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STABLE BLOW UP DYNAMICS FOR THE CRITICALCO-ROTATIONAL WAVE MAPS AND EQUIVARIANTYANG-MILLS PROBLEMSPIERRE RAPHAËL AND IGOR RODNIANSKIAbstrat. We exhibit stable �nite time blow up regimes for the energy ritialo-rotational Wave Map with the S
2 target in all homotopy lasses and for theritial equivariant SO(4) Yang-Mills problem. We derive sharp asymptotis onthe dynamis at blow up time and prove quantization of the energy foused atthe singularity. 1. IntrodutionIn this paper, we study the dynamis of two ritial problems: the (2 + 1)-dimensional Wave Map and the (4 + 1)-dimensional Yang-Mills equations. Theseproblems admit non trivial stati solutions (topologial solitons) whih have beenextensively studied in the literature both from the mathematial and physial pointof view, see e.g. [2℄,[3℄,[11℄,[13℄,[30℄,[45℄,[47℄. The stati solutions for the (WM) areharmoni maps from R

2 into S
2 ⊂ R

3 satisfying the equation
−∆Φ = Φ|∇Φ|2They are expliit solutions of the O(3) nonlinear σ-model of isotropi plane ferro-magnets. For the (YM) equations a partiularly interesting lass of stati solutionsis formed by (anti)self-dual instantons, satisfying the equations
F = ± ∗ Ffor the urvature F of an so(4)-valued onnetion over R

4. The 4-dimensionaleulidean Yang-Mills theory forms a basis of the Standard Model of partile physisand its speial stati solutions played an important role as pseudopartile modelsin Quantum Field Theory.The geometry of the moduli spae of stati solutions has been a subjet of athorough investigation, see e.g. [46℄,[1℄,[11℄,[12℄. In partiular, the moduli spaesare inomplete due to the sale invariane property of both problems. This gave riseto a plausible senario of singularity formation in the orresponding time dependentequation whih has been studied heuristially, numerially and very reently froma mathematial point of view, [5℄,[14℄,[20℄,[21℄,[34℄,[23℄ and referenes therein.The fous of this paper is the investigation of speial lasses of solutions to theritial (2 + 1)-dimensional (WM) and the ritial (4 + 1)-dimensional (YM) de-sribing a stable (in a �xed o-rotational lass) and universal regime in whih anopen set of initial data leads to a �nite time formation of singularities.The Wave Map problem for a map Φ : R
2+1 → S

2 ⊂ R
3 is desribed by anonlinear hyperboli evolution equation

∂2
t Φ − ∆Φ = Φ

(
|∇Φ|2 − |∂tΦ|2

)1
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2 P. RAPHAËL AND I. RODNIANSKIwith initial data Φ0 : R
2 → S

2 and ∂tΦ|t=0 = Φ1 : R
2 → TΦ0S

2. We will studythe problem under an additional assumption of o-rotational symmetry, whih anbe desribed as follows. Parametrizing the target sphere with the Euler angles
Φ = (Θ, u) we assume that the solution has a speial form

Θ(t, r, θ) = kθ, u(t, r, θ) = u(t, r)with an integer onstant k ≥ 1 � homotopy index of the map Φ(t, ·) : R
2 → S

2.Under suh symmetry assumption the full wave map system redues to the onedimensional semilinear wave equation:
∂2

t u− ∂2
ru− ∂ru

r
+ k2 sin(2u)

2r2
= 0, k ≥ 1, (t, r) ∈ R × R+, k ∈ N

∗. (1.1)Similarly, the equivariant redution, given by the ansatz,
Aij

α = (δi
αx

j − δj
αx

i)
1 − u(t, r)

r2
,of the (4 + 1)-dimensional Yang-Mills system

Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ ],

∂βF
αβ + [Aβ, F

αβ ] = 0, α, β = 0, ..., 3for the so(4)-valued gauge potential Aα and urvature Fαβ , leads in the semilinearwave equation:
∂2

t u− ∂2
ru− ∂ru

r
− 2u(1 − u2)

r2
= 0, (t, r) ∈ R × R+. (1.2)The problems (1.1) and (1.2) an be uni�ed by an equation of the form

{
∂2

t u− ∂2
ru− ∂ru

r + k2 f(u)
r2 = 0,

u|t=0 = u0, (∂tu)|t=0 = v0
with f = gg′ (1.3)and

g(u) =

{
sin(u), k ∈ N

∗ for (WM)
1
2(1 − u2), k = 2 for (Y M).(1.3) admits a onserved energy quantity

E(u, ∂tu) =

∫

R2

(
(∂tu)

2 + |∂ru|2 + k2 g
2(u)

r2

)whih is left invariant by the saling symmetry
uλ(t, r) = u(

t

λ
,
r

λ
), λ > 0.The minimizers of the energy funtional an be expliitly obtained as

Q(r) = 2 tan−1(rk) for (WM), Q(r) =
1 − r2

1 + r2
for (YM), (1.4)and their resalings whih onstitute the moduli spae of stationary solutions in thegiven orotational homotopy lass.A su�ient ondition for the global existene of solutions to (1.3) was establishedin the pioneering works by Christodoulou-Tahvildar-Zadeh [8℄, Shatah-Tahvildar-Zadeh [36℄, Struwe [40℄. It an be desribed as folllows: for smooth initial data

(u0, v0) with E(u0, v0) < E(Q), the orresponding solution to (1.3) is global in timeand deays to zero, see also [10℄. More preisely, it was shown that if a singularityis formed at time T < +∞, then energy must onentrate at r = 0 and t = T . This



3onentration must happen stritly inside the bakward light one from (T, 0), thatis if the sale of onentration is λ(t), then
λ(t)

T − t
→ 0 as t→ T. (1.5)Note that the ase λ(t) = T − t would orrespond to self-similar blow up whih istherefore ruled out. Finally, a universal blow up pro�le may be extrated in resaledvariables, at least on a sequene of times:

u(tn, λ(tn)r) → Q in H1
loc as n→ +∞. (1.6)These results hold for more general targets for (WM) with Q being a non trivialharmoni map. In partiular, this implies the global existene and propagation ofregularity for the orotational (WM) problem with targets admitting no non trivialharmoni map from R

2. Very reently, in a series of works [42℄,[43℄,[38℄,[39℄,[19℄,this result has been remarkably extended to the full (WM) problem without theassumpion of orotational symmetry, hene ompleting the program developed in[16℄,[15℄,[44℄,[41℄,[18℄.These works leave open the question of existene and desription of singularityformation in the presene of non trivial harmoni maps, or the instanton for the(YM). This long standing question has �rst been addressed through some numerialand heuristi works in [4℄,[5℄,[14℄,[31℄,[37℄. In partiular, the blow up rates of theonentration sale
λ(t) ∼ B

T − t

|log(T − t)| 12
for (YM),

λ(t) ∼ A(T ∗ − t)e−
√

| ln(T ∗−t)| for (WM) with k = 1with spei� onstants A,B have been predited in a very interesting work [5℄ and,a very reent, [37℄ respetively.Instability of Q for the k = 1 (WM) and (YM) was shown by C�te in [9℄. Arigorous evidene of singularity formation has been reently given via two di�erentapproahes. In [34℄, Rodnianski and Sterbenz study the (WM) system for a largehomotopy number k ≥ 4 and prove the existene of stable �nite time blow updynamis. These solutions behave near blow up time aording to the deomposition
u(t, r) = (Q+ ε)(t,

r

λ(t)
) with ‖ε, ∂tε‖Ḣ1×L2 ≪ 1 (1.7)with a lower bound on the onentration:

λ(t) → 0 as t→ T with λ(t) ≥ T − t

|log(T − t)| 14
. (1.8)In [20℄, [21℄, Krieger, Shlag and Tataru onsider respetively the (WM) system for

k = 1 and the (YM) equation and exhibit �nite time blow up solutions whih satisfy(1.7) with
λ(t) = (T − t)ν for (WM) with k = 1,

λ(t) = (T − t)|log(T − t)|−ν for (YM) (1.9)for any hosen ν > 3
2 . This ontinuum of blow up solutions is believed to be non-generi.



4 P. RAPHAËL AND I. RODNIANSKI1.1. Statement of the result. In this paper, we give a omplete desriptionof a stable singularity formation for the (WM) for all homotopy lasses and the(YM) in the presene of orotational/equivariant symmetry near the harmonimap/instanton. The following theorem is the main result of this paper.Theorem 1.1 (Stable blow up dynamis of o-rotational Wave Maps and Yang-Mills).Let k ≥ 1. Let H2
a denote the a�ne Sobolev spae (1.18).There exists a set O ofinitial data whih is open in H2

a and a universal onstant ck > 0 suh that the fol-lowing holds true. For all (u0, v0) ∈ O, the orresponding solution to (1.3) blowsup in �nite time 0 < T = T (u0, v0) < +∞ aording to the following universalsenario:(i) Sharp desription of the blow up speed: There exists λ(t) ∈ C1([0, T ),R∗
+) suhthat:

u(t, λ(t)y) → Q in H1
r,loc as t→ T (1.10)with the following asymptotis:

λ(t) = ck(1 + o(1))
T − t

|log(T − t)|
1

2k−2

as t → T for k ≥ 2, (1.11)
λ(t) = (T − t)e−

√
|log(T−t)|+O(1) as t→ T for k = 1. (1.12)

λ(t) = c2(1 + o(1))
T − t

|log(T − t)| 12
as t→ T for (YM).Moreover,

b(t) := −λt(t) =
λ(t)

T − t
(1 + o(1)) → 0 as t→ T(ii) Quantization of the foused energy: Let H be the energy spae (1.15), then thereexist (u∗, v∗) ∈ H suh that the following holds true. Pik a smooth ut o� funtion

χ with χ(y) = 1 for y ≤ 1 and let χ 1
b(t)

(y) = χ(b(t)y), then:
lim
t→T

∥∥∥∥u(t, r) −
(
χ 1

b(t)
Q
)

(
r

λ(t)
) − u∗, ∂t

[
u(t, r) −

(
χ 1

b(t)
Q
)

(
r

λ(t)
) − v∗

]∥∥∥∥
H

= 0.(1.13)Moreover, there holds the quantization of the foused energy:
E0 = E(u, ∂tu) = E(Q, 0) + E(u∗, v∗). (1.14)This theorem thus gives a omplete desription of a stable blow up regime for allhomotopy numbers k ≥ 1 and the (YM) problem, whih an be formally omparedwith the k = 2 ase of (WM). Stable blow up solutions in O deompose into asingular part with a universal struture and a regular part whih has a strong limitin the sale invariant spae. Moreover, the amount of energy whih is foused bythe singular part is a universal quantum independent of the Cauhy data.Comments on the result1. k = 1 ase: In the k ≥ 2 and (YM) ase, the blow up speed λ(t) is to leadingorder universal ie independent of initial data. On the ontrary, in the k = 1 ase,the presene of the eO(1) fator in the blow up speed seems to suggest that the lawis not entirely universal and has an additional degree of freedom depending on theinitial data. In general, the analysis of the k = 1 and to some extent k = 2 problemsis more involved. In partiular for k = 1, the instability diretion r∂rQ driving thesingularity formation misses the L2 spae logarithmially. This anomalous logarith-mi growth is fundamental in determining the blow up rate. On the other hand, this



5anomaly also adversely in�uenes the size of the radiation term whih implies thatthere is only a logarithmi di�erene between the leading order and the radiativeorretions. This requires a very preise analysis and a areful trak of all logarith-mi gains and losses. In the ase of larger k, these gains are polynomial and henethe e�et of radiation is more easily deoupled from the leading order behavior. Inthis paper, we adopted a universal approah whih simultaneously treats all ases.2. k = 2 ase: The analysis of the k = 2 ase for the (WM) problem is almostidential to that required to treat the (YM) equations. In what follows we willsubsume the (YM) problem into the k = 2 regime of (WM), making appropriatemodi�ations, aused by a small di�erene in the struture of the nonlinearities inthe two equations, in neessary plaes.3. Regularity of initial data: The open set O of initial data desribed in thetheorem ontains an open subset of C∞ data oiniding with Q for all su�ientlylarge values of r ≥ R. As a onsequene, the main result of the paper in partiulardesribes singularity formation in solutions arising from smooth initial data. Thisshould be ompared with the results in [20℄,[21℄ where solutions, spei�ally on-struted to exhibit the blow up behavior given by the rates in (1.9), lead to theinitial data of limited regularity dependent on the value of the parameter ν anddegenerating as ν → 3
2 .4. Comparison with the L2 ritial (NLS): This theorem as stated an be om-pared to the desription of the stable blow up regime for the L2 ritial (NLS)

iut + ∆u+ u|u| 4
N = 0, (t, x) ∈ [0, T ) × R

N , N ≥ 1,see Perelman [32℄ and the series of papers by Merle and Raphaël [25℄, [26℄, [33℄,[27℄, [28℄, [29℄. There is a oneptual analogy between the mehanisms of a stableregime singularity formation for the ritial (WM) and (YM) problems and the L2ritial (NLS) problem. For the latter problem the sharp blow up speed and thequantization of the blow up mass is derived in [27℄, [28℄, [29℄. The onentrationours on an almost self-similar sale
λ(t) ∼

√
2π(T − t)

log|log(T − t)| as t→ T.In both (WM), (YM) and the L2 ritial (NLS) problems self-similar singularityformation is orreted by subtle interations between the ground state and the ra-diation parts of the solution. The preise nature of these interations, a�eting theblow up laws, depends in a very sensitive fashion on the asymptoti behavior of theground state: polynomially deaying to the �nal value for the (WM) and (YM) andexponentially deaying for the (NLS), see also [22℄ for related onsiderations. Thisdependene beomes partiularly apparent upon examining the blow up rates forthe (WM) problem in di�erent homotopy lasses parametrized by k. For k = 1 theharmoni map approahes its onstant value at in�nity at the slowest rate, whihleads to the strongest deviation of the orresponding blow up rate from the self-similar law.5. Least energy blow up solutions: The importane of the k = 1 ase for the(WM) problem is due to the fat that the k = 1 ground state is the least energyharmoni map:
E(Q) = 4πk.



