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Abstract

Many real world network problems often con-
cern multivariate nodal attributes such as im-
age, textual, and multi-view feature vectors
on nodes, rather than simple univariate nodal
attributes. The existing graph estimation
methods built on Gaussian graphical mod-
els and covariance selection algorithms can
not handle such data, neither can the theo-
ries developed around such methods be di-
rectly applied. In this paper, we propose
a new principled framework for estimating
multi-attribute graphs. Instead of estimat-
ing the partial correlation as in current litera-
ture, our method estimates the partial canon-
ical correlations that naturally accommodate
complex nodal features. Computationally,
we provide an efficient algorithm which uti-
lizes the multi-attribute structure. Theoret-
ically, we provide sufficient conditions which
guarantee consistent graph recovery. Exten-
sive simulation studies demonstrate perfor-
mance of our method under various condi-
tions.

1. Introduction

In many modern problems, we are interested in study-
ing a network of entities with multiple attributes
rather than a simple univariate attribute. For exam-
ple, when an entity represents a person in a social net-
work, it is widely accepted that the nodal attribute
is most naturally a vector with many personal infor-
mation including demographics, interests, and other
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features, rather than merely a single attribute, such as
a binary vote as assumed in the current literature of
social graph estimation based on Markov random fields
(Banerjee et al., 2008; Kolar et al., 2010). In another
example, when an entity represents a gene in a gene
regulation network, modern data acquisition technolo-
gies allow researchers to measure the activities of a
single gene in a high-dimensional space, such as an im-
age of the spatial distribution of the gene expression,
or a multi-view snapshot of the gene activity such as
mRNA and protein abundances, rather than merely a
single attribute such as an expression level, which is as-
sumed in the current literature on gene graph estima-
tion based on Gaussian graphical models (Peng et al.,
2009). Indeed, it is somewhat surprising that existing
research on graph estimation remains largely blinded
to the analysis of multi-attribute data that are preva-
lent and widely studied in the network community. Ex-
isting algorithms and theoretical analysis relies heavily
on covariance selection using graphical lasso, or pe-
nalized pseudo-likelihood. They can not be easily ex-
tended to graphs with multi-variate nodal attributes.

In this paper, we present a study on graph estimation
from multi-attribute data, in an attempt to fill the
gap between the practical needs and existing method-
ologies from the literature. Under a Gaussian graphi-
cal model, one assumes that a p-dimensional random
vector X ∈ R

p follows a multivariate Gaussian dis-
tribution with the mean µ and covariance matrix Σ,
with each component of the vector corresponding to
a node in the graph. Based on n independent and
identically distributed observations, one can estimate
an undirected graph G = (V,E), where the node set
V corresponds to the p variables, and the edge set E
describes the conditional independence relationships
among the variables, that is, variables Xa and Xb are
conditionally independent given all the remaining vari-
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ables if (a, b) /∈ E. Given multi-attribute data, this ap-
proach is clearly invalid, because it naively translates
to estimating one graph per attribute. A subsequent
integration of all such graphs to a summary graph on
the entire dataset may lead to unclear statistical in-
terpretation.

We consider the following new setting for estimating
a multi-attribute graph. Assume now a ”stacked”
long random vector X = (X′

1, ...,X
′
p)

′ where X1 ∈
R

k1 , . . . ,Xp ∈ R
kp are themselves random vectors that

jointly follow the multivariate Normal distribution,
(
X′

1, . . . ,X
′
p

)′ ∼ N (µ,Σ∗) (1)

where

µ =




µ1

...
µp


 and Σ∗ =




Σ∗
11 Σ∗

12 · · · Σ∗
1p

Σ∗
21 Σ∗

22 · · · Σ∗
2p

...
. . .

...
Σ∗

p1 · · · Σ∗
pp


 .

