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Abstract

The capacity of a network in which a multiple access channel (MAC) generates interference to a single-user

channel is studied. An achievable rate region based on superposition coding and joint decoding is established for

the discrete case. If the interference is very strong, the capacity region is obtained for both the discrete memoryless

channel and the Gaussian channel. For the strong interference case, the capacity region is established for the discrete

memoryless channel; for the Gaussian case, we attain a line segment on the boundary of the capacity region. Moreover,

the capacity region for the Gaussian channel is identified for the case when one interference link being strong, and

the other being very strong. For a subclass of Gaussian channels with mixed interference, a boundary point of the

capacity region is determined. Finally, for the Gaussian channel with weak interference, sum capacities are obtained

under various channel coefficient and power constraint conditions.

I. I NTRODUCTION

In a cellular system, co-channel cells are strategically placed to ensure that interference is kept at a minimum.

As such, the downlink transmission within each cell is typically modeled as a broadcast channel (BC) while uplink

transmission is modeled as a multiple access channel (MAC).This effectively isolates each cell from all the other

co-channel cells and makes it feasible to characterize the performance limits as the capacity regions for the Gaussian

BC and the Gaussian MAC have been completely determined (see[1]).

However, as the need for spectrum reuse increases, various frequency reuse schemes have been proposed in recent

years and it is no longer realistic to disregard co-channel interference in both downlink and uplink transmissions.

For downlink transmissions, the Gaussian broadcast-interference channel model has been studied in [2]–[4] with an

emphasis on the one-sided interference model. The capacityregions of such channels with very strong and slightly

strong interference, and some boundary points on the capacity regions of that with moderate and weak interferences

were determined. It was shown that the capacity is achieved by fully decoding the interference when it is strong,

partially decoding the interference when it is moderate, and treating the interference as noise when it is weak.
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Force Office of Scientific Research under Grant FA9550-09-01-0643. The material in this paper was presented in part at theIEEE International
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In this paper, we consider an uplink model with interference, namely the multiple access-interference channel.

As with [2]–[4], we focus on the MAC with one-sided interference, an example of this channel model is depicted

is illustrated in Fig. 1. The same model can be used to describe the channels between microcell and femtocell, or

between microcell and picocell, etc. Mobile usersTX1 andTX2 belong to cell1 while TX3 belongs to cell 2 and

the transmissions ofTX1 andTX2 cause interferences atRX2, the base station at cell2. The interference from

TX3 to RX1, on the other hand, is assumed to be negligible.

A similar model has been studied by [12] and [11], both of which considered the two-sided interference between

the two cells. The authors in [12] derived the capacity region for the very strong and some of the strong interference

cases, and provided an upper-bound of the sum-rate for the weak interference case which is nearly optimal in low

signal-to-noise ratio regime, while [11] characterized the capacity region in the from of interference alignment under

the weak symmetric interference assumption.

Cell 1 Cell 2

PSfrag replacements

Rx1

Rx2

Tx1

Tx2

Tx3

Fig. 1. Two-cell uplink transmission.

Fig. 2 is an abstract model of the above network. Transmitters 1 and2 and receiver1 form a MAC. Transmitter

3 and receiver2 form a single-user channel and receiver2 is subject to interference from transmitters1 and 2.

Specifically, the channel outputs are given by

Y1 = X1 +X2 + Z1, (1)

Y2 =
√
aX1 +

√
bX2 +X3 + Z2, (2)

whereXi andYj are the transmitted and received signals of transmitteri and receiverj, respectively, fori = 1, 2, 3

andj = 1, 2. For eachj, Zj is Gaussian noise with zero mean and unit variance and we assume all the noise terms

are independent of each other and over time. For channels with arbitrary coefficients and noise variances, standard

normalization can be applied such that its capacity is equivalent to the above channel, i.e., the gains forX1, X2 in Y1

andX3 in Y2 are all assumed to be1. The channel coefficientsa andb are fixed and known at both the transmitters
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Fig. 2. The Multiple-Access-Z-interference Channel model

and the receivers. Without loss of generality, we assumea, b > 0, i.e., they are strictly positive. For transmitteri,

the user/channel input sequenceXi1, Xi2, · · · , Xin is subject to a block power constraint
∑n

k=1 E [X2
ik] ≤ nPi. We

denote the rates for messagesW1, W2 andW3 by R1, R2 andR3, respectively. The channel defined here is referred

to as a Multiple-Access-Z-Interference channel (MAZIC). Unlike the two-user Z-interference channel (ZIC), there

are more than one interference signal from multiple independent senders. For example, in the Gaussian case, the

interference signals are multiplied by different coefficients. One cannot claim equivalence to degraded channels as

in the two-user ZIC case. As such, capacity analysis becomesmore complicated. Our goal in this paper is to obtain

capacity results for the strong, mixed1 and weak interference cases for the MAZIC.

The rest of the paper is organized as follows. We give the problem formulation in Section II. Section III gives

an achievable rate region for the discrete memoryless MAZICand the result is extended to the Gaussian case.

Capacity results for the strong, very strong, mixed and weakinterference cases are derived in Sections IV, V, VI

and VII respectively. Section VIII concludes the paper.

II. PRELIMINARIES

A discrete memoryless MAZIC is defined by(X1,X2,X3, p,Y1,Y2), whereX1,X2 and X3 are finite input

alphabet sets;Y1 andY2 are finite output alphabet sets; andp(y1y2|x1x2x3) is the channel transition probability.

As the receivers do not cooperate, the capacity depends onlyon the marginal channel transition probabilities. Thus

we can only consider two marginal distributions(p(y1|x1x2), p(y2|x1x2x3)). The channels are memoryless, i.e.,

p(yn1 y
n
2 |xn

1x
n
2x

n
3 ) =

n
∏

i=1

p(y1iy2i|x1ix2ix3i), (3)

1Here, the notion of mixed interference refers to the strengths of the two interference links with coefficients
√
a and

√
b. It differs from the

classical notion of mixed interference where the interference is imposed on two different receivers.
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wherexn
i = [xi1, xi2, · · · , xin] andynj = [yj1, yj2, · · · , yjn], for i = 1, 2, andj = 1, 2, 3. The message for transmitter

i is Wi ∈ {1, 2, · · · , 2nRi}, i = 1, 2, 3. A (2nR1 , 2nR2 , 2nR3 , n) code consists of three encoders:

f1 : {1, 2, · · · , 2nR1} → Xn
1 ,

f2 : {1, 2, · · · , 2nR2} → Xn
2 ,

f3 : {1, 2, · · · , 2nR3} → Xn
3 ,

and two decoders:

g1 : Yn
1 → {1, 2, · · · , 2nR1} × {1, 2, · · · , 2nR2},

g2 : Yn
2 → {1, 2, · · · , 2nR3}.

The error probability is defined as

Pe = Pr{g1(Y n
1 ) 6= (W1,W2), or g2(Y n

2 ) 6= W3}.

AssumingW1, W2 andW3 are all uniformly distributed, a rate triple(R1, R2, R3) is achievable if there exist a

sequence of(2nR1 , 2nR2 , 2nR3 , n) codes forn sufficiently large such thatPe → 0 when n → ∞. Throughout

this paper, we make the assumption that all the transmittersimplement deterministic encoders instead of stochastic

encoders as one can easily prove, following the same approach as that of [5], that stochastic encoders do not increase

the capacity for a MAZIC. Before proceeding, we introduce some notation that will be used throughout the paper.

• pX(x) is the probability mass function of a discrete random variable X , or a probability density function of

a continuous random variableX , and is simplified asp(x).

• A
(n)
ǫ (X) denotes the set of length-n ǫ-typical sequences ofX .

• I(·; ·), H(·) andh(·) are respectively the mutual information, discrete entropyand differential entropy.

• ∅ denotes the empty set.

• x̄ = 1− x.

• x ∼ N (0,S) means thatx has a Gaussian distribution with zero mean and covariance matrix S.

The following properties of Markov chains are useful throughout the paper (see [6, Section 1.1.5]):

• Decomposition:X − Y − ZW =⇒ X − Y − Z;

• Weak Union:X − Y − ZW =⇒ X − YW − Z;

• Contraction:(X − Y − Z) and (X − Y Z −W ) =⇒ X − Y − ZW .

III. A N ACHIEVABLE REGION FOR THEGENERAL MAZIC

We use superposition coding and joint decoding to derive an achievable rate region. Consider the independent

messagesW1 andW2 generated by transmitters1 and2, respectively. We split them into

W1 = [W1c,W1p],

W2 = [W2c,W2p],
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whereW1c andW2c denote the common messages that are to be decoded at both receivers 1 and2; andW1p and

W2p represent the private messages that are to be decoded only atreceiver1.

We first introduce the auxiliary random variablesQ, U1, andU2, whereQ is a time-sharing random variable,

and U1 and U2 contain the informationW1c and W2c respectively. The distribution of(Q,U1, U2, X1, X2, X3)

factorizes as

p(qu1u2x1x2x3) = p(q)p(u1|q)p(x1|u1, q)p(u2|q)p(x2|u2, q)p(x3|q). (4)

The following achievable rate region can be obtained whose proof is given in Appendix A.