6 P. RAPHAËL AND I. RODNIANSKIA loser investigation of the struture of Q for k ≥ 2 shows that this on�gurationorresponds to the aumulation of k topologial harges at the origin r = 0. For thefull, non-symmetri problem, we expet suh on�gurations to split under a generiperturbation into a olletion of k = 1 harmoni maps and lead to a di�erentdynamis driven by the evolution of eah of the k = 1 ground states and theirinteration.From this point of view the stability of the least energy k = 1 on�guration undergeneri non-symmetri perturbations is an important remaining problem.1.2. Funtional spaes and notations. For a pair of funtions (ǫ(y), σ(y)), welet
‖(ǫ, σ)‖2

H =

∫ [
σ2 + (∂yǫ)

2 +
ǫ2

y2

] (1.15)de�ne the energy spae. We also de�ne the H2 Sobolev spae with norm:
‖(ǫ, σ)‖2

H2 = ‖(ǫ, σ)‖2
H +

∫ [
(∂2

yǫ)
2 +

(∂yǫ)
2

y2
+ (∂yσ)2 +

σ2

y2

] for k ≥ 2, (1.16)
‖(ǫ, σ)‖2

H2 = ‖(ǫ, σ)‖2
H+

∫ [
(∂2

yǫ)
2 + (∂yσ)2 +

σ2

y2

]
+

∫

y≤1

1

y2

(
∂yǫ−

ǫ

y

)2 for k = 1.and a related norm, in the relevant ase of σ = ∂tǫ,
‖ǫ‖2

H̃ = |Hǫ|2L2 + ‖(∂tǫ, 0)‖2
H (1.17)where H is the linearized Hamiltonian de�ned in (1.25). Observe that (1.15), (1.16),(1.17) and (1.17) require vanishing of (ǫ, σ) at the origin.We then de�ne an a�ne spae

H2
a = H2 +Q. (1.18)We denote

(f, g) =

∫
fg =

∫ +∞

0
f(r)g(r)rdrthe L2(R2) radial inner produt. We de�ne the di�erential operators:

Λf = y · ∇f (Ḣ1 saling), Df = f + y · ∇f (L2 saling) (1.19)and observe the integration by parts formula:
(Df, g) = −(f,Dg), (Λf, g) + (Λg, f) = −2(f, g). (1.20)Given f and λ > 0, we shall denote:

fλ(t, r) = f(t,
r

λ
) = f(t, y),and the resaled variable will always be denoted by

y =
r

λ
.For a time-dependent saling parameter λ(t) we de�ne the resaled time

s =

∫ t

0

dτ

λ2(τ)We let χ be a smooth positive radial ut o� funtion χ(r) = 1 for r ≤ 1 and χ(r) = 0for r ≥ 2. For a given parameter B > 0, we let
χB(r) = χ(

r

B
). (1.21)



7Given b > 0, we set
B0 =

1

b
√

3
∫
yχ(y)dy

, Bc =
2

b
, B1 =

|logb|
b

. (1.22)1.3. Strategy of the proof. We now brie�y sketh the main ingredients of theproof of Theorem 1.1.Step 1 The family of approximate self similar pro�les.We start with the onstrution of suitable approximate self-similar solutions inthe fashion related to the approah developed in [26℄, [28℄. Following the salinginvariane of (1.3), we pass to the the self-similar variables and look for a oneparameter family of self similar solutions dependent on a small parameter b > 0:
u(t, r) = Qb(y), y =

r

λ(t)
, λ(t) = b(T − t).This transformation maps (1.3) into the self-similar equation:

− ∆v + b2DΛQb + k2 f(v)

y2
= 0 (1.23)where the di�erential operators Λ,D are given by (1.19). A well known lass ofexat solutions are given by the expliit pro�les:

Qb(r) = Q

(
r

1 +
√

1 − b2r2

)
, r ≤ 1

b
.These solutions were used by C�te to prove that Q is unstable for both (WM) and(YM), [9℄. A diret inspetion however reveals that these have in�nite energy dueto a logarithmi divergene on the bakward light one

r = (T − t) equivalently y =
1

b
.This situation is exatly the same for the L2 ritial (NLS), [26℄, and reveals theritial nature of the problem. Note that in higher dimensions �nite energy self-similar solutions an be shown to exist thus providing expliit blow up solutions tothe Wave Map and Yang-Mills equations, [35℄, [7℄.In order to �nd �nite energy suitable approximate solutions to (1.23) in the viinityof the ground state Q we onstrut to a formal expansion

Qb = Q+ Σp
i=1b

2iTi.Substituting the ansatz into the self-similar equation (1.23), we get at the order b2ian equation of the form:
HTi = Fi (1.24)where

H = −∆ + k2 f
′(Q)

y2
(1.25)is obtained by linearizing (1.23) onQ (setting b = 0) and Fi is a nonlinear expression.The solvability of (1.24) requires that Fi is orthogonal to the kernel of H, whih isexpliit by the variational haraterization of Q:

Ker(H) = span(ΛQ) (1.26)and hene the orthogonality ondition:
(Fi,ΛQ) = 0. (1.27)



8 P. RAPHAËL AND I. RODNIANSKIWhile the ondition (1.27) seems at �rst hand to be a very nonlinear ondition, itan be easily heked to hold due to the spei� algebra of the H1 ritial problemand its onnetion to the Pohozaev identity. In fat, if Q(p)
b = Q+ Σp

i=1b
2iTi is theexpansion of the pro�le to the order p, then (1.27) holds as long as the Pohozaevomputation is valid:

(
−∆Q

(p)
b + b2DΛQ

(p)
b + k2 f(Q

(p)
b )

y2
,DΛQ

(p)
b

) (1.28)
= lim

R→+∞

[
b2

2
|rΛQ(p)

b (R)|2 +
k2

2
|g(Q(p)

b (R)|2
]

= 0, (1.29)see step 2 of the proof of Proposition 3.1, setion 3.2. By a diret omputation,
F1 ∼ DΛQ ∼ 1

yk as y → +∞ and at eah step, the inversion of (1.24) dampensthe deay of Ti+1 at in�nity by an extra y2 fator, and hene the validity of (1.29)omes under question after p steps, for as y → ∞:
Tp(y) ∼

ck
y

for p =
k − 1

2
, k odd, (1.30)

Tp(y) ∼ ck for p =
k

2
, k even. (1.31)In fat (1.30), (1.31) will result in a universal nontrivial �ux type ontribution to(1.28). Moreover, Tp is the �rst term whih gives an in�nite ontribution to theenergy of the approximate self-similar pro�le Q(p)
b ( r

λ(t)). Tp is the radiation termwhih beomes dominant in the region y ≥ 1
b � exterior to the bakward light onefrom a singularity at the point (T, 0). We therefore stop the asymptoti expansionat p1 and loalize onstruted pro�les by onneting Qb to the onstant a = Q(+∞),whih is also an exat self-similar solution:

PB1 = χB1Qb + (1 − χB1)a, B1 =
|logb|
b

>>
1

b
(1.32)where χB1 = 1 for y ≤ B1, χB1 = 0 for y ≥ 2B1. PB1 satis�es an approximateself-similar equation of the form:

− ∆PB1 + b2DΛPB1 + k2 f(PB1)

y2
= ΨB1 (1.33)where ΨB1 is very small inside the light one y ≤ 1

b but enodes a slow deay near
B1 indued by the ut o� funtion and the radiative behavior of Tp at in�nity.Step 2 The H2 type bound.Let now u(t, r) be the solution to (1.3) for a suitably hosen initial data loseenough to Q. Given the pro�le PB1 , we introdue, with the help of the standardmodulation theory, a deomposition of the wave:

u(t, r) = PB1(t)(
r

λ(t)
) + w(t, r)or alternatively

u(t, r) = (PB1(t) + ε)(s, y), y =
r

λ(t)
,
ds

dt
=

1

λ1We will in fat also need the next term Tp+1 in the expansion. Its onstrution will be madepossible thanks to a subtle anellation, see step 4 of the proof of Proposition 3.1



9with B1 given by (1.32) and where we have set the relation
b(s) = −λs

λ
= −λt. (1.34)The deomposition is omplemented by the orthogonality ondition2

∀s > 0, (ε(s),ΛQ) = 0as is natural from (1.26). Our �rst main laim is the derivation of a pointwise intime bound on ε
‖ε‖H̃ . bk+1 (1.35)in a ertain weighted Sobolev spae H̃. The norm in the spae H̃ is given by theexpression

‖ǫ‖2
H̃ = |Hǫ|2L2 + ‖(∂tǫ, 0)‖2

H. (1.36)and is based on the linear Hamiltonian H assoiated with the ground state Q,see (1.17). We note in passing that, after adding the norm ‖(ǫ, ∂tǫ)‖2
H, for k ≥ 2this norm is equivalent to the H2 norm introdued in (1.17). There are howeversubtle di�erenes in the orresponding norms in the ase k = 1, onneted with thebehavior for y ≥ 1.Bounds related to (1.35) but for a weaker norm than H̃ and with bk+1 replaed by

b4 were derived in [34℄ for higher homotopy lasses k ≥ 4. They were a onsequeneof the proof of energy and Morawetz type estimates for the orresponding nonlinearproblem satis�ed by w. The linear part of the equation for w is given by theexpression
∂2

tw +Hλwwith the Hamiltonian
Hλ = −∆ +

f ′(Qλ)

r2
(1.37)Speial variational nature ofQ, disovered in [2℄, provides an important fatorizationproperty for Hλ:

Hλ = A∗
λAλ, Aλ = −∂r + k

g′(Qλ)

r
. (1.38)It arises as a onsequene of the fat that3 Q represents the o-rotational globalminimum of energy V [Φ] in a given topologial lass of maps Φ : R

2 → S
2 of degree

k.
V [Φ] =

1

2

∫

R2

(∇xΦ · ∇xΦ) dx,whih an be fatorized using the notation ǫij for the antisymmetri tensor on twoindies, as follows:
V [Φ] =

1

4

∫

R2

[
(∂iΦ ± ǫ j

i Φ × ∂jΦ) · (∂iΦ ± ǫijΦ × ∂jΦ)
]
dx

± 1

2

∫

R2

ǫijΦ · (∂iΦ × ∂jΦ) dx ,

(1.39)
=

1

4

∫

R2

[
(∂iΦ ± ǫ j

i Φ × ∂jΦ) · (∂iΦ ± ǫijΦ × ∂jΦ)
]
dx ± 4πk2The atual orthogonality ondition is de�ned with respet to a ut-o� version of ΛQ.3We restrit this disussion to the (WM) ase. Similar onsiderations also apply to the (YM)problem, [6℄



10 P. RAPHAËL AND I. RODNIANSKIfrom whih it is immediate that an absolute minimum of the energy funtional V [Φ]in a given topologial setor k must be a solution of the equation:
∂iΦ ± ǫ j

i Φ × ∂jΦ = 0 . (1.40)The ground state Q is preisely the representation of the unique o-rotational solu-tion of (1.40).In [34℄ fatorization (1.38) gave the basis for the H2 and Morawetz type bounds for
w, obtained by onjugating the problem for w with the help of the operator Aλ, sothat

AλHλw = H̃λ(Aλw)with H̃λ = AλA
∗
λ, and exploiting the spae-time repulsive properties of H̃λ to derivethe energy and Morawetz estimates for Aλw. Simultaneous use of pointwise in timeenergy bounds and spae-time Morawetz estimates however runs into di�ulties inthe ases k = 1, 2, whih beome seemingly insurmountable for k = 1.We propose here a new approah, still based on the fatorization of Hλ, yet relyingonly on the appropriate energy estimates for the assoiated Hamiltonian H̃λ, whihretains its repulsive properties even in the most di�ult ases of k = 1, 2. We notethat ‖ǫ‖H̃ norm introdued above an be onveniently written in the form

‖ǫ‖2
H̃

= λ2(H̃λAλw,Aλw) + λ2‖(∂tw, 0‖2
H .One di�ulty will be that the bound (1.35) is not su�ient to derive the sharpblow up speed. The size bk+1 in the RHS of (1.35) is sharp and is indued by avery slowly deaying term in ΨB1 in (1.33), whih arises from the loalization of thepro�le Qb. Suh terms however are loalized on y ∼ B1 >>

1
b far away from thebakward light one with the vertex at the singularity. Another ruial new featureof our analysis here is a use of loalized energy identities. It is based on the idea ofwriting the energy identity in the region bounded by the initial hypersurfae t = 0and the hypersurfae

r = 2
λ(t)

b(t)
, equivalently y =

2

b(t)whih, under the bootstrap blow up assumptions, is omplete (the point r = 0 isreahed at the blow up time) and spae-like. Suh an energy identity e�etivelyrestrits the error term ΨB1 to the region y ≤ 2/b, where it is better behaved, andleads to an improved bound:
‖ε‖H̃(y≤ 2

b
) .

bk+1

|logb| , (1.41)see Proposition 6.5 in setion 6.2. Note that the logarithmi gain from (1.35) to(1.41) is typial of the k = 1 ase and an be turned to a polynomial gain for k ≥ 2.Step 3 The �ux omputation and the derivation of the sharp law.The pointwise bounds (1.35), (1.41) are spei� to the almost self-similar regimewe are desribing. They are derived by a bootstrap argument, whih inidentallyrequires only an upper bound4 on |bs|, see Lemma 6.3. To derive the preise law for4Suh an upper bound is already su�ient to onlude the �nite time blow up and establish alower bound on the onentration sale λ(t).