Without loss of generality, we assume µ = 0. Let
G = (V,E) be a graph with the vertex set V = [p]
([p] represents the set {1, . . . , p}) and the set of edges
E ⊆ V × V that encodes conditional independence re-
lationships among (Xa)a∈V . That is, each node a ∈ V
of the graph G corresponds to the random vector Xa

and there is no edge between nodes a and b in the
graph if and only if Xa is conditionally independent of
Xb given all the vectors corresponding to the remain-
ing nodes, X¬ab = {Xc : c ∈ [p]\{a, b}}. Such a
graph is also known as a Markov network (of Markov
graph), which we shall emphasize in this paper to con-
tract an alternative graph over V known as the asso-
ciation network, which is based on pairwise marginal
independence. Conditional independence can be read
from the inverse of the covariance matrix, as the block
corresponding to Xa and Xb will be equal to zero. Let
Dn = {xi}i∈[n] be a sample of n independent and iden-

tically distributed vectors drawn from N (0,Σ). For a
vector xi, we denote xi,a ∈ R

ka the component cor-
responding to the node a ∈ V . Our goal is to esti-
mate the structure of the graph G from the sample
Dn. Note that we allow for different nodes to have
different number of attributes, which may be useful
in certain applications, e.g., when a node represents a
gene pathway in a regulatory network.

Using the standard Gaussian graphical model for uni-
variate nodal observations, one can estimate a Markov
graph for each attribute individually, by estimating
the sparsity pattern of the precision matrix Ω =
Σ−1 of the GMM. This is also known as covariance

selection (Dempster, 1972). For high dimensional
problems, Meinshausen & Bühlmann (2006) propose

a parallel Lasso approach for estimating Gaussian
graphical models by solving a collection of sparse re-
gression problems. This procedure can be viewed
as a pseudo likelihood based method. In con-
trast, Banerjee et al. (2008), Yuan & Lin (2007), and
Friedman et al. (2008) take a penalized likelihood
approach to estimate the sparse precision matrix
Ω. To reduce estimation bias, Lam & Fan (2009),
Johnson et al. (2012), and Shen et al. (2012) devel-
oped the non-concave penalties to penalize the like-
lihood function. More recently, Yuan (2010) and
Cai et al. (2011) proposed the graphical Dantzig se-
lector and CLIME, which can be solved by linear pro-
gramming and have better theoretical properties than
the penalized likelihood approach. Under certain reg-
ularity conditions, these methods have proven to esti-
mate graph structure consistently (Ravikumar et al.,
2011; Yuan, 2010; Cai et al., 2011) and scalable soft-
ware packages, such as glasso and huge, were de-
veloped to implement these algorithms (Zhao et al.,
2012). However, in the case of multi-attribute data, it
is not clear how to combine estimated graphs to obtain
a single Markov network reflecting the structure of the
underlying complex system. This is especially the case
when nodes in the graph contain different number of
attributes.

Katenka & Kolaczyk (2011) proposed a method for
estimating association networks from multi-attribute
data using canonical correlation as a dependence mea-
sure between two groups of attributes. However, as-
sociation networks are known to confound the direct
interactions with indirect ones as they only repre-
sent marginal associations. In contrast, we develop a
method based on partial canonical correlation, which
give rise to a Markov network that is better suited
for separating direct interactions from indirect con-
founders. Our work is related to the literature on si-
multaneous estimation of multiple Gaussian graphical
models under a multi-task setting (Guo et al., 2011;
Varoquaux et al., 2010; Honorio & Samaras, 2010;
Chiquet et al., 2011; Danaher et al., 2011), however,
the model given in (1) is different from models consid-
ered in various multi-task settings and the optimiza-
tion algorithms developed to handle the multi-task set-
ting do not extend to handle the optimization problem
given in (3) below.

Unlike the standard procedures for learning the
structure of GGMs (e.g., neighborhood selec-
tion (Meinshausen & Bühlmann, 2006) or glasso
(Friedman et al., 2008)), which infer the partial corre-
lations between pairs of nodes, our proposed method
estimates the partial canonical correlations between
pairs of nodes. Under this new framework, the contri-
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butions of this paper include: (i) computationally, an
efficient algorithm is provided to estimate the multi-
attribue graphs; (ii) theoretically, we provide sufficient
conditions which guarantee consistent graph recovery;
and (iii) empirically, a number of simulations are used
to illustrate performance of the method. Additional
results can be found in Kolar et al. (2012).

