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Managing Price Uncertainty in Prosumer-Centric Energy Trading:
A Prospect-Theoretic Stackelberg Game Approach

Georges El Rahi, S. Rasoul Etesami, Walid Saad, Narayan Mandayam, and H. Vincent Poor

Abstract— In this paper, the problem of energy trading be-
tween smart grid prosumers, who can simultaneously consume
and produce energy, and a grid power company is studied.
The problem is formulated as a single-leader, multiple-follower
Stackelberg game between the power company and multiple
prosumers. In this game, the power company acts as a leader
who determines the pricing strategy that maximizes its profits,
while the prosumers act as followers who react by choosing the
amount of energy to buy or sell so as to optimize their current
and future profits. The proposed game accounts for each
prosumer’s subjective decision when faced with the uncertainty
of profits, induced by the random future price. In particular,
the framing effect, from the framework of prospect theory
(PT), is used to account for each prosumer’s valuation of its
gains and losses with respect to an individual utility reference
point. The reference point changes between prosumers and
stems from their past experience and future aspirations of
profits. The followers’ noncooperative game is shown to admit
a unique pure-strategy Nash equilibrium (NE) under classical
game theory (CGT) which is obtained using a fully distributed
algorithm. The results are extended to account for the case of
PT using algorithmic solutions that can achieve an NE under
certain conditions. Simulation results show that the total grid
load varies significantly with the prosumers’ reference point
and their loss-aversion level. In addition, it is shown that the
power company’s profits considerably decrease when it fails to
account for the prosumers’ subjective perceptions under PT.

I. INTRODUCTION

One key enabler of smart grid energy trading and man-

agement schemes is the presence of prosumers, i.e., smart

grid customers capable of generating and storing their own

energy. Indeed, the notable increase in penetration of solar

photovoltaic (PV) panels and storage devices at the prosumer

side of the grid will lead to novel demand-side energy

management (DSM) schemes that will help alleviate the

extremely expensive peak consumption hours and match

consumption demand to the intermittent renewable energy

supply of the grid [1].

A number of recent works [2]–[4] have studied the role of

storage devices in grid energy management. For example, the

authors in [2] propose a storage scheduling and management
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model, with the goal of minimizing peak hour consumption.

In [4], consumer-based storage scheduling is proposed in

an attempt to match energy consumption to the expected

power output of a central wind generation unit. In addition,

the work in [3] studies the topic of optimal offerings for

wind power generators, through the application of a common

storage device. Moreover, the work in [5] adopts a stochas-

tic optimization and robust optimization approach to study

demand response for residential appliances under uncertain

real-time prices.

Game-theoretic methods have been widely applied in the

existing DSM literature, given the coupled interactions be-

tween prosumers as discussed in [4], [6]–[10]. For instance,

the authors in [6] propose a load scheduling technique with a

dynamic pricing strategy related to the total consumption of

the grid. More particularly, a number of works [7]–[10] have

used the framework of Stackelberg games in order to study

the hierarchical interactions between the power company and

the grid’s consumers. For example, the authors in [7] propose

a Stackelberg game approach to deal with demand response

scheduling under load uncertainty based on real-time pricing

in a residential grid. Similarly, the authors in [8] and [10] use

a Stackelberg game approach between one power company

and multiple users, competing to maximize their profits,

with the goal of flattening the aggregate load curve. On the

other hand, the authors in [9] propose a Stackelberg game

approach between company and consumers, while studying

the impact that a malicious attacker could have, through

the manipulation of pricing data. In addition, the works in

[11] and [12] have used a Stackelberg game approach to

characterize the demand response of consumers with respect

to the retail price. In particular, the authors adopted stochastic

and robust optimization methods to study energy trading with

uncertain market prices. Moreover, a Stackelberg game for

energy sharing management of microgrids with photovoltaic

prosumers has been proposed in [13].

The main drawback of these works [4], [6]–[13] is the

assumption that consumers are fully rational and will thus

choose their strategy in accordance to classical game theory

(CGT). In practice, as observed by behavioral experimental

studies [14], human players can significantly deviate from the

rational principles of CGT, when faced with the uncertainty

of probabilistic outcomes. In this regard, the framework

of prospect theory (PT) [14] has been extensively applied

to model the irrational behavior of real-life individuals in

an uncertain decision making scenario [15]. In fact, the

authors in [16] and [17] discuss a storage management

framework where the owner can choose to store or sell
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energy, while accounting for its subjective perceptions, using

a PT framework. In [18], a PT framework is used for DSM to

identify optimal customer participation time. However, these

works [16], [18], [19] do not typically study the conflicting

hierarchical interaction between the prosumers and the power

company and instead focus on the consumer side of the

grid. These works also fail to account for the uncertainty

associated with variable or dynamic pricing, which is ex-

pected to play a major role in DSM [1]. Even though the

combination of Stackelberg games and PT has been applied

in other research fields including wireless communication

[20], [21], security games [22], [23], and transport theory

[24], such combination has not been addressed in demand-

side energy management problems and from an algorithmic

perspective. In particular, these earlier works mainly focus

on the weighting effect of PT while here, we consider the

framing effect.

A. Contributions

The main contribution of this paper is a novel hierarchical

framework for optimizing energy trading between prosumers

and a grid power company, while explicitly taking into

account the uncertainty of the future energy price. Our work

differs from most of the existing literature on energy trading

[2]–[13], [16]–[24] in several aspects: 1) It models the

behavior of prosumers who can both generate and consume

energy under price uncertainty and using a Stackelberg game,

2) It provides a simple distributed algorithm with polynomial

convergence rate to the unique Stackelberg equilibrium point,

and 3) It captures the subjective decision making behavior

of the prosumers using framing effect in PT.

