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Abstract

Studies of social and group behavior in interacting organisms require high-throughput analysis of the motion of a large
number of individual subjects. Computer vision techniques offer solutions to specific tracking problems, and allow
automated and efficient tracking with minimal human intervention. In this work, we adopt the open active contour model
to track the trajectories of moving objects at high density. We add repulsive interactions between open contours to the
original model, treat the trajectories as an extrusion in the temporal dimension, and show applications to two tracking
problems. The walking behavior of Drosophila is studied at different population density and gender composition. We
demonstrate that individual male flies have distinct walking signatures, and that the social interaction between flies in a
mixed gender arena is gender specific. We also apply our model to studies of trajectories of gliding Myxococcus xanthus
bacteria at high density. We examine the individual gliding behavioral statistics in terms of the gliding speed distribution.
Using these two examples at very distinctive spatial scales, we illustrate the use of our algorithm on tracking both short rigid
bodies (Drosophila) and long flexible objects (Myxococcus xanthus). Our repulsive active membrane model reaches error
rates better than 5|10{6 per fly per second for Drosophila tracking and comparable results for Myxococcus xanthus.
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Received January 11, 2013; Accepted April 26, 2013; Published June 14, 2013

Copyright: � 2013 Deng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by a fellowship to JWS from the Pew Charitable Trusts and National Science Foundation award 0844466. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: shaevitz@princeton.edu

Introduction

A broad range of biological problems on many length scales,

from cells to whole animals, require the ability to track moving

individuals with a group. Advances in computer vision in the past

two decades have enabled computed-aided automatic or semi-

automatic tracking programs to greatly boost the capacity to

analyze large amounts of data and reduce the involvement of

human observers. However, many traditional tracking algorithms

struggle when objects come into close physical contact or even

overlap within an image. Recent work addressed this problem by

separating objects using a Gaussian mixture model with an area

prior followed by identity matching and successfully applied this

approach to track walking Drosophila with minimal human

supervision [1]. Tsai and Huang further extended this approach

by refining the segmentation of the Drosophila images into different

body parts which enables more detailed measurements to be made

[2]. A non-Bayesian framework was used by Chaumont et al. to

track multiple mice by modeling the animal body with a series of

physical ‘‘primitives’’ connected by joints and elastic springs that

can interact with each other [3]. All of these algorithms are

capable of handling large amounts of images, w104 frames, with

relatively little tracking error that is then corrected manually.

However, this error rate increases with reduced image quality or

when the objects move close to one another more frequently.

In most tracking solutions, image segmentation is performed on

each frame to identify individual objects. This is then followed by

an identity matching scheme between frames based on distance,

object birth and death probabilities, and other estimated

parameters [1,4]. Active contours (snakes) are a popular image

segmentation approach that is widely applied in analyzing

biological and medical images. The contour of the compartment

boundary is treated as an elastic band that interacts with the image

and exhibits a damped relaxation to the minimum energy state

[5]. In addition to closed-contour uses for measuring parameters

like object area, open active contours can be used to detect

filamentous objects such as blood vessels[6–8], neurons[9–11],

actin filaments [12,13], and many biomedical and non-biomedical

applications. In these approaches, active contours can be allowed

to merge, break, fork and recombine.

In this work, we solve the tracking problem using a deformable

membrane model, which is an extension of the active contour

model to the temporal dimension. In order to prevent merging of

multiple objects, we add a repulsive interaction between neigh-

boring contours. We test this method on two practical tracking

problems in animal behavior and microbial ecology: walking

Drosophila and gliding bacteria Myxococcus xanthus are tracked at

high density with low error rate (v5|10{6 per fly per second, or

10{5 per cell per second), and at high efficiency (better than 50

frames per second when tracking 5 flies). Drosophila has become a

popular model organism to study neurobiology and animal

behavior for its ease of genetic manipulation[14–19], and

Myxococcus xanthus is a gram-negative bacteria that exhibit gliding
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motility using molecular motors [20,21], which allow the bacteria

to exhibit complex group behaviors[22–25]. Using these two

tracking problems at very distinctive spatial scales, shapes and

morphology, we demonstrate the application of our algorithm on a

broad range of problems. Finally, we discuss the close connection

between Bayesian techniques and the energy minimization

approach in our active membrane algorithm.