Theorem 1:For a discrete memoryless MAZIC, an achievable rate region is given by the set of all nonnegative

rate triples(R1, R2, R3) that satisfy

R1 ≤ I(X1;Y1|X2Q), (5)

R2 ≤ I(X2;Y1|X1Q), (6)

R3 ≤ I(X3;Y2|U1U2Q), (7)

R1 +R2 ≤ I(X1X2;Y1|Q), (8)

R1 +R3 ≤ I(X1;Y1|U1X2Q) + I(U1X3;Y2|U2Q), (9)

R2 +R3 ≤ I(X2;Y1|U2X1Q) + I(U2X3;Y2|U1Q), (10)

R1 +R2 +R3 ≤ I(X1X2;Y1|U1U2Q) + I(U1U2X3;Y2|Q), (11)

R1 +R2 +R3 ≤ I(X1X2;Y1|U1Q) + I(U1X3;Y2|U2Q), (12)

R1 +R2 +R3 ≤ I(X1X2;Y1|U2Q) + I(U2X3;Y2|U1Q), (13)

R1 + 2R2 +R3 ≤ I(X2;Y1|U2X1Q) + I(X1X2;Y1|U1Q) + I(U1U2X3;Y2|Q), (14)

2R1 +R2 +R3 ≤ I(X1;Y1|U1X2Q) + I(X1X2;Y1|U2Q) + I(U1U2X3;Y2|Q), (15)

where the input distribution factors as (4). Furthermore, the region remains the same if we impose the constraints

‖Q‖ ≤ 12, ‖U1‖ ≤ ‖X1‖+ 5, and‖U2‖ ≤ ‖X2‖+ 5.

The MAC and the Z-interference channel (ZIC) are two specialcases of a MAZIC. On settingX3U1U2 = ∅, we

obtain the capacity region for the MAC:

R1 ≤ I(X1;Y1|X2Q),

R2 ≤ I(X2;Y1|X1Q),

R1 +R2 ≤ I(X1X2;Y1|Q).
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Alternatively, on settingU2X2 = ∅, we obtain Han and Kobayashi’s achievable rate region for the ZIC [7] [8] [9]:

R1 ≤ I(X1;Y1|Q),

R3 ≤ I(X3;Y2|U1Q),

R1 +R3 ≤ I(X1;Y1|U1Q) + I(U1X3;Y2|Q).

Theorem 1 allows us to obtain a computable achievable regionfor Gaussian MAZICs.

Corollary 1: For any nonnegative pair[α, β] ∈ [0, 1], the non-negative rate triples(R1, R2, R3) satisfying the

conditions (16)-(26) are achievable for a Gaussian MAZIC.

R1 ≤ 1

2
log(1 + P1), (16)

R2 ≤ 1

2
log(1 + P2), (17)

R3 ≤ 1

2
log

(

1 +
P3

1 + aαP1 + bβP2

)

, (18)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) , (19)

R1 +R3 ≤ 1

2
log (1 + αP1) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1 + bβP2

)

, (20)

R2 +R3 ≤ 1

2
log (1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (21)

R1 +R2 +R3 ≤ 1

2
log (1 + αP1 + βP2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (22)

R1 +R2 +R3 ≤ 1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1 + bβP2

)

, (23)

R1 +R2 +R3 ≤ 1

2
log (1 + P1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (24)

R1 + 2R2 +R3 ≤ 1

2
log (1 + βP2) +

1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (25)

2R1 +R2 +R3 ≤ 1

2
log (1 + αP1) +

1

2
log (1 + P1 + βP2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

. (26)

Proof: Corollary 1 follows directly from Theorem 1 by choosing‖Q‖ = 1, X1 ∼ N (0, P1), X2 ∼ N (0, P2),

andX1 = U1+V1, X2 = U2+V2, whereU1, U2, V1 andV2 are independent random variables withU1 ∼ N (0, αP1),

U2 ∼ N (0, βP2), V1 ∼ N (0, ᾱP1) andV2 ∼ N (0, β̄P2).

In the following, we discuss capacity results for differentinterference regimes for MAZICs.

IV. MAZIC S WITH STRONG INTERFERENCE

A. Discrete Case

Similar to [10], the discrete MAZIC with strong interference is defined as a discrete memoryless MAZIC satisfying

I(X1;Y1|X2) ≤ I(X1;Y2|X2X3), (27)
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I(X2;Y1|X1) ≤ I(X2;Y2|X1X3), (28)

I(X1X2;Y1) ≤ I(X1X2;Y2|X3), (29)

for all product distributions onX1 ×X2 ×X3.

The above single letter conditions imply multi-letter conditions as stated below.

Lemma 1:For a discrete memoryless interference channel, if (27)-(29) are satisfied for all product probability

distributions onX1 ×X2 ×X3, then

I(Xn
1 ;Y

n
1 |Xn

2 ) ≤ I(Xn
1 ;Y

n
2 |Xn

2 X
n
3 ), (30)

I(Xn
2 ;Y

n
1 |Xn

1 ) ≤ I(Xn
2 ;Y

n
2 |Xn

1 X
n
3 ), (31)

I(Xn
1 X

n
2 ;Y

n
1 ) ≤ I(Xn

1 X
n
2 ;Y

n
2 |Xn

3 ). (32)

Proof: From the channel model, we have

I(Xn
1 ;Y

n
1 |Xn

2 X
n
3 ) = I(Xn

1 ;Y
n
1 |Xn

2 ),

I(Xn
2 ;Y

n
1 |Xn

1 X
n
3 ) = I(Xn

2 ;Y
n
1 |Xn

1 ),

I(Xn
1 X

n
2 ;Y

n
1 |Xn

3 ) = I(Xn
1 X

n
2 ;Y

n
1 ).

The rest of the proof can be established using techniques similar to that of [10], hence is omitted.

The above lemma leads to the following theorem.

Theorem 2:For a discrete memoryless MAZIC with conditions (27)-(29) for all product probability distributions

on X1×X2×X3, the capacity region is given by the set of all the nonnegative rate triples(R1, R2, R3) that satisfy

R1 ≤ I(X1;Y1|X2Q), (33)

R2 ≤ I(X2;Y1|X1Q), (34)

R3 ≤ I(X3;Y2|X1X2Q), (35)

R1 + R2 ≤ I(X1X2;Y1|Q), (36)

R2 + R3 ≤ I(X2X3;Y2|X1Q), (37)

R1 + R3 ≤ I(X1X3;Y2|X2Q), (38)

R1 +R2 + R3 ≤ I(X1X2X3;Y2|Q), (39)

where the input distribution factors as

p(qx1x2x3) = p(q)p(x1|q)p(x2|q)p(x3|q). (40)

Furthermore, the region remains invariant if we impose the constraint‖Q‖ ≤ 8.

The proof is given in Appendix B.
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B. Gaussian Case

For a Gaussian MAZIC, the strong interference is defined as the case wherea ≥ 1 and b ≥ 1, which are

sufficient and necessary conditions for (27) and (28), respectively. However, it is hard to find a sufficient and

necessary conditions for (29), and there are counter examples in which condition (29) is violated even ifa ≥ 1 and

b ≥ 1. That is, there exist input distributions such that (29) does not old witha ≥ 1 andb ≥ 1.

While Theorem 1 still applies, a better rate splitting strategy can be devised for this case. If(R1, R2, R3) is

an achievable rate triple, then receiver2 can reliably recoverX1 andX2 at these rates. Therefore, receiver2 can

decode whatever receiver1 decodes. Thus, if we choose the private message sets for users 1 and2 to be empty,

i.e., α = β = 0, we obtain an achievable rate region.

In the following, we give an outer-bound on the capacity region.

Corollary 2: For a Gaussian MAZIC with conditionsa, b ≥ 1, an outer-bound on the capacity region is given

by the set of all the nonnegative rate triples(R1, R2, R3) that satisfy

R1 ≤ 1

2
log (1 + P1) , (41)

R2 ≤ 1

2
log (1 + P2) , (42)

R3 ≤ 1

2
log (1 + P3) , (43)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) , (44)

R2 +R3 ≤ 1

2
log (1 + bP2 + P3) , (45)

R1 +R3 ≤ 1

2
log (1 + aP1 + P3) . (46)

The proof of this corollary is very similar to the proof of Theorem 2, except for the bound onR1 +R2 +R3. The

reason is that witha ≥ 1 andb ≥ 1, I(X1X2;X1 +X2 + Z1) ≤ I(X1X2;
√
aX1 +

√
bX2 + Z2) is generally not

true for every possible input distribution, hence we do not have (29). Therefore, inequality (39) cannot be obtained.

Next, let us consider one interference link being strong, for example,1 ≤ a ≤ 1+P3. In this case, we can easily

get the following outer-bound:

R1 ≤ 1

2
log(1 + P1), (47)

R2 ≤ 1

2
log(1 + P2), (48)

R3 ≤ 1

2
log(1 + P3), (49)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (50)

R1 +R3 ≤ 1

2
log(1 + aP1 + P3). (51)

On the other hand, by settingα = β = 0 in the achievable region for Gaussian MAZICs in Corollary 1,one
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would have an achievable rate region with all nonnegative rate triples(R1, R2, R3) that satisfy

R1 ≤ 1

2
log(1 + P1), (52)

R2 ≤ 1

2
log(1 + P2), (53)

R3 ≤ 1

2
log(1 + P3), (54)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (55)

R1 +R3 ≤ 1

2
log(1 + aP1 + P3), (56)

R2 +R3 ≤ 1

2
log(1 + bP2 + P3), (57)

R1 +R2 +R3 ≤ 1

2
log(1 + aP1 + bP2 + P3). (58)

The following theorem summarizes the cases where some segment of the line: the intersection of the two

hyperplanes defined by

R1 +R2 =
1

2
log(1 + P1 + P2), (59)

R1 +R3 =
1

2
log(1 + aP1 + P3) (60)

is on the boundary of the capacity region.