In particular, we formulate a single-leader, multiple-

follower Stackelberg game, in which the power company,

acts as a leader who declares its pricing strategy in or-

der to maximize its profits, to which prosumers, acting as

followers, react by choosing their optimal energy bid. We

define a prosumer’s utility function that captures the profits

resulting from buying/selling energy at the current known

price, as well as the uncertain future profits, originating

from selling stored energy. In contrast to CGT, we develop a

PT framework that models the behavior of prosumers when

faced with the uncertainty of future profits. In particular, we

account for each prosumer’s valuation of its gains and losses,

compared to its own individual utility evaluation perspective,

as captured via PT’s framing effect [14], by introducing

a utility reference point. This reference point represents a

prosumer’s anticipated profits and originates from previous

energy trading transactions and future aspirations of profits,

which can differ in between prosumers [15]. We show

that, under CGT, the followers’ noncooperative game admits

a unique pure strategy Nash equilibrium (NE). Moreover,

under PT, we derive a set of conditions under which the

pure strategy NE is shown to exist. In particular, we propose

distributed algorithms that allow the prosumers and power

company to reach an equilibrium under both CGT and PT.

Simulation results show that the total grid load, under PT,

decreases for certain ranges of prosumers’ reference points

and increases for others, when compared to CGT. The results

also highlight the impact of this variation on the power

company’s profits, which significantly decrease, when it fails

to account for the prosumers’ subjective perceptions under

PT.

The rest of this paper is organized as follows. Section II

presents the system model and formulates the Stackelberg

game model. In section III, we present the game solution

under CGT and provide a distributed algorithm which can

quickly reach the Stackelberg solution of the game. We

extend our results to games under PT in Section IV. Section

V presents our simulation results, and finally conclusions are

drawn in Section VI.

II. SYSTEM MODEL

Consider the set N of N grid prosumers. Each prosumer

n ∈ N owns an energy storage unit of capacity Qmax,n, and

a solar PV panel which produces a daily amount of energy

Wn. Each prosumer has a known load profile Ln that must

be satisfied and an initial stored energy Qn available in a

storage device, originating from an excess of energy at a

previous time.

In our model, the power company requires prosumers

to declare the amount of energy that they will be buying

or selling at the start of the period as done in day-ahead

scheduling models used in DSM literature such as in [4] and

[6]. We let xn be the amount of energy declared by prosumer

n, where xn > 0 implies an amount of energy that will be

bought and xn < 0 will represent the amount of energy that

will be sold. xn = 0 indicates that no energy is traded.

The price of selling or buying one unit of energy is related

to the total energy declared by all prosumers. In our pricing

model, each prosumer is billed based on the amount that

is declared. We assume that the prosumers are truthful and

have no incentive to deviate, given the possible penalties that

will be incurred. Next, as done in [18], [25], and [26], we

choose a so-called fairness pricing for buying/selling energy

which is proportional to the prosumers’ aggregate demand

and given by:

ρ (xn,x−n) = ρbase + α
∑

n∈N
xn, (1)

where ρbase and α are design parameters set by the power

company. For simplicity, we assume that α is fixed and

positive, and that the company only varies ρbase to control the

amount of energy bough/sold by the prosumers.1 In (1), x−n

is a vector that represents the amount of energy declared by

all the prosumers in the set N \ {n}. The price of unit of

energy ρ is regulated and must be within a range [ρmin, ρmax].
Here, we assume that the structure of this pricing function

is pre-determined by the utility company and announced a

priori to all the prosumers. This function is chosen based on

1Note that in this function we can also allow the utility company to adjust
α. While this does change our analysis from the prosumers’ perspective,
however, it gives an extra freedom for the utility company to maximize its
utility at a cost of solving a more complex optimization problem.



the idea that a higher aggregate demand by the prosumers

must naturally increase the energy prices.

The future price of energy is perceived to be unknown

by the prosumers, given the uncertainty related to future

solar energy generation and the pricing strategy of the power

company. The future price of energy is thus modeled by

a random variable ρf . For simplicity, we assume that ρf
follows a uniform distribution [ρmin, ρmax]. However, most of

our analysis can be extended to the case in which ρf follows

more general distributions.

The set of possible values of xn for each prosumer n is

Xn = {xn ∈ R : xn,min ≤ xn ≤ xn,max}. xn,min = −Wn −
Qn + Ln is a prosumer’s maximum sold/minimum bought

energy. xn,max = −Wn−Qn+Ln+Qmax,n, is the maximum

energy that prosumer n can purchase. For a chosen energy

bid xn, the prosumer’s utility function will be:

Un (xn,x−n, ρbase) = −
(

ρbase + α(xn +
∑

m∈N\n
xm)

)

xn

+ (Wn +Qn − Ln + xn) ρf .

(2)

In (2), the first term represents the revenue/cost of prosumer

n at the current time, while the second term represents

the future monetary value associated with unsold energy. In

particular, Wn + Qn − Ln + xn is the amount of energy

that prosumer n will have in its storage in the future.

The prosumers’ actions are coupled through the energy

price and they will thus be competing to maximize their

respective revenues. On the other hand, the power company

will purchase (sell) the energy bough (sold) by the prosumers

in the energy market at the current market clearing price ρmar.

Given the current market price, the power company’s utility

function is given by:

Upc(x, ρbase) =

(

ρbase + α
∑

n∈N

xn

)

∑

n∈N

xn − ρmar

∑

n∈N

xn,

(3)

where the first term represents the revenue that the utility

company earns by selling (buying)
∑

n xn energy units to

prosumers at the price of ρbase +α
∑

n xn, while the second

term is the cost of purchasing
∑

n xn energy units at the

clearing price of ρmar from the energy market.

The power company’s revenues are clearly affected by

the prosumers and their energy bids. On the other hand,

since the prosumers react to the power company’s choice

of ρbase, the prosumers’ utility is directly affected by the

power company’s action. We thus model the energy trading

problem as a hierarchical Stackelberg game [27] with the

power company acting as leader, and the prosumers acting

as followers.

A. Stackelberg game formulation

We formulate a single-leader, multiple-follower Stack-

elberg game [27], between the power company and the

prosumers. The power company (leader), will act first by

choosing ρbase to maximize its profits. The prosumers, having

received the power company’s pricing strategy, will engage

in a noncooperative game. In fact, the final price of energy is

proportional to the grid’s total load, to which each prosumer

contributes. We first formulate the prosumers’ problem under

CGT as follows:

max
xn

UCGT
n (x, ρbase) :=Eρf

[Un (xn,x−n, ρbase)] (4)

s.t xn ∈ [xmin,n, xmax,n] .