11
b we examine the equation for ε, whih has the following approximate form:

∂2
sε+HB1ε = −bsΛPB1 + ΨB1 + L.O.T. (1.42)where HB1 = −∆ + k2 f ′(PB1

)

y2 . We onsider an almost self-similar solution PB0loalized on the sale B0 = c
b with a spei� onstant 0 < c < 1 de�ned in (1.22)and projet this equation onto ΛPB0 , whih is almost in the null spae of HB1 . Theresult is the identity of the form:

bs|ΛPB0 |2L2 = (ΨB1 ,ΛPB0) +O(bk−1‖ε‖H̃(y≤ 2
b
)). (1.43)The �rst term in the above RHS yields the leading order �ux and traks the non-trivial ontribution of Tp to the Pohozaev integration (1.28):

(ΨB1 ,ΛPB0) = −ckb2k(1 + o(1))for some universal onstant ck. This omputation an be thought of as related tothe derivation of the log-log law in [28℄. The ǫ-term in (1.43) is treated with thehelp of (1.41), observe that (1.35) alone would not have been enough:
O(bk−1‖ε‖H̃(y≤ 2

b
)) = o(b2k).Finally, from the behavior

ΛQ ∼ 1

yk
as y → +∞and PB0 ∼ Q for b small, there holds:

|ΛPB0 |2L2 ∼
{
ck for k ≥ 2
c1|logb| for k = 1for some universal onstant ck > 0. We hene get the following system of ODE'sfor the saling law:

ds

dt
=

1

λ
, b = −λs

λ
, bs = −

{
ck(1 + o(1))b2k for k ≥ 2

(1 + o(1)) b2

2|logb| for k = 1Its integration yields � for the lass of initial data under onsideration � the existeneof T < +∞ suh that λ(T ) = 0 with the laws (1.11), (1.12) near T , thus onludingthe proof of the sharp asymptotis (1.11), (1.12). The non-onentration of theexess of energy (1.13), (1.14) now follows from the dispersive bounds obtained onthe solution, hene onluding the proof of Theorem 1.1.This paper is organized as follows. In setion 2, we reall some well known fatsabout the struture of the linear Hamiltonian H lose to Q and the orbital stabilitybounds. In setion 3, we onstrut the approximate self similar pro�les Qb withsharp estimates on their behavior, Proposition 3.1 and Proposition 3.3. In setion5, we expliitly desribe the set of initial data of Theorem 1.1, De�nition 5.1, andset up the bootstrap argument, Proposition 5.6, whih proof relies on a rough boundon the blow up speed, Lemma 5.3, and global and loal H2 bounds, Lemma 6.5. Insetion 7, we derive the sharp blow up speed from the obtained energy bounds andthe �ux omputation, Proposition 7.1, and this allows us to onlude the proof ofTheorem 1.1.Aknowldegments This work was partly done while P.R. was visiting PrinetonUniversity and I.R. the Institut de Mathematiques de Toulouse, and both authorswould like to thank these institutions for their hospitality. The authors also wishto aknowledge disussions with J. Sterbenz onerning early stages of this work.
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∂2

t u− ∂2
ru− 1

r
∂ru+ k2 f(u)

r2
= 0, f = gg′ (2.1)admits a speial stationary solution Q(r), and its dilates Qλ(r) = Q(r/λ), hara-terized as the global minimum of the orresponding energy funtional

E(u, ∂tu) =

∫ (
(∂tu)

2 + (∂ru)
2 + k2 g

2(u)

r2

)

=

∫ (
(∂tu)

2 + (∂ru− k
g(u)

r
)2
)

+ 2kG(u(r))|r=∞
r=0 , (2.2)where G(u) =

∫ u
0 g(u)du. In view of suh fatorization of energy, Q an be foundas a solution of the ODE

r∂rQ = kg(Q),or alternatively
ΛQ = kg(Q) (2.3)For the (WM) problem the funtion g(u) = sinu and for the (YM) equation g(u) =

1
2(1 − u2). Therefore,

Q(r) = 2 tan−1(rk), Q(r) =
1 − r2

1 + r2respetively.For a solution u(t, r) lose to a ground state Qλ the nonlinear problem (2.1) anbe approximated by a linear inhomogeneous evolution
∂2

tw +Hλw = F, u(t, r) = Qλ(r) + w(t, r)with the linear Hamiltonian
Hλ = −∆ + k2 f

′(Qλ)

r2
.We denote the Hamiltonian assoiated to Q by

H = −∆y + k2 f
′(Q(y))

y2
.and reall the fatorization property (1.38) of H:

H = A∗A (2.4)with
A = −∂y +

V (1)

y
, A∗ = ∂y +

1 + V (1)

y
, (2.5)with

V (1)(y) = kg′(Q(y)), (2.6)and:
Aλ = −∂r +

V
(1)
λ

r
, A∗

λ = ∂r +
1 + V

(1)
λ

r
. (2.7)This fatorization is a onsequene of the Bogomol'nyi's fatorization of the Hamil-tonian (1.39) or, alternatively (2.2). Sine Q is an energy minimizer we expet the



13Hamiltonian H to be non-negative de�nite and possess a kernel generated by thefuntion ΛQ � generator of dilations (saling symmetry) of the ground state Q.Fatorization of H however leads to even a stronger property, whih on one handon�rms that the kernel of H is one dimensional but also leads to the fundamentalanellation:
A(ΛQ) = 0, (2.8)that is ΛQ lies in the kernel of A. We note that for k = 1 the funtion ΛQ is notin L2(R2) and thus formally does not belong to the domain of H. The struture ofthe kernel of H leads to the following statement of orbital stability of the groundstate.Lemma 2.1 (Orbital stability of the ground state, [9℄, [34℄). For any initial data

(u0, u1) with the property that u0 = Qλ0 +w0 and ‖(w0, u1)‖H < ǫ with ǫ su�ientlysmall, and for any t ∈ [0, T ) with 0 < T ≤ +∞ the maximum time of existene ofthe lassial solution with data (u0, u1), there exists a unique deomposition of the�ow
u(t) = Qλ(t) + w(t)with λ(t) ∈ C2([0, T ),R∗

+) and
∀t ∈ [0, T ), |∂tu|L2 + |λt(t)| + ‖w(t), 0‖H . O(ǫ)satisfying the orthogonality ondition

∀t ∈ [0, T ), (w(t, λ(t)·), χM ΛQ) = 0. (2.9)Remark 2.2. The ut-o� funtion χM (r) = χ(r/M) equal to one on the interval
[0,M ] and vanishing for r ≥ 2M for some su�iently large universal onstant M isintrodued to aommodate the ase k = 1 in whih ΛQ(y) deays with the rate y−1and thus misses the spae of L2 funtions. The imposed orthogonality ondition isnot standard, however the arguments in [9℄, [34℄ an be easily adapted to handlethis ase. The statement of the Lemma in partiular implies the oerivity of theHamiltonian Hλ

(Hλw,w) = |Aλw|2L2 ≥ c(M)

∫ (
(∂rw)2 +

w2

r2

)
, (2.10)provided that (w(λ·), χM ΛQ) = 0.We introdue the funtion

W (t, r) = Aλ(t)w (2.11)The energy type bound on W will lead us to the H2 type bound on w. To be morepreise, we will ontrol the H̃ norm of the funtion ǫ(s, y) = w(t, r), introdued in(1.36).We next turn to the equation for W = Aλw. Following [34℄, an importantobservation is that the Hamiltonian driving the evolution of W is the onjugateHamiltonian
H̃λ = AλA

∗
λ = −∆ +

k2 + 1

r2
+

2V
(1)
λ + V

(2)
λ

r2
, V2(y) = k2

[
(g′)2 − gg′′ − 1

]
(Q)(2.12)whih, as opposed to H, displays spae-time repulsive properties. Commuting theequation for w with Aλ yields:

∂ttW + H̃λW = AλF +
∂ttV

(1)
λ w

r
+

2∂tV
(1)
λ ∂tw

r
. (2.13)



14 P. RAPHAËL AND I. RODNIANSKIObserve that in the (WM) ase V (2) ≡ 0 and
k2 + 1 + 2V (1) + V (2) = (k − 1)2 + 2k(1 + cos(Q)) ≥

{
1, for k ≥ 2,

1
1+r2 , for k = 1.

(2.14)For the (YM) problem V (2) = −2(1 −Q2) and, with k = 2,
k2 + 1 + 2V (1) + V (2) = 1 + 2(1 −Q)2 ≥ 1. (2.15)These inequalities imply that the Hamiltonian H̃λ is a positive de�nite operatorwith the property that

(H̃λW,W ) = |A∗
λW |2L2 ≥ C





∫ (
(∂rW )2 + W 2

r2

) for k ≥ 2,

∫ (
(∂rW )2 + W 2

r2(1+ r2

λ2 )

) for k = 1,
(2.16)It is important to note that unlike Hλ, H̃λ is unonditionally oerive. However, itprovides weaker ontrol at in�nity in the ase k = 1. The expression

λ2(H̃λW,W ) + λ2‖(∂tW, 0)‖2
His preisely the norm ‖ǫ‖2

H̃
we ultimately need to ontrol. Moreover, it obeys theestimate

λ2(H̃λW,W ) + λ2‖(∂tW, 0)‖2
H . ‖ǫ‖2

H2Assoiated to the Hamiltonian H̃λ, we de�ne global and loal energies E(t), Eσ(t)used extensively in the paper:
E(t) = λ2

∫ [
(∂tW )2 + (∇W )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2

]

= λ2

[∫
|A∗

λ(t)W (t)|2 +

∫
|∂tW (t)|2

]
, (2.17)

Eσ(t) = λ2

∫
σBc

[
(∂tW )2 + (∇W )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2

] (2.18)where we let Bc = 2
b , as in (1.22), and σBc be a ut o� funtion

σBc(r) = σ(
r

λBc
) with σ(r) =

{
1 for r ≤ 2
0 for r ≥ 3,

(2.19)We �nish this setion with the disussion on the admissibility of the funtions u(t, r),
w(t, r) = u(t, r) − (PB)λ(r) where (PB(r))λ is a deformation of Qλ whih will bede�ned in setion 3. The riterium for admissibility of w(t, r) = ǫ(s, y) will be the�niteness of the H2 norm of ǫ.Proposition 2.3. Let Φ be a smooth solution of the (WM)/(YM) problem on thetime interval [0, T (Φ0)) with o-rotational/equivariant initial data (Φ0,Φ1). Then
(Φ(t), ∂tΦ(t)) remains o-rotational/equivariant for any t ∈ [0, T (Φ0)) and its sym-metry redution u(t, r) oinides with the solution of the nonlinear problem (1.1)/(1.2).Moreover, for any t ∈ [0, T (Φ0)) the funtion u(t) ∈ H2

a.Proof of Proposition 2.3: The �rst part of the Proposition is a standardstatement of propagation of symmetry. We omit its proof. It remains to show that
u(t) ∈ H2

a. We give the argument for the (WM) ase, the (YM) is left to the reader.We note that
|∂ru| = |∂rΦ|, | sin(u)| = |∂θΦ|, |∂2

ru| = |∂rΦ + (∂rΦ, ∂rΦ)Φ|



15As a onsequene, for a smooth map Φ(t) the �niteness of the H2
a norm of u(t) anonly fail at r = 0. To eliminate this possibility it will be su�ient to show that for

k ≥ 2 |∂ru| ≤ Cr, while for k = 1 the funtion |u| ≤ Cr and |∂ru− u
r | ≤ Cr. Thedesired statement for k ≥ 2 is ontained in [34℄. For k = 1, arguing as in [34℄ wederive that the energy density

e(Φ)(t, r) = |∂tu|2 + |∂ru|2 +
sin2 u

r2is a smooth funtion of r2, whih leads to the requirement that |u| ≤ Cr. Moreover,di�erentiability of Φ also implies that
lim
r→0

|∂ru| = lim
r→0

| sinu|
r

,whih immediately gives the existene of
lim
r→0

(∂ru) = lim
r→0

(
u

r
).On the other hand, the algebra of (1.39) implies that

|∂ru− sinu

r
|2 =

1

2
(∂iΦ − ǫijΦ × ∂jΦ) · (∂iΦ − ǫijΦ × ∂jΦ) = v(Φ)is a smooth funtion of r2. Sine (∂ru− sinu

r ) vanishes at the origin we obtain that
|∂ru− sinu

r | and hene |∂ru− u
r | obey the estimate

|∂ru− u

r
| ≤ Cr,and this onludes the proof of Proposition 2.3.3. Constrution of the family of almost self-similar solutionsThis setion is devoted to the onstrution of approximate self-similar solutions

Qb. These desribe the dominant part of the blow up pro�le inside the bakwardlight one from the singular point (0, T ) and display a slow deay at in�nity, whihis eventually responsible for the log modi�ations to the blow up speed. A relatedonstrution was made in the (NLS) setting in [32℄, [26℄, where the ground state isexponentially dereasing. A simpler version of the pro�les Qb = Q+b2T1, terminat-ing at a 2-term expansion was used in [34℄. The key to this onstrution is the fatthat the struture of the linear operator H = −∆ + k2 f ′(Q)
y2 is ompletely expliitdue to the variational nature of Q as the minimizer of the assoiated nonlinearproblem.3.1. Self-similar equation. Fix a small parameter b > 0. Given T > 0, a self-similar solution to (1.3) is of the form:

u(t, r) = Qb(
r

λ
), λ(t) = b(T − t). (3.1)The stationary pro�le Qb should solve the nonlinear ellipti equation:

− ∆Qb + b2DΛQb + k2 f(Qb)

y2
= 0. (3.2)This equation however admits no �nite energy solutions, see [17℄ for related results.We therefore onstrut approximate solutions of �nite energy, whih exhibit thefundamental slow deay behavior in the region y ≥ 1

b .