Models

1. The Classical Active Contour Model
In the classical active contour model [5], a feature in an image,

usually a line, area boundary or edge, is located by relaxing an

elastic contour (snake) that interacts with the image to the

contour’s minimum energy state. The energy of the contour

consists of the internal elastic energy and the image energy term

Eim based on the location of the contour in the image, calculated

along the contour x(s) in N-dimensional space, as a function of arc

position s:

E~

ðB

A

1

2
aDx’(s)D2zbDx’’(s)D2
� �

zEim(x)

� �
ds, ð1Þ

where the a term penalizes the energy when the contour is

deviated from a uniform straight line and the b term adds an

additional cost to bending. A and B are the termini of an open

contour, which we define as 0 and 1, or in case of a closed contour,

the integral path is closed. Minimizing E is equivalent to solving

ax’’{bx’’’’{+xEim(x)~0, ð2Þ

which can be written in the discrete form [5]:

A�xiz
LEim

Lxi

~0, i~1,2,:::,M, ð3Þ

where each xi is an M-element vector that defines the contour

using M discrete points that are distributed along s. A� is the

M|M circular pentadiagonal discrete equivalent of the operator

{ad2=ds2zbd4=ds4:

A�~

a0zb0 a1zb1 b2 0 ::: 0 b2 a1zb1

a1zb1 a0zb0 a1zb1 b2 0 ::: 0 b2

b2 a1zb1 a0zb0 a1zb1 b2 0 ::: 0

::: :::

0 ::: 0 b2 a1zb1 a0zb0 a1zb1 b2

b2 0 ::: 0 b2 a1zb1 a0zb0 a1zb1

a1zb1 b2 0 ::: 0 b2 a1zb1 a0zb0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

, ð4Þ

with a0~2a, a1~{a, b0~6b, b1~{4b, b2~b. Equation (3)

can then be solved iteratively via

xt
i ~(A�zcI){1 cxt{1

i {+iEim(xt{1
i )

� �
, ð5Þ

where t is the iteration index, c sets the time step, and +i is the

spatial derivatives L=Lxi. Additional forces can be conveniently

incorporated into the model by adding a force term Fi, which we

will discuss in the coming sections:

xt
i ~(A�zcI){1 cxt{1

i {+iEim(xt{1
i )zFi

� �
: ð6Þ

Numerous variations of this active contour model have been

developed for specific image-analysis and tracking problems,

including the use of variable stretching and bending stiffness a and

b, sophisticated image potentials Eim, and the inclusion of

additional forces for specific purposes. Here, we build our model

aiming to solve the multiple object tracking problem in time-lapsed

movies.

2. Open Contours
While a circular pentadiagonal matrix A� is suitable for dealing

with a closed contour, for open contours, the motion of the two

tips needs to be considered separately. We modify the first and last

two rows of A� in equation (3) to A for open contours such that the

internal force acting on the endpoints is equal to half of the

internal force on the nearest neighbor, but in the opposite

direction:

A~

{a1=2 {a0=2 {a1=2 0 ::: 0

a1 a0 a1 0 ::: 0

::: :::

0 ::: 0 a1 a0 a1

0 ::: 0 {a1=2 {a0=2 {a1=2

0
BBBBBBBB@

1
CCCCCCCCA
: ð7Þ

Here We set b~0 in our two following sample applications

because penalizing the contour length in open contour configu-

ration adds an effective energetic cost to path curvature. We find

that a non-zero value for beta does not qualitatively change the

behavior of the open contours analyses for, but not limited to these

two examples.

Without an additional constraint, the tips are left free to interact

with the image. Tip forces can be added to elongate or shorten the

contour in order to control the contour length. In many multiple

object time-lapse tracking problems, the characteristic length scale

of the tracked objects is known and does not change, even though

the position, orientation, and specific shape may alter over time. In

this work, the length of the contours are maintained constant by a

harmonic tip-stretching force, F str depending on the target

contour length l0:

Fstr~{g(l{l0)r̂r, ð8Þ

where r̂r is the tangential direction of the contour at the endpoints

pointing outwards,

r̂r~

{
dx=ds

Ddx=dsD
: s~0

dx=ds

Ddx=dsD
: s~1

0 : otherwise

8>>>>><
>>>>>:

, ð9Þ

l is the apparent contour length l~
Ð 1

0
Ddx=dsDds, and g governs

the magnitude of the stretching force.

Another form of applying the tip force is to add attraction forces

from the constraint tip position:

(4)
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Fstr~{g(x{x0), ð10Þ

where x is the apparent position of the tips and x0 is the

anticipated position, which can be predicted based on the current

contour length and position as discussed in the following sections.

Both forms in (8) and (10) are used in the two examples below.

3. Track Contour Motion Over Time
The kymograph of a contour that moves in N-dimensional

space over time is a continuous surface in Nz1 dimensions. In

certain types of problems where the objects’ trajectories are less

predictive, such as the case of Brownian motion, a global

optimization strategy such as the framework to solve the linear

assignment problem (LAP) is usually necessary [4]. However, in

common cases where the trajectories are smooth relative to the

object density, local optimization is sufficient and more efficient

than global approaches. Here, we apply the concept of active

contours to the temporal dimension as well as the spatial

dimension within each frame, and optimize the localization of

the two-dimensional active membrane in the (Nz1)-dimensional

kymograph. Different from freely moving contours in all spatial

dimensions, the object has one unique location at each time point,

and no localization information is carried between frames. For

these reasons, we allow the control points of the active membrane

to move within each time slice but not along the temporal axis. For

active membranes, xit is a M|T matrix that determines the

location of the contour at all time, where M is the number of

control points along the contour, and T is the size of the temporal

frame stack. We seek the solution of

AxitzxitB
Tz

LEim

Lxit

{Fit~0, i~1,2,:::,M, t~1,2,:::,T , ð11Þ

where the T|T pentadiagonal matrix B effects the derivatives in

time and has the same structure as A but transposed. Similar to the

strategy for solving equation (5), this equation can be solved

iteratively by

(AzcI)xt
itzxt

itB
Tz+iEim(xt{1

it ){cxt{1
it {Fit~0, ð12Þ

which is in the form of a Sylvester equation and can be solved

following standard routines.