In (4), prosumer n attempts to maximize its expected

profits, given the actions of other prosumers and the power

company. The previous formulation assumes all prosumers to

be rational expected utility maximizers. Moreover, the power

company’s problem will be:

max
ρbase

Upc(x, ρbase), s.t ρbase ∈ [ρmin, ρmax] . (5)

To solve this game, one suitable concept is that of a Stackel-

berg equilibrium (SE) as the game-theoretic solution of our

model.

Definition 1. A strategy profile (x∗, ρ∗base) is a Stackelberg

equilibrium if it satisfies the following conditions:

UCGT
n (x∗

n,x
∗
−n, ρ

∗
base) ≥ UCGT

n (xn,x
∗
−n, ρ

∗
base) ∀n ∈ N ,

min
x

∗

Upc(x
∗, ρ∗base) = max

ρbase

min
x

∗

Upc(x
∗, ρbase), (6)

where x∗
n is the solution to problem (4) for all prosumers in

N , and ρ∗base is the solution to problem (5).

Remark 1. Note that in Definition 1, in the case where

the followers’ problem admits a unique solution x∗,

the second condition in (6) reduces to Upc(x
∗, ρ∗base) =

maxρbase
Upc(x

∗, ρbase).

It is worth noting that our Stackelberg formulation is based

on a static game. However, our solution to this problem is

based on the notion of a repeated game approach in which

the prosumers frequently interact with the utility company in

order to find their equilibrium strategies. This is practically

important as it is a step toward analyzing more complex

senarios in which the smart grid’s environment dynamically

changes from one time instant to the other. For instance, one

can consider a multi-stage game where for each prosumer

n, Wn and Ln dynamically vary with time t, while Qn is

affected by Wn, Ln, and action xn taken at previous and

current times. As such, to capture this dynamic nature, our

proposed static game model can be expanded to a dynamic

stochastic game [28]–[30] with transition equations describ-

ing the evolution of the states, corresponding to Wn(t),
Ln(t), and Qn(t), with respect to time depending on the

control inputs x(t) := [x1(t), ..., xn(t)] and previous states.

In this case, the state of the game at time t consists of

Wn(t), Ln(t), and Qn(t) for prosumer n at stage t. The

chosen optimal action by each player at time t, i.e. control

inputs, would depend on the state at which the game is. In

this respect, our static game analysis here provides analytical

and algorithmic solution approaches through which optimal

strategies, for the prosumers and energy company, can be



obtained at the stationary states of the stochastic game.2

In other words, our repeated single stage game analysis

can be viewed as a solution to the multi-stage stochastic

game which has reached its stationary condition (i.e., at the

stationary state, it appears as if one is repeatedly playing the

same stationary game). In particular, the optimal stationary

strategies can be extracted from our static game analysis

under the stationarity condition.

III. GAME SOLUTION UNDER CGT

The analysis under CGT assumes that all prosumers are

expected utility maximizers. Thus, we seek to find a solution

that solves both problems (4) and (5), while satisfying

(6). First, we start by solving the follower’s problem while

assuming the the leader’s action is fixed to ρbase. We now

introduce the following notations:

θ := ρbase −
ρmax + ρmin

2
, x̄−n :=

∑

k 6=n

xk,

δn := (Wn +Qn − Ln)
ρmax + ρmin

2
, n ∈ N .

Here, the expected utility of prosumer n ∈ N will be:

UCGT
n (xn, x̄−n, ρbase) = −αx2

n − (θ + αx̄−n)xn + δn.
(7)

Next, we denote by xr
n the best response of player n,

which is the solution of problem (4), given that all the other

players choose a specific strategy profile x−n. The following

theorem explicitly characterizes the best response of each

prosumer n.

Theorem 1. The best response of player n is given by:

xr
n(x̄−n) =











− θ
2α − x̄−n

2 if − θ
2α − x̄−n

2 ∈ [xn,min, xn,max],

xn,min if − θ
2α − x̄−n

2 ≤ xn,min,

xn,max else.

(8)

Proof. See Appendix I.

In fact, one can rewrite the best responses of all the players

in Theorem 1 in a combined single matrix form. We define

A to be an n× n matrix with all entries equal to - 12 except

the diagonal entries which are 0, i.e., Aij = − 1
2 if j 6= i, and

Aij = 0, otherwise. Let a = − θ
2α1 where 1 is the vector of

all 1’s. Then, we can rewrite (8) for all players as

xr = ΠΩ

[

a+Ax
]

, (9)

where ΠΩ[·] is the projection operator on the n dimensional

cube Ω :=
∏

n∈N
[xn,min, xn,max] in R

n. Our analysis will

later use this closed-form representation of the best response

dynamics.

2In a stochastic game framework, a stationary strategy consists of
obtaining the optimal strategy for a certain state regardless of the history
of the game or the particular time instant at which the game is played.

Algorithm 1 The relaxation learning algorithm

Given that at time step t = 1, 2, . . . players have requested
(x1(t), . . . , xn(t)) units of energy, at the next time step player n ∈ N
requests xn(t + 1) energy units given by

xn(t+ 1) = (1− 1√
t
)xn(t) +

1√
t
xr
n(t),

where xr
n(t) denotes the best response of player n, given the actions of

all other players x−n(t) at time step t.

A. Existence and uniqueness of the followers’ NE under

CGT

One key question with regard to the prosumers’ game is

whether such a game admits a pure-strategy NE. This is

important as it allows us to stabilize the demand market in an

equilibrium where each prosumer is satisfied with its payoff,

as shown next.

Theorem 2. The prosumers’ game admits a unique pure-

strategy NE.

Proof. See Appendix II.

B. Distributed learning of the followers NE

Next, we propose a distributed learning algorithm which

converges in a polynomial rate to the unique pure-strategy

NE of the prosumers’ game as formally stated in Algorithm

1. At each stage of Algorithm 1, prosumer n selects its next

action as a convex combination of its current action and its

best response at that stage. One of the main advantages of

Algorithm 1 is that it can be implemented in a completely

distributed manner as each prosumer needs only to know

its own actions and best response function, and does not

require any information about others’ actions. Moreover, the

prosumers do not need to keep track of their actions history

which is the case in many other learning algorithms. Note

that Algorithm 1 can be viewed as a special case of more

general algorithms known as relaxation algorithms [31].
The idea behind Algorithm 1 is that each player initially

puts more weight on its best response in order to explore

faster other possible actions with better payoffs. As the

time elapses, the prosumers’ actions become closer to their

optimal actions and, hence, the prosumers exploit their

current actions by putting more weight on their own actions.