2. Preliminaries and Related Work

Canonical correlation, a classical tool in multivariate
statistics, is defined between two multivariate random
variables as

ρc(Xa,Xb) = max
u∈Rka ,v∈R

kb

Corr(u′Xa,v
′Xb),

that is, computing canonical correlation between Xa

and Xb is equivalent to maximization of correlation
between two linear combinations u′Xa and v′Xb with
respect to vectors u and v. Canonical correlation
can be used to measure association strength between
two nodes with multi-attribute observations. For ex-
ample, in Katenka & Kolaczyk (2011), a graph is es-
timated from multi-attribute nodal observations by
thresholding the canonical correlation between nodes,
which may confound the direct interactions with indi-
rect ones, as we describe later.

In this work, we will use the partial canonical corre-
lation to estimate a graph from multi-attribute nodal
observations. A graph is going to be formed by con-
necting nodes with non-zero partial canonical corre-
lation. Let Â = argmin E[||Xa − AXab||22] and

B̂ = argmin E[||Xb−BXab||22], then the partial canon-
ical correlation between Xa and Xb is defined as

ρc(Xa,Xb;Xab)

= max
u∈Rka ,v∈R

kb

Corr(u′(Xa − ÂXab),v
′(Xb − B̂Xab)),

that is, the partial canonical correlation between Xa

and Xb is equal to the canonical correlation between
residual vectors of Xa and Xb after the effect of vari-
ables X¬ab is removed (Rao, 1969).

Let Ω∗ denote the precision matrix under the model in
(1). Using standard results for the multivariate Nor-
mal distribution (see also equation (7) in Rao (1969)),
a straight forward calculation shows that

ρc(Xa, Xb;X¬ab) 6= 0 ⇐⇒ max
u∈Rka ,v∈R

kb

uTΩ∗
abv 6= 0.

(2)
This implies that estimating whether the partial
canonical correlation is zero or not can be done by
estimating whether a block of the precision matrix is

zero or not. Furthermore, under model in (1), vectors
Xa andXb are conditionally independent givenX¬ab if
and only if the partial canonical correlation is zero. A
network built on this type of inter-nodal relationship is
known as a Markov network, as it captures both local
and global Markov properties over all arbitrary sub-
sets of nodes in the network even though the network
is built based on pairwise conditional (in)dependence
properties. In Section 3, we use the above observations
to provide an algorithm that estimates the non-zero
partial canonical correlation between nodes from data
Dn using the penalized maximum likelihood estima-
tion of the precision matrix.

Based on the relationship given in (2), we can motivate
an alternative method for estimating the non-zero par-
tial canonical correlation. Let a = {b : b ∈ [p]\{a}}
denote the set of all nodes minus the node a. Then

E[Xa | Xa = xa] = Σ∗
a,aΣ

∗,−1
a,a xa.

Since Ω∗
a,a = −(Σ∗

aa − Σ∗
a,aΣ

∗,−1
a,a Σ∗

a,a)
−1Σ∗

a,aΣ
∗,−1
a,a ,

we observe that a zero blockΩab can be identified from
the regression coefficients when each component of Xa

is regressed on Xa. We do not build an estimation
procedure around this observation, however, we note
that this relationship shows how one would develop
a regression based analogue of the work presented in
Katenka & Kolaczyk (2011).

3. Estimation Procedure

3.1. Penalized Log-Likelihood Optimization

Based on the sample Dn, we propose to minimize the
penalized negative log-likelihood under the model in
(1),

min
Ω≻0

trSΩ− log |Ω|+ λ
∑

a,b

||Ωab||F (3)

where S = n−1
∑

i∈[n] xix
T
i is the sample covariance

matrix and ||Ωab||F denotes the Frobenius norm of
Ωab. The Frobenius norm penalty encourages blocks
of the precision matrix to be equal to zero, similar
to the way that the ℓ2 penalty is used in the group
Lasso (Yuan & Lin, 2006). Here we assume that the
same number of samples is available per attribute.
However, the same procedure can be used in cases
when some samples are obtained on a subset of at-
tributes. Indeed, we can simply estimate each element
of the matrix S from available samples, treating non-
measured attributes as missing completely at random
(see Kolar & Xing, 2012, for more details). The dual
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problem to (3) is

max
Σ

∑

j∈[p]

kj + log |Σ| s.t. max
a,b
||Sab −Σab||F ≤ λ.