In practice, instead of optimizing the active membrane on all

frames, we slice the kymograph into overlapping time-blocks in the

temporal dimension and then sequentially obtain the optimized

solutions in short blocks in accordance with the results from

previous blocks in time. This is a practical simplification as long as

the block size is comparable to the persistence time of motion of

the objects. When the temporal projections of the trajectory of one

or multiple objects overlap, incorrect initial condition can cause

slow convergence or trap the solution at local minima where the

registration of traces to image potential minima is swapped. By

solving the problem in a block-wise manner, we avoid incorrect

initial placement of the contours, and greatly reduce the

computation time using the local initial guess based on previous

results. Because our model is used to process time-lapsed movies,

we use the term contour and membrane interchangeably in the

following text.

4. Repulsion between Multiple Contours
Active contour and surface models can be applied to an image

or time-lapse movie of multiple objects by starting at different

initial locations. However, when the objects are in close proximity

to one another, the barrier that separates the two objects in the

image energy landscape can diminish below a significant level due

to noise and other image-based effects (Figure 1). As a result, two

contours (or membranes) with different initial locations can

converge to the same image energy minimum. To avoid different

contours from collapsing into the same potential well, we optimize

the energy of multiple contours simultaneously with the addition of

a mutual repulsive force between the contours. Because the

repulsive force resembles the physical exclusion, we limit the range

of the repulsion to the approximate size of the objects, and set the

force magnitude to match the depth of the typical depth of the

image energy minima. The goal of adding repulsion between

interacting contours is to prevent them from overlapping due to

the possible degraded image quality, while keeping the dynamics

of the contours well-behaved and easy to implement. Specifically,

the force is defined to have a quadratic form of the distance

between two contours with a cutoff distance w0, which is chosen to

be the same as the typical width of the tracked objects:

F
repel
lm (sl)

~m

ð1

0

max 0,1{
Dxl(sl){xm(sm)D

w0

� �
xl(sl){xm(sm)

w0
dsm,

ð13Þ

where F
repel
lm (sl) is the unit arc length density of the repulsive force

acted on the lth contour at arc position sl due to the presence of

the mth contour. m is a scalar that sets the magnitude of the

repulsion so that the repulsive potential matches the attractive

image potential. The discrete version of equation (13) takes the

form

F
repel
it;lm ~m

XM
j~1

max 0,1{
Dxit;l{xjt;mD

w0

� �
xit;l{xjt;m

w0
, ð14Þ

where xit;l is the coordinate of the ith control point of the lth

contour at the tth frame. Here, the repulsive force is not

normalized to the actual length of the contour. Because the

lengths of the flies and bacteria cells vary within 20% of the

averaged length, we did not observe convergence issues in solving

the relaxed positions due to the unnormalized forces. A cubic

potential is a sufficiently close approximation to the overall shape

of the attractive potential generated by Gaussian smoothing of the

original image. In our actual algorithm, the external force includes

both the terminal force and the repulsive force:

F~Fstr þ Frepel: ð15Þ

Results

1. Drosophila Walking Behavior
We first demonstrate the repulsive, active membrane model on

movies of walking fruit flies. Drosophila melanogaster has become a

popular model system for studying complex behaviors such as

courtship, aggression, and learning through the analysis of time-

lapse movies of fly position. In these experiments, individual flies

often come physically close to each other causing their images to

Active Membrane Multi-Object Tracking
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merge. The repulsive membrane model is particularly adept at

resolving the positions of flies during these events with high chance

of contacting and overlapping.

We recorded a movie of five male flies walking in a circular, 2.5-

cm diameter arena at a density of 1 fly/cm2 at 30 frames per

second and a camera magnification of 0.1 mm/pixel. Our

tracking algorithm models each fly as an open contour with 3

control points (Fig. 2 and Movie S1). The length of each fly is

determined from the initial image and remains fixed throughout

the tracking task. Our tracker is able to follow five flies correctly in

all 20,203 frames (a total time of 673 seconds). The oval shaped fly

image potential constraints the orientation of the open contour, so

that the head direction is correctly resolved in most frames.

Occasionally, a fly can exhibit escape behavior that causes a quick

change in location and head direction. For generality, our

algorithm does not consider image details specific for fruit flies,

and we do not distinguish head from tail based on images.