While the exploration coefficient 1√
t

can be replaced by other

possible coefficients, we have chosen 1√
t

to optimize the

speed of convergence. Finally, note that the implementation

of Algorithm 1 is made possible by a bidirectional com-

munication between the power company and the prosumers,

provided by the smart meters. In fact, at each iteration, the

prosumer would send the power company its current strategy,

and would receive the updated energy price.
Next, we consider the following definition which will be

handy in proving our main convergence result in this section:

Definition 2. Given an n players game with utility functions

{un(·)}n∈N and any two action profiles x and y, the

Nikaido-Isoda function associated with this game is given

by Ψ(x,y) :=
∑

n∈N [un(yn, x−n)− un(xn, x−n)].



The Nikaido-Isoda function measures the social income

due to selfish deviation of individuals. This function admits

several key properties. As an example we always have

Ψ(x,x) = 0, ∀x. Moreover, given a fixed action profile x,

Ψ(x,y) is maximized when yn, equals the best response

of player n with respect to x−n. In particular, for such a

best response action profile y, Ψ(x,y) = 0 if and only if x

is a pure strategy NE of the game. While the Nikaido-Isoda

function has been used earlier to prove convergence of certain

dynamics to their equilibrium points [31], [32], however it

usually fails to provide an explicit convergence rate. In the

following theorem we leverage the Nikaido-Isoda function

associated to the prosumers’ game to measure the distance

of outputs of Algorithm 1 from the Nash equilibrium, and

hence obtain an explicit bound on the convergence rate of

this algorithm.

Theorem 3. If every prosumer updates its energy request

bid based on Algorithm 1, then their action profiles will

jointly converge to an pure strategy NE. After t steps the

joint actions will be an ǫ-NE where ǫ = O(t−
1
4 ) (i.e., the

convergence rate to an NE is O(t−
1
4 )).

Proof. See Appendix IV.

As it has been shown in Appendix II, the prosumers’ game

is a concave game [33], which is known to admit a distributed

learning algorithm for obtaining its NE points (see, e.g.,

[33, Theorem 10]). However, in general obtaining distributed

learning algorithms with provably fast convergence rates to

NE points in concave games is a challenging task. Therefore,

one of the main advantages of Theorem 3 is that it establishes

a polynomial convergence rate for the relaxation Algorithm 1

leveraging rich structure of the prosumers’ utility functions.

Remark 2. In fact, one of the advantages of our formulation

compared to similar models such as [12] is its computa-

tional tractability as it admits polynomial time distributed

algorithms for finding its equilibrium points, regardless of

the number of players in the game (Theorem 3).

C. Finding the Stackelberg Nash equilibrium under CGT

While Algorithm 1 achieves a unique pure strategy for the

prosumers’ game under CGT, our final goal is to obtain the

Stackelberg equilibrium of the entire game. For this purpose,

we leverage Algorithm 1 using one of the following methods

to construct the SE of the entire market under CGT:

1) Method 1: The Stackelberg equilibrium of the game

can be found by solving the following non-linear optimiza-

tion problem. Let x∗(ρbase) be the unique NE obtained by

the followers when the power company’s action is ρbase. Note

that x∗(ρbase) is a well-defined continuous function of ρbase.

First, the power company solves the following optimization

problem a priori to find its unique optimal action ρ∗base and

announces it to the prosumers. The problem is defined as:

max
ρbase

Upc(x
∗(ρbase), ρbase)

s.t. x∗(ρbase) = ΠΩ[a+Ax∗(ρbase)]. (10)

In fact, one can characterize the unique pure-strategy NE

of the prosumers’ game given in (10) in more detail. Since

at equilibrium every player must play its best response in

(9), therefore, an action profile x∗ is an equilibrium if and

only if we have x∗ = ΠΩ[a + Ax∗], which means x∗ =
argmin‖z − (a + Ax∗)‖2, z ∈ Ω . Since the former is a

convex optimization problem, we can write its dual as

max D(µ,ν) := −1

4
‖µ− ν‖2+(µ− ν)′(a+Ax∗)−µ′

1

µ,ν ≥ 0,

where µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn) are the dual

variables corresponding to the constraints zn ≤ xn,max and

zn ≥ xn,min, respectively. We denote the optimal solution

of the dual by (µ∗,ν∗). Since, we already know that x∗

is the optimal solution of the primal, due to the strong

duality the values of the primal and dual must be the same,

i.e., D(µ∗,ν∗) = ‖(I − A)x∗ − a‖2. Moreover, the KKT

conditions must hold at the optimal solution [34], which,

together with D(µ∗,ν∗) = ‖(I − A)x∗ − a‖2 provide

the following system of 3n equations with 3n variables

(x∗,µ∗,ν∗) which characterizes the equilibrium point x∗
n

using dual variables:

D(µ∗,ν∗) = ‖(I −A)x∗ − a‖2,
µ∗
n(x

∗
n − xmax,n) = 0,

ν∗n(x
∗
n − xmin,n) = 0, ∀n ∈ N . (11)

Solving these equations can be used to derive the unique

pure-strategy NE of the followers’ game.
We next present a second method, which does not require

the power company to solve the non-linear inequalities in

(11). In addition, the second method allows the players to

reach the SE quickly and efficiently in 1/ǫ5 steps and will

be mainly used in our simulation results in Section V.
2) Method 2: Given any small ǫ > 0 for which the power

company and the prosumers want to find their ǫ-SE with

precision ǫ (i.e., no one can gain more than ǫ by deviating),

the company partitions its action interval and sequentially

announces prices ρbase = kǫ, k = 1, . . . , ⌊ 1
ǫ
⌋. For each such

price ρbase, prosumers obtain their ǫ-equilibrium in no more

than 1
ǫ4

steps, and the company must repeat this process at

most 1
ǫ

steps and choose the action that maximized its utility.