Theorem 3:For a Gaussian MAZIC with1 ≤ a ≤ 1 + P3, if

b ≥ 1 + aP1 + P3

1 + P1
, (61)

a segment of the line defined by (59) and (60), which starts at
(

1

2
log(1 + P1),

1

2
log

(

1 +
P2

1 + P1

)

,
1

2
log

(

1 +
P3

1 + aP1

))

, (62)

and ends at
(

1

2
log(1 + P1 + P2)−

1

2
log

(

1 +
bP2

1 + aP1 + P3

)

,
1

2
log

(

1 +
bP2

1 + aP1 + P3

)

,
1

2
log

(

1 + aP1 + bP2 + P3

1 + P1 + P2

))

, (63)

is on the boundary of the capacity region of the channel.

Proof: Consider the rate triple(R1, R2, R3) on the line defined by (59) and (60). Any achievable rate triple

on this line that also satisfies (57) and (58) must appear on the boundary of the capacity region as it belongs to

both the inner and outer bounds.

Consider the rate triple defined by (62). It is achievable if

1

2
log

(

1 +
P2

1 + P1

)

≤ 1

2
log

(

1 +
bP2

1 + aP1 + P3

)

, (64)

i.e.,

b ≥ 1 + aP1 + P3

1 + P1
, (65)

as receiver1 first decodesX2, subtracts it, and then decodesX1; reciever2 also first decodesX2, subtracts it, and

then decodesX3 by treatingX1 as noise.

November 21, 2018 DRAFT



10

The other rate triple defined by (63) satisfies (58) with equality, and satisfies (57) if1 ≤ a ≤ 1 + P3 and

b ≥ 1+aP1+P3

1+P1
.

Therefore, the line segment between these two rate triples (62) and (63) is on the boundary of the capacity region,

and is achieved by time sharing.

Fig. 3 gives an example where a line segment defined by (59) and(60) is on the boundary of the capacity region.

Fig. 3. The line2 defined in Eq. (59) and Eq. (60) appears as the boundary line ofthe capacity region. (Plane1 is defined byR1+R2+R3 =

1

2
log(1 + aP1 + bP2 + P3); Region3 is defined by inequalities (52)-(58)); Points4 and5 are the two endpoints of the line segment that is

on the capacity region. For this example, the correspondingchannel parameters are:a = 1.2, b = 3, P1 = P3 = 2, P2 = 3.

Increasingb even further for the case ofa ≥ 1 will ensure that (57) and (58) are never active. Specifically, we

have

Corollary 3: For a Gaussian MAZIC witha > 1 and b > 1 + aP1 + P3, the capacity region is the set of all

nonnegative rate triples(R1, R2, R3) that satisfies

R1 ≤ 1

2
log(1 + P1), (66)

R2 ≤ 1

2
log(1 + P2), (67)

R3 ≤ 1

2
log(1 + P3), (68)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (69)
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R1 +R3 ≤ 1

2
log(1 + aP1 + P3). (70)

Proof: With a ≥ 1 and b ≥ 1 + aP1 + P3, (57) and (58) are redundant in the achievable region. As a result,

the inner-bound and outer-bound coincide with each other.

V. MAZIC S WITH VERY STRONG INTERFERENCE

A. Discrete Case

The discrete MAZIC with very strong interference is defined as a discrete memoryless MAZIC satisfying

I(X1;Y1|X2) ≤ I(X1;Y2|X2), (71)

I(X2;Y1|X1) ≤ I(X2;Y2|X1), (72)

I(X1X2;Y1) ≤ I(X1X2;Y2). (73)

for all product distributions onX1 ×X2 ×X3.

It is easy to see that the condition specified by (71)-(73) is aspecial case of the strong interference condition

(27)-(29). Therefore, one can immediately obtain the capacity region of the MAZIC with very strong interference

from Theorem 2.

Corollary 4: For a discrete memoryless MAZIC with conditions (71)-(73) for all product probability distributions

on X1×X2×X3, the capacity region is given by the set of all the nonnegative rate triples(R1, R2, R3) that satisfy

R1 ≤ I(X1;Y1|X2Q), (74)

R2 ≤ I(X2;Y1|X1Q), (75)

R3 ≤ I(X3;Y2|X1X2Q), (76)

R1 +R2 ≤ I(X1X2;Y1|Q), (77)

where the input distribution factors as

p(qx1x2x3) = p(q)p(x1|q)p(x2|q)p(x3|q). (78)

Furthermore, the region remains invariant if we impose the constraint‖Q‖ ≤ 5.

B. Gaussian Case

For a Gaussian MAZIC, very strong interference is defined asa, b ≥ 1+P3. Notice that the conditiona, b ≥ 1+P3

is not a sufficient condition for (71) and (72), as discussed in [13, Theorem 2]. Again, it is a special case of the

strong interference case, therefore, the capacity region can be readily obtained from Corollary 2.
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Corollary 5: For a Gaussian MAZIC with conditionsa, b ≥ 1 + P3, the capacity region is given by the set of

all nonnegative rate triples(R1, R2, R3) that satisfy

R1 ≤ 1

2
log (1 + P1) , (79)

R2 ≤ 1

2
log (1 + P2) , (80)

R3 ≤ 1

2
log (1 + P3) , (81)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) . (82)

VI. T HE MAZIC S WITH MIXED INTERFERENCE

A. Discrete Case

The discrete MAZIC with mixed interference is defined as a discrete memoryless MAZIC satisfying

p(y1y2|x1x2x3) = p(y1|x1x2)p(y2|x1x2x3) = p(y1|x1x2)p
′(y2|x3x1y1), (83)

for somep′(y2|x3x1y1), and

I(X2;Y1|X1) ≤ I(X2;Y2|X1X3), (84)

for all input distributions that factorizes asp(x1)p(x2)p(x3)
1 .

Condition (83) means that we can find another discrete memoryless MAZIC with (p(y1|x1x2), p
′(y2|x3x1y1))

that has the same capacity region as the orginal MAZIC. Furthermore, the alternative MAZIC admits the Markov

chain

X1 − (X2, X3, Y1)− Y2. (85)

For this class of channel, we can outer-bound the capacity region as follows.

Theorem 4:For a discrete memoryless MAZIC with mixed interference, anouter-bound to the capacity region

can be expressed as a set of nonnegative rate pairs(R1, R2) satisfying the following inequalities:

R1 ≤ I(X1;Y1|X2U1Q), (86)

R2 ≤ I(X2;Y1|X1Q), (87)

R3 ≤ I(X3;Y2|X1X2Q), (88)

R3 ≤ I(U1X3;Y1|Q), (89)

R1 +R2 ≤ I(X1X2;Y1|Q), (90)

R2 +R3 ≤ I(X2X3;Y2|X1Q), (91)

where the input distribution is factorized asp(q)p(u1|q)p(x1|u1q)p(x2|u1q)p(x3|q).

1(Condition 83) is refered to the link of weak interference, and condition (84) is refered to the link of strong interference.
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Proof: Inequalities (87) and (88) are trivial outer-bounds, and (90) is the same as the sum-rate upper-bound

for the MAC. Moreover, (91) is the same as the sum-rate upper-bound for the two-user IC with strong interference

[10]. It remains to show (86) and (89). First, let us consider

n(R1 − ǫ)
(a)

≤ I(Xn
1 ;Y

n
1 )

(b)

≤ I(Xn
1 ;Y

n
1 |Xn

2 )

=

n
∑

i=1

I(Xn
1 ;Y1i|Xn

2 Y
i−1
1 )

=

n
∑

i=1

{

H(Y1i|Xn
2 Y

i−1
1 )−H(Y1i|Xn

2 Y
i−1
1 Xn

1 )
}

(c)
=

n
∑

i=1

{

H(Y1i|X i−1
2 X2iY

i−1
1 )−H(Y1i|X1iX2i)

}

(d)

≤
n
∑

i=1

{H(Y1i|X2iU1i)−H(Y1i|X1iX2iU1i)}

=

n
∑

i=1

I(X1i;Y1i|X2iU1i),

where(a) comes from Fano’s inequality;(b) is because of the independence betweenXn
1 andXn

2 ; (c) is because

that conditioning reduces entropy and the channel is assumed to be memoryless; for(d), first we identifyU1i =

(X i−1
2 , Y i−1

1 ) and also the memoryless property induces the Markov chainU1i − (X1i, X2i)− Y1i.

Now, let us showX1i − U1i −X2i. Due to the memoryless property, the following Markov chainholds:

(X1iX2i)− (X i−1
1 , X i−1

2 )− Y i−1
1 .