Consequently, jumps may reverse the head-tail orientation

(Figure 2b). However, because flies mostly move forward in the

direction of the head with low jumping frequency on the order of

0:1 min{1, a Hidden Markov method is suitable for detecting

jumps. We use this information and adopt the Viterbi algorithm

[26] to determine the forward-backward head direction as an

addition step of our fly tracking software. Figure 2(c–g) shows the

2D, log-probability distribution function of walking velocity for

each of the five flies after the head direction correction. Each fly

has an individual signature distribution that is slightly different

from other’s.

To increase the number of fly-fly encounters and test the ability

of the repulsive algorithm to distinguish individual flies, we placed

one female and two male flies in the arena. Both male flies spend a

large amount of time attempting to court the female fly, resulting

in frequent merging of the fly images. 85% of the recording time,

at least one of the male flies is within 6 mm of the female fly and

31% of time both male flies are within this distance (Figure 3(a)).

Images are analyzed with our tracking algorithm with 100%

correct registration of flies and only one orientation reversal

caused by a jumping event (Figure 3(b)). To demonstrate the

tracking result, we calculated the position of each fly relative to one

of the other two flies for all pairs. Similar to previous analyses [1],

we find that male flies tend to approach the female fly from the

rear (Figure 3(c),(d)), while maintaining a head direction oriented

towards the female (Figure 3(e),(g)). The relative position of the two

male flies uniformly distribute around each fly (Figure 3(f),(h)),

indicating no preferred orientation between males.

We compared the performance of our algorithm to the output

of the CTRAX fly tracker [1] using the 5-male assay, the one

female, two male (1F2M) assay, and a high fly density movie trial

with 16 male flies in a 5 cm2 arena (Table 1). At high densities,

flies frequently walk in contact with each other and jumping is

more frequent (Movie S2). In our repulsive contour model, where

the number of flies is fixed, identity swapping is the only kind of

error. In comparison, because CTRAX allows the number of

objects to vary, it has three types of tracking error: identity swap,

lost objects, and spurious detection. In addition, we compare the

speed of the two tracking packages when run on an Intel i5

processor. In the 5-male movie, where flies rarely come in close

proximity to each other (3% of the time), both trackers are able to

track all the flies without any error. At a higher fly density of

3 cm{2, both trackers are able to distinguish individual flies,

although CTRAX has a small portion of spurious detections and

fly jumping becomes the primary source of identity swap error.

When the image flies constantly stay in close proximity, such as

with frequent courtship attempts, our model is still able to locate

the flies from the boundary contour, whereas CTRAX suffers

from overlapping detections. Moreover, we observe that the

tracking quality of CTRAX is crucially sensitive to the user-

specified input parameters such as the image value threshold and

the Gaussian oval shape prior that requires multiple trials to

optimize. In comparison, the repulsive contour model only

requires the knowledge of the spatial scale, either the fly length

or width, and the number of flies. The repulsive contour tracker is

also 3–20 times faster than CTRAX.

2. Myxococcus xanthus Gliding Motility
To highlight the ability of the repulsive contour technique to

track densely packed objects, we analyzed movies of 2D swarms of

Myxococcus xanthus cells. Myxococcus xanthus is a soil bacterium that

forms complex, 3D group structures by gliding along solid surfaces

[22]. We confined Myxococcus xanthus (strain DZ2) cells between an

agarose gel and a glass surface such that cells form a single layer at

the interface. Using bright field microscopy, the bacterial cell body

appears dark and is surrounded by a bright halo (figure 4(a)). Cells

are often tightly packed,resulting a poor image contrast between

the neighboring cells.

Contrast-enhancement techniques such as Differential Interfer-

ence Contrast (DIC) and Phase Contrast (PC) allow for the

visualization of low-contrast objects but produce images whose

intensity patterns are complex, usually containing both bright

halos and dark regions for each object in a non-linear represen-

tation. For that reason, we did not adopt these microscopy

techniques. For the bright field microscopy images, we prepro-

cessed the raw microscopy images to enhance the image contrast

before calculating the image-based potential for contour relaxa-

tion. We first calculated the eigenvalues and eigenvectors of the

Hessian of the images to quantify features such as valleys (the cell

Figure 1. Schematic illustration of the principle of repelling
active contours. (a) When objects are far away and the attractive
image potential fields (blue solid lines) don’t interact, two active objects
(red and cyan circles) correctly fall into the image energy minima. (b)
When objects are close, the potential fields (blue dashed lines) overlap
and cause dislocated or merged minima. Two active objects converge
into the same minimum. (c) With the repulsive potential added (red
solid line), the total field the other object is in is recovered (cyan solid
line). (d) The same principle can be applied to two and higher
dimensions as shown. The black solid ovals represent two contacting
objects. The images are blurred to give smooth attraction potential, and
with repulsion, two minima can be resolved (green and red).
doi:10.1371/journal.pone.0065769.g001
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bodies) and ridges (the halos around the cells). We observe that the