The running time in this case will be 1
ǫ5

to find an ǫ-SE.
Our analysis thus far assumed that all prosumers are

fully rational and their behavior can thus be modeled using

CGT. However, this assumption might not hold , given

that prosumer are humans that can have different subjective

valuations on their uncertain energy trading payoffs. Next,

we extend our result using PT [14] to model the behavior

of prosumers when faced with the unknown future price of

energy and thus the actual value of the stored energy.

IV. PROSPECT THEORETIC ANALYSIS

In a classical game-theoretic framework, an individual

evaluates an objective expected utility. However, in a real-life

setting, empirical studies [14], have shown that decision mak-

ers, tend to deviate noticeably from the rationality axioms,



UPT
n (xn, x̄−n, ρbase) =























(cρmax + d − Rn)
β++1 − (cρmin + d − Rn)

β++1

c(β+ + 1)ρd

, if Rn < ρminc+ d,

(cρmax + d − Rn)
β++1

c(β+ + 1)ρd

− λn

(−cρmin − d + Rn)
β−+1

c(β− + 1)ρd

, if ρminc + d < Rn < ρmaxc + d,

λn(−cρmax − d + Rn)
β−+1 − λn(−cρmin − d + Rn)

β−+1

c(β− + 1)ρd

, if ρmaxc + d < Rn.

(12)

when subjected to uncertain payoffs. The most prominent

of such studies was that done by Kahneman and Tversky

within the context of prospect theory [14], which won the

2002 Nobel prize in economic sciences.

The utility framing notion is one of the two main tenets

of prospect theory. As observed in real-life experimental

studies, utility framing states that each individual perceives

a utility as either a loss or a gain, after comparing it to its

individual reference point [14]. The reference point is typi-

cally different for each individual and originates from its past

experiences and future aspirations of profits. Furthermore,

individuals tend to evaluate losses in a very different manner

compared to gains. The main axioms of utility framing are

summarized as follows:

• Individuals perceive utility according to changes in

value with respect to a reference point rather than an

absolute value.

• Individuals assign a higher value to differences between

small gains or losses close to the reference point in

comparison to those further away. Te effect is referred

to as diminishing sensitivity, and is captured by the

coefficients β+ and β−.

• Individuals feel greater aggravation for losing a sum

of money than satisfaction associated with gaining the

same amount of money. This phenomenon is referred

to as loss aversion and is captured by the aversion

coefficient λ.

It is worth noting that PT differs from other risk mea-

sures such as Conditional Value at Risk (CVaR) [35] which

evaluates the market risk based on the expected value of

the risk at some future time. The underlying assumption in

evaluating CVaR is that the risk is measured based on the

conventional expectation of the future uncertain price, while

in PT, the expectation is replace by subjective perception of

the individuals which up to some extent introduces a notion

of bounded rationality into the model.

A. Energy Trading Analysis through Utility Framing

In our model, a prosumer’s uncertainty originates from

the unknown future energy price and power company pricing

strategy. Consequently, we will analyze the effect of the key

notion of utility framing from PT. Utility framing states that

a utility is considered a gain if it is larger than the reference

point, while it is perceived as a loss if it is smaller than

that reference point. This reference captures a prosumer’s

anticipated profits and originates from past energy trading

transactions and future aspirations of profits, which can differ

in between different prosumers [15]. Let Rn be the reference

point of a given prosumer n. Thus, to capture such subjective

perceptions, we use PT framing [15] to redefine the utility

function:

V (Un (x, ρbase))=

{

(Un(x, ρbase)−Rn)
β+

if Un(x, ρbase)>Rn,

−λn (Rn−Un(x, ρbase)
β−

if Un(x, ρbase)<Rn,

(13)

where β−, β+ ∈ (0, 1] and λ ≥ 1. V (·) is a framing value

function, concave in gains and convex in losses with a larger

slope for losses than for gains [15]. The expected utility

function of prosumer n under PT, for a given action profile

x, is given by (12) where c := Wn + Qn + xn − Ln,

d := − (ρbase + α(xn + x̄−n))xn, and ρd := ρmax − ρmin.

B. Existence and uniqueness of the NE under PT

To study the existence of the followers’ NE under PT, we

analyze the concavity of the utility function in (12). The

concavity of the PT utility function provides a sufficient

condition to conclude the existence of at least one pure-

strategy NE [33, Theorem 1]. Here, we note that prosumer

n’s expected utility function can take multiple forms over

the product action space Ω, depending on the conditions

in (12). It is thus challenging to prove that the utility

function is concave, which makes it extremely difficult to

analyze the existence and uniqueness of the followers’ NE.

Thus, we inspect a number of conditions under which the

PT utility function is concave. Here, for simplicity and

to provide more closed-form solutions, we disregard the

diminishing sensitivity effect and thus set β+ = β− = 1.

The following theorem provides sufficient conditions under

which the prosumers’ game under PT admits a pure NE.

Theorem 4. In either of the following cases, the prosumers’

game under PT admits at least one pure strategy NE:

• Case 1: ∆1 > 0, and xr1 < xn,min, xn,max < xr2.

• Case 2: ∆2 < 0, or xn,max < xr3, or xr4 < xn,min.

• Case 3: (∆2 > 0, xr3 < xn,min, xn,max < xr4), and

(∆1 < 0, or xn,max < xr1 or xr2 < xn,min), and
(

xmax,n < 1− b1
a1

)

,

where

kn := Wn +Qn − Ln,

∆1 := (ρmin − ρbase − αx̄−n)
2 + 4α(knρmin −Rn),

∆2 := (ρmax − ρbase − αx̄−n)
2 + 4α(knρmax −Rn),

xr1,r2 :=
±
√
∆1 + (ρmin − ρbase − αx̄−n)

2α
,

xr3,r4 :=
±
√
∆2 + (ρmax − ρbase − αx̄−n)

2α
,

m1 := 64(Wn +Qn − Ln), a1 = 48α2(1− λn),

b := (176α2
kn + 32α(ρbase − ρmax + αx̄−n))(1− λn).

Proof. See Appendix V.
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Fig. 1. Total grid load under expected utility theory and prospect theory.