16 P. RAPHAËL AND I. RODNIANSKIThe approximate solution Qb will be of the form
Qb = Q+ Σp+1

j=1b
2jTj . (3.3)We will require that the pro�les Tj verify the orthogonality ondition

(Tj , χMΛQ) = 0 (3.4)with χM given by (1.21). The error assoiated to Qb is de�ned aording to theformula
Ψb(y) = −∆Qb + b2DΛQb + k2 f(Qb)

y2
, (3.5)For a given homotopy index k we de�ne an auxiliary integer parameter p

p =

{
k
2 for k even
k−1
2 for k odd (3.6)Proposition 3.1 (Approximate solution to the self-similar equation). Let M > 0be a large universal onstant to be hosen later and let C(M) denote a generilarge inreasing funtion of M . Then there exists b∗(M) > 0 suh that for all 0 <

b ≤ b∗(M) the following holds true. There exist smooth radial pro�les (Tj)1≤j≤p+1satisfying (3.4) with the following properties:
• k ≥ 4 even: For all su�iently small y and 0 ≤ m ≤ 3,

dmTj

dym
(y) = c̃j,my

k−m(1 +O(y2)). (3.7)For y ≥ 1,
dmTj

dym
(y) = cj

dmy2j−k

dym
(1 +

fj

y2
+O(

1

y3
)), 1 ≤ j ≤ p− 1, 0 ≤ m ≤ 3, (3.8)

Tp(y) = cp(1 +
fp

y2
+O(

1

y3
)),

dmTp

dym
(y) = fpcp

dmy−2

dym
+O(

1

y3+m
), 1 ≤ m ≤ 3,(3.9)

Tp+1(y) = O(1),
dmTp+1

dym
(y) = O(

1

ym+1
), 1 ≤ m ≤ 3. (3.10)For 0 ≤ m ≤ 1 the error term veri�es

|d
mΨb

dym
(y)| . bk+4 yk−m

1 + yk+1
. (3.11)

• k ≥ 3 odd: (Tj)1≤j≤p obey the asymptotis (3.7) near the origin, while forall y ≥ 1 and 0 ≤ m ≤ 3

dmTj

dym
(y) = cj

dmy2j−k

dym
(1 +

fj

y2
+O(

1

y3
)), 1 ≤ j ≤ p, (3.12)

dm

dym
Tp+1(y) = O(

1

y1+m
). (3.13)For 0 ≤ m ≤ 1 the error term veri�es

|d
mΨb

dym
(y)| . bk+3 yk−m

1 + yk+2
. (3.14)

• k = 2: There exist smooth pro�les T1, T2 verifying (3.4) suh that for allsu�iently small y and j = 1, 2,
dmTj

dym
(y) = C(M)O(yk−m), 0 ≤ m ≤ 3, (3.15)



17while for all y ≥ 1 and 0 ≤ m ≤ 3,
dmTj

dym
(y) =

{
cjδ0m + C(M)O( 1

yk+m ), j = 1,

C(M)O( 1
ym ), j = 2,

(3.16)For 0 ≤ m ≤ 1 the error term veri�es
| d

m

dym

[
Ψb + cbb

4ΛQ
]
| . C(M)bk+4 yk−m

1 + yk+1
, (3.17)for some onstant cb = O(1).

• k = 1: We an �nd T1 satisfying (3.4), suh that for all su�iently small yand 0 ≤ m ≤ 3,
dmT1

dym
(y) = C(M)O(yk−m), (3.18)while for 1 ≤ y ≤ 1

b2 and 0 ≤ m ≤ 3,
| d

m

dym
T1(y)| . (1+y1−m)

1 + |log(by)|
|logb| 1

y≤B0
2

+
1

b2|logb|(1 + y1+m)
1

y≥B0
2

+
C(M)

1 + y1+m(3.19)The error term Ψb satis�es for 0 ≤ m ≤ 1 and 0 ≤ y ≤ 1
b2
,

∣∣∣∣
dm

dym

(
Ψb − cbb

2χB0
4

ΛQ
)∣∣∣∣ (3.20)

. b4
y1−m

1 + y4
+ b4

(1 + |log(by)|)
|logb| y1−m

1
1≤y≤B0

2

+
b2

|logb|y1+m
1

y≥B0
2

.with a onstant
|cb| .

1

|logb|The onstants (cj)1≤j≤p in (3.8), (3.9), (3.12) are given by the reurrene formula:
∀j ∈ [2, p], cj = cj−1

(k − 2j + 2)(k − 2j + 1)

4j(k − j)
, c1 =

k

2
. (3.21)In the onstrution of the pro�le Qb the term Tp(y) is a radiative term display-ing an anomalous slow deay at in�nity aording to (3.9), (3.12), (3.19). It is the�rst term whih yields an unbounded ontribution to the Hamiltonian of the orre-sponding self-similar solution u. The term Tp+1 is introdued in the deompositionto re�ne the behavior of the error term Ψb on ompat sets, i.e. �nite values of y,without destroying its radiative behavior far out. This turns out to be more deliatefor k = 1, 2 whih explains a slightly pathologial behavior of the error Ψb in theseases, (3.17), (3.20). Note that this is partiularly true for k = 1 where p = 0 and

Q itself is the radiative term. In that ase, introdution of the term T1, whih ishowever badly behaved for y ≥ 1
b aording to (3.19), allows us to gain a fator of

1
|logb| in the region y ≤ 1

b in (3.20). This should be ontrasted with the polynomialgain in b we see for higher values of k.Remark 3.2. The orthogonality ondition (3.4) orresponds to a hoie of gaugefor Qb allowed by the kernel of H, given by (1.37). This hoie will be onvenientfor an additional deomposition of the �ow near Qb, see in partiular (5.12).



18 P. RAPHAËL AND I. RODNIANSKI3.2. Constrution of Qb. Proof of Proposition 3.1Let p be given by (3.6).step 1 Constrution of an expansion.The ase k = 1 will be treated separately. Let thus k ≥ 2, j ∈ [1, p] and (Tl)1≤l≤jbe any smooth radial funtion vanishing su�iently fast both at zero and in�nity ,as in say (A.5). Let
Qb = Σj

l=0b
2lTl, T0 = Q.From the Taylor expansion of f :

f(Qb) = f(Q) + Σj
l=1

f (l)(Q)

l!
(b2T1 + · · · + b2jTj)

l +R1,j(b, y)with
R1,j(b, y) =

(Qb −Q)j+1

j!

∫ 1

0
(1 − u)jf (j+1)(uQb + (1 − u)Q)du. (3.22)We then reorder the polynomial part in b to get:

f(Qb) = f(Q) + Σj
l=1b

2l
[
f ′(Q)Tl + Pl(T1, . . . , Tl−1)

]

+ R1,j(b, y) +R2,j(T1, . . . , Tj). (3.23)Here Pl is a polynomial of degree l with the onvention that P1 = 0 and the term
Tm ontributes m to the degree of Pl. R2,j is a polynomial in (Tl)1≤l≤j and ontainsthe terms of order (b2l)l≥j+1. Hene:

∀0 ≤ l ≤ j,
∂lR1,j(b, y)

∂(b2)l |b=0

=
∂lR2,j(b, y)

∂(b2)l |b=0

= 0. (3.24)We now expand the self similar equation:
−∆Qb + b2DΛQb + k2 f(Qb)

y2
= −∆

(
Q+ Σj

l=1b
2lTl

)
+
(
Σj

l=1b
2lDΛTl−1

)
+ b2(j+1)DΛTj

+
k2

y2

{
f(Q) + Σj

l=1b
2l
[
f ′(Q)Tl + Pl(T1, . . . , Tl−1)

]
+R1,j +R2,j

}

= Σj
l=1b

2l

[
HTl +DΛTl−1 +

k2

y2
Pl(T1, . . . , Tl−1)

]
+
k2

y2
(R1,j +R2,j) + b2(j+1)DΛTj. (3.25)We laim by indution on 1 ≤ j ≤ p that we may solve the system:

HTl +DΛTl−1 +
k2

y2
Pl(T1, . . . , Tl−1) = 0, 1 ≤ l ≤ j (3.26)with (Tl)1≤j satisfying the desired estimates and the orthogonality ondition (3.4).Indeed, for j = 1, we solve:

HT1 +DΛQ = 0, (T1, χMΛQ) = 0, (3.27)expliitely by setting
T1 =

1

4
y2ΛQ−

∫
χMy

2(ΛQ)2

4
∫
χM (ΛQ)2

ΛQ. (3.28)In the (WM) ase for k ≥ 3, it satis�es from (A.10) the asymptotis:
T1(y) =

{
c̃1y

k(1 +O(yk)) as y → 0

c1
y2

yk (1 + f1

y2 +O( 1
y3 )) as y → +∞,

(3.29)



19and for k = 1, 2:
T1(y) =

{
c̃1y

k(1 +O(yk)) as y → 0

c1
y2

yk (1 + C(M)O( 1
y2 )) as y → +∞,

(3.30)with
C(M) ∼

{
logM for k = 2,
M2

logM for k = 1,In the (YM) k = 2 ase
T1(y) =

{
−c̃1yk(1 + logMO(yk)) as y → 0

−c1 y2

yk (1 +O( logM
yk )) as y → +∞.

(3.31)In all ases,
c1 =

k

2
. (3.32)Hene T1 satis�es (3.4), (3.7), (3.8), (3.12), (3.15) and (3.16) for j = 1.step 2 Indution for k ≥ 3.For k = 3, we have p = 1 and T2 = Tp+1 will be onstruted in step 4. We heneassume k ≥ 4 and now argue by indution on j using Lemma A.1. We assume thatwe ould solve (3.26) for 1 ≤ l ≤ j−1 with (Tl)1≤l≤j−1 satisfying (3.7), (3.8), (3.12).In order to apply Lemma A.1, we need to show the orthogonality:

(
DΛTj−1 +

k2

y2
Pj(T1, . . . , Tj−1),ΛQ

)
= 0. (3.33)Assume (3.33). Then from Lemma A.1, we may solve (3.26) for l = j with Tjsatisfying (3.4). Moreover, from the deay properties of (T1, . . . , Tj−1) at in�nityand the polynomial struture of Pj(T1, . . . , Tj−1), the leading order term on theRHS of (3.26) as y → +∞ is given by DΛTj−1 = 2yT ′

j−1 + y2T ′′
j−1 that is:

DΛTj−1 +
k2

y2
Pj(T1, . . . , Tj−1) = (k − 2j + 2)(k − 2j + 1)cj−1

y2(j−1)

yk
(1 +O(

1

y2
)).(A.4), (A.5), (A.6) now allow us to derive the asymptotis of Tj , T

′
j near +∞, andhigher derivatives are ontrolled using the equation (3.26).Estimates (3.8), (3.12) follow with the reurrene formula:

cj = cj−1
(k − 2j + 2)(k − 2j + 1)

4j(k − j)
,whih gives (3.21). Similarly, the yk vanishing of (Tl)1≤l≤j−1 at the origin ensuresthat the same vanishing holds for (Pl(T1,...,Tl−1)

y2

)
2≤l≤j

, and (3.7) follows.Proof of (3.33): Note that a diret algebrai proof seems hopeless due to the nonlin-ear struture of the problem. However, we laim that (3.33) is a simple onsequeneof the energy ritiality of the problem and the anellation provided by the Po-hozaev identity. Let (Tl)0≤l≤j−1 be the �rst onstruted pro�les and let Tj be anysmooth radial funtion vanishing su�iently fast both at zero and in�nity. Let
Qb = Σj

l=0b
2lTl, then:

F (b) =

(
−∆Qb + b2DΛQb + k2 f(Qb)

y2
,ΛQb

)
= 0.



20 P. RAPHAËL AND I. RODNIANSKILet us indeed reall that this holds true for any smooth Qb whih deays enoughboth at the origin and in�nity. Note also that we are impliitly using the ondition
j ≤ p whih ensures from (3.8), (3.12) that the integration by parts does not reateany boundary terms for the (Tl)1≤l≤j−1 terms. We onlude that the Taylor seriesof F at b = 0 vanishes to all orders. On the other hand, from the deomposition(3.25),

F (b) = Σj
l=1b

2l

[
HTl +DΛTl−1 +

k2

y2
Pl(T1, . . . , Tl−1)

]
+
k2

y2
R1,j +

k2

y2
R2,j

+ b2(j+1)DΛTj,ΛQ+ Σj
l=1b

2lΛTl

= b2j

[
HTj +DΛTj−1 +

k2

y2
Pj(T1, . . . , Tj−1)

]
+
k2

y2
R1,j +

k2

y2
R2,j

+ b2(j+1)DΛTj,ΛQ+ Σj
l=1b

2lΛTlwhere we used that (3.26) is satis�ed for 1 ≤ l ≤ j − 1. (3.24) now implies:
0 =

d2j

db2j
F (b)|b=0 =

(
HTj +DΛTj−1 +

k2

y2
Pj(T1, . . . , Tj−1),ΛQ

)
.Now (HTj ,ΛQ) = (Tj ,HΛQ) = 0 for any Tj and (3.33) follows.step 3 Estimate on the error at the order p.Let now Ψ

(p)
b be given by (3.5) for Qb = Σp

l=0b
2lTl, expliitly from (3.25):

Ψ
(p)
b =

k2

y2
R1,p +

k2

y2
R2,p + b2(p+1)DΛTp. (3.34)

R1,p given by (3.22) and R2,p are given by (3.23) are estimated using the uniformbound on (‖f (j)‖L∞)1≤j≤p and the behavior of Tj near the origin and in�nity:For k odd and 0 ≤ m ≤ 1:
|d

my−2R1,p

dym
(y)| . b2(p+1) y(p+1)k−m−2

1 + y2(p+1)(k−1)
+ b2p(p+1) y(p+1)k−m−2

1 + y(p+1)(k+1)
, (3.35)

|d
my−2R2,p

dym
(y)| . b2(p+1) y

2k−m−2

1 + y3k−1
+ b2p2 ypk−m−2

1 + ypk+p
, . (3.36)Note that R2,p is non-trivial only for k ≥ 5.For k even and 0 ≤ m ≤ 1:

|d
my−2R1,p

dym
(y)| . b2(p+1) y(p+1)k−m−2

1 + y2(p+1)(k−1)
+ b2p(p+1) y

(p+1)k−m−2

1 + y(p+1)k
, (3.37)

|d
my−2R2,p

dym
(y)| . b2(p+1) y

2k−m−2

1 + y3k−2
+ b2p2 ypk−m−2

1 + ypk
. (3.38)Note that R2,p is non-trivial only for k ≥ 4.It remains to estimate the leading order term DΛTp in (3.34). Reall the asymp-totis of Tp near y + ∞ from (3.9), (3.12):

Tp(y) = cp(1 +
fp

y2
+O(

1

y3
)) for k even,

Tp(y) =
cp
y

(1 +
fp

y2
+O(

1

y3
)) for k odd.