two eigenvalues of the Hessian matrix and the pixel value of all

pixels fall in a plane in three-dimensional parameter space. The

smallest variance of the principle components is less than 5% of

the other two, which are comparable. Hence, the first two

principle components of these three parameters are used to specify

image features. Qualitatively, the pixels are distributed in two

clusters within this two-dimensional projection (the two lobes in

the projection in figure 4(f)), with valley pixels residing in one

cluster and the ridge pixels in the other, and all background pixels

within the junction region of the two clusters. To better distinguish

pixels from the background and from the high cell density area

where the pixel intensity contrast is low, we consider the alignment

of the features in neighbouring areas. Analogous to the quanti-

Figure 2. The trajectories and velocities exacted from the tracking results of five male flies. (a) A sample image of five flies in the circular
arena. Three seconds of walking trajectories of the flies are labeled in different colors. The control points are labeled as the yellow squares. (b) The
parallel component of the walking velocity of one fly is plot as a function of time. When the fly jumps (indicated by arrows), the tracker may reverse
the orientation and negate the velocity. The reversal can be detected off-line using a Hidden Markov Model (HMM). (c–g) Velocity histograms of five
individual flies. The color indicates the the probability density distribution plotted on a logarithmic scale.
doi:10.1371/journal.pone.0065769.g002
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fication of magnetization, we treat the difference of the two

eigenvalues as the magnitude of a dipole, whose direction is

defined by the eigenvector associated with the larger eigenvalue.

The locally averaged dipole moment is the order parameter that

describes how ordered nearby features are aligned. The alignment

order parameter, together with the two principle components of

the eigenvalue-image intensity space, forms a three-dimensional

space in which the valley, ridge and background pixels are

separated (figure 4(f)). The orientation of the three sets is

determined using an expectation-maximization algorithm and

the pixels are clustered into three groups according to the

coordinates along the major direction of each group (Figure 4). We

undersegment the valley and the background to prevent areas of

high image potential, because the repulsive contour model is

robust against undersegmented ridges but prone to errors caused

by oversegmented valleys. The enhanced image used to calculate

the image potential is computed using

I~Pbz0:5Pr, ð16Þ

with

PbzPrzPv~1, ð17Þ

where Pb is the probability of a pixel being the background, Pr

being the ridge, and Pv being the valley. I is Gaussian blurred with

s~1:5 pixels before taking the gradient to smooth the image force

field (Figure 4d).

Contours of 25 control points are evolved in an image gradient

calculated from the preprocessed images (Figure 4d). The repulsive

force between control points on nearby cells is taken to be a

quadratic function of the distance

Frepel~f (1{ExijE=w0)xij : DxijEvw0

0 : DxitE§w0

:, ð18Þ

where xij is the distance vector between two control points on two

different contours. w0 is a cut-off distance that sets the length scale

of the repulsive force. We set w0 to be 70% of the averaged cell

width, about 7 pixels.

To prevent contours from starting the relaxation procedure at

an initial position that crosses a ridge in the image (Figure 5), we

reduce the length of all contours to 70% of its original length in the

first iteration of each time step to eliminate possible crossings

between contours and ridges, and let the length grow back to their

normal value during iterations along the image potential valleys.

The length growth is implemented by adjusting the targeted

contour length for each iteration by an increment

Dlt
0~l tanh½(l0{lt{1)=l�, ð19Þ

where lt is the apparent length at iteration t, and l0 is the normal

Figure 3. Tracking results of in-contact and jumping Drosophila as exceptional conditions, and the histograms of the relative
positions between flies. The positional information of flies from the movies are shown in the three-dimensional kymograph, where the boundary
of the fly images are drawn in false color depending on time. The positions of the flies are indicated as short open contours in the same color and
connected by lines as visual aid. (a) Two flies moved in proximity to each other and then moved apart, causing the mask and contours to merge and
split again. (b) A missing fly image was caused by the a jumping event, followed by re-orientation of the head direction. (c)-(h) The distribution of the
relative position between two flies is shown as the logarithm of the distribution probability density. The displacement is measured relative to the first
fly on the perpendicular (x) and the parallel direction relative to the head direction (y). (c) Male 1 (M1) relative to female (F), (d) male 2 (M2) relative to
female (F), (e) F relative to M1, (f) M2 relative to M1, (g) F relative to M2, and (h) M1 relative to M2.
doi:10.1371/journal.pone.0065769.g003
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length of each cell. l is a convergence parameter that governs the

number of iterations for the contours to grow back to their original

length. In practise, we observe that l~1 is a good value for

contours of l0*50 pixels. We also adopt the form in equation (10)

to implement the length constraint force on the termini. The

length increment is split between the two termini of the contours

according to the resistant forces exerted on the termini:

Dlt
head~

Ftail

DFheadDzDFtailD
Dlt

0 ð20Þ

Dlt
tail~

Fhead

DFheadDzDFtailD
Dlt

0, ð21Þ

where Fheadw0 and Ftailv0 are the tangential components of the

image and repulsive forces exerted on the termini. The anticipated

position of the tips are obtained by extrapolating the termini along

the tangential directions by Dlt
head and Dlt

tail, and then F str is

calculated using (10). Figure 5 demonstrates how this inchworm-

like motion corrects misplacement of the contours. With the length

Table 1. Comparison between CTRAX and the repulsive contour model in error rate and computation speed.

