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Anisotropic Fermi Contour of (001) GaAs Electrons in Parallel Magnetic Fields
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We demonstrate a severe Fermi contour anisotropy induced by the application of a parallel mag-
netic field to high-mobility electrons confined to a 30-nm-wide (001) GaAs quantum well. We study
commensurability oscillations, namely geometrical resonances of the electron orbits with a unidi-
rectional, surface-strain-induced, periodic potential modulation, to directly probe the size of the
Fermi contours along and perpendicular to the parallel field. Their areas are obtained from the
Shubnikov-de Haas oscillations. Our experimental data agree semi-quantitatively with the results
of parameter-free calculations of the Fermi contours but there are significant discrepancies.

An isotropic two-dimensional (2D) carrier system is
characterized by a circular Fermi contour. In such a sys-
tem, the application of a small perpendicular magnetic
field leads to circular quasi-classical cyclotron orbits. If
the layer of charged carriers is purely 2D, i.e., has zero
thickness, the application of a parallel magnetic field (B)))
would not affect the shape of its Fermi contour and the
cyclotron trajectories would remain circular. However, if
the layer has a finite (non-zero) thickness, B couples to
the carriers’ out-of-plane motion and distorts the Fermi
contours and the cyclotron orbits [IH3]. Understanding
this Bj-induced Fermi contour anisotropy is important
for devices whose operation relies on ballistic transport
[4]. The anisotropy also emerges in the context of mag-
netic breakdown and Fermi contour disintegration in bi-
layer systems [5] [6].

Here we demonstrate the ability to tune and measure
the Bj-induced Fermi contour anisotropy of electrons
confined to a 30-nm-wide GaAs quantum well. Using ge-
ometrical resonances of cyclotron orbits with a periodic
superlattice, the so-called commensurability oscillations
(COs) [THI3], we directly probe the resulting distortions
of the Fermi contour and the ballistic electron trajec-
tories. Measuring Shubnikov-de Haas (SdH) oscillations
allows us to determine the evolution of the Fermi con-
tour areas with Bj. Our results show that the Fermi
contour distortion is significant and leads to a contour
anisotropy of ~ 3.5 : 1 for By ~ 20 T in our sam-
ple. This is much higher than the previously reported
anisotropy in GaAs/AlGaAs heterojunctions [IH3] and
stems from the larger thickness of the electron layer in
our sample. In contrast with the B)-induced anisotropy
in hole samples [14], the electron anisotropy appears to
be spin-independent. Comparison of our data with the
results of numerical calculations reveals generally good
agreement, although there are also significant disagree-
ments.

Figure [I| captures the key points of our study. In
Fig. [[(a) we show the results of parameter-free cal-
culations of the Fermi contours, combining the 8 x 8

Kane Hamiltonian [I6] with spin-density functional the-
ory [I7] to take into account the exchange-correlation of
the quasi-2D electrons in our sample. At B =0 T, the
Fermi contours of the two spin-subbands are circular and
essentially identical. With the application of B) along
the [110] direction, both contours become elongated in

the [110] direction while shrinking along [110]. The ar-
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FIG. 1.  (color online) (a) Calculated 2D electron Fermi

contours for a 30-nm-wide GaAs quantum well when B is
applied along the [110] direction. The majority- (minority-)
spin contour is given by solid (dotted) lines. (b) Schematic
of the L-shaped Hall bar. The arms of the Hall bar, oriented
along the [110] and [110] directions, are covered with stripes
of negative electron-beam resist. Part of the Hall bar is in-
tentionally left unpatterned and its magnetoresistance (Ryer)
is used to measure Shubnikov-de Haas oscillations. (c) The
geometry of the Hall bar is designed to use the commensura-
bility of the ballistic cyclotron orbits with the period of the
potential modulation induced by the stripes to probe the size
of the Fermi wave vector along the [110] and [110] directions
directly. Note that the real-space orbits are rotated by 90°
with respect to the Fermi contours [15].
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FIG. 2. Low-field magnetoresistance measured in the [110]
direction at B = 0 showing pronounced COs. Vertical lines
mark the positions of the expected COs resistance minima
according to 2R¢ /a = i—1/4. Shubnikov-de Haas oscillations
are visible on top of the COs above 0.2 T. The large number
of COs minima (up to =~ 17) attests to the very high quality
of the sample and the periodic modulation. Inset: an example
SEM image of the 200-nm-period grating of negative electron-
beam resist.

eas enclosed by the two contours also differ from each
other as electrons are transfered from the minority- to
the majority-spin subbands. In our study we measure
surface-strain-induced COs [I4] [1822], triggered by a
periodic density modulation [Figs. [I{b) and (c)] to di-
rectly map the Fermi wave vectors in two perpendicular

directions, [110] and [110].