21We now use in a fundamental way the anellation
DΛ(

1

y
) = DΛ(1) = 0 (3.39)whih yields in partiular as y → +∞:

DΛTp(y) =





f̃p

y2 +O( 1
y3 ) for k even,

f̃p

y3 +O( 1
y4 ) for k odd, (3.40)and the rude bounds:

|d
mDΛTp

dym
(y)| .

yk−m

1 + yk+2
, 0 ≤ m ≤ 1 for k even,

|d
mDΛTp

dym
(y)| .

yk−m

1 + yk+3
, 0 ≤ m ≤ 1 for k odd.These estimates together with (3.35)-(3.38) now yield:

| d
m

dym
Ψ

(p)
b | .

bk+2yk−m

1 + yk+2
, 0 ≤ m ≤ 1, for k even, (3.41)

| d
m

dym
Ψ

(p)
b | .

bk+1yk−m

1 + yk+3
, 0 ≤ m ≤ 1, for k odd. (3.42)step 4 Constrution of Tp+1 for k ≥ 3.Observe that for all k ≥ 1, Tp is the radiative term in the sense that as y → +∞:

Tp ∼ 1

y
for k odd, Tp ∼ 1 for k even.Note that for k = 1 we have p = 0 and T0 = Q.The estimates (3.41), (3.42) are not su�ient for our analysis. Therefore weadd an extra term Tp+1 by taking advantage of the anellations (3.39). The ases

k = 1, 2 are degenerate and require a separate treatment.For k ≥ 3, we need to solve:
LTp+1 +DΛTp +

k2

y2
Pp+1(T1, . . . , Tp) = 0. (3.43)To do this, we �rst need to verify the orthogonality ondition for k ≥ 3:

(
DΛTp +

k2

y2
Pp+1(T1, . . . , Tp),ΛQ

)
= 0. (3.44)As before we may de�ne Qb = Σp+1

l=0 b
2lTl with an arbitrary smooth rapidly deayingfuntion Tp+1 and

F (b) =

(
−∆Qb + b2DΛQb + k2 f(Qb)

y2
,ΛQb

)so that
(
DΛTp +

k2

y2
Pp+1(T1, . . . , Tp),ΛQ

)
=

1

(2(p + 1))!

d2(p+1)F (b)

b2(p+1)
|b=0.We now laim:

F (b) =
c2p
2
b2k(1 + o(1)) as b→ 0. (3.45)



22 P. RAPHAËL AND I. RODNIANSKIIndeed, let R > 0 and reall the Pohozaev integration: for any smooth enough φ,
∫

r≤R

(
−∆φ+ b2DΛφ+ k2 f(φ)

y2

)
Λφ =

[
−1

2
(rφ′)2 +

b2

2
|rΛφ|2 +

k2g(φ)

2

]
(R).(3.46)Applying this with φ = Qb yields:

lim
R→+∞

∫

r≤R

(
−∆Qb + b2DΛQb + k2 f(Qb)

y2

)
ΛQb = lim

R→+∞
b2

2
|rΛQb|2(R)+

k2

2
|g(Qb)|2(R)and hene:

F (b) =

{
c2pb4p+2

2 =
c2pb2k

2 for k odd
c2pb4p

2 =
c2pb2k

2 for k evenwhere we used in the last step the asymptotis (3.9), (3.12) for j = p for Tp.Combining (3.45) with the analyti dependene of F (b) on b, we onlude that for
k ≥ 3 (reall that 2(p + 1) = k + 1 < 2k for k odd and 2(p + 1) = k + 2 < 2k for keven):

d2(p+1)

db2(p+1)
F (b)|b=0 = 0and the desired orthogonality ondition follows. We now argue exatly as in theproof of Lemma A.1 to onstrut Tp+1 solution to (3.43) satisfying from (3.40) theestimate (3.7) near the origin and for y ≥ 1:

Tp+1 = cp+1(1 +O(
1

y
)), | d

m

dym
Tp+1(y)| .

yk−m

1 + yk+1
, 0 ≤ m ≤ 2 for k even

Tp+1 =
cp+1

y
(1 +O(

1

y
)), | d

m

dym
Tp+1(y)| .

yk−m

1 + yk+1
, 0 ≤ m ≤ 2, for k odd.In the even ase, we used here the same anellation whih led to (A.6) for the 1

y2part of the behavior of DΛTp in the asymptotis (3.40) near y → +∞. We annotretrieve the same anellation on the part indued by the O( 1
y3 ) tail but we simplyneed the rough bound |T ′

p+1| . 1
y2 at +∞.Using the degeneray (3.39), this leads to the bound for 0 ≤ m ≤ 1:

| d
m

dym
DΛTp+1(y)| .

yk−m

1 + yk+2
for k odd, (3.47)

| d
m

dym
DΛTp+1(y)| .

yk−m

1 + yk+1
for k even. (3.48)We now de�ne

Ψb =
k2

y2
R1,p+1 +

k2

y2
R2,p+1 + b2(p+2)DΛTp+1.The estimates on the �rst two terms are already ontained in (3.35)-(3.38), and(3.47), (3.48) now imply (3.11), (3.14).step 5 Constrution of T2 for k = 2.We now turn to the k = 2 ase. Observe that the fundamental anellation (3.39)still holds, but the orthogonality ondition (3.44) fails. This failure is due to thefat that 2(k

2 + 1) = 2k. Let T1 be given by (3.28) and
cb =

(DΛT1 + k2

2y2 f
′′(Q)T 2

1 ,ΛQ)

|ΛQ|2
L2

=
c21

2|ΛQ|2
L2

∼ 1, (3.49)



23then T1 satis�es the asymptotis (3.15), (3.16) from (3.29), (3.31). Let then T2 bethe solution given5 by Lemma A.1 to
HT2 = −DΛT1 −

k2

2y2
f ′′(Q)T 2

1 + cbΛQ = g.Expliitely, from (A.16), T2 = T̃2 − cMΛQ with:
T̃2(y) = Γ(y)

∫ y

0
g(x)J(x)xdx − J(y)

∫ y

1
g(x)Γ(x)xdx.and

cM =
(T̃2, χMΛQ)

(ΛQ,χMΛQ)
.The asymptotis (3.7) near the origin follow easily from (3.29), (3.31). For y ≥ 1,we have from (g,ΛQ) = 0:

|T̃2(y)| =

∣∣∣∣Γ(y)

∫ +∞

y
g(x)J(x)xdx + J(y)

∫ y

1
g(x)Γ(x)xdx

∣∣∣∣

. y2

∫ ∞

y

xdx

(1 + x2)2
+

1

y2

∫ y

1

x3dx

1 + x2
. C(M).Therefore,

cM . C(M).This leads to (3.16) for m = 0 and j = 2. Higher order derivatives are estimatedsimilarily. We now ompute the error Ψb:
Ψb = −∆Qb + b2DΛQb + k2 f(Qb)

y2

= b4
[
LT2 +DΛT1 +

k2

2y2
f ′′(Q)(T1)

2

]
+ b6DΛT2

+
k2

y2

[
f(Q+ b2T1 + b4T2) − f(Q) − b2f ′(Q)(T1 + b2T2) −

b4T 2
1

2
f ′′(Q)

]from whih:
∣∣Ψb + cbb

4ΛQ
∣∣ . b6

[
|DΛT2| + C(M)

y2

1 + y4

]
. C(M)b6

y2

1 + y3
.This is (3.17) for m = 0, the ase m = 1 follows similarily.step 6 Constrution of T1 for k = 1.We now turn to the k = 1 ase. The anellation (3.39) still holds, but theorthogonality ondition (3.44) fails sine for k = 1, 2(k−1

2 + 1) = 2k. This re�etsthe fat that ΛQ ∼ 1
y is already the radiative term, and the non vanishing quantityon the LHS of (3.44) is exatly the �ux term driving the blow up speed. This anequivalently be seen in the anomalous growth of

T 0
1 =

y2

4
ΛQ ∼ y solution of HT 0

1 +DΛQ = 0.5Formally, Lemma A.1 an be applied only in the ontext of the (WM) problem and with k ≥ 3.The argument however an be easily modi�ed to satisfy our urrent needs. We sketh the argumentbelow.



24 P. RAPHAËL AND I. RODNIANSKILet
cb =

(DΛQ,ΛQ)

(ΛQ,χB0
4

ΛQ)
∼ C

|logb| (3.50)and T1 be the solution given by Lemma A.1 to
LT1 = −DΛQ+ cbΛQχB0

4

= g,expliitely T1 = T̃1 − cMΛQ with
cM =

(T̃1, χMΛQ)

(ΛQ,χMΛQ)and from (A.16):
T̃1(y) = Γ(y)

∫ y

0
g(x)J(x)xdx − J(y)

∫ y

1
g(x)Γ(x)xdx.The asymptotis (3.7) near the origin follow easily. For y ≥ 1, we �rst have from theorthogonality ondition (g,ΛQ) = 0, implied by (3.50), and the degeneray (3.39),whih implies that |DΛQ| ≤ y−3 for y ≥ 1, that for 1

b2
≥ y ≥ B0

2 ,
|T̃1(y)| =

∣∣∣∣Γ(y)

∫ +∞

y
g(x)J(x)xdx + J(y)

∫ y

1
g(x)Γ(x)xdx

∣∣∣∣

. (1 + y)

∫ ∞

y

dx

1 + x3
+

1

y

[∫ y

1

x2dx

1 + x3
+ |cb|

∫ B0

1

x2dx

1 + x

]

.
1

b2|logb|
1

1 + y
.On the other hand, for 1 ≤ y ≤ B0

2 :
|T̃1(y)| = (1 + y)

∫ +∞

y

dx

1 + x3
+ |cb|(1 + y)

∫ B0

y

dx

1 + x
+

1

1 + y

∫ y

1
x2dx

[
1

1 + x3
+

|cb|
x

]

.
1 + y

|logb|(1 + |log(by)|)1
y≤B0

2

.The onstant cM an be then estimated:
cM ≤ C(M)This leads to (3.19) for m = 0. Higher order derivatives are estimated similarily.We now ompute the error Ψb:

Ψb = −∆Qb + b2DΛQb + k2 f(Qb)

y2

= b2(LT1 +DΛQ) + b4DΛT1 +
k2

y2

[
f(Q+ b2T1) − f(Q) − b2f ′(Q)T1

]
.Using the anellation for the term DΛ(cMΛQ) we then obtain

∣∣∣Ψb + cbb
2ΛQχB0

4

∣∣∣ . b4
[
|DΛT1| +

1

y2
T 2

1

∫ 1

0

∫ 1

0
τf ′′(Q+ τ ′τb2T1)dτ

′dτ

]

. C(M)b4
y

1 + y4
+ b4

1 + y

|logb|(1 + |log(by)|)1
1≤y≤B0

2

+
b2

|logb|
1

y≥B0
2

y
,where we used the behavior |f ′′(y)| . y for y ≤ 1. This is (3.20) for m = 0, thease m = 1 follows similarily.



25For future referene we also note the following improved behavior in the region
y ≥ B0. First, we ompute

ΛT̃1 = −ΛΓ(y)

∫ ∞

y
g(x)J(x)x dx − ΛJ(y)

∫ y

1
g(x)Γ(x)x dx,

DΛT̃1 = −DΛΓ(y)

∫ ∞

y
g(x)J(x)x dx + ΛΓ(y)g(y)J(y)y2

−DΛJ(y)

∫ y

1
g(x)Γ(x)x dx − ΛJ(y)g(y)Γ(y)y2We now observe that |DΛJ(y)| . y−3 for y ≥ 1 and that the worst term in g issupported in y ≤ B0/2. Therefore, for y ≥ B0

|DΛT̃1(y)| . (1 + y)

(∫ ∞

y

dx

1 + x3
+

1

1 + y2

)
+

1

y3

([∫ y

1

x2dx

1 + x3
+ |cb|

∫ B0

1

x2dx

1 + x

]
+

y3

1 + y3

)

.
1

1 + y
.Repeating the alulation for Ψb, we obtain for y ≥ B0

|Ψb| . b4
[
|DΛT̃1| +

1

y2
T 2

1

∫ 1

0

∫ 1

0
τf ′′(Q+ τ ′τb2T1)dτ

′dτ

]

.
b4

1 + y
+ b4

1

y5b4log2b
.

b4

1 + y
(3.51)This onludes the proof of Proposition 3.1.3.3. Pro�le loalization. Observe from (3.9), (3.12) that the pro�les Tp possesstails slowly deaying at in�nity. The behavior of these tails, near the light one

y ∼ 1
b , are responsible for a leading order phenomenon in determining the blow upspeed, but their slow deay beomes irrelevant for y >> 1

b , where Qb is no longer agood approximation of the solution. In this region, the nonlinear interation is overand we simply math the pro�le to its asymptoti value a. Note that the existeneof an exat onstant self-similar stationary solution to the full nonlinear problemturns out to be important for the analysis for small k. We thus introdue a loalizedversion of the Qb pro�le as follows. Reall the two di�erent sales B0, B1 de�ned in(1.22) and let
B ∈ {B0, B1} with B0 =

1

b
√

3
∫
yχ(y)dy

, B1 =
|logb|
b

.We then de�ne:
PB = (1 − χB)a+ χBQb, (3.52)where

a = lim
y→+∞

Q(y) =

{
π for (WM)
a = −1 for (YM)and Qb is given by Proposition 3.1. We now ollet the estimates on this loalizedpro�le PB whih are a simple onsequene of Proposition 3.1.Proposition 3.3 (Estimates on the loalized pro�le). Let

ΨB = −∆PB + b2DΛPB + k2 f(PB)

y2
. (3.53)Then

Supp(ΨB) ⊂ {y ≤ 2B} (3.54)