Assay Length of Movie (frames) Fly-fly contacts CTRAX Repulsive Contours

Error Speed (fps) Error Speed (fps)

5M 20203 1427 0 4.4 0 40

1F2M 9000 12956 25 3.5 0 70

16M 4581 8717 9 3.1 3 10

For all three movies tested (5M: five males; 1F2M: one female and two males; 16M: 16 males), the number of fly pairs that have a distance closer than twice the fly width
is counted as a fly-fly contact. In speed comparisons, both trackers ran on the same single CPU core on the same platform.
doi:10.1371/journal.pone.0065769.t001

Figure 4. Bright field images of Myxococcus xanthus cells are taken, and transformed into the probability map that is then used to
generate the image potential to interact with the contours. (a) A field of view of 41 mm| 41 mm (512|512 pixels) contains over 200
Myxococcus xanthus cells. The relaxed position of the contours are overlaid on top of the bright field image with false color labeling. (b) Zoomed-in
image of a portion in (a). (c,d) The large and the small eigenvalues of the Hessian matrix of (b). (e) The locally averaged eigenvectors indicate the
alignment magnitude of features. The sign is chosen such that higher value indicates less order, thus high chance to be the background and vise
versa. (f) The distribution of pixels in the classifier coordinate: two principle components from the eigenvalue-intensity space (horizontal axes), and
the alignment magnitude (vertical axis). Pixels are categorized into three groups along the three axes, and color-coded in red (ridge), green (valley)
and blue (background). The projections along three axis are shown as guides for viewing. (g) After classification, each pixel in the image is color
coded in the same way as in (f) according to the probability of being ridge, valley or background. (h) The enhanced image for repulsive active contour
model is calculated from the classification probability map shown in (g). (i) Image intensity profile on a line segment (red dashed line in (a)) illustrates
the nonuniform contrast at the edge and at the inside of a cell cluster.
doi:10.1371/journal.pone.0065769.g004
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initially shortened, the faulty crossing configuration is eliminated

(Figure 5b). The upper tip grows until it hits the ridge and is

unable to grow further due to steric constraints (Figure 5c, d). The

lower tip keeps growing along a narrower valley until the length

reaches the target length (Figure 5e, f).

We have also included several non-critical optimizations to the

dynamics of the contours for better convergence. The tangential

component of the force exerted on each control point is

individually calculated and the average value is applied on each

control point. The arc distance between control points is also

uniformly redistributed every 5 iterations. These optimizations

improve the relaxation in the tangential direction without

qualitatively changing the behavior of the contours.

We used the repulsive contour model as described above to

track Myxococcus xanthus motion within a 41 mm|41 mm field of

view consisting of 512|512 pixels (Figure 4a and Movie S3). 205

cells are initially located in the field and we tracked these cells for

400 frames at 12 frames/min. During the time course of the

movie, cells typically move a distance about equal to 10 times their

cell length and the local adjacency order is completely altered for

most of the cells. Our algorithm successfully tracks 204 cells of the

total 205 cells before they leave the field of view. Because we do

not apply force or constraints out of the field, contours can quickly

leave the field of view at the border or leak to other potential wells.

Minor human intervention was shown to improve the convergence

but were not critical for the results. Figure 6(a) shows the temporal

projection of traces of all 205 cells, labeled in different colors and

overlaid on the first frame of the movie. These traces indicate that

cells are capable of smoothly turning while gliding and reversing

direction of motion. The tangential speed of a selected cell with

high motility shows the velocity estimation from position data, and

indicates a directional reversal approximately every 7 minutes

(Figure 6(b)). Figure 6(c) shows a histogram of the tangential speed

of all 205 tracked cells while remaining in the field of view. The

speed approximately follows an exponential distribution with a

mean value at 0:49 mm/min. This value is significantly smaller

than previously reported results [21,27], because we included the

cells that are not motile at all, and the Gaussian smoothing altered

the shape of the speed distribution. The high cell density also

reduces the mean speed as shown in [27].