As an immediate corollary of Theorem 4, under any of the

above conditions, one can again obtain the SE of the entire

market for PT prosumers using the same procedure used

under CGT (i.e., using Algorithm 1 in the prosumers’ side

together with either of the methods in Subsection III-C). This

is simply because, under any of the conditions in Theorem 4,

the prosumers’ game again becomes a concave game which

is sufficient for the convergence of Algorithm 1. It is worth

noting that, in general, using PT rather than CGT will change

the results pertaining to the existence of an NE (see e.g.,

[36]). However, Theorem 4 provides a sufficient condition

under which the same existence results derived for CGT still

hold under PT.

Finally, whenever the concavity of the game cannot be

guaranteed, we propose a sequential best response algorithm,

that build on our previous work in [37]. This is a special

case of Algorithm 1, where xn(t + 1) = xr
n(t), and where

players update their strategy sequentially instead of simul-

taneously. An analytical proof of existence/convergence is

challenging, given that no proof for the game’s concavity

could be derived, as previously discussed. However, when

it converges, this algorithm is guaranteed to reach an NE.

In fact, as observed from our simulations in Section V, the

algorithm always converged and found a pure-strategy NE,

for all simulated scenarios.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a smart grid with N = 9
prosumers, unless otherwise stated, each of which having a

load Ln arbitrarily chosen within the range [10, 30] kWh.

In addition, the storage capacity Qmax,n is set to 25 kWh

and α = 1/N . β+ and β− are taken to be both equal to

0.88 and λ = 2.25, unless stated otherwise [15]. We set,

ρbase = $0.04 and Rn = $1, unless stated otherwise. When

the leader’s action is not fixed, method 2 from Section III-C

was used to find the SE.

Fig. 1 compares the effect of different prosumer reference

points on the total energy sold or bought for both CGT and

PT, while fixing the power company’s action. For CGT, a

prosumer’s reference point is naturally irrelevant. For the PT

case, for a reference point below −$2, the prosumers’ action

profile is not significantly affected compared to CGT, since

most potential payoffs of the action profile are still viewed

as gains, above the reference point. As the reference point

increases from −$2 to $0.5, the total energy consumed will
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Fig. 2. Effect of varying the loss multiplier λ.
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decrease from around 145 kWh to 130 kWh, since some

of the potential payoffs of the current action profile will

start to be perceived as losses, as they cross the reference

point. Given that losses have a larger weight under PT

compared to CGT, the expected utility of the current strategy

profile will significantly decrease thus causing the followers

to exhibit a risk-averse behavior. In fact, as some of the

potential future profits are perceived as losses, a prosumer

will sell more energy at the current time slot. As the reference

point increases from $0.5 to $2, the present profits are now

perceived as losses, and prosumers will start exhibiting risk-

seeking behavior. In fact, each prosumer will consider the

present profit as insignificant and will thus store more energy

in the hope of selling it in the future at higher prices.

Finally, as the reference point approaches $8, the effect of

uncertainty will gradually decrease, given that all profits are

now perceived as losses. We note that even a small difference

in perception ($1.5) caused the total grid load to shift from

145 kWh to 130 kWh. This highlights the importance of

behavioral analysis and prosumer subjectivity when assessing

the performance of dynamic pricing strategies.

Fig. 2 shows the effect of the loss multiplier λ on the total

energy purchased, for a fixed power company strategy. The

loss multiplier maps the loss aversion of prosumers when

assessing their utility outcomes. The effect of framing is

more prominent as the loss multiplier increases. For instance,

the prosumers will exhibit more risk averse behavior for a

reference point in the range of [−$0.5, $2.5]. As seen from

Fig. 2, as λ increase from 2 to 6, the total load would

decrease by up to 14%. In fact, to avoid the large losses,

the prosumers will decrease the energy they purchase at the

current risk free energy price.

Fig. 3 compares the company’s profits for the scenario in
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which the power company accounts for prosumer irrationality

to the scenario in which the power company assumes that

prosumers are rational. In both scenarios, the prosumers are

irrational. For a reference point below $1, the company’s

profits are barely affected. However, as the reference point

crosses $1, the company’s profits start to show a clear

decrease between the two scenarios. In fact, as the power

company is not accounting for the prosumer’s actual subjec-

tive behavior, its pricing strategy is no longer optimal. As

was seen in Fig. 1, this is the reference point range where

the total consumption mostly differs between CGT and PT.

The decrease in profits reaches a peak value of 15 % at

a reference point of $2. Clearly, the power company will

experience a decrease in profits, if it neglects the subjective

perception of prosumers.

Fig. 4 shows the total grid load energy consumption as

function of the number of prosumers. The figure highlights

the difference in consumption between rational prosumers

and subjective prosumers with Rn = $1, which increases

significantly with the number of prosumers in the grid. This

difference reaches 100 kWh for 50 prosumers. This high-

lights the impact of irrational behavior, which is prominent

for larger grids.

Fig. 5 shows the energy consumption of different groups

of prosumers, with different reference points, inside a single

grid. For a very small ρbase, the different groups have

equal consumption. As ρbase is increased to −5 cents, the

prosumers with Rn = $1 start to decrease their consumption

at equilibrium, while the other groups’ consumption remains

unchanged. This is similar to what was discussed in Fig 1,

where prosumers with reference points close to $1, exhibit
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risk averse behavior and thus lower energy consumption.

On the other hand, rational prosumers will start decreasing

their consumption at ρbase = 2 cents, while risk seeking

prosumers (Rn = $3) will start decreasing their consumption

at ρbase = 5 cents.

Fig. 6 shows the number of iterations needed for the

best response algorithm to converge to a followers’ NE

for different number of prosumers, under PT. Clearly, the

best response algorithm converges, for all these cases. In

addition, the number of iterations needed for convergence is

reasonable, even as the number of prosumers significantly

increases from 10 to 70.

VI. CONCLUSION

In this paper, we have proposed a novel framework for

analyzing energy trading of prosumers with the power grid,

while accounting for the uncertainty of the future price of

energy. We have formulated the problem as a Stackelberg

game between the power company (leader), seeking to

maximize its profits by setting its optimal pricing strategy,

and multiple prosumer (followers), attempting to choose the

optimal amount of energy to trade. The prosumers game was

shown to have a unique pure strategy Nash equilibrium under

classical game theoretic analysis. Subsequently, we have used

the novel concept of utility framing from prospect theory to

model the subjective behavior of prosumers when faced with

the uncertainty of future energy prices. Simulation results

have highlighted the impact of behavioral considerations on

the overall energy trading process.