By weak union property, we obtain the following Markov chain:

X2i − (X1i, X
i−1
1 , X i−1

2 )− Y i−1
1 .

Together with the Markov chainX2i −X i−1
2 −X1iX

i−1
1 , which due to the independence betweenX i

1 andX i
2, we

obtain the following Markov chain by the contraction property:

X2i −X i−1
2 − (X1i, X

i−1
1 , Y i−1

1 ). (92)

Hence, we get the Markov chain

X2i − (X i−1
2 , Y i−1

1 )−X1i (93)

by the weak union and then the decomposition property.
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Next, we consider

n(R3 − ǫ)
(a)

≤ I(Xn
3 ;Y

n
2 )

(b)

≤ I(Xn
3 ;Y

n
2 |Xn

2 )

=

n
∑

i=1

I(Xn
3 ;Y2i|Xn

2 Y
i−1
2 )

=

n
∑

i=1

{

H(Y2i|Xn
2 Y

i−1
2 )−H(Y2i|Xn

2 X
n
3 Y

i−1
2 )

}

(c)

≤
n
∑

i=1

{

H(Y2i|X2i)−H(Y2i|Xn
2 X

n
3 Y

i−1
1 Y i−1

1 )
}

(d)
=

n
∑

i=1

{

H(Y2i|X2i)−H(Y2i|Xn
2 X

n
3 Y

i−1
1 )

}

(e)
=

n
∑

i=1

{

H(Y2i|X2i)−H(Y2i|X2iX3iX
i−1
2 Y i−1

1 )
}

=

n
∑

i=1

{I(X3iU1i;Y2i|X2i)} ,

where(a) follows the Fano’s Inequality,(b) is from the independence betweenXn
2 andXn

3 ; (c) is because of the

fact that conditioning reduces entropy;(d) is due to the memoryless property of the channel, and the degradedness

conditionX1−(X2, X3, Y1)−Y2, henceY i−1
2 is independent of any other random variables givenX i−1

2 , X i−1
3 and

Y i−1
1 , then(Xn

2,i, X
n
3,i, Y2i)− (X i−1

2 , X i−1
3 , Y i−1

1 )−Y i−1
2 forms a Markov chain. By the weak union property, the

Markov chainY2i − (Xn
2 , X

n
3 , Y

i−1
1 )− Y i−1

2 holds;(e) is because of the Markov chain(X2,i+1, X
i−1
3 , Xn

3,i+1)−
(X i

2, X3i, Y
i−1
1 ) − Y2i. The easiest way to prove it is using theIndependence Graph. Alternatively, we first note

that the Markov chain

(X i−1
2 , Xn

2,i+1, X
i−1
3 , Xn

3,i+1, Y
i−1
1 )− (X1i, X2i, X3i)− (Y1i, Y2i)

holds because of the memoryless property of the channel. By the decomposition property, the following Markov

chain is obtained:

(X i−1
2 , Xn

2,i+1, X
i−1
3 , Xn

3,i+1, Y
i−1
1 )− (X1i, X2i, X3i)− Y2i

Further by the weak union property, we obtain the following Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X1i, X
i
2, X3i, Y

i−1
1 )− Y2i. (94)

On the other hand, again because of the memoryless property of the channel, the Markov chain

(X1i, X2i, X3i, X
n
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
1 , X i−1

2 )− Y i−1
1

holds. Using the weak union property, we obtain the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X1i, X2i, X3i, X
i−1
1 , X i−1

2 )− Y i−1
1 .
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Together with the markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 X2iX3i)− (X i−1

1 , X1i)

due to the independence amongXn
1 , Xn

2 andXn
3 , we attain the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 , X2i, X3i)− (X i−1

1 , X1i, Y
i−1
1 )

by the contraction property. Then by the weak union propertyand the decomposition property, the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 , X2i, X3i, Y

i−1
1 )−X1i (95)

holds. Combine (94) with (95) by the contraction property, we have the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 , X2i, X3i, Y

i−1
1 )− (X1i, Y2i) (96)

as desired. The rest of the proof is done by introducing the timesharing variableQ, similar to the proof of the

capacity region for MACs [1].

B. Gaussian Case

The mixed interference case corresponds to the conditiona ≤ 1, b ≥ 1 or a ≥ 1, b ≤ 1 for the Gaussian MAZICs.

As mentioned before, the notion of “mixed” differs from thatof the classical two-user GIC with mixed interference:

here the two interferences go to the same receiver.

First of all, we can extend the outer-bound for the general discrete memoryless MAZICs to the Gaussian case.

Corollary 6: For a Gaussian MAZIC with mixed interference (a ≤ 1 andb ≥ 1), an outer-bound to the capacity

region can be expressed as a set of nonnegative rate pairs(R1, R2) satisfying the following inequalities:

R1 ≤ 1

2
log(1 + αP1), (97)

R2 ≤ 1

2
log(1 + P2), (98)

R3 ≤ 1

2
log(1 + P3), (99)

R3 ≤ 1

2
log(1 +

a(1− α)P1 + P3

1 + aαP1
), (100)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (101)

R2 +R3 ≤ 1

2
log(1 + bP2 + P3), (102)

Proof: This is a direct extension of Theorem 4. Inequalities (98), (99), (101) and (102) comes from the

corresponding inequality in Theorem 4 and the fact that given the variance of random variables, Guassian distribution

will maximize the entropy.
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As for (100),

R3 ≤ I(UX3;Y2|X2Q)

= h(Y2|X2Q)− h(Y2|X2X3UQ)

= h(
√
aX1 +X3 + Z2|Q)− h(

√
aX1 + Z2|UQ)

(a)

≤ 1

2
log[(2πe)(1 + aP1 + P3)]−

1

2
log a− h(X1 + Z1 + Z ′

2|UQ)

(b)

≤ 1

2
log[(2πe)(1 + aP1 + P3)]−

1

2
log a− 1

2
log

(

22h(X1+Z1|UQ) + (2πe)(
1− a

a
)

)

(c)

≤ 1

2
log(1 + aP1 + P3)−

1

2
log

[

a22R1 + 1− a
]

,

where (a) is by the fact that Gaussian distribution maximizes the entropy for a given variance, andZ ′
2 ∼

N
(

0, 1
a
− 1

)

, independent of all other random variables;(b) is from the entropy power inequality;(c) is because

that from (86),

R1 ≤ I(X1;Y1|X2UQ) = h(Y1|X2UQ)− h(Z1) = h(Y1|X2UQ)− 1

2
log(2πe).

Furthermore, since

0 ≤ R1 ≤ h(Y1|X2UQ)− h(Z1) = h(X1 + Z1|UQ)− h(Z1) ≤ h(X1 + Z1|Q)− h(Z1) ≤
1

2
log(1 + P1),

there exists anα ∈ [0, 1], such that

R1 =
1

2
log(1 + αP1). (103)

Then,

R3 ≤ 1

2
log(1 + aP1 + P3)−

1

2
log(1 + aαP1) =

1

2
log

(

1 +
a(1− α)P1 + P3

1 + aαP1

)

.

Remark: The outer-bound in Theorem 4 is an extension of Kramer’s second outer-bound [14, Thoerem 2] to the

dicrete memoryless case. To see this, we can consider a special case of Corollary 6 by choosingR2 = 0, such that the

remaining transmitters1 and3, and receivers1 and2, form a Gaussian ZIC. The outer bound in Corollary 6 reduces

to that consists of only (97), (99), and (100) with the input distribution factorizes asp(q)p(u|q)p(x1|uq)p(x3|q). If

we lchooseβ = aαP1

P
, whereP = aP1 + P3, we can rewrite the outer bound as:

R1 ≤ 1

2
log(1 +

βP

a
), (104)

R3 ≤ 1

2
log(1 +

(1− β)P

1 + βP
),

which is exactly Kramer’s second outer bound on the capacityregion of a Gaussian ZIC [14, Theorem 2]. Therefore,

the outer bound in Theorem 4 is a generalization of Kramer’s outer bound to the discrete memoryless case, and an

extension from the ZIC to the MAZIC.
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In the following, we consider a subclass of Gaussian MAZICs with mixed interference, and we determine some

boundary points of the capacity region.

Lemma 2:For a Gaussian MAZIC satisfying conditionsa ≤ 1 andb ≥ 1 + aP1 + P3, an achievable rate region

is given by the set of all nonnegative rate triples(R1, R2, R3) that satisfy

R1 ≤ 1

2
log (1 + P1) , (105)

R2 ≤ 1

2
log (1 + P2) , (106)

R3 ≤ 1

2
log

(

1 +
P3

1 + aαP1

)

, (107)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) , (108)

R1 +R3 ≤ 1

2
log (1 + αP1) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1

)

, (109)

R1 +R2 +R3 ≤ 1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1

)

, (110)

for α ∈ [0, 1].

Proof: If b ≥ 1 + aP1 + P3, we know that receiver2 can decode user2’s message by treating its own signal

as well as the interference from user1 as noise. Therefore, there is no need to use rate splitting for user2, i.e.,

β = 0. On applying Corollary 1 and removing all the redundant inequalities, we get Lemma 2.