Discussion

Active contour models are widely applied in detecting features

with high contrast such as boundaries in an image and is shown to

be successful especially for closed contours. Several studies applied

the concept of active contour in detecting open contours with finite

length, for instance actin filaments. On the other hand, along with

other machine vision techniques that segment targets from an

image, active contours can be applied on individual images in

time-lapsed movies of particle tracking problems. The solution is

usually separated into two stages: the objects or particles are first

identified in each frame individually, then the correspondence is

assigned between objects in different frames. Merging/disappear-

ing or splitting/emerging are allowed with specific statistical

properties, usually in a maximum-likelihood fashion based on the

pixel intensity level, shape changes or moving distance. In these

two-stage approaches, the object assignment is limited by the

object detection quality and it is not straight-forward to use the

inter-frame object assignment information to assist particle

detection. Optimizing assignments across multiple frames is robust

agains single frame tracking error but dramatically increases

computational cost. In our approach, we treat the temporal

dimension as an extrusion of the spatial dimension of the images

and the object trajectories as elastic continua that interact with

both the image time-series and each other in terms of repulsive

forces. Similar to the penalty based on moving distance in the

linear assignment problem, the elastic energy in the temporal

dimension penalizes trajectories that deviate from linear motion.

One major difference between this method and the two-stage

solutions is that the object identity correspondence assignment is

combined with the spatial localization using image intensities.

As a closely related method to the active contour but with

certain advantages, a level set method is insensitive to the topology

of the contours, and therefore ideal in dealing with contours with

unspecified topological features. It has been shown previously that

level set methods can be successfully used in tracking moving

bacteria [28]. One drawback that limits the application of active

contour and level set methods is the difficulty in applying shape

constraints to the contours. This problem can be partly solved by

using a shape prior in the level set approaches at the cost of

computational time. However in many applications, the charac-

teristic topological and geometrical features remain unchanged

through the entire movie, for instance the fly shape and size in the

first example, cell length in the second example and the number of

objects (flies, cells) in the both examples above. These conserved

geometric quantities can be predetermined and used as constraints

on the solution that effectively acts as an explicit shape prior but

with a simpler form. In addition to resembling the physical shapes

with explicit lengths of the contours, our model also captures the

mutually exclusive nature of these objects by adding a repulsive

force between objects. This effectively prevents trajectories from

crossing or collapsing into one image potential minima.

Another drawback of active contour methods is the typical

sensitivity to the initial position and local minima in the image

potential. In our second example, ambiguous segmentation of cells

takes place frequently due to the poor quality of the raw images,

causing faulty gaps between cells and bumps in the images along

the cell body, especially in area of high cell density. Upon sudden

cell acceleration, linear prediction may place the initial position

into a faulty local minimum as shown in figure 5(b). Among

various segmentation algorithms, the watershed is particularly

suitable in dealing with varying boundary values, at the cost of the

convenience to control the geometric properties of the segmented

area. We adopt the idea of a watershed algorithm in our active

contour model in terms of dynamically varying the contour length,

where the tip growth is governed by the resistant forces. This tip

growth scheme is directly analogous to the case of one-dimensional

watershed method, where the expansion of the two boundary

points is inversely proportional to the steepness of the potential

well. The combination of active contours and tip growth is

essentially a watershed algorithm with an explicit shape prior that

has the capability to correct mistakes caused by improper initial

positions (figure 5(c-f)).

Image preprocessing can be beneficial, sometimes essential, in

order for the active contours to relax into the correct potential

minima. Because efficient dynamics of the contours requires a

smooth potential landscape with slowly varying gradients, we use

Gaussian smoothing before taking the gradient, or equivalently

convolved the images with a derivative of gaussian (DoG) kernel.

Several factors determine the blurring radius, including the spatial

scale of the objects (fly or cell width in the examples shown) and

the distance between the predicted and the true position of the

objects, usually at the same scale of the moving distance between

frames. The blurring kernel can be set variable depending on the

motion of the objects, such as in the fly tracking case, where the fly

undergoes normal walking behavior and occasional large distance

jumps. We use a Gaussian kernel with the radius the same as the
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fly width for the former case to achieve fast performance, and if a

jump is detected, a global linear attractive potential that is only

visible to the jumping flies is added on top of the original kernel for

these jumping flies. The image preprocessing is more essential and

subtle in the second example. Comparing to the raw images, the

pixel intensity at the cell body, cell boundary and background is

more uniform after we convert the pixel intensity into assignment

probability of three pixel categories. The elevated background

intensity prevents contours from leaking to the empty background,

which is a severe problem if the image is not preprocessed (data

not shown). Pixel classification also enhances the barrier between

cells and normalizes the pixel values on the cells.

Since the evolution of the contours follows explicit dynamics

indicated in equation (3), it is convenient to implement additional

factors that affect the tracking results in terms of explicit forces, or

to modify the elastic property to fit particular shape requirements.