26 P. RAPHAËL AND I. RODNIANSKIand there holds the estimates:(i) For k ≥ 4 even,
∣∣∣∣
dm

dym

∂PB

∂b

∣∣∣∣ . b
yk−m

1 + y2k−2
1y≤ 1

b
+
bk−1

ym
1 1

b
≤y≤2B , 0 ≤ m ≤ 3, (3.55)

|d
mΨB

dym
(y)| . bk+4 yk−m

1 + yk+1
1y≤B +

bk+2

ym
1B≤y≤2B , 0 ≤ m ≤ 1, (3.56)(ii) For k ≥ 3 odd,

∣∣∣∣
dm

dym

∂PB

∂b

∣∣∣∣ . b
yk−m

1 + y2k−2
1y≤ 1

b
+
bk−2

y1+m
1 1

b
≤y≤2B , 0 ≤ m ≤ 3, (3.57)

|d
mΨB

dym
| . bk+3 yk−m

1 + yk+2
1y≤B +

bk+1

1 + ym+1
1B≤y≤2B , 0 ≤ m ≤ 1. (3.58)(iii) For k = 2

∣∣∣∣
dm

dym

∂PB

∂b

∣∣∣∣ . b
y2−m

1 + y2
1y≤ 1

b
+

b

ym
1 1

b
≤y≤2B + C(M)b

y2−m

1 + y4
1y≤2B , 0 ≤ m ≤ 3,(3.59)

| d
m

dym

[
ΨB − cbb

4χBΛQ
]
| . C(M)bk+4 yk−m

1 + yk+1
1y≤B+

bk+2

ym
1B≤y≤2B , 0 ≤ m ≤ 1, k = 2.(3.60)(iii) For k = 1,

∣∣∣∣
dm

dym

∂PB

∂b

∣∣∣∣ .
by1−m(1 + |logb(1 + y)|)

|logb| 1
y≤B0

2

+
1

b|logb|y1+m
1B0

2
≤y≤2B

+
1

by1+m
1B

2
≤y≤2B ,

+C(M)
by

1 + y2+m
, 0 ≤ m ≤ 3 (3.61)and for 0 ≤ m ≤ 1:

∣∣∣∣
dm

dym

(
Ψb − cbb

2χB0
4

ΛQ
)∣∣∣∣ .

b2

y
1B≤y≤2B + C(M)b4

y1−m

1 + y4
1y≤2B

+b4
(1 + |log(by)|)

|logb| y1−m
1

1≤y≤B0
2

+
b2

|logb|y1+m
1B0

2
≤y≤2B

,(3.62)The main onsequene of the loalization proedure is �rst that
Supp(ΛPB) ⊂ {0 ≤ y ≤ 2B}and hene the possible growth in b of weighted Sobolev norms of PB may be eval-uated expliitely. Seond, the loalization proedure reates an unavoidable slowlydeaying term in the error ΨB arising from the ommutator [DΛ, χB ] ∼ 1 and thespei� deay of the radiation Tp, leading to:

∀y ∈ [B, 2B], ΨB(y) ∼
{
bk+2 for k even,
bk+1

y for k odd,
(3.63)However, aording to (3.56), (3.58), (3.60), (3.62), ΨB is better behaved on the setwhere χB = 1, thanks to the extra gains provided by the Tp+1 terms in Proposition3.1.Remark 3.4. Observe that for b < b∗(M) small enough, the loalization does notdestroy the orthogonality relation whih we have built into Qb. More preisely, (3.4)ensures:

∀b ≤ b∗(m), ∀B ≥ 1

b
, (PB −Q,χMΛQ) = 0. (3.64)



27Proof of Proposition 3.3: First ompute from (3.52) and (3.5):
∂PB

∂b
= χB

∂Qb

∂b
− ∂logB

∂b
yχ′

B(Qb − π), (3.65)
ΨB = χBΨb +

k2

y2
{f(PB) − χBf(Qb)} − (Qb − a)∆χB − 2χ′

BQ
′
b

+ b2
{
(Qb − a)DΛχB + 2y2χ′

BQ
′
b

} (3.66)and thus (3.54) follows from (3.52). We now onsider separate ases:ase k ≥ 4 even: Reall that 2p = k for k even. From (3.7), (3.12), there holds for
y ≤ 1

b :
|∂PB

∂b
| . b|T1(y)| .

byk

1 + y2k−2
.On the other hand, in the region 1

b ≤ y ≤ 2B:
|∂PB

∂b
| . bk−1Tp(y) +

bk

b
. bk−1.This proves (3.57) for m = 0, other ases follow similarily.We now estimate ΨB . For y ≤ B, ΨB = Ψb and hene (3.58), (3.60) follow for

y ≤ B from (3.11), (3.17). For B ≤ y ≤ 2B, we estimate the RHS of (3.66). First:
1

y2
{|f(PB) − χBf(Qb)|} .

|Qb − a|
y2

1B≤y≤2B . bk+2
1B≤y≤2B .Similarily,

∣∣(Qb − π)∆χB − 2χ′
B(Qb − a)′

∣∣ .
bk

B2
1B≤y≤2B . bk+2

1B≤y≤2B ,

b2
∣∣(Qb − a)DΛχB + 2y2χ′

BQ
′
b

∣∣ . b2bk1B≤y≤2B = bk+2
1B≤y≤2B .These estimates imply (3.56) for m = 0. The ases 1 ≤ m ≤ 3 follow similarily andare left to the reader.The ase k = 2 follows similarily using (3.15), (3.16), (3.17), this is left to the reader.ase k ≥ 3 odd: Reall that 2p + 1 = k for k odd. From (3.7), (3.12), (3.13), theleading order behavior of ∂PB

∂b in the region y ≤ 1
b is given by:

|∂PB

∂b
| . b|T1(y)| .

byk

1 + y2k−2
.On the other hand, in the region 1

b ≤ y ≤ 2B, there holds:
|∂PB

∂b
| . bk−2Tp(y) +

1

b

bk−1

y
.
bk−2

y
.This proves (3.57) for m = 0, other ases follow similarily.We now estimate the error ΨB given in (3.66). For y ≤ B, ΨB = Ψb and hene(3.58) follows for y ≤ B from (3.14). In the region B ≤ y ≤ 2B, we estimate from



28 P. RAPHAËL AND I. RODNIANSKI(3.57) and f(π) = 0:
1

y2
{|f(PB) − χBf(Qb)|} .

1

y2
{|f(π + χB(Qb − π)) − f(π)| + |f(Qb) − f(π)|}

.
|Qb − π|
y2

1B≤y≤2B .
bk+1

y
1B≤y≤2B ,

∣∣(Qb − π)∆χB − 2χ′
B(Qb − π)′

∣∣ .
bk−1

B2y
1B≤y≤2B .

bk+1

y
1B≤y≤2B ,

b2
∣∣(Qb − π)DΛχB + 2y2χ′

BQ
′
b

∣∣ .
b2bk−1

y
1B≤y≤2B =

bk+1

y
1B≤y≤2B .These estimates together with (3.14) now imply (3.58) for m = 0. The ase m = 1follow similarily.ase k = 1: We estimate from (3.65):

∂PB

∂b
= χB

∂Qb

∂b
− ∂logB

∂b

y

B
χ′

B(Qb − π),Therefore,
|∂PB

∂b
| ≤ |∂(b2T1)

∂b
|1y≤2B + b−1|Qb − π|1B

2
≤y≤2B .Estimate (3.61) is a diret onsequene of the onstrution of T1 and the bound

|Qb − π| . (1 + y)−1. The derivative estimates follow in a similar fashion.We now turn to the estimate of ΨB . From (3.66):
1

y2
{|f(PB) − χBf(Qb)|} .

|Qb − π|
y2

1B≤y≤2B .
b2

y
1B≤y≤2B ,

∣∣(Qb − π)∆χB − 2χ′
b(Qb − π)′

∣∣ . 1

B2y
1B≤y≤2B .

b2

y
1B≤y≤2B , (3.67)

b2
∣∣(Qb − π)DΛχB + 2y2χ′

BQ
′
b

∣∣ . b2

y
1B≤y≤2B . (3.68)These estimates yield (3.62) for m = 0, the ase m = 1 follows similarily.This onludes the proof of Proposition 3.3.4. Deomposition of the �owHaving onstruted the almost self similar loalized pro�les PB , we introdue adeomposition of the �ow:

u(t, r) =
(
PB1(b(t)) + ε

)
(t,

r

λ(t)
) =

(
PB1(b(t))

)
λ(t)

+ w(t, r)where
B1 =

|logb|
b

.The time dependent parameters b(t), λ(t) will be determined from the modulationtheory in setion 5.2. The perturbative w(t) is what is refered to in the paper as



29the �radiation term�. Sine (PB1)λ(t) ∈ H2
a, it implies 6 that w(t, r) ∈ H2.We now derive the equations for w and ε. Let

s(t) =

∫ t

0

dτ

λ(τ)
(4.1)be the resaled time7 . We shall make an intensive use of the following resalingformulas: for

u(t, r) = v(s, y), y =
r

λ
,
ds

dt
=

1

λ
,

∂tu =
1

λ
(∂sv + bΛv)λ , (4.2)

∂ttu =
1

λ2

[
∂2

sv + b(∂sv + 2Λ∂sv) + b2DΛv + bsΛv
]
λ
. (4.3)In partiular, using (3.53) and (4.3), we derive from (1.3) the equation for ε:

∂2
sε+HB1ε = −ΨB1 − bsΛPB1 − b(∂sPB1 + 2Λ∂sPB1) − ∂2

sPB1

− b(∂sε+ 2Λ∂sε) − bsΛε−
k2

y2
N(ε) (4.4)where HB1 is the linear operator assoiated to the pro�le PB1

HB1ε = −∆ε+ b2DΛε+ k2 f
′(PB1)

y2
ε, (4.5)and the nonlinearity:

N(ε) =
1

y2

[
f(PB1 + ε) − f(PB1) − f ′(PB1)ε

]
. (4.6)Alternatively, the equation for w given by (5.11) takes the form:

∂2
tw +HB1w = −

[
∂2

t (PB1)λ − ∆(PB1)λ + k2 f((PB1)λ)

r2

]
− k2

r2
N(w)with

HB1w = −∆w + k2 f
′((PB1)λ)

r2
, (4.7)

N(w) =
1

r2
[
f(PB1 + w) − f(PB1) − f ′((PB1)λ)w

]
. (4.8)We then expand using (4.2), (4.3) and (3.53):

∂2
t (PB1)λ − ∆(PB1)λ + k2 f((PB1)λ)

r2
=

1

λ2
[∂ssPB1 + b(∂sPB1 + 2Λ∂sPB1) + bsΛPB1 + ΨB]λ

=
1

λ2
[bΛ∂sPB1 + bsΛPB1 + ΨB]λ + ∂t

[
1

λ
(∂sPB1)λ

]and rewrite the equation for w:
∂2

tw+HB1w = − 1

λ2
[bΛ∂sPB1 + bsΛPB1 + ΨB]λ−∂t

[
1

λ
(∂sPB1)λ

]
− k

2

r2
N(w). (4.9)6Observe that fr k = 1, Qλ(t) does not belong to H

2
a due its slow onvergene at in�nity.7Note that s(t) will be proved to be a global time s(t) → +∞ as t → T



30 P. RAPHAËL AND I. RODNIANSKIFor most of our arguments we prefer to view the linear operator HB1 ating on win (4.9) as a perturbation of the linear operator Hλ assoiated to Qλ. Then
∂2

tw +Hλw = FB1 (4.10)
= − 1

λ2
[bΛ∂sPB1 + bsΛPB1 + ΨB1]λ − ∂t

[
1

λ
(∂sPB1)λ

]

+
k2

r2
[
f ′(Qλ) − f ′((PB1)λ)

]
w − k2

r2
N(w)with

Hλw = −∆w + k2 f
′(Qλ)

r2
. (4.11)Remark 4.1. We note that absene of satisfatory pointwise in time estimates forthe bss type of terms appearing on the RHS of (4.10) (see also (4.4)) requires thatwe rewrite suh terms as full time derivatives and onsistently integrate them byparts in all of our estimates.Our analysis will require ontrol of H2 norm of w. This will be ahieved viaenergy estimates for the funtion

W = Aλw. (4.12)We reall that the operator Aλ fatorizes the Hamiltonian Hλ = A∗
λAλ and thefuntion W is a solution of the wave equation

∂ttW + H̃λW = AλFB1 +
∂ttV

(1)
λ w

r
+

2∂tV
(1)
λ ∂tw

r
. (4.13)with the onjugate Hamiltonian H̃λ = AλA

∗
λ, see (2.13).5. Initial data and the bootstrap assumptionsIn this setion we desribe the set of estimates whih govern the blow up dynam-is stated in Theorem 1.1. We begin with the presription of the set O of initialdata and onsequently show that, under bootstrap assumptions, they evolve to atrapped regime leading to a �nite time blow up.5.1. Desription of the set O of initial data. Let us reall the orbital stabilitystatement of Lemma 2.1: for all su�iently small η > 0 suh that for (u0, u1) ∈

H1
r×L2 with E(u0, u1) < E(Q)+η, there exists λ(t) > 0 suh that the orrespondingsolution u(t) to (1.3) satis�es:

u(t, r) = (Q+ ε)(
r

λ(t)
) with ‖ε(t), ∂tu‖H = o(η).This deomposition is not unique. Uniqueness an be ahieved, using standard mod-ulation theory, by for example �xing an orthogonality ondition on ε, see Lemma2.1. The lass of initial data whih lead to the blow up dynamis of Theorem1.1 have energy just above E(Q) and are exited in a spei� diretion of the Qbdeformation of Q.De�nition 5.1 (Desription of the set of initial data O). Let M be a su�ientlylarge onstant and let b∗0(M) > 0 be small enough. We de�ne O to be the set ofinitial data (u0, u1) of the form:

u0(r) =
(
PB1(b0)

)
λ0

+ w0(r) =
(
PB1(b0) + ε0

)
λ0
, (5.1)
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u1(r) =

b0
λ0

(
ΛPB1(b0)

)
(
r

λ0
) +w1(r), (5.2)where ε0 satis�es the orthogonality ondition:

(ε0, χMΛQ) = 0 (5.3)We require that the following bounds are satis�ed:
• Smallness of b0:

0 < b0 < b∗0; (5.4)
• Smallness of λ0 with respet to b0:

λ2
0 < b2k+4

0 ; (5.5)
• Smallness of the exess of energy:

‖w0, w1‖H . b10k
0 (5.6)and

‖w0, w1‖H2 .
b10k
0

λ0
. (5.7)Remark 5.2. Note that by the impliit funtion theorem O is a non-empty openset of H2.5.2. Deomposition of the �ow and modulation equations. Let us now on-sider (u0, u1) ∈ O and let u(t) be the orresponding solution to (1.3) with life time

T = T (u0) ≤ +∞ de�ned as the maximal time interval on whih u ∈ C([0, T ),H2
a).It now easily follows from the orbital stability of Lemma 2.1 that for any (u0, u1) ∈ Oand t ∈ [0, T (u0)) there exists a unique deomposition of the �ow

u(t) = (Q+ ε1)λ(t)with λ(t) ∈ C2([0, T ),R∗
+) and

∀t ∈ [0, T ), |∂tu|L2 + |λt(t)| + ‖ε1(t), 0‖H . o(1)b∗0→0 (5.8)satisfying the orthogonality ondition
∀t ∈ [0, T ), (ε1(t), χMΛQ) = 0. (5.9)Based on this deomposition we de�ne

b(t) = −λt so that b(t) = o(1)b∗0→0 (5.10)and for b∗0 small enough de�ne the new deomposition with the pro�le PB1(b(t)) and�the exess� ε(t, y) = w(t, r):
u(t, r) =

(
PB1(b(t)) + ε

)
(t,

r

λ(t)
) =

(
PB1(b(t))

)
λ(t)

+ w(t, r). (5.11)Observe from (5.9) and the hoie of gauge (3.64) in the onstrution of Qb that:
∀t ∈ [0, T ), (ε(t), χM ΛQ) = 0, (w(t), (χM ΛQ)λ(t)) = 0 (5.12)Aording, to setion 4, w, ε andW given by (4.12) satisfy respetively the equations(4.4), (4.10) and (4.13). The modulation equation for b is based on the orthogonalityondition (5.12) and will be derived in setion 6.1. The preise ontrol of theparameter b is at the heart of our analysis. Aording to the modulation equationfor λ (5.10), the behavior determines the blow up speed and measures the deviationfrom the self similar blow up.



32 P. RAPHAËL AND I. RODNIANSKI5.3. Initial bounds for (λ, b, w). We have now began the proess of reasting theoriginal �ow for the funtion u in terms of the dynamis of the new variables (λ, b, w).Although the equations for λ(t), b(t) are yet to be derived, we reinterpret the as-sumptions on the initial data (u0, u1) ∈ O as assumptions on (λ(0), b(0), w(0),W (0))and laim the following initial estimates:Lemma 5.3 (Initial bounds for the (λ, b, w) deomposition). We have
λ0 = λ(0), b0 − b(0) = 0(b10k

0 ), (5.13)
‖w(0), ∂tw(0)‖H = o(1)b∗0→0, (5.14)

|bs(0)| + λ0‖W (0), ∂tW (0)‖H .
bk+1
0

|logb0|
. (5.15)Proof of Lemma 5.3step 1 Estimates for λ(0), b(0) and spatial derivatives of w.Let us �rst show that

λ0 = λ(0), b0 − b(0) = 0(b10k
0 ), (5.16)

∫
(∂rw(0))2 +

∫
(w(0))2

r2
. b5k

0 , (5.17)
‖W (0), 0‖H .

b5k
0

λ(0)
. (5.18)Indeed, �rst ompare (5.1) and (5.11) at t = 0 to get:

u0 = (Q+ (PB1(b0) −Q) + ε0)λ0 = (Q+ (PB1(b(0)) −Q) + ε(0))λ(0)with
((PB1(b0) −Q) + ε0, χMΛQ) = ((PB1(b(0)) −Q) + ε(0), χM ΛQ) = 0and hene the uniqueness of the geometri deomposition ensures:

λ(0) = λ0 and ε(0) = ε0 + PB1(b0) − PB1(b(0)). (5.19)and
w(0) = w0 + (PB1(b0) − PB1(b(0)))λ0 (5.20)We now ompute the ∂t derivative at t = 0:

∂tu(0) =
1

λ0

(
bs(0)

∂PB1

∂b
+ b(0)ΛPB1(b(0))

)

λ0

+ ∂tw(0). (5.21)We take a salar produt of this relation with (χMΛQ)λ0 and �rst observe from(5.12) that:
(∂tw, (χMΛQ)λ) = − b

λ
(w,Λ(χM ΛQ)λ)and hene from (5.19):

|(∂tw(0), (χM ΛQ)λ0)| . |b(0)|λ0|(ε0 + PB1(b0) − PB1(b(0)),Λ(χMΛQ))

. C(M)λ0|b(0)|(b10k
0 + |b2(0) − b20|).The last line uses the initial bound (5.6) and the results of Proposition 3.3.Furthermore,

(
∂PB1

∂b
, χMΛQ) = 0



33and hene from (5.21):
(∂tu(0), (χM ΛQ)λ0) = λ0

[
b(0)(ΛPB1(b(0)), χMΛQ) +O(|b(0)|(b10k

0 + |b2(0) − b20|)
]
.(5.22)Performing the same omputation on (5.2) using (5.7) yields:

(∂tu(0), (χM ΛQ)λ0) = λ0

[
b0(ΛPB1(b0), χMΛQ) +O(b10k

0 )
]whih together with (5.22) now implies:

b0 − b(0) = 0(b10k
0 ).This gives (5.16). Estimate (5.17) now follows by inserting (5.6) and (5.13) into(5.20).Finally,

‖W (0), 0‖2
H =

∫
|∂rAλ0w(0)|2 +

∫
(Aλ0w(0))2

r2

.
‖w(0), 0‖2

H
λ2

0

+ ‖w(0), 0‖2
H2 (5.23)

.
‖w0, 0‖2

H
λ2

0

+ ‖w0, 0‖2
H2 +

(b0 − b(0))2

λ2
0

.
b10k
0

λ2
0where we used the uniform boundedness of the Qb pro�le in the H2 norm (noteasymptoti behavior (3.7), (3.18) at the origin). Thus (5.20), (5.13) and the initialbounds (5.6), (5.7), and (5.18) follow. Note that for k = 1, the bound (5.23) requiressome are and uses the fat that |V (1)(y) − 1| . y for y ≤ 1 and hene:

∫

r≤λ0

|∂rAλ0w(0)|2 +

∫

r≤λ0

(Aλ0w(0))2

r2

=

∫

r≤λ0

∣∣∣∣∣∂r

(
−∂rw(0) +

V
(1)
λ0

r
w(0)

)∣∣∣∣∣

2

+

∫

r≤λ0

1

r2

∣∣∣∣∣−∂rw(0) +
V

(1)
λ0

r
w(0)

∣∣∣∣∣

2

.

∫

r≤λ0

(∂2
rw(0))2 +

∫

r≤λ0

1

r2

(
∂rw(0) − w(0)

r

)2

+

∫

r≤λ0

(w(0))2

λ2
0r

2

. ‖w(0), 0‖2
H2 +

‖w(0), 0‖2
H

λ2
0while

∫

r≥λ0

|∇Aλ0w(0)|2 +

∫

r≥λ0

(Aλ0w(0))2

r2
.

∫

r≥λ0

(∂2
rw(0))2 +

∫

r≥λ0

(
(∇w(0))2

r2
+
w(0)2

r4

)

.

∫ (
(∂2

rw(0))2 +
(∂rw(0))2

r2
+
w(0)2

λ2
0r

2

)
. ‖w(0), 0‖2

H2 +
‖w(0), 0‖2

H
λ2

0

,whih yield (5.23) for k = 1.step 2 Time derivative estimates.From (5.2), (5.21), (5.16):
λ0∂tw(0) =

(
b0ΛPB1(b0) − b(0)ΛPB1(b(0)) − bs(0)

∂PB1

∂b

)

λ0

+ w1.
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λ0∂tW (0) = λ0Aλ0∂tw(0) + λ0(∂tAλ)w(0)Using (2.5) and (2.6) we have

(∂tAλ) =
∂tV

(1)
λ

r
=
kb(0)

λ0

(ΛQg′′(Q))λ0

rThis implies from (5.6), (5.7), (5.20) and (5.13):
|∂tw(0)|L2 + λ0|∂tW (0)|L2 . (|bs(0)| + b10k

0 )

(
|∂PB1

∂b
|L2 + |A∂PB1

∂b
|L2

)
+O(b4k

0 ).We now derive from Proposition 3.3 the rough bound:
|A∂PB1

∂b
|L2 + |∂PB1

∂b
|L2 .

{
1 for k ≥ 2
1
b0

for k = 1
(5.24)and hene:

|∂tw(0)|L2 + λ0|∂tW (0)|L2 . O(b4k
0 ) +

{
|bs(0)| for k ≥ 2
|bs(0)|

b0
for k = 1

(5.25)It remains to ompute bs(0). This omputation relies on the orthogonality relation(5.12) and is done in full detail in the proof of Proposition 6.3. In partiular, wemay extrat from the expliit formula (6.6) evaluated at t = 0 the rude bound:
|bs||ΛQ|2L2(y≤2M) . |(ΨB1 , χMΛQ)| + |b(0)||∂tw(0)|L2 || yk

1 + y2k
|L2(y≤2M) (5.26)

+MC

(
|Aλ0w(0)|L2(y≤2M) + |w(0)

r
|L2(y≤2M)

)We now examine separately:ase k ≥ 2: We �rst have from Proposition 3.3:
|(ΨB1 , χMΛQ)| . MCbk+2.We insert this together with (5.16), (5.17), (5.18) into (5.26) to get:

|bs(0)| . |b0||∂tw(0)|L2 +O(bk+2
0 ).Combining this with (5.25) onludes the proof of (5.14), (5.15).ase k = 1: From (3.62),

|(ΨB1 , χMΛQ)| . MC b2

|logb|and hene (5.16), (5.17), (5.18) and (5.26) yield:
|logM ||bs(0)| . |b0|

√
logM |∂tw(0)|L2 +O(

b20
|logb0|

).Combining this with (5.25) now onludes the proof of (5.14), (5.15) for M largeenough and b0 < b∗0(M) su�iently small.This onludes the proof of Lemma 5.3.



355.4. The set of bootstrap estimates. Let K = K(M) > 0 be a large universalonstant to be hosen later, and let E(t), Eσ(t) be the global and loal energies asde�ned in (2.17), (2.18). From the ontinuity u ∈ C([0, T ),H2), the initial bounds(5.5) and (5.14), (5.15) of Lemma 5.3, we may �nd a maximal time T1 ∈ (0, T ) suhthat the following estimates hold on [0, T1):
• Pointwise ontrol of λ by b:

λ2 < 10b2k+4. (5.27)
• Pointwise bound on bs:

|bs| ≤
√
K
bk+1

|logb| . (5.28)
• Global H2 bound:

E(t) ≤ Kb2k+2.

• Loal H2 bound:
Eσ(t) ≤ K

b2k+2

(logb)2
. (5.29)Remark 5.4. The large bootstrap onstant K(M) does not depend on the smallonstant b∗0, whih provides an upper bound for possible values of the parameter b.It therefore allows us to assume that

o(1)b∗0→0K(M) = o(1)b∗0→0.In partiular, if C(M) is an even larger universal onstant dependent on M and Kand η is the onstant in the orbital stability bound (6.1), we may assume that
η

1
10C(M) < 1,Remark 5.5 (Coerivity of E). The potential part of the energy E is the quadratiform of the Hamiltonian H̃λ given by (2.12). As a onsequene E , as well as Eσ,is oerive. However, the norm under ontrol degenerates at in�nity for k = 1. Infat, from (2.14), (2.15):

Eσ

λ2
≥
∫
σBc

[
(∂tW )2 + (∂rW )2 +

W 2

r2

] for k ≥ 2, (5.30)and thus ontrols the Hardy norm both at the origin and at in�nity, while
Eσ

λ2
≥
∫
σBc

[
(∂tW )2 + (∂rW )2 +

W 2

r2(1 + r2

λ2 )

] for k = 1 (5.31)and thus is not as strong at in�nity. This di�ulty will be handled with the help oflogarithmi Hardy inequalities, see Lemma B.1 in the Appendix. However, logarith-mi losses in Hardy type inequalities are potentially dangerous, sine for k = 1 allpossible gains are themselves merely logarithmi in the parameter b. This explainswhy many estimates for k = 1 will require a very detailed, areful and sometimessubtle analysis, whih in partiular will keep trak of log losses and log b gains.Our �rst result is the ontration of the bootstrap regime, desribed by (5.27)-(5.29), under the nonlinear �ow.Proposition 5.6 (Bootstrap ontrol of λ, bs,W ). Assume that K = K(M) in(5.27), (5.28), (5.29), (5.29) has been hosen large enough, then ∀t ∈ [0, T1),
λ2 ≤ b2k+4, (5.32)
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|bs| ≤

√
K

2

bk+1

|logb| , (5.33)
E(t) ≤ K

2
b2k+2, (5.34)

Eσ(t) ≤ K

2

b2k+2

(logb)2
. (5.35)As a onsequene T1 = T . Moreover, the solution blows up in �nite time

T < +∞.Remark 5.7. The bootstrap bounds of Proposition 5.6 are not enough yet toprovide a sharp law for the blow up speed. The fat that a sharp desription ofthe singularity formation is not needed to prove �nite time blow up was alreadyentral in [24℄, [25℄, [33℄ and [34℄. This onveniently separates the analysis requiredfor the proof of a �nite time blow up and an upper bound on the blow up rate fromobtaining a lower bound on the blow up rate, whih relies on �ner dispersive e�ets.The next setion is devoted to the proof of the key dynamial estimates whihimply Proposition 5.6.6. The exess of energy and �nite time blow upThis setion is devoted to the proof of the bootstrap bounds (5.34), (5.35). Theproof onsists of two steps. First is to derive a rude bound on the blow up speed inthe form of a pointwise ontrol on |bs|. This follows diretly from the onstrutionof the pro�le PB1 . The seond step is a pointwise in time bound on the exess ofenergy ofW in the region ontaining the bakward light one of a future singularity.Combination of these two estimates will establish (5.34), (5.35). This will be alreadysu�ient to prove �nite time blow up with an expliit non-sharp upper bound onblow up rate. Note that the statements of a �nite time blow up and stability of theblow up regime do not require the knowledge of the preise blow up speed.6.1. First bound on bs. The �rst step in the proof of the bootstrap estimates(5.34), (5.35) is the derivation of a rude bound on bs whih will allow us to obtainontrol on the saling parameter λ and to derive suitable energy estimates on thesolution. This bound is a simple onsequene of the onstrution of the pro�le Qband the hoie of the orthogonality ondition (5.12).LetM > 0 be a large enough universal onstant to be hosen later and |b| ≤ b∗0(M)small enough. Let us start with observing the following orbital stability bound:Lemma 6.1 (Orbital stability bound). There holds:
∀t ∈ [0, T1], |b| + ‖w, ∂tw‖H < η = o(1)b∗0→0. (6.1)Remark 6.2. We note that ‖w, ∂tw‖H norm provides an L∞ bound for w and ǫ

|w(t)|L∞ = |ǫ(s)|L∞ < η.This is a onsequene of the simple inequality
w2(r) ≤

∫ (
(∂rw)2 +

w2

r2

)
,whih holds true for smooth funtions vanishing at the origin.