The magnetoresistance of the modulated sections of
our Hall bars exhibits minima at the electrostatic com-
mensurability condition 2Rc/a = i — 1/4, where i =
1,2,3,... [THI3]; an example is shown in Fig. Here
2Rc = 2kp/eB is the real-space cyclotron diameter
along the modulation direction and a is the period of
the potential modulation (kg is the Fermi wave-vector
perpendicular to the modulation direction) [23]. The
anisotropy of the cyclotron diameter and the Fermi con-
tour can therefore be quantified directly from COs mea-
sured along the two perpendicular arms of the L-shaped
Hall bar in Fig. [T{c). The COs for the arms along [110]
and [110] yield kr along [110] and [110], respectively. In
our measurements, we also recorded SdH oscillations in
the unpatterned (reference) part of the Hall bar to probe
the area enclosed by each of the Fermi contours.

We prepared strain-induced superlattice samples with
a lattice period of @ = 200 nm and 2D electrons confined
to a 30-nm-wide GaAs quantum well grown via molec-
ular beam epitaxy on a (001) GaAs substrate. The su-
perlattice is made of negative electron-beam resist and
modulates the 2D potential through the piezoelectric ef-
fect in GaAs [14, [18+22]. The quantum well, located 135
nm under the surface, is flanked on each side by 95-nm-
thick Alg.24Gag.76As spacer layers and Si d-doped layers.
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FIG. 3. (color online) (a), (b) Magnetoresistance data for

the patterned sections of the L-shaped Hall bar in the [110]
and [110] directions at different values of By. (c), (d) Nor-
malized Fourier transform spectra of the COs data shown in
(a) and (b), respectively. The anticipated Bj=0 COs fre-
quency, based on a spin-degenerate, circular Fermi contour,
is marked with dashed lines. The low-frequency parts of the
spectra (below the vertical dotted lines) are severely affected
by the Hamming window used in the Fourier analysis and are
shown here suppressed by a factor of 100.

The 2D electron density at T ~ 0.3 K is n ~ 2.84 x 10!
em~2, and the mobility is u = 18.4 x 10% cm?/Vs. We
passed current along the two Hall bar arms of the sample
[Fig. [[[b)] and measured the longitudinal resistances si-
multaneously along both arms. The measurements were
carried out by first applying a fixed, large magnetic field
in the plane of the sample along [110]. We then slowly

rotated the sample around the [110] axis to introduce a
small magnetic field (B, ) perpendicular to the 2D plane



[24, 25]. This B, induced COs and SdH oscillations in
our sample. The magnitude of B, was extracted from
the Hall resistance we measured in the reference region
of the sample simultaneously with the resistances of the
two patterned regions. We performed all experiments us-
ing low-frequency (~ 13 — 18 Hz) lock-in techniques in a
3He cryostat with a base temperature of T~ 0.3 K.

The magnetoresistance data from the two perpendic-
ular Hall bar arms are shown in Figs. 3(a) and (b). In
each pannel the bottom traces, taken in the absence of
By, exhibit clear COs. The Fourier transform (FT) spec-
tra of these two traces are shown as the bottom curves in
Figs. Bfc) and (d). Each of the FT spectra exhibits one
peak whose position (~ 0.88 T) agrees with the com-
mensurability frequency fco = 2hkp/ea = 0.88 T ex-
pected for a circular, spin-degenerate Fermi contour with
kp = +/2mn [1H13]. With increasing B)|, the peak in the
FTs for the [110] Hall bar data [Fig. [3|c)] moves to higher
frequencies. In sharp contrast, the peak in the [110] di-
rection [Fig. d)] moves to smaller frequencies as B
increases.

Figure [4] summarizes the measured kr as a function
of B)|, normalized to its value k3 at B = 0. Similarly,
we plot the extreme values of the Fermi wave vectors
predicted by our parameter-free calculations using the
8 x 8 Kane Hamiltonian [I6]. We include results from
calculations that treat the exchange-correlation energy
(Vge) differently. The V. = 0 calculation (red curves)
ignores exchange-correlation completely while the V. #
0 calculation (blue curves) uses spin-density functional
theory [I7] to take into account exchange-correlation in
the 2D electron system that is partially spin-polarized
because of B).

The evolution of the COs’ FT peaks with increasing
B is qualitatively consistent with the calculated Fermi
contours. The agreement is quantitatively good but for
the kr L B case the elongation deduced from the ex-
perimental data is smaller than the calculations predict.
This discrepancy implies that the shape of the Fermi con-
tour is less elongated. We do not know the source of this
disagreement at the moment. We note that we have en-
countered a similar disagreement in our study of hole
Fermi contours [I4]. Despite this discrepancy, however,
the overall agreement between the measured and calcu-
lated values of kp is remarkable, considering that there
are no adjustable parameters in the calculations. The
results of Fig. [ clearly point to a severe distortion of
the Fermi contours and the associated real-space ballis-
tic electron trajectories in the presence of a moderately
strong B||. Both calculations show that the extreme sizes
of the contours for the two spin species remain very simi-
lar, explaining why the COs’ FT peaks show no splittling
[26].