The length constraints and tip growth are applied in the form of

explicit forces in the case of tracking flies and Myxococcus xanthus

cells. In the first example, we also add energy costs to penalize

sharp turns, which is observed to cause identity swap in rare

ambiguous frames. In addition to applying explicit forces, the

internal degrees of freedom of the contour curvature allows extra

flexibility in modeling more complex shapes. For instance, the

bending elasticity can be set as a variable along the contour instead

of a constant, allowing parts of the contour to act as soft joints and

Figure 5. A contour can ride across a ridge and cause a marginally stable configuration. Allowing tips to grow solves this problem.
(a) The total growth of the two ends of a contour is determined by the current length and the normal length of the contour. The growth is distributed
unevenly to two termini according to the tangential resistance force. The dashed line indicates a hypothetical contour and the two ends are indicated
by the round dots. (b) Without the ends shrinking and regrowing, the contours are trapped in a marginally stable configuration, where the contour
on the right (indicated by the red dotted line) leaks to the left potential well and squeezed left contour short due to repulsion. (c–f) The length of the
contours are shortened initially and let grow to lead to the correct contour positions. The white arrow indicates the direction of the tip growth, and
the white dashed lines are the visual guide to help illustrate the growth.
doi:10.1371/journal.pone.0065769.g005

Figure 6. Tracking results and speed statistics of Myxococcus xanthus cells. (a) Trajectories of 205 cells over 2000 seconds are indicated in
different colors, overlaid on the first frame of the movie. (b) The tangential gliding speed along a selected cell is plot against time. Raw speed trace
(light red) is smoothed by Gaussian kernel with s~72 seconds (dark red). Six directional reversals are identified by the zero-crossings of the
smoothed speed curve (pointed by arrows). (c) The histogram of gliding speed magnitude of 205 cells approximately follows an exponential
distribution with the mean value at 0.49 mm/min.
doi:10.1371/journal.pone.0065769.g006
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the rest as hard stems. This is especially suitable in tracking objects

with internal motion such as head turning in mice.

Because the image information in adjacent frames is considered

as a whole in the contour localization, minor corruptions in image

quality can be corrected by the adjacent frames. On the other

hand, major corruption can cause propagating errors in the

following frames. The relaxation to the right image potential

minimum suffers especially when the image potential energy

landscape is highly curved with a large number of local minima,

such as in the case of Myxococcus xanthus images where cells are bent

and intertwined with identical local statistical character of pixel

intensities at cell width length scale. Inchworm tip growth has the

ability to correct initial misplacement given that the cells only

move tangentially by a small amount (20%) relative to the cell

length within two frames. Our algorithm also does not consider the

case of new objects entering the image. New objects can be

detected using other methods such as level set and then treated as

a regular repulsive active contour.

Comparing our active contour tracking model that uses the

explicit dynamics of the contours with previous Bayesian

approaches such as Branson et al. [1], the essential principles of

our method are correspondingly similar to models of the physical

properties of the objects. Active contour models treat images as a

potential energy landscape, and the objects are described by a set

of contours with specific lengths and bending properties to define

the shape. Contours move according to the image potential with

certain damping factor until relaxing at a minimum, and we add

repulsion forces between objects to prevent merging. Correspond-

ingly in Bayesian approaches, each image is treated as a spatial

distribution of pixel vales, and an object is a parameterized

distribution model with particular shape priors, such as the

covariance and centroid of a Gaussian distribution. Tracking

maximizes the posterior likelihood of the modeled distribution

explaining the image, which involves a particular numerical

gradient descending scheme similar to the damped dynamics of

contours. A Gaussian mixture model is adopted for the case of

multiple object tracking, which clusters pixels into groups with

small or no overlaps resembling repulsion between Gaussian

mixtures.

In conclusion, we developed a multiple-object tracking

algorithm for time-lapsed movie based on active contour model

that takes into account the physical exclusion of the objects. In our

model, multiple oval-shaped or elongated curved objects are

represented by open elastic contours with individually fixed length

in each frame, and the motion of objects in time is treated as an

extrusion in the temporal dimension, thus the spatio-temporal

kymograph are modeled as mutually repulsive elastic membranes.

We illustrated the application of the repulsive active membrane

model on two sets of realistic experimental data, tracking multiple

Drosophila walking and chasing, and tracking curved gliding

bacteria Myxococcus xanthus at high density. Individual objects are

tracked successfully with high efficiency at video frequencies and

low error rate (10{4) that can be conveniently corrected in

separate steps.

Supporting Information

Movie S1 Tracking results of 5 male flies in a circular
arena. Five male flies are placed in an circular arena and

captured in video. The Tracking results are indicated by a short

line connecting three control points representing each fly. The

waling trajectories are indicated by traces with decaying color

saturation, and the frame number is shown on the top left corner.

(MP4)

Movie S2 Tracking results of 16 male flies in a circular
arena. Movie of sixteen male flies walking is taken the same as

described in S1. Due to the high density, flies jump more

frequently than at lower density. The head direction is not

corrected in this case.

(MP4)

Movie S3 Tracking results of Myxococcus xanthus cells.
Individual cells are represented by control points indicated as

round dots, and drawn on top of the pre-processed bright field

microscopy images. Raw movie was taken at 1 frame per second

for 2000 seconds. This movie shows 1 frame of every 5 frames.

(MP4)

Movie S4 Raw image sequence of the data shown in
movie S3.

(MP4)
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