Remark: 12 log (1 + αP1 + P2) +
1
2 log

(

1 + aᾱP1+P3

1+aαP1

)

is an increasing function ofα if a(1 + P2) ≤ 1. Thus,

the maximal achievable sum rate for the above achievable rate region is attained whenα = 1, which equals

Rs = 1
2 log(1 + P1 + P2) +

1
2 log

(

1 + P3

1+aP1

)

. However, since the expression ofRs is generally not a concave

function ofP1, we can achieve a larger sum rate thanRs by time sharing.

From Lemma 2 and Corollary 6, we can directly get a corner point on the capacity region.

Corollary 7: For a Gaussian MAZIC witha ≤ 1 and b ≥ 1+aP1+P3

(1+P1)
, the rate triple(R∗

1, R
∗
2, R

∗
3) is on the

boundary of the capacity region, where

R∗
1 =

1

2
log(1 + P1), (111)

R∗
2 =

1

2
log

(

1 +
P2

1 + P1

)

, (112)

R∗
3 =

1

2
log

(

1 +
P3

1 + aP1

)

. (113)

It is easy to see that this boundary point is achieved by fullydecoding the interference from transmitter2 and

treating the interference from transmitter1 as noise.
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VII. T HE MAZIC S WITH WEAK INTERFERENCES

A. Discrete Memoryless Case

Definition 1: A discrete memoryless MAZIC is said to haveweak interferencesif the channel transition proba-

bility factorizes as

p(y1y2|x1x2x3) = p(y1|x1x2)p
′(y2|x2x3y1), (114)

p(y1y2|x1x2x3) = p(y1|x1x2)p
′′(y2|x1x3y1) (115)

for somep′(y2|x2x3y1) andp′′(y2|x1x3y1), or, equivalently, the channel is stochastically degraded.

In the absence of receiver cooperation, a stochastically degraded interference channel is equivalent in its capacity

to a physically degraded interference channel. As such, we will assume in the following that the channel is physically

degraded, i.e., the MAZIC admits the Markov chainsX1 − (X2, X3, Y1)− Y2 andX2 − (X1, X3, Y1)− Y2. As a

consequence, the following two inequalities hold

I(U1;Y2|X2X3) ≤ I(U1;Y1|X2), (116)

I(U2;Y2|X1X3) ≤ I(U2;Y1|X1) (117)

for all input distributionsp(x3)p(u1)p(x1|u1)p(x2|u1) andp(x3)p(u2)p(x1|u2)p(x2|u2) respectively.

The above definition of weak interference leads to the following outer-bound.

Theorem 5:The capacity region of a discrete memoryless MAZIC with weakinterferences is outer-bounded by

the region determined by the following inequalites:

R1 ≤ I(X1;Y1|X2U1Q), (118)

R2 ≤ I(X2;Y1|X1U2Q), (119)

R3 ≤ I(X3;Y2|X1X2Q), (120)

R3 ≤ I(X3U1;Y2|X2Q), (121)

R3 ≤ I(X3U2;Y2|X1Q), (122)

R1 +R2 ≤ I(X1X2;Y1|Q), (123)

where the input distributionp(u1u2x1x2x3) = p(u1u2)p(x1|u1u2)p(x2|u1u2)p(x3).

The proof is similar to that of Theorem 4 and is hence omitted.We note that the auxiliary random variables are

defined asU1i = (X i−1
2 , Y i−1

1 ) andU2i = (X i−1
1 , Y i−1

1 ).

B. Gaussian Case

The weak interference case for the Gaussian MAZIC corresponds to the condition witha, b ≤ 1.

First, Theorem 5 can be extended to the Gaussian case.
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Corollary 8: For a Gaussian MAZIC satisfying conditionsa, b ≤ 1, an outer bound to the capacity region is

given by the set of all nonnegative rate triples(R1, R2, R3) such that

R1 ≤ 1

2
log(1 + αP1),

R2 ≤ 1

2
log(1 + βP2),

R3 ≤ 1

2
log(1 + P3),

R3 ≤ 1

2
log

(

1 +
a(1− α)P1 + P3

1 + aαP1

)

,

R3 ≤ 1

2
log

(

1 +
b(1− β)P2 + P3

1 + bβP2

)

,

R1 +R2 ≤ 1

2
log(1 + P1 + P2).

The proof is very similar to that of Corollary 6, hence is omitted here.

For a two-user Gaussian ZIC, treating interference as noiseis optimal in terms of sum-capacity for the weak

interference case. One may conjecture that a similar resultholds for the Gaussian MAZIC if both interferences are

weak (a, b ≤ 1). Indeed, similar sum-rate capacity result holds for the case with0 < a = b < 1.

Corollary 9: For the Gaussian MAZICs satisfying0 ≤ a = b ≤ 1, the sum-rate capacity is

C =
1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1 + bP2

)

. (124)

Proof: This is a direct extension of the sum-capacity result of the two-user Gaussian ZICs with weak interference

by viewingX1 andX2 as a group.

However, the above sum-capacity result is not true in general with asymmetric interference. We begin with the

following theorem that gives a sum-rate upper-bound.

Theorem 6:Any achievable rate triplet (R1, R2, R3) for the Gaussian MAZIC with0 ≤ a ≤ b ≤ 1 must satisfy

the following constraint

n(R1 +R2 +R3) ≤ min
σ2≤1

{n

2
log

(

(P1 + P2 + 1)(aP1 + bP2 + σ2)− (
√
aP1 +

√
bP2 +

√
a)2

)

−n

2
log(aP1 + bP2 + 1)− n

2
log(σ2 − a) +

n

2
log(aP1 + bP2 + P3 + 1)

}

.

Proof:

n(R1 +R2 +R3)− nǫ

(a)

≤ I(Xn
1 X

n
2 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 )

= I(Xn
1 ;X

n
1 + Zn

1 ) + I(Xn
2 ;X

n
1 +Xn

2 + Zn
1 ) + I(Xn

3 ;
√
aXn

1 +
√
bXn

2 +Xn
3 + Zn

2 )

(b)

≤ I(Xn
1 ;X

n
1 + Zn

1 ) + I(Xn
2 ;X

n
1 +Xn

2 + Zn
1 ,

√
aXn

1 +
√
bXn

2 +Nn
1 )

+I(Xn
3 ;

√
aXn

1 +
√
bXn

2 +Xn
3 + Zn

2 )

= h(Xn
1 + Zn

1 )− h(Zn
1 ) + h(

√
aXn

1 +
√
bXn

2 +Nn
1 )
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+h(Xn
1 +Xn

2 + Zn
1 |
√
aXn

1 +
√
bXn

2 +Nn
1 )− h(

√
aXn

1 +Nn
1 )− h(Xn

1 + Zn
1 |
√
aXn

1 +Nn
1 )

+h(
√
aXn

1 +
√
bXn

2 +Xn
3 + Zn

2 )− h(
√
aXn

1 +
√
bXn

2 + Zn
2 )

= h(Xn
1 + Zn

1 )− h(
√
aXn

1 +Nn
1 ) + h(

√
aXn

1 +
√
bXn

2 +Nn
1 )

−h(
√
aXn

1 +
√
bXn

2 + Zn
2 )− h(Zn

1 ) + h(Xn
1 +Xn

2 + Zn
1 |
√
aXn

1 +
√
bXn

2 +Nn
1 )

+h(
√
aXn

1 +
√
bXn

2 +Xn
3 + Zn

2 )− h(Zn
1 − 1√

a
Nn

1 |
√
aXn

1 +Nn
1 )

= h(Xn
1 + Zn

1 )− h(
√
aXn

1 +Nn
1 |Zn

1 − 1√
a
Nn

1 ) + h(
√
aXn

1 +
√
bXn

2 +Nn
1 )

−h(
√
aXn

1 +
√
bXn

2 + Zn
2 )− h(Zn

1 ) + h(Xn
1 +Xn

2 + Zn
1 |
√
aXn

1 +
√
bXn

2 +Nn
1 )

+h(
√
aXn

1 +
√
bXn

2 +Xn
3 + Zn

2 )− h(Zn
1 − 1√

a
Nn

1 )

(c)

≤ n

2
log

(

(P1 + P2 + 1)(aP1 + bP2 + σ2)− (
√
aP1 +

√
bP2 +

√
a)2

)

−n

2
log(aP1 + bP2 + 1)− n

2
log(σ2 − a) +

n

2
log(aP1 + bP2 + P3 + 1)

where(a) is from Fano’s inequality;(b) is by giving side information
√
aXn

1 +
√
bXn

2 +Nn
1 to the second mutual

information whereNn
1 is an i.i.d. Gaussian random variables whose covariance matrix with Z1 is

Cov





Z1

N1



 =





1 ρσ

ρσ σ2



 ;

(c) is the result of applying the extremal inequality [15] to thefirst two terms, and to the third and forth terms

respectively. for the first two terms,

h(Xn
1 + Zn

1 )− h(
√
aXn

1 +Nn
1 |Zn

1 − 1√
a
Nn

1 ) ≤ n

2
log(1 + P1)−

n

2
log(aP1 + a)

= −n

2
log a,

since the use of the extremal inequality requiresV ar(N1|Z1 − 1√
a
N1) ≥ a ⇒ ρσ =

√
a. For the third and fourth

terms,

h(
√
aXn

1 +
√
bXn

2 +Nn
1 )− h(

√
aXn

1 +
√
bXn

2 + Zn
2 ) ≤ n

2
log(aP1 + bP2 + σ2)− n

2
log(aP1 + bP1 + 1)

as the use of the extremal inequality requiresσ2 ≤ 1.