(4)
where Σ is the dual variable to Ω. Note that the
primal problem gives us an estimate of the precision
matrix, while the dual problem estimates the covari-
ance matrix. The proposed optimization procedure,
described below, will estimate simultaneously the pre-
cision matrix and covariance matrix, without explicitly
performing an expensive matrix inversion.

We propose to optimize the objective (3) using
a block coordinate descent procedure, inspired by
Mazumder & Agarwal (2011). The block coordinate
descent is an iterative procedure that operates on a
block of rows and columns while keeping the other
rows and columns fixed. Write

Ω =

(
Ωaa Ωa,a

Ωa,a Ωa,a

)
, S =

(
Saa Sa,a

Sa,a Sa,a

)

and suppose that (Ω̃, Σ̃) are current iterates. With the
block partition above, we have log |Ω| = log(Ωa,a) +

log(Ωaa − Ωa,a(Ωa,a)
−1Ωa,a). The next iterate Ω̂ is

of the form

Ω̂ = Ω̃+

(
∆aa ∆a,a

∆a,a 0

)
=

(
Ω̂aa Ω̂a,a

Ω̂a,a Ω̃a,a

)

and is obtained by minimizing

trSaaΩaa + 2 trSa,aΩa,a

− log |Ωaa −Ωa,a(Ω̃a,a)
−1Ωa,a|

+ λ||Ωaa||F + 2λ
∑

b 6=a

||Ωab||F .
(5)

Complete minimization over the variables Ωaa and
Ωa,a at each iteration of the block coordinate descent
can be computationally expensive. Therefore, we pro-
pose to update Ωaa and Ωa,a using one generalized
gradient step update (see Beck & Teboulle (2009)) in
each iteration. Note that the objective in (5) is a sum
of a smooth convex function and a non-smooth convex
penalty, so that the gradient descent cannot be ap-
plied. Given a step size t, generalized gradient descent
optimizes a quadratic approximation of the objective
at the current iterate Ω̃, which results in the following
two updates

Ω̂aa = ϕt,λ

(
Ω̃aa + t(Σ̃aa − Saa)

)
(6)

and
Ω̂ab = ϕt,λ

(
Ω̃ab + t(Σ̃ab − Sab)

)
(7)

for all b ∈ a, where ϕt,λ(A) = (1− tλ/||A||F )+A and

(x)+ = max(0, x). If the resulting estimator Ω̂ is not
positive definite or the update does not decrease the
objective, we half the step size t and find new up-
date. Once the update of the precision matrix, Ω̂, is
found, we update the covariance matrix, Σ̂. Updates
to the covariance matrix can be found efficiently, with-
out performing expensive matrix inversion as follows

Σ̂a,a = (Ω̃a,a)
−1 + (Ω̃a,a)

−1Ω̂a,a(Ω̂aa

− Ω̂a,a(Ω̃a,a)
−1Ω̂a,a)

−1Ω̂a,a(Ω̃a,a)
−1,

Σ̂a,a = −Ω̂aaΩ̂a,aΣ̂a,a,

Σ̂aa = (Ω̂aa − Ω̂a,a(Ω̃a,a)
−1Ω̂a,a)

−1,

(8)

with (Ω̃a,a)
−1 = Σ̃a,a − Σ̃a,aΣ̃

−1
aa Σ̃a,a. Combining all

the steps we arrive at the following algorithm:

1. Set the initial estimator Ω̃ = diag(S) and Σ̃ =

Ω̃−1. Set the step size t = 1.

2. For each a ∈ [p] perform the following:

• Update Ω̂. If Ω̂ is not positive definite, set
t← t/2 and repeat the update.

• Update Σ̂ using (8).

3. Repeat Step 2 until the duality gap

trSΩ̂−log |Ω̂|+λ
∑

a,b

||Ω̂ab||F−
∑

j∈[p]

kj−log |Σ| ≤ ǫ,

where ǫ is a small, user defined parameter (for
example, ǫ = 10−2).

Finally, we form a network Ĝ = (V, Ê) by connecting

nodes with ||Ω̂ab||F 6= 0.