As a future avenue of research, one can extend our model

to a more dynamic multi-stage game that not only utilizes

further capabilities of the storage devices (e.g. load shifting

over time periods), but also admits efficient algorithms for

obtaining its equilibrium points. In particular, devising in-

centive compatible mechanisms for our model in the form of

multi-stage dynamic game is an interesting future problem.
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APPENDIX I

PROOF OF THEOREM 1

First, we analyze the strictly concave expected utility of

prosumer n in (7). By taking the second derivative of (7)

with respect to xn, we get:
∂UEUT

n

∂2xn
= −2α, which is a strictly

negative term, as α > 0. The optimal solution is either an

interior point obtained by solving the necessary and sufficient

optimality condition given by
∂UEUT

n

∂xn
= 0, or is at one of

the boundaries, in case the interior solution is not feasible.

Solving the optimality solution gives a unique solution xr
n =

− θ
2α − x̄−n

2 . xr
n maximizes each prosumer’s expected utility

function given that it lies in the feasible range of Xn.

APPENDIX II

PROOF OF THEOREM 2

First, we show that the followers’ game is a concave game

with closed and convex action sets in which the utility of

player n is a concave function of its own action xn, for

any fixed actions of others x−n. From (7), one can see

that the utility function of each prosumer n is quadratic,

and thus concave, in terms of its own action variable xn.

Moreover, the action set of each prosumer Xn is clearly a



closed convex set. Using [33, Theorem 1], we can show that

the prosumers’ game admits at least one pure strategy NE.

For NE uniqueness, we use [33, Theorem 2] to show that the

prosumers game is diagonally strictly concave. This means

that one can find a fixed nonnegative vector r ≥ 0 such

that for every two action profiles xo, x̃ ∈ X1× · · ·×Xn,

(x̃−xo)′g(xo, r) + (xo − x̃)′g(x̃, r) > 0, where g(x, r) =
(r1∇x1

UEUT
1 (x), . . . , rn∇xn

UEUT
n (x))′. We let rj = 1 for

each j ∈ N . Using (7), we have

gj(x, r) = −2αxj + θ + αx̄−j , j ∈ N .

We let I be the identity matrix, and J be a square matrix with

all entries equal to 1. Then we can write g(x, r) = Kx+c,

where K := −α(I+J). K is a negative definite matrix due

to the positive definiteness of I+J and the fact that −α < 0.

By checking the diagonally strict concavity condition we get

(x̃− x
o)′g(x̃, r) + (xo − x̃)′g(xo

, r)

= (x̃− x
o)′[Kx

o + c] + (xo − x̃)′[Kx̃+ c]

= −(x̃− x
o)′K(x̃− x

o) > 0, (14)

where the last inequality is due to the negative-definiteness

of the matrix K. Using [33, Theorem 2] the NE will be

unique.

APPENDIX III

AUXILILIARY LEMMA FOR THE PROOF OF THEOREM 3

Lemma 1. There exists a constant K > 0 for which the
Nikaido-Isoda function Ψ(x,y) associated with the pro-
sumers’ game satisfies Ψ(x,y) ≤ K‖x − y‖. Moreover,
Ψ(x,y) is convex in x and strongly concave in y such that

Ψ(x, λỹ + (1− λ)ŷ) = λΨ(x, ỹ) + (1− λ)Ψ(x, ŷ)

+ αλ(1− λ)‖ŷ − ỹ‖2, ∀λ ∈ [0, 1].

(15)

Proof. For any two action profiles of the prosumers x =
(x1, . . . , xn) ∈ Ω and y = (y1, . . . , yn) ∈ Ω, the Nikaido-
Isoda function adopted for the utility in (7) will be:

Ψ(x,y) : =
∑

n∈N

[UEUT
n (yn,x−n, ρbase)− U

EUT
n (xn,x−n, ρbase)]

=
∑

n∈N

[α(x2
n − y

2
n) + (θ + αx̄−n)(xn − yn)].

(16)

Using (16), for any two action profiles x,y ∈ Ω, we have

Ψ(x,y) =
∑

n∈N

(xn − yn)[α(xn + yn) + θ + αx̄−n]

≤
√

∑

n∈N

(xn−yn)2
√

∑

n∈N

[α(xn+yn)+θ+αx̄−n]2

= ‖x− y‖
√

∑

n∈N

[α(xn + yn) + θ + αx̄−n]2

≤ K‖x − y‖,

where the first inequality is due to the Cauchy-Schwarz
inequality, and K :=

√

n(θ + α(n+ 1)Bmax)2 is an upper
bound constant for the second term of the last equality. To

show the convexity of Ψ(x,y) with respect to x, let J be
the n × n matrix with all entries equal to 1. Using (16), a
simple calculation shows that ∇2

xx
Ψ(x,y) = 2αJ , where

∇2
xx

Ψ(x,y) denotes the Hessian matrix of Ψ(x,y) with
respect to variable vector x. Since α > 0 and J is a positive
semi-definite matrix, this shows that ∇2

xx
Ψ(x,y) > 0,

which implies Ψ(x,y) is a convex function of x. Finally
using (7), one can easily check that the equality in (15) holds,
which shows that Ψ(x,y) is strongly concave with respect
to its second argument y.

APPENDIX IV

PROOF OF THEOREM 3
We show that limt→∞ x(t) = x∗, from Algorithm 1,

where x∗ is a pure-strategy NE for the prosumers. To show

that, we measure the distance of an action profile x(t) and

its best response ΠΩ

[

a + Ax(t)
]

using the Nikaido-Isoda

function and show that this distance decreases as t becomes

large. In particular, we show that at the limit, this distance

equals zero which shows that the limit point is an NE of the

game.

Ψ(x(t+1),xr(t+1)) = Ψ
(

(1− 1√
t
)x(t)+

xr(t)√
t

,x
r(t+1)

)

≤ (1− 1√
t
)Ψ
(

x(t),xr(t)
)

+
1√
t
Ψ
(

x
r(t),xr(t+ 1)

)

.