The COs data in Figs. [3] and [] probe the electron
Fermi contours in two specific directions in k-space but
give no information about their areas. To probe the ar-
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FIG. 4. (color online) Summary of the Fermi wave vector

(kr) peak deduced from the positions of the COs’ FT spectra
for the two Hall bar arms. Filled circles represent kr L B
and open circles the kp || B“ experimental data. Values of kg
in the two directions calculated using V. = 0 and V. # 0 are
given by red and blue lines, respectively. The calculated kr
corresponding to the majority-spin species are plotted using
solid lines, and the minority-spin species using dotted lines.

eas enclosed by the Fermi contours, we measured the
SdH oscillations in the unpatterned region of the sample
[Ryef in Fig. b)] Figure a) shows the magnetoresis-
tance traces at different Bj. Their corresponding FTs
are shown in Fig. b). Up to B =10 T, the FT of each
trace has two peaks. The position of the stronger peak
is very close to the value of (h/2e)n ~ 5.8 T expected for
spin-unresolved SdH oscillations of electrons of density
n ~ 2.8 x 10! ecm™2. The weaker peak at 11.6 T cor-
responds to spin-resolved oscillations [(h/e)n = 11.6 T].
Starting at B) ~ 12 T, the spin-unresolved peak at 5.8 T
splits, with the upper peak corresponding to the area
(electron density) of the majority-spin-subband and the
lower peak to the minority-spin-subband.

Figure c) summarizes, as a function of B, the mea-
sured SAH frequencies (fsqm) normalized to the fre-
quency fg,y = 5.8 T at B = 0, and the results of our
energy band calculations. Overall, there is good quali-
tative agreement between the measured and calculated
Fermi contour areas. Quantitatively, however, the exper-
imental results fall between the calculated values with
Vee = 0 and V. # 0. The differences between the two
calculations are vizualized in the inset of Fig. [5[c). When
Ve = 0, the system is less spin-polarized and the areas
enclosed by the Fermi contours of the two spin species
are similar. When V.. # 0, more charge is transferred
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(color online) (a) Shubnikov-de Haas oscillations measured in the unpatterned (reference) region of the Hall bar as

By increases. (b) Fourier transform spectra of the SdH oscillations as a function of Bj;. The dashed line shows the expected
position of the spin-unresolved FT peak. The signal in the region to the left of the vertical dotted line is shown suppressed. (c)
Summary of the SdH FT peak positions normaized to fg,z, the frequency at B) = 0. Open squares represent the measured
frequencies. The frequencies predicted by the calculations with V;. = 0 and V. # 0 are shown using red and blue lines,
respectively. For each calculation, the solid lines represent the majority-spin density, and the dotted lines the minority-spin
density. Inset: Fermi contours corresponding to the Vi = 0 (red) and V. # 0 (blue) calculations at By =20 T.

from the minority- to the majority-spin species.

The experimental data and the numerical calculations
presented here shed light on the shape of the electron
Fermi contours in the presence of Bj. The Fermi con-
tour distortions implied by our data are by far larger
than the distortions (~ 10% at B = 10 T) expected
or seen for 2D electrons confined to GaAs/AlGaAs het-
erojunctions [IH4]. This is mainly because of the larger
thickness of the electron wave function in our 30-nm-wide
quantum well sample. However, we emphasize that, be-
sides the finite thickness of the carrier layer, other fac-
tors, such as the non-parabolicity of the energy bands
and the spin-orbit interaction, also affect the distortion.
For example, in 2D holes confined to a much narrower
17.5-nm-wide quantum well, the distortions are yet larger
than the ones reported here. At B = 15 T, the Fermi
contour anisotropy there is ~ 3 : 1 [14], while the dis-
tortion we see here (Fig. 4] is only ~ 1.6 : 1. Further-
more, in contrast to the data presented here, the Fermi
contour anisotropy exhibited by holes is very much spin-
dependent: the majority-spin contour is much more elon-
gated than the minority-spin contour. This strong spin-
dependence stems from the much stronger spin-orbit in-
teraction in 2D hole systems [16]. Finally, from the mea-
sured extremal kp (Fig. [4), it appears that the Fermi
contours are less elongated than the calculations predict.
Remarkably, there is a similar discrepancy between the
calculated and measured kr L B for 2D hole samples
[14].
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