Convergence of the above described procedure to the
unique minimum of the objective in (3) does not sim-
ply follow from the standard results on the block co-
ordinate descent (Tseng, 2001) for two reasons. First,
the minimization problem in (5) is not solved to con-
vergence at each iteration, since we only update Ωaa

and Ωa,a using one generalized gradient step update
in each iteration. Second, blocks of variables, over
which the optimization is done at each iteration, are
not completely separable between iterations due to the
symmetry of the problem.

Lemma 1. For every value of λ > 0, proposed pro-

cedure produces a sequence of estimates (Ω̃(t))t≥1 of

the precision matrix that monotonically decrease the

objective value given in (3), are positive definite and

converge to the unique minimizer Ω̂ of (3).
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3.2. Efficient Identification of Connected

Components

When the target graph Ĝ is composed of smaller, dis-
connected components, the solution to the problem
in (3) is block diagonal (possibly after permuting the
node indices) and can be obtained by solving smaller

optimization problems. That is, the minimizer Ω̂ can
be obtained by solving (3) for each connected com-
ponent independently, resulting in massive computa-
tional gains. We give necessary and sufficient condi-
tion for the solution Ω̂ of (3) to be block-diagonal,
which can be easily checked by inspecting the empiri-
cal covariance matrix S.

Our first result follows immediately from the Karush-
Kuhn-Tucker conditions for the optimization problem
(3) and states that if Ω̂ is block-diagonal, then it can
be obtained by solving a sequence of smaller optimiza-
tion problems.

Lemma 2. If the solution to (3) takes the form Ω̂ =

diag(Ω̂1, Ω̂2, . . . , Ω̂l), then it can be obtained by solving

min
Ωl′≻0

trSl′Ωl′ − log |Ωl′ |+ λ
∑

a,b

||Ωab||F

separately for each l′ = 1, . . . , l, where Sl′ are subma-

trices of S corresponding to Ωl′ .

Next, we describe how to identify diagonal blocks of
Ω̂. Let P = {P1, P2, . . . , Pl} be a partition of the set
[p] and assume that the nodes of the graph are ordered
in a way that if a ∈ Pj , b ∈ Pj′ , j < j, then a < b.

The following lemma states that the blocks of Ω̂ can
be obtained from the blocks of a thresholded sample
covariance matrix.

Lemma 3. A necessary and sufficient conditions for

Ω̂ to be block diagonal with blocks P1, P2, . . . , Pl is that

||Sab||F ≤ λ for all a ∈ Pj, b ∈ Pj′ , j 6= j′.

Blocks P1, P2, . . . , Pl can be identified by forming a
p × p matrix Q with elements qab = 1I{||Sab||F > λ}
and computing connected components of the graph
with adjacency matrix Q. The lemma states also that
given two penalty parameters λ1, λ2, λ1 < λ2 the set
of unconnected nodes with penalty parameter λ1 is a
subset of unconnected nodes with penalty parameter
λ2. The simple check above allows us to estimate net-
works on datasets with large number of nodes, if we
are interested in networks with small number of edges.
However, this is often the case when the networks are
used for exploration and interpretation of complex sys-
tems.

4. Theoretical results

In this section, we provide theoretical analysis of the
estimator described in §3. In particular, we provide
sufficient conditions for the consistent graph struc-
ture recovery under the assumption that, for each1

a = 1, . . . , kp, (σ∗
aa)

−1/2Xa is a sub-Gaussian with pa-
rameter γ, where σ∗

aa is a diagonal element of Σ∗. Re-
call that Z is a sub-Gaussian random variable if there
exists a constant σ ∈ (0,∞) such that

E[exp(tZ)] ≤ exp(σ2t2), for all t ∈ R.

A statement of a general result is given in (Kolar et al.,
2012).