For the conditional entropyh(Xn
1 +Xn

2 +Zn
1 |
√
aXn

1 +
√
bXn

2 +Nn
1 ), identically and independently distributed

(i.i.d) zero-mean GaussianXn
1 andXn

2 are the maximizing distributions [16].

Corollary 10: For the Gaussian MAZICs satisfying0 ≤ a ≤ b ≤ 1, if the power constraints satisfy

P1 =
1−

√
ab√

ab− a
,

P3 ≥ b− 1 + (b − a)P1 =

√

b

a
−
√
ab,

the sum-rate capacity is

C =
1

2
log(1 + P1) +

1

2
log

(

1 +
bP2 + P3

1 + aP1

)

. (125)
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Proof: For the achievability part, let receiver1 decode messages from users1 and 2, and receiver2 decode

messages from users2 and3, we have the following achievable rate triplets(R1, R2, R3):

R1 ≤ 1

2
log(1 + P1), (126)

R2 ≤ 1

2
log

(

1 +
bP2

1 + aP1

)

, (127)

R3 ≤ 1

2
log

(

1 +
P3

1 + aP1

)

, (128)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (129)

R2 +R3 ≤ 1

2
log

(

1 +
bP2 + P3

1 + aP1

)

. (130)

Apply Fourier-Motzkin elimination with respect toS = R1 +R2 +R3, the resulting achievable sum-rate is

R1 +R2 + R3 ≤ min

{

1

2
log(1 + P1) +

1

2
log

(

1 +
bP2 + P3

1 + aP1

)

,
1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1

)}

,

if (b− a)P1 ≤ 1− b+ P3,

1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1

)

≥ 1

2
log(1 + P1) +

1

2
log

(

1 +
bP2 + P3

1 + aP1

)

.

hence,12 log(1+P1)+
1
2 log

(

1 + bP2+P3

1+aP1

)

is an achievable sum-rate, and is achieved by user1 decodingX2 first,

subtracting it off, and then decodingX1; and user2 decodingX2 andX3 simultaneously by treatingX1 as noise.

For the converse part, at the last step of the proof of Theorem6, if we further let the Gaussian variables

Xn
2 − (

√
aXn

1 +
√
bXn

2 +Nn
1 )− (Xn

1 +Xn
2 + Zn

1 ) form a Markov chain, then

P1 =

√
ab− σ2

a−
√
ab

. (131)

The sum-rate upper-bound becomes

1

2
log(1 + P1) +

1

2
log(1 +

bP2

aP1 + σ2
) +

1

2
log(1 +

P3

1 + aP1 + bP2
).

Let σ2 = 1, (131) becomesP1 = 1−
√
ab√

ab−a
, naturally, this requiresa ≤ b, and

√
ab ≤ 1 such that (131) is non-negative.

This is becausea > b is infeasible as it implies
√
ab ≤ a, i.e., (131) is negative whenσ2 = 1.

It is perhaps not intuitive that the sum-rate (125) is optimal only if P1 = 1−
√
ab√

ab−a
. Specifically, given that this

sum-rate capacity is achieved when the interference fromX1 is treated as noise atY2, it might be expected that

with smallerP1, the same scheme should also be optimal. We show that this is not true.

First, for a ≤ 1,
1− b

b− a
≤ 1−

√
ab√

ab− a
. (132)

But for P1 ≤ 1−b
b−a

, the achievable sum-rate

1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1 + bP2

)

(133)

is greater than the sum-rate (125).
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Now consider anyP1 with 1−b
b−a

≤ P1 ≤ 1−
√
ab√

ab−a
. The following function is an achievable sum-rate forP1 ≤ 1−

√
ab√

ab−a
.

However, it is easy to show thatf is not concave inP1 around the point1−b
b−a

. Therefore, sum-rates strictly larger

than (125) can be achieved for1−b
b−a

≤ P1 ≤ 1−
√
ab√

ab−a
using time-sharing.

f(P1) =







1
2 log(1 + P1 + P2) +

1
2 log

(

1 + P3

1+aP1+bP2

)

, if P1 ≤ 1−b
b−a

,

1
2 log(1 + P1) +

1
2 log

(

1 + bP2+P3

1+aP1

)

, if 1−b
b−a

≤ P1 ≤ 1−
√
ab√

ab−a
.
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Fig. 4. The Comparison of the sum-rates achieved by proposedtime-sharing scheme and Eq. 125 when1−b

b−a
≤ P1 ≤ 1−

√

ab
√

ab−a
.

Next, let us consider an even simpler case, where one of the cross link gain vanishes, for example,a = 0. With

only one weak interference link, we are able to obtain a boundary curve of the capacity region.

Theorem 7:For a Gaussian MAZIC witha = 0 and 1+P3

1+P1
≤ b ≤ 1 (P3 ≤ P1), then the following rate triple is

always on the boundary of the capacity region:
(

1

2
log

(

1 +
P1

1 + β̄P2

)

,
1

2
log(1 + β̄P2) +

1

2
log

(

1 +
βP2

1 + P1 + β̄P2

)

,
1

2
log(1 + P3)

)

, (134)

whereβ ∈ [0, 1] and satisfy

1

2
log(1 + β̄P2) +

1

2
log

(

1 +
βP2

1 + P1 + β̄P2

)

≤ 1

2
log

(

1 +
bP2

1 + P3

)

. (135)
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Proof: By settingα = 1, the general achievable rate region in Corollary 1 reduces to

R1 ≤ 1

2
log(1 + P1),

R2 ≤ 1

2
log(1 + P2),

R3 ≤ 1

2
log

(

1 +
P3

1 + bβP2

)

,

R1 +R2 ≤ 1

2
log(1 + P1 + P2),

R2 +R3 ≤ 1

2
log(1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + bβP2

)

,

R1 +R2 +R3 ≤ 1

2
log(1 + P1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + bβP2

)

.

If let R3 = 1
2 log(1 + P3), the achievable rate region reduces to

R1 ≤ 1

2
log(1 + P1), (136)

R2 ≤ 1

2
log

(

1 +
bP2

1 + P3

)

, (137)

R1 +R2 ≤ 1

2
log(1 + P1 + P2). (138)

If b ≥ 1+P3

1+P1
(P3 ≤ P1), inequality (138) is always active. Therefore, the rate triple (134) is always achievable.

For the converse part, (138) is a natural upper-bound forR1 +R2.

VIII. C ONCLUSION

In this paper we have studied the capacity of an uplink network with co-channel interference. By modeling

such networks using a multiple access interference channelwith one-sided interference, we have obtained an inner

bound to the capacity region for both the discrete memoryless case and the Gaussian case. The capacity region

for the discrete memoryless channel model with strong and very strong interference has been established; for the

Gaussian MAZIC, we have determined the capacity region for the very strong interference case, and for the case

that one interference link being strong and the other one being very strong; for the strong interference case, we have

obtained a boundary line segment of the capacity region. Forthe mixed interference case, a boundary point of the

capacity region has been obtained. For the weak interference case, we have obtained the sum-rate capacity for the

symmetric channel coefficients whose result is analogous tothat of the two user Gaussian one-sided interference

channel. For the general case, a sum-rate upper bound has been obtained which gives rise to a sum-rate capacity

result under certain power constraint conditions. Furthermore, it does not change the capacity results if we allow

more users intended for receiver2 without interfering receiver1. In this case,R3 is replaced by the sum-rate of

all those added users.
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APPENDIX

A. Proof of Theorem 1

Fix p(q)p(u1|q)p(x1|u1q)p(u2|q)p(x2|u2q)p(x3|q).
Codebook generation: Randomly generate a time sharing sequence qn according to

∏n

i=1 p(qi). Randomly

generate2nR3 sequencesxn
3 (m3), m3 ∈ [1 : 2nR3 ], according to

∏n
i=1 p(x3i|qi). For j = 1, 2, randomly generate

2nTi sequencesun
j (lj), lj ∈ [1 : 2nTj ], each according to

∏n

i=1 pUj |Q(uji|qi). For eachun
j (lj), randomly generate

2nSj sequencesxn
j (lj , kj), kj ∈ [1 : 2nSj ], each according to

∏n
i=1 pXj |Uj ,Q(xj |uji(lj), qi). The codebook is

available at all transmitters and receivers.

Encoding: For userj, j = 1, 2, to send messagemj = (lj , kj), encoderj transmitsxn
j (lj , kj). For user3, to

send messagem3, encoder3 transmitsxn
3 (mj).

Decoding: Upon receivingyn1 , decoder1 finds the unique message tuple(l̂1, l̂2, k̂1, k̂2) such that

(qn, un
1 (l̂1), u

n
2 (l̂2), x

n
1 (l̂1, k̂1), x

n
2 (l̂2, k̂2), y

n
1 ) ∈ A(n)

ǫ (QU1U2X1X2Y1). (139)
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If no such unique tuple exists, the decoder declares an error.

