(X1, X2, X3) = B(X1, X2, X3) = H(X0).
Inspired by the above example, we show the following

interesting property that in some sense relatesC(X1, . . . , XK)
to B(X1, . . . , XK).

Proposition 4: For a set of sourcesX1, X2, . . . , XK that
satisfy

min
i6=j

I(Xi;Xj) = max
i6=j

I(Xi;Xj), (34)

we have

C (X1, X2, . . . , XK) = min
i6=j

I(Xi;Xj) (35)

if B (X1, X2, . . . , XK) = maxi6=j I(Xi;Xj). (36)

Proof: The constraint (34) implies that the mutual
informationI(Xi;Xj) is the samefor all i, j ∈ {1, . . . ,K},
i 6= j. Let us start with aW ∗ that satisfies the infimization
constraints forB(X1, . . . , XK) and yields

B(X1, . . . , XK) = max
i6=j

I(Xi;Xj) (37)

= I(Xi0 ;Xj0), (38)

for somei0 6= j0. For thisW ∗, we have

I(Xi0 ;Xj0) = max
i6=j

I(Xi;Xj) (39)

= I(X1, . . . , XK ;W ∗) (40)

= I(Xi0 ;W
∗) + I(X \Xi0 ;W

∗|Xi0) (41)

≥ I(Xi0 ;Xj0) + I(X \Xi0 ;W
∗|Xi0) (42)

where (42) follows from the fact thatW ∗ satisfies the Markov
relationshipXi0 −W ∗−Xj0 , for all i0 6= j0. In the derivation
of (42), i0 can be chosen arbitrarily due to (34). Therefore,
(42) implies that thisW ∗ also satisfies

I(X \Xi;W
∗|Xi) = 0

for all i = 1, . . . ,K. This in turn implies thatW ∗ serves
as a valid choice in the maximization for evaluation of
C(X1, . . . , XK). Therefore, we obtain the following lower
bound forC(X1, . . . , XK):

C(X1, . . . , XK) = max
W−Xk−X\Xk,k=1,...,K

I(X1, . . . , XK ;W )

(43)

≥ I(X1, . . . , XK ;W ∗) (44)

= max
i6=j

I(Xi;Xj) (45)

= min
i6=j

I(Xi;Xj). (46)

Hence, from Proposition 1, it now follows that
if B(X1, . . . , XK) = maxi6=j I(Xi;Xj), then



C(X1, . . . , XK) = mini6=j I(Xi;Xj). We remark here
that a similar property has been shown forK = 2 by
Ahlswede and Körner in [4].

V. CONCLUDING REMARKS

We have abstracted the problem of privacy in a setting
where a source interacts with multiple users via the Gray-
Wyner source coding problem with additional equivocation
constraints at each user and a total equivocation constraint.
In addition to developing the rate-equivocation region, we
have introduced two definitions of common information ofK
correlated variables and shown them both to have a form that
can be viewed as aK-user generalization of the Gács-Körner
common information (see also [4]).

VI. A PPENDIX: PROOF OFTHEOREM 1

The converse follows by minor modifications of the con-
verse proof for the unconstrained Gray-Wyner problem [5] and
is therefore omitted. We now outline the proof of achievability
for Theorem 1.

Codebook generation: Fix an input distribution
p(w|x1, . . . , xK). Generate 2nI(X1,...,XK ;W ) sequences
according to the distribution

∏n

t=1 p(wt), and index these
sequences aswn(i), for i = 1, . . . , 2nI(X1,...,XK ;W ).
Independently and uniformly bin theXn

k -sequences
in 2nH(Xk|W ) bins, and index these bins as
bk,1, . . . , bk,2nH(X

k
|W ) , for k = 1, . . . ,K.

Encoding scheme: Upon observing the(xn
1 , . . . , x

n
K) se-

quences, the encoder searches for awn sequence that is jointly
typical with these sequences. Using standard arguments (as
in [6]), it can be shown that the encoder can succeed in
finding one suchwn sequence. The encoder sends the index
of thewn sequence on the public link, for which we require
R0 ≥ I(X1, . . . , XK ;W ). It sends the bin index of the source
sequencexn

k on the private link to decoderk, for which we
requireRk ≥ H(Xk|W ).

Decoding: At decoderk, the decoder looks for a uniquexn

in bin bk (received from the private link), that is jointly typical
with thewn sequence received from the public link. It can be
shown that decoderk can reconstructXn

k with a vanishingly
small probability of error. We omit the probability of error
calculation as it follows from the same arguments as in [5].

Equivocation: We show that this coding scheme yields
the total equivocation stated in Theorem 1. LetJ0 denote
the encoder output for the public link and letJk denote
the encoder output for the private link to decoderk, for
k = 1, . . . ,K. For Ek, we have the following sequence of

inequalities:

Ek =
1

n
H(Xn

1 , . . . , X
n
k−1, X

n
k+1, . . . , X

n
K |J0, Jk) (47)

=
1

n
H(X

n
\Xn

k |J0, Jk) (48)

≥
1

n
H(X

n
|J0, Jk)−

1

n
H(Xn

k |J0, Jk) (49)

≥
1

n
H(X

n
|J0, Jk)− ǫk,n (50)

=
1

n
H(X

n
, J0, Jk)−

1

n
H(J0, Jk)− ǫk,n (51)

≥
1

n
H(X

n
)−

1

n
H(J0, Jk)− ǫk,n (52)

≥
1

n
H(X

n
)−

1

n
H(J0)−

1

n
H(Jk)− ǫk,n (53)

≥ H(X1, . . . , XK)− I(X1, . . . , XK ;W )−H(Xk|W )

− ǫk,n (54)

= H(X1, . . . , XK |W,Xk)− ǫk,n (55)

= H(X|W,Xk)− ǫk,n, (56)

where (50) follows from Fano’s inequality, and (54)
follows from the facts thatH(J0) ≤ log(|J0|) =
nI(X1, . . . , XK ;W ), and H(Jk) ≤ log(|Jk|) =
nH(XK |W ), for k = 1, . . . ,K. Therefore, we have
that

E =

K
∑

k=1

Ek ≥

K
∑

k=1

H(X |W,Xk)− ǫ.

Hence, this coding scheme yields an equivocation of∆ =
∑K

k=1 H(X|W,Xk).

REFERENCES

[1] A. D. Wyner, “The common information of two dependent random
variables,” IEEE Trans. Inform. Theory, vol. 21, no. 2, pp. 163–179,
March 1975.
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