Our assumptions involve the Hessian of the function
f(A) = trSA− log |A| evaluated at the true Ω∗, H =

H(Ω∗) = (Ω∗)−1⊗(Ω∗)−1 ∈ R
(pk)2×(pk)2 , and the true

covariance matrix Σ∗. The Hessian and the covariance
matrix can be thought of as block matrices with blocks
of size k2 × k2 and k × k, respectively. We will make
use of the operator C(·) that operates on these block
matrices and outputs a smaller matrix with elements
that equal to the Frobenius norm of the original blocks.
For example, C(Σ∗) ∈ R

p×p with elements C(Σ∗)ab =
||Σ∗

ab||F . Let T = {(a, b) : ||Ωab||F 6= 0} and N =
{(a, b) : ||Ωab||F = 0}. With this notation introduced,
we assume that the following irrepresentable condition
holds; there exists a constant α ∈ [0, 1) such that

|||C
(
HNT (HT T )

−1
)
|||∞ ≤ 1− α. (9)

We will also need the following quantities to specify
the results κΣ∗ = |||C(Σ∗)|||∞ and κH = |||C(H−1

T T )|||∞.
These conditions extend the conditions specified in
Ravikumar et al. (2011) needed for estimation of net-
works from single attribute observations.

We have the following result that provides sufficient
conditions for recovery of the graph structure.

Proposition 4. Set the penalty parameter λ in (3) as

λ = 8kα−1
√
128(1 + 4γ2)2(max

a
(σ∗

aa)
2)

×
√

2 log(2k) + τ log(p)

n
,

where τ > 2. If

n > C1s
2k2(1 + 8α−1)2(τ log p+ log 4 + 2 log k)

where s is the maximal degree of nodes in G,

C1 = (48
√
2(1+4γ2)(max

a
σ∗
aa)max(κΣ∗κH, κ3

Σ∗κ2
H))2

1For simplicity of presentation, we assume that ka = k,
for all a ∈ [p], that is, we assume that the same number of
attributes is observed for each node.
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and

min
(a,b)∈T ,a 6=b

||Ωab||F > 16
√
2(1 + 4γ2)(max

a
σ∗
aa)(1 + 8α−1)

× κHk

√
τ log p+ log 4 + 2 log k

n

then P

(
Ĝ = G

)
≥ 1− p2−τ .

5. Simulation studies

In this section, we perform a set of simulation stud-
ies to illustrate finite sample performance of our pro-
cedure. We demonstrate that the scalings predicted
by the theory are sharp. Furthermore, we compare
against three other procedures: 1) a procedure that
uses the glasso first to estimate one network over
each of the k individual attributes and then creates
an edge in the resulting network if an edge appears in
at least one of the single attribute networks, 2) that of
Guo et al. (2011) and 3) that of Chiquet et al. (2011)
(see also Danaher et al., 2011). We have also tried ap-
plying the glasso to estimate the precision matrix for
the model in (1) and then post-processing it, so that
an edge appears in the resulting network if the cor-
responding block of the estimated precision matrix is
non-zero. The results were worse compared to the first
baseline, so we do not report them here. The tuning
parameters are selected by minimizing the Bayesian in-
formation criterion, which balances the goodness of fit
of the model and its complexity, over a grid of param-
eter values. For our multi-attribute method, it takes
the following form

BIC(λ) = trSΩ̂− log |Ω̂|+
∑

a<b

1I{Ω̂ab 6= 0}kakb log(n).

Theoretical results given in §4 predict the sample size
needed for consistent recovery of the underlying graph.
In particular, Proposition 4 suggests that we need
n = θs2k2 log(pk) samples to estimate the graph struc-
ture consistently, for some θ > 0. Therefore, if we
plot the hamming distance between the true and recov-
ered graph structure against θ, we expect the curves
to reach zero distance for different problem sizes at
a same point. We verify this on randomly generated
chain and nearest-neighbors graphs.

We generate data as follows. A random graph with p
nodes is created by first partitioning nodes into p/20
connected components, each with 20 nodes, and then
forming a random graph over these 20 nodes. A chain
graph is formed by permuting the nodes and con-
necting them in succession, while a nearest-neighbor
graph is constructed following the procedure outlined

in Li & Gui (2006). That is, for each node, we draw a
point uniformly at random on a unit square and com-
pute the pairwise distances between nodes. Each node
is then connected to s = 4 closest neighbors. Since
some of nodes will have more than 4 adjacent edges,
we remove randomly edges from nodes that have de-
gree larger than 4 until the maximum degree of a
node in a network is 4. Once the graph structure is
created, we construct a precision matrix, with non-
zero blocks corresponding to edges in the graph. El-
ements of the diagonal blocks take values as 0.5|a−b|,
0 ≤ a, b ≤ k, while off-diagonal blocks have elements
with the same value, 0.2 for chain graphs and 0.3/k
for nearest-neighbor networks. Finally, we add ρI to
the precision matrix, so that its minimum eigenvalue
is equal to 0.5. Note that s = 2 for the chain graph
and s = 4 for the nearest-neighbor graph. Simulation
results are averaged over 100 independent runs.