Upon receivingyn2 , decoder2 finds the unique messagêm3 such that

(qn, un
1 (l1), u

n
2 (l2), x

n
3 (m̂3)) ∈ A(n)

ǫ (QU1U2X3Y2), (140)

for somel1 ∈ [1 : 2nT1 ] and somel2 ∈ [1 : 2nT2 ]. If no such uniquem̂3 exists, the decoder declares an error.

Analysis of the probability of error: By the symmetry of the codebook generation, we assume that the transmitted

indices arel1 = l2 = k1 = k2 = m3 = 1. For user1, we define the following event:

E1
l1l2k1k2

=
{

(qn, un
1 (l1), u

n
2 (l2), x

n
1 (l1, k1), x

n
2 (l2, k2), y

n
1 ) ∈ A(n)

ǫ (QU1U2X1X2Y1)
}

. (141)

The error probability at receiver1 is

Pn
e1 = Pr

{

E1
1111

c
⋃

∪(l1l2k1k2) 6=(1,1,1,1)E
1
l1l2k1k2

}

≤ Pr(E1
1111

c
) +

∑

l1 6=1,l2=k1=k2=1

Pr(E1
l1111) +

∑

l2 6=1,l1=k1=k2=1

Pr(E1
1l211) +

∑

k1 6=1,l1=l2=k2=1

Pr(E1
11k11)

∑

k2 6=1,l1=l2=k1=1

Pr(E1
111k2

) +
∑

l1,l2 6=1,k1=k2=1

Pr(E1
l1l211) +

∑

l1,k1 6=1,l2=k2=1

Pr(E1
l11k11)

∑

l1,k2 6=1,l2=k1=1

Pr(E1
l111k2

) +
∑

l2,k1 6=1,l1=k2=1

Pr(E1
1l2k11) +

∑

l2,k2 6=1,l1=k1=1

Pr(E1
1l21k2

)

∑

k1,k2 6=1,l1=l2=1

Pr(E1
11k1k2

) +
∑

l1,l2,k1 6=1,k2=1

Pr(E1
l1l2k11) +

∑

l1,l2,k2 6=1,k1=1

Pr(E1
l1l21k2

)

∑

l1,k1,k2 6=1,l2=1

Pr(E1
l11k1k2

) +
∑

l2,k1,k2 6=1,l1=1

Pr(E1
1l1k1k2

) +
∑

l1,l2,k1,k2 6=1

Pr(E1
l1l2k1k2

)

It is obvious thatPr(E1
1111

c
) → 0 whenn → ∞. From the joint typicality we have

∑

l1 6=1,l2=k1=k2=1

Pr(E1
l1111)

≤ 2nT1

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 |qn)p(qnun

2x
n
2 y

n
1 )

≤ 2nT12n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1|Q)−2ǫ)2−n(H(QU2X2Y1)−ǫ)

= 2n(T1−I(U1X1;Y1|U2X2Q)+4ǫ) = 2n(T1−I(X1;Y1|X2Q)+4ǫ)

∑

l2 6=1,l1=k1=k2=1

Pr(E1
1l211)

≤ 2nT2

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
2 , x

n
2 |qn)p(qnun

1x
n
1 y

n
1 )

≤ 2nT22n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X2|Q)−2ǫ)2−n(H(QU1X1Y1)−ǫ)

= 2n(T2−I(U2X2;Y1|U1X1Q)+4ǫ) = 2n(T2−I(X2;Y1|X1Q)+4ǫ)
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∑

k1 6=1,l1=l2=k2=1

Pr(E1
11k11)

≤ 2nS1

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(xn
1 |un

1 , q
n)p(qnun

1u
n
2x

n
2 y

n
1 )

≤ 2nS12n(H(QU1U2X1X2Y1)+ǫ)2−n(H(X1|U1Q)−2ǫ)2−n(H(QU1U2X2Y1)−ǫ)

= 2n(S1−I(X1;Y1|U1U2X2Q)+4ǫ) = 2n(S1−I(X1;Y1|U1X2Q)+4ǫ)

∑

k2 6=1,l1=l2=k1=1

Pr(E1
111k2

)

≤ 2nS2

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(xn
2 |un

2 , q
n)p(qnun

1u
n
2x

n
1 y

n
1 )

≤ 2nS22n(H(QU1U2X1X2Y1)+ǫ)2−n(H(X2|U2Q)−2ǫ)2−n(H(QU1U2X1Y1)−ǫ)

= 2n(S2−I(X2;Y1|U1U2X1Q)+4ǫ) = 2n(S2−I(X2;Y1|U2X1Q)+4ǫ)

∑

l1,l2 6=1,k1=k2=1

Pr(E1
l1l211)

≤ 2n(T1+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤ 2n(T1+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1U2X2|Q)−2ǫ)2−n(H(QY1)−ǫ)

= 2n(T1+T2−I(U1X1U2X2;Y1|Q)+4ǫ) = 2n(T1+T2−I(X1X2;Y1|Q)+4ǫ)

∑

l1,k1 6=1,l2=k2=1

Pr(E1
l11k11)

≤ 2n(S1+T1)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 |qn)p(qnun

2x
n
2 y

n
1 )

≤ 2n(S1+T1)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1Q)−2ǫ)2−n(H(QU2X2Y1)−ǫ)

= 2n(S1+T1−I(U1X1;Y1|U2X2Q)+4ǫ) = 2n(S1+T1−I(X1;Y1|X2Q)+4ǫ)

∑

l1,k2 6=1,l2=k1=1

Pr(E1
l111k2

)

≤ 2n(S2+T1)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
2 , x

n
1 , x

n
2 |un

1 q
n)p(qnun

1y
n
1 )

≤ 2n(S2+T1)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X1X2|U1Q)−2ǫ)2−n(H(QU1Y1)−ǫ)

= 2n(S2+T1−I(U2X1X2;Y1|U1Q)+4ǫ) = 2n(S2+T1−I(X1X2;Y1|U1Q)+4ǫ)
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∑

l2,k1 6=1,l1=k2=1

Pr(E1
1l2k11)

≤ 2n(S1+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 , x

n
2 |un

2 q
n)p(qnun

2y
n
1 )

≤ 2n(S1+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1X2|U2Q)−2ǫ)2−n(H(QU2Y1)−ǫ)

= 2n(S1+T2−I(U1X1X2;Y1|U2Q)+4ǫ) = 2n(S1+T2−I(X1X2;Y1|U2Q)+4ǫ)

∑

l2,k2 6=1,l1=k1=1

Pr(E1
1l21k2

)

≤ 2n(S2+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
2 , x

n
2 |qn)p(qnun

1x
n
1 y

n
1 )

≤ 2n(S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X2|Q)−2ǫ)2−n(H(QU1X1Y1)−ǫ)

= 2n(S2+T2−I(U2X2;Y1|U1X1Q)+4ǫ) = 2n(S2+T2−I(X2;Y1|X1Q)+4ǫ)

∑

k1,k2 6=1,l1=l2=1

Pr(E1
11k1k2

)

≤ 2n(S1+S2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(xn
1 |un

1 q
n)p(xn

2 |un
2 q

n)p(qnun
1u

n
2y

n
1 )

≤ 2n(S1+S2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(X1X2|U1U2Q)−2ǫ)2−n(H(QU1U2Y1)−ǫ)

= 2n(S1+S2−I(X1X2;Y1|U1U2Q)+4ǫ) = 2n(S1+S2−I(X1X2;Y1|U1U2Q)+4ǫ)

∑

l1,l2,k1 6=1,k2=1

Pr(E1
l1l2k11)

≤ 2n(S1+T1+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤ 2n(S1+T1+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1U2X2|Q)−2ǫ)2−n(H(QY1)−ǫ)

= 2n(S1+T1+T2−I(U1X1U2X2;Y1|Q)+4ǫ) = 2n(S1+T1+T2−I(X1X2;Y1|Q)+4ǫ)

∑

l1,l2,k2 6=1,k1=1

Pr(E1
l1l21k2

)

≤ 2n(T1+S2+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤ 2n(T1+S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1X2U2|Q)−2ǫ)2−n(H(QY1)−ǫ)

= 2n(S1+T1+S2−I(U1U2X1X2;Y1|Q)+4ǫ) = 2n(T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)
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∑

l1,k1,k2 6=1,l2=1

Pr(E1
l11k1k2

)

≤ 2n(S1+T1+S2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 , x

n
2 |un

2q
n)p(qnun

2y
n
1 )

≤ 2n(S1+T1+S2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1X2|U2Q)−2ǫ)2−n(H(QU2Y1)−ǫ)

= 2n(S1+T1+S2−I(U1X1X2;Y1|U2Q)+4ǫ) = 2n(S1+T1+S2−I(X1X2;Y1|U2Q)+4ǫ)

∑

l2,k1,k2 6=1,l1=1

Pr(E1
1l2k1k2

)

≤ 2n(S1+S2+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
2 , x

n
1 , x

n
2 |un

1q
n)p(qnun

1y
n
1 )

≤ 2n(S1+S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X1X2|U1Q)−2ǫ)2−n(H(QU1Y1)−ǫ)

= 2n(S1+S2+T2−I(U2X1X2;Y1|U1Q)+4ǫ) = 2n(S1+S2+T2−I(X1X2;Y1|U1Q)+4ǫ)