(17)

Using the first part of Lemma 1, we have

Ψ
(

x
r(t),xr(t+ 1)

)

≤ K‖xr(t)− x
r(t+ 1)‖

= K‖ΠΩ

[

a+Ax(t)
]

− ΠΩ

[

a+Ax(t+ 1)
]

‖
≤ K‖[a +Ax(t)]− [a +Ax(t+ 1)]‖
≤ K‖A‖‖x(t)− x(t+ 1)‖,

=
K(n− 1)

2
√
t

‖x(t)− x
r(t)‖. (18)

where the first inequality is due to the nonexpansive property

of the projection operator, the second inequality uses the

matrix norm inequality, and the last equality is obtained by

replacing the expression for x(t + 1) and noting that the

induced 2-norm of matrix A equals n−1
2 . Substituting (18)

into (17) we have

Ψ
(

x(t+ 1),xr(t+ 1)
)

≤ (1− 1√
t
)Ψ

(

x(t),xr(t)
)

+
K(n− 1)

2t
‖x(t)− xr(t)‖.

Since Ψ(x(t),x(t)) = 0, we can write

Ψ
(

x(t+ 1),xr(t+ 1)
)

≤ (1− 1√
t
)Ψ(x(t),xr(t))

+
1√
t
Ψ(x(t),x(t)) +

K(n− 1)

2t
‖x(t)− x

r(t)‖

= Ψ

(

x(t), (1− 1√
t
)xr(t) +

1√
t
x(t)

)

− α(1− 1√
t
)
1√
t
‖x(t)− x

r(t)‖2+K(n− 1)

2t
‖x(t)− x

r(t)‖

≤ Ψ(x(t),xr(t))− Ψ2(x(t),xr(t))
2K2

α

√
t

+
K(n− 1)D

2t
,



where the first equality is due to Lemma 1, and the last

inequality is due to first part of Lemma 1 and the fact that

xr(t) maximizes Ψ(x(t), ·). Multiplying both sides of the

above inequality by α

2K2
√
t

and defining c := α(n−1)D
4K and

at :=
α

2K2
√
t
Ψ(x(t),xr(t)), we get

at+1 ≤ at − a2t +
c

t
√
t
. (19)

Our goal is to show that at <
√
2c× t−

3
4 for all t ≥ 100

c2
,

in which case by definition of at we obtain Ψ(x(t),xr(t)) =
O(t−

1
4 ). This not only shows that limt→∞ Ψ(x(t),xr(t)) =

0, implying that {x(t)} converges to a pure strategy NE of

the prosumers game (note that Ψ(x,xr) = 0 if and only if

x is a NE), but it also shows that after t steps, the action

profile of the prosumers x(t) is an ǫ-NE of the game where

ǫ = O(t−
1
4 ) (this is due to Ψ(x(t),xr(t)) = O(t−

1
4 ) im-

plies Un(x
r
n(t),x−n(t), ρbase) − Un(xn(t),x−n(t), ρbase) =

O(t−
1
4 ) for all n ∈ N , meaning that given the action

profile x(t), no prosumer can increase its utility by more

that O(t−
1
4 ) by playing its best response).

We complete the proof using induction on t to show that
at <

√
2c×t−

3
4 . Assume that this relation is true for t. Then

at+1 ≤ at − a
2
t +

c

t
√
t

≤
√
2ct−

3
4 − 2ct−

3
2 +

c

t
√
t

=
√
2ct−

3
4 − ct

− 3
2 .

Let f(z) : [1,∞) → R be a function defined by f(z) =√
2cz−

3
4 −

√
2c(z + 1)−

3
4 − cz−

3
2 . We only need to show

that f(z) < 0, for t ≥ 100
c2

. By writing the Taylor expansion

of the first two terms of f(z) for z ≥ 1, we have f(z) ≤
7
√
2cz−

7
4 − cz−

3
2 , which is less than 0 for t ≥ 100

c2
. This

completes the induction and shows that at = O(t−
3
4 ).

APPENDIX V

PROOF OF THEOREM 4

We first find the conditions under which the expected

utility function is uniform over each prosumer’s action space.

We then find the additional condition to ensure that the

function is strictly concave.

Case 1: To have Rn < ρminc+ d, for all of prosumer n’s

actions, we first rewrite the inequality in terms of xn:

−αx2
n + (ρmin − ρb − αx̄−n)xn + (ρminKn −Rn) < 0,

where kn = Wn +Qn −Ln. By analyzing the second order

polynomial, and its roots, r1 and r2, we get the condition for

case 1. Under such a condition, the expected utility function

of prosumer n under PT, simplifies to UPT
n (xn, x̄−n, ρbase) =

UEUT
n (xn, x̄−n, ρbase) − Rn. This is clearly a concave func-

tion, given that, UEUT
n (xn, x̄−n, ρbase) has been shown to be

concave, and Rn is a constant.

Case 2: In order to have Rn > ρmaxc + d, for all

of prosumer n’s actions, we follow a similar approach in

order to find the condition for case 2. Under this con-

dition, the expected utility function under PT simplifies

to UPT
n (xn, x̄−n, ρbase) = λ(UEUT

n (xn, x̄−n, ρbase) − Rn),
which is also strictly concave, given that λ is strictly positive.

Case 3: To have ρminc + d < Rn < ρmaxc + d, for all

of prosumer n’s actions, we follow a similar approach in

order to find the condition for case 3. We next analyze the

concavity of the expected utility function, given in the second

line in (12). The second derivative is given by:

∂Un,PT

∂2xn

=
a1

m1

xn − a1m1 − bm1

m2
1

− (λ− 1)a2
2

(Qn − Ln +Wn + xn)3
,

where a2 = (Rn − (knρbase) + α(L2
n + Q2

n + w2
n) −

2LnQnα+Lnαx̄−n−Qnαx̄−n−2Lnαwn+2Qnαwn. Note

that − (λ−1)a2
2

(Qn−Ln+Wn+xn)3
is negative for all xn. Next, we find

the range of xn for which a1

m1
xn− a1m1−b1m1

m2
1

is negative as

well. Given that a1

m1
is negative, the utility function is thus

guaranteed to be concave for xn > a1m1−b1m1

a1m1
.
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