Figure 1 shows results of the simulations. Each row
in the figure reports results for one procedure, while
each column in the figure represents a different simu-
lation setting. For the first two columns, we set k = 3
and vary the total number of nodes in the graph p.
The third simulation setting sets the total number of
nodes p = 20 and changes the number of attributes k.
In the case of the chain graph, we observe that for
small sample sizes method of (Chiquet et al., 2011)
outperforms all the other procedures. We note that
the multi-attribute method is estimating many more
parameters, which require large sample size in order
to be estimated consistently. However, as the sample
size increases, we observe that multi-procedure starts
to outperform the other procedures. In particular, for
the sample size indexed by θ = 13 all the graph are cor-
rectly recovered, while other procedures fail to recover
the graph consistently at the same sample size. In the
case of nearest-neighbor graph, none of the methods
recover the graph well for small sample sizes. However,
for moderate sample sizes, multi-attribute procedure
outperforms the other methods. Furthermore, as the
sample size increases none of the other method recover
the graph exactly. This suggests that the conditions
for the consistent graph recovery may be weaker in the
multi-attribute setting.

Next we investigate a situation where the multi-
attribute procedure does not perform as well as the
procedures that estimate multiple graphical models.
One such situation arises when different attributes are
conditionally independent. To simulate this situation,
we follow the data generating approach as before, how-
ever, we make each block Ωab of the precision ma-
trix Ω a diagonal matrix. Figure 2 summarizes re-
sults of the simulation. We observe that methods of
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(b) Procedure of Chiquet et al. (2011)
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(c) Procedure of Guo et al. (2011)
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(d) Multi-attribute procedure

Figure 1. Average hamming distance plotted against the rescaled sample size. Results are averaged over 100 independent
runs. Off-diagonal blocks are full matrices.

(Chiquet et al., 2011) and (Guo et al., 2011) perform
better, since they are estimating much fewer parame-
ters than the multi-attribute procedure. Glasso does
not utilize any structural information underlying the
estimation problem and requires larger sample size to
estimate the graph correctly than other procedures.

A completely different situation arises when the edges
between nodes can be inferred only based on inter-

attribute data, that is, when a graph based on any
individual attribute is empty. To generate data under
this situation, we follow the procedure as before, but
with the diagonal elements of the off-diagonal blocks
Ωab set to zero. Figure 3 summarizes results of the
simulation. In this setting, we clearly see the advan-
tage of the multi-attribute procedure.
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(b) Procedure of Chiquet et al. (2011)
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(c) Procedure of Guo et al. (2011)
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(d) Multi-attribute procedure

Figure 2. Average hamming distance plotted against the
rescaled sample size. Results are averaged over 100 inde-
pendent runs. Blocks Ωab of the precision matrix Ω are
diagonal matrices.

6. Discussion and Extensions

In this paper, we have proposed a solution to the prob-
lem of learning networks from multivariate nodal at-
tributes, which arises in a variety of domains. Our
method is based on simultaneously estimating non-
zero partial canonical correlations between nodes in a
network. When all the attributes across all the nodes
follow joint multivariate Normal distribution, our pro-
cedure is equivalent to estimating conditional indepen-
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(b) Procedure of Chiquet et al. (2011)
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(c) Procedure of Guo et al. (2011)
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(d) Multi-attribute procedure

Figure 3. Average hamming distance plotted against the
rescaled sample size. Results are averaged over 100 in-
dependent runs. Off-diagonal blocks Ωab of the precision
matrix Ω have zeros as diagonal elements.

dencies between nodes, which is revealed by relating
the blocks of the precision matrix to partial canonical
correlation. Although a penalized likelihood frame-
work is adopted in the current paper for estimation of
the non-zero blocks of the precision matrix, other ap-
proaches like neighborhood pursuit or greedy pursuit
can also be developed. Thorough numerical evalua-
tions and theoretical analysis of these methods is an
interesting direction for future work.
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