∑

l1,l2,k1,k2 6=1

Pr(E1
l1l2k1k2

)

≤ 2n(S1+T1+S2+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un
1 , x

n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤ 2n(S1+T1+S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1U2X2|Q)−2ǫ)2−n(H(QY1)−ǫ)

= 2n(S1+T1+S2+T2−I(U1U2X1X2;Y1|Q)+4ǫ) = 2n(S1+T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)

Putting them together, we have

Pn
e1 ≤ ǫ+ 2n(T1−I(X1;Y1|X2Q)+4ǫ) + 2n(T2−I(X2;Y1|X1Q)+4ǫ)

+2n(T1−I(X1;Y1|U1X2Q)+4ǫ) + 2n(S2−I(X2;Y1|U2X1Q)+4ǫ)

+2n(T1+T2−I(X1X2;Y1|Q)+4ǫ) + 2n(S1+T1−I(X1;Y1|X2Q)+4ǫ)

+2n(S2+T1−I(X1X2;Y1|U1Q)+4ǫ) + 2n(S1+T2−I(X1X2;Y1|U2Q)+4ǫ)

+2n(S2+T2−I(X2;Y1|X1Q)+4ǫ) + 2n(S1+S2−I(X1X2;Y1|U1U2Q)+4ǫ)

+2n(S1+T1+T2−I(X1X2;Y1|Q)+4ǫ) + 2n(T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)

+2n(S1+T1+S2−I(X1X2;Y1|U2Q)+4ǫ) + 2n(S1+S2+T2−I(X1X2;Y1|U1Q)+4ǫ)

+2n(S1+T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)

For user2, we define the following event:

E2
l1l2m3

=
{

(qn, un
1 (l1), u

n
2 (l2), x

n
3 (m3), y

n
2 ) ∈ A(n)

ǫ (QU1U2X3Y2)
}

. (142)
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The error probability at receiver2 is

Pn
e2 = Pr

{

E2
111

c
⋃

∪m3 6=1,any(l1,l2)E
2
l1l2m3

}

≤ Pr
(

E2
111

c
)

+
∑

m3 6=1,l1=l2=1

Pr
(

E2
11m3

)

+
∑

l1,m3 6=1,l2=1

Pr
(

E2
l11m3

)

+
∑

l2,m3 6=1,l1=1

Pr
(

E2
1l2m3

)

+
∑

l1,l2,m3 6=1

Pr
(

E2
l1l2m3

)

Again, it is obvious thatPr(E2
111

c
) → 0 whenn → ∞. From the joint typicality we have

∑

m3 6=1,l1=l2=1

Pr
(

E2
11m3

)

≤ 2nR3

∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(xn
3 |qn)p(qn, un

1 , u
n
2 , y

n
2 )

≤ 2nR32n(H(QU1U2X3Y2)+ǫ)2−n(H(X3|Q)−2ǫ)2−n(H(QU1U2Y2)−ǫ)

= 2n(R3−I(X3;Y2|U1U2Q)+4ǫ)

∑

l1,m3 6=1,l2=1

Pr
(

E2
l11m3

)

≤ 2n(T1+R3)
∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(un
1 , x

n
3 |qn)p(qn, un

2 , y
n
2 )

≤ 2n(T1+R3)2n(H(QU1U2X3Y2)+ǫ)2−n(H(U1,X3|Q)−2ǫ)2−n(H(QU2Y2)−ǫ)

= 2n(T1+R3−I(U1X3;Y2|U2Q)+4ǫ)

∑

l2,m3 6=1,l1=1

Pr
(

E2
1l2m3

)

≤ 2n(T2+R3)
∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(un
2 , x

n
3 |qn)p(qn, un

1 , y
n
2 )

≤ 2n(T2+R3)2n(H(QU1U2X3Y2)+ǫ)2−n(H(U2,X3|Q)−2ǫ)2−n(H(QU1Y2)−ǫ)

= 2n(T2+R3−I(U2X3;Y2|U1Q)+4ǫ)

∑

l1,l2,m3 6=1

Pr
(

E2
l1l2m3

)

≤ 2n(T1+T2+R3)
∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(un
1 , u

n
2 , x

n
3 |qn)p(qn, yn2 )

≤ 2n(T1+T2+R3)2n(H(QU1U2X3Y2)+ǫ)2−n(H(U1U2X3|Q)−2ǫ)2−n(H(QY2)−ǫ)

= 2n(T1+T2+R3−I(U1U2X3;Y2|Q)+4ǫ)

Therefore, for receiver2,

Pn
e2 ≤ ǫ+ 2n(R3−I(X3;Y2|U1U2Q)+4ǫ) + 2n(T1+R3−I(U1X3;Y2|U2Q)+4ǫ)

+2n(T2+R3−I(U2X3;Y2|U1Q)+4ǫ) + 2n(T1+T2+R3−I(U1U2X3;Y2|Q)+4ǫ)
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In order thatPn
e1, Pn

e2 → 0, from above inequalities, we must have

T1 ≤ I(X1;Y1|X2Q), (143)

T2 ≤ I(X2;Y1|X1Q), (144)

T1 ≤ I(X1;Y1|U1X2Q), (145)

S2 ≤ I(X2;Y1|U2X1Q), (146)

T1 + T2 ≤ I(X1X2;Y1|Q), (147)

S1 + T1 ≤ I(X1;Y1|X2Q), (148)

S2 + T1 ≤ I(X1X2;Y1|U1Q), (149)

S1 + T2 ≤ I(X1X2;Y1|U2Q), (150)

S2 + T2 ≤ I(X2;Y1|X1Q), (151)

S1 + S2 ≤ I(X1X2;Y1|U1U2Q), (152)

S1 + T1 + T2 ≤ I(X1X2;Y1|Q), (153)

T1 + S2 + T2 ≤ I(X1X2;Y1|Q), (154)

S1 + T1 + S2 ≤ I(X1X2;Y1|U2Q), (155)

S1 + S2 + T2 ≤ I(X1X2;Y1|U1Q), (156)

S1 + T1 + S2 + T2 ≤ I(X1X2;Y1|Q), (157)

R3 ≤ I(X3;Y2|U1U2Q), (158)

T1 +R3 ≤ I(U1X3;Y2|U2Q), (159)

T2 +R3 ≤ I(U2X3;Y2|U1Q), (160)

T1 + T2 +R3 ≤ I(U1U2X3;Y2|Q). (161)

Using the Fourier-Motzkin elimination on (143)-(161) and getting rid of redundant inequalities, we obtain (5)-(15).

The cardinality bounds on the auxiliary random variables are from the Caratheodory Theorem.

B. Proof of Theorem 2

The achievability part follows directly from Theorem 1 by setting U1 = U2 = ∅. For the converse, (33), (34) and

(36) form an outer bound on the capacity region of the corresponding MAC withX1 andX2 as inputs andY1 as

output. Moreover, (35) is a natural bound onR3. Therefore, we only need to prove (37)-(39). First,

n(R2 +R3)− nǫ = H(W2) +H(W3)− nǫ

(a)

≤ I(Xn
2 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 )

(b)

≤ I(Xn
2 ;Y

n
1 |Xn

1 ) + I(Xn
3 ;Y

n
2 |Xn

1 )
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(c)

≤ I(Xn
2 ;Y

n
2 |Xn

1 X
n
3 ) + I(Xn

3 ;Y
n
2 |Xn

1 )

= I(Xn
2 X

n
3 ;Y

n
2 |Xn

1 )

= H(Y n
2 |Xn

1 )−H(Y n
2 |Xn

1 X
n
2 X

n
3 )

=

n
∑

i=1

{

H(Y2i|Y i−1
2 Xn

1 )−H(Y2i|Y i−1
2 Xn

1 X
n
2 X

n
3 )

}

(d)

≤
n
∑

i=1

{H(Y2i|X1i)−H(Y2i|X1iX2iX3i)}

= I(X2iX3i;Y2i|X1i),

where(a) is from Fano’s inequality;(b) is because of the mutual independence amongXn
1 , Xn

2 andXn
3 ; (c) is

due to (31); and(d) uses the fact that conditioning reduces entropy and the memoryless property. Similarly, we

can prove the bound onR1 +R3. We further have

n(R1 +R2 +R3)− nǫ = H(W1,W2) +H(W3)− nǫ

(a)

≤ I(Xn
1 X

n
2 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 )

(b)

≤ I(Xn
1 X

n
2 ;Y

n
1 ) + I(Xn

3 ;Y
n
2 )

(c)

≤ I(Xn
1 X

n
2 ;Y

n
2 |Xn

3 ) + I(Xn
3 ;Y

n
2 )

= I(Xn
1 X

n
2 X

n
3 ;Y

n
2 )

= H(Y n
2 )−H(Y n

2 |Xn
1 X

n
2 X

n
3 )

=

n
∑

i=1

{

H(Y2i|Y i−1
2 )−H(Y2i|Y i−1

2 Xn
1 X

n
2 X

n
3 )
}

(d)

≤
n
∑

i=1

{H(Y2i −H(Y2i|X1iX2iX3i))}

= I(X1iX2iX3i;Y2i).

By introducing a time-sharing random variableQ, we obtain Theorem 2. The cardinality ofQ can be verified using

the Caratheodory theorem.
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