37Proof of Lemma 6.1First reall from (5.8), (5.11) that |b| = |λt| . o(1)b∗0→0 and hene:
‖w, 0‖H . ‖ε1, 0‖ + ‖PB1 −Q, 0‖H . o(1)b∗0→0. (6.2)It remains to prove the smallness of the time derivative for whih we use (5.8), theestimates of Proposition 3.3, (5.24) and the bootstrap bound (5.28) on bs:

‖∂tw‖L2 . ‖∂tu‖L2 + ‖bs
∂bPB1

∂b
+ bΛPB1‖L2 . o(1)b∗0→0 + |bs|‖

∂bPB1

∂b
‖L2

. o(1)b∗0→0 + |bs|
{

1 for k ≥ 2
1
b for k = 1

. o(1)b∗0→0 +
√
K(M)

|b|
|logb|

. o(1)b∗0→0and (6.1) follows. This onludes the proof of Lemma 6.1.We now laim the �rst re�ned bound on bs:Lemma 6.3 (First bound on bs). The following bound on bs holds true on [0, T1):
|bs|2 .

1

logM

[∫

y≤2M
|∇(Aε)|2 +

∫

y≤1

|Aε|2
y2

]
+

b2k+2

|logb|2 + b2MCE . (6.3)In partiular,
|bs|2 .

1

logM
Eσ +

b2k+2

|logb|2 + b2MCE (6.4)Remark 6.4. Observe that the upper bound on bs given by Lemma 6.3 is sharp for
k = 1 but very lossy for large k ompared with the expeted behavior |bs| ∼ b2k. Atthis stage, sharp bounds ould have been derived by further improving the pro�leinside the light one as we did for k = 1, 2, but this is not needed for large k.Proof of Lemma 6.3Let us reall that the equation for ε in resaled variables is given aording to(4.4), (4.5), (4.6) by:

∂2
sε+HB1ε = −ΨB1 − bsΛPB1 − b(∂sPB1 + 2Λ∂sPB1) − ∂2

sPB1

− b(∂sε+ 2Λ∂sε) − bsΛε−
k2

y2
N(ε)with

HB1ε = −∆ε+ b2DΛε+ k2 f
′(PB1)

y2
ε,

N(ε) =
1

y2

[
f(PB1 + ε) − f(PB1) − f ′(PB1)ε

]
.Note that from (1.20), the adjoint of HB with respet to the L2(ydy) inner produtis given by:

H∗
B = HB + 2b2D. (6.5)To ompute bs we take the salar produt of (4.4) with χMΛQ. Using the orthogo-nality relations

(ε, χMΛQ) = (∂m
s (PB1 −Q), χMΛQ) = 0, ∀m ≥ 0



38 P. RAPHAËL AND I. RODNIANSKIwe integrate by parts to get the algebrai identity:
bs

[
(ΛPB1 , χMΛQ) + b(

∂PB1

∂b
+ 2Λ

∂PB1

∂b
, χMΛQ) + (Λε, χM ΛQ)

]
= −(ΨB1 , χMΛQ)

− (ε,H∗
B1

(χMΛQ)) + b(∂sε, 3χMΛQ+ Λ(χMΛQ)) − k2(
N(ε)

y2
, χMΛQ). (6.6)On the support of χM and for b < b∗0(M) small enough, the term ΛQ dominatesthe remaining terms in the expansion

ΛPB1 = ΛQb = ΛQ+

p+1∑

j=1

b2jΛTj.The orbital stability bound then yields:
|bs|2

(∫

y≤M
|ΛQ|2

)2

. (ΨB1 , χMΛQ)2 +
∣∣(ε,H∗

B1
(χMΛQ))

∣∣2 + b2|(∂sε, 3χMΛQ+ Λ(χMΛQ))|2

+ |(N(ε)

y2
, χMΛQ)|2.We now treat eah term in the above RHS. The last two terms may be estimatedin a straightforward fashion using the χM loalization:

b2|(∂sε, 3χMΛQ+ Λ(χMΛQ))|2

. b2|(∂sε+ by · ∇ε, 3χMΛQ+ Λ(χMΛQ))|2 + b4|(y · ∇ε, 3χMΛQ+ Λ(χMΛQ))|2

. b2λ2MC

[
|∂tw

r
|2L2 + | w

r2(1 + |logr|) |
2
L2

]
. b2λ2MC

[
|∂tW |2L2 + |A∗

λW |2L2

]where we used the estimates of Lemma B.2, Lemma B.4 and (B.19). Similarily,from (B.11):
|(N(ε)

y2
, χMΛQ)|2 .

(∫

y≤2M
|ε|2 y

y2(1 + y2)

)2

. MC |ε|2L∞(y≤2M)|A∗Aε|2L2

. MC |∇ε|L2(y≤2M)|
ε

y
|L2(y≤2M)|A∗Aε|2L2 . MC |A∗Aε|4L2 . b2λ2|A∗

λW |2L2where we used (5.29) in the last step. The �rst two terms in (6.8) require moreattention. First observe that the χM loalization ensures that
ΨBχM = ΨbχM .Next, we rewrite the linear term in ε as follows. UsingH = A∗A and the anellation

A(ΛQ) = 0 from (2.8) we derive:
(ε,H∗

B1
(χMΛQ))2 =

(
ε,H(χMΛQ) + 2b2D(χMΛQ) +

1

y2
(f ′(PB1) − f ′(Q))(χMΛQ)

)2

. (Aε, (ΛQ)∂yχM )2 + b2λ2MC |A∗
λW |2L2 (6.7)where we used (B.11) and the rough bound |PB1−Q|L∞ . b. We have thus obtainedthe preliminary estimate:

|bs|2
(∫

y≤M
|ΛQ|2

)2

. (ΨB1 , χMΛQ)2 + (Aε, (ΛQ)∂yχM )2 + b2λ2MCE . (6.8)



39We now separate ases:ase k odd, k ≥ 3: We estimate from (3.14)
(ΨB , χMΛQ)2 . b2k+6

(∫
yk

1 + yk+2

yk

1 + y2k

)2

. b2k+6,

(Aε, (ΛQ)∂yχM)2 .

(∫

y≤2M

(Aε)2

y2

)∫

M≤y≤2M
|ΛQ|2

.
1

M2k−3

(∫

y≤2M
|∇Aε|2 +

∫

y≤1

∣∣∣∣
Aε

y

∣∣∣∣
2
)
. (6.9)where we used (B.4) in the last step. This onludes the proof of (6.3).ase k even, k ≥ 4: From (3.11):

(ΨB , χMΛQ)2| . b2k+8

(∫
yk

1 + yk+1

yk

1 + y2k

)2

. b2k+8,and (6.9) still holds. This onludes the proof of (6.3).ase k = 2: From (3.17):
(ΨB , χMΛQ)2 .

(∫

y≤2M

[
b4ΛQ+ b6

yk

1 + yk+1

]
ΛQ

)2

. b8,and (6.9) still holds. This onludes the proof of (6.3).ase k = 1: From (3.20):
(ΨB , χMΛQ)2

.

(∫

y≤2M

y

1 + y2

[
b2

|logb|
y

1 + y2
+ b4y1y≤1 + b4

(1 + |log(by)|)
|logb| y +

b4

(logM)2
M4

1 + y4

])2

. (logM)2
b4

|logb|2 .For the linear term, we use (B.4) to derive:
(Aε, (ΛQ)∂yχM )2 .

(∫

M≤y≤2M

(Aε)2

y2

)∫

M≤y≤2M
|ΛQ|2

. logM

(∫

y≤2M
|∇(Aε)|2 +

∫

1≤y≤1
|Aε|2

)
.It is now ruial to observe the growth on the LHS of (6.8), spei� to the k = 1ase:

|bs|2
(∫

y≤2M
|ΛQ|2

)2

≥ C(logM)2|bs|2and (6.3) follows.This onludes the proof of Lemma 6.3.6.2. Global and loal H2 bounds. In this setion we establish H2 type boundson the solution w. The global bound orresponds to the energy E(t), while theloal bound is onneted to the energy Eσ(t) and provides an H2 type estimate forthe solution in a region slightly larger than the bakward light one from a futuresingularity. These bounds rely on non-harateristi energy type identities for (4.13)and spei� repulsive properties of the time-dependent onjuguate Hamiltonian H̃λgiven by (2.12). This estimate is the seond step in the proof of Proposition 5.6.



40 P. RAPHAËL AND I. RODNIANSKILemma 6.5 (H2 type energy inequalities). In notations of (2.17), (2.18) and for
b < b∗0(M) small enough, we have the following inequalities:

d

dt

{
E
λ2

+O

(
|bs|2
λ2

+
|bs|

√
E

λ2
+
η

1
4E
λ2

)}

.
b

λ3

[
|bs|2 + b2k+2 + (|bs| + bk+1)

√
E + η

1
4 E
]
, (6.10)

d

dt

{
Eσ

λ2
+O

(
|bs|2
λ2

+
|bs|

√
Eσ

λ2
+
b

1
4E
λ2

)}

.
b

λ3

[
|bs|2 +

b2k+2

|logb|2 + (|bs| +
bk+1

|logb|)
√

Eσ +
E

|logb|2
] (6.11)Remark 6.6. It is ritial that the onstants involved in the bounds (6.10), (6.11)do not depend on M provided b0 < b∗0(M) has been hosen su�iently small.Remark 6.7. Note that the logarithmi gain from the global bound (6.10) to theloal bound (6.11) an be turned into polynomial gain for k ≥ 2.Proof of Lemma 6.5The proof is a onsequene of the energy identity on (4.13) and the bootstrapontrol of the geometri parameters. The key is the spae-time repulsive propertiesof the operator H̃λ.step 1 Algebrai energy identity.We reall the de�nition of the ut-o� funtion σBc given by (2.19) and of theloalized energy Eσ given by (2.18). In the sequel, we shall use the notation σgenerially for both σ ≡ 1 and σ ≡ σBc given by (2.19).We laim the following algebrai energy identity:

1

2

d

dt

{∫
σ

[
(∂tW )2 + (∇W )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2 − 4

r
∂tV

(1)
λ ∂twW

]}

=
3b

λ

∫
σW 2

r2

[
ΛQ

(
kg′′ +

k2

2
(g′g′′ − gg′′′)

)
(Q)

]

λ

− b

∫
∂rσ

W 2

r
(kΛQg′′(Q))λ

+
1

2

∫
∂tσ

[
(∂tW )2 + (∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2

]

− 2

∫
∂tσ

W

r
∂tV

(1)
λ ∂tw −

∫
∂rσ∂rW∂tW (6.12)

+

∫
σ∂ttV

(1)
λ

r
[w∂tW − 2W∂tw] − 2

∫
σW

r
∂tV

(1)
λ FB1 +

∫
σ∂tWAλFB1 .



41Proof of (6.12): We proeed with the help of (2.12), (4.13):
1

2

d

dt

{∫
σ[(∂tW )2 + (∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2]

} (6.13)
=

1

2

∫
∂tσ[(∂tW )2 + (∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2] −

∫
∇σ · ∇W∂tW

+

∫
σ∂tW (∂ttW + H̃λW ) +

1

2

∫
σW 2

r2

(
2∂tV

(1)
λ + ∂tV

(2)
λ

)

=
1

2

∫
∂tσ[(∂tW )2 + (∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2] −

∫
∂rσ∂rW∂tW

+

∫
σ∂tW

[
AλFB1 +

∂ttV
(1)
λ w

r
+

2∂tV
(1)
λ ∂tw

r

]
+

1

2

∫
σW 2

r2

(
2∂tV

(1)
λ + ∂tV

(2)
λ

)
.The third term on the last line above requires integration by parts:

∫
σ∂tW

2∂tV
(1)
λ ∂tw

r

=
d

dt

{∫
σW

2∂tV
(1)
λ ∂tw

r

}
− 2

∫
W

r

[
∂tσ∂tV

(1)
λ ∂tw + σ∂ttV

(1)
λ ∂tw + σ∂tV

(1)
λ ∂ttw

]

=
d

dt

{∫
σW

2∂tV
(1)
λ ∂tw

r

}
− 2

∫
∂tσ

W∂tw

r
∂tV

(1)
λ

− 2

∫
σW

r

[
∂ttV

(1)
λ ∂tw + ∂tV

(1)
λ FB1

]
+ 2

∫
σW

r
∂tV

(1)
λ Hλw (6.14)where we used (4.10) in the last step. We now integrate the last term above byparts in spae using (2.5):

2

∫
σW

r
∂tV

(1)
λ Hw = 2

∫
σW

r
∂tV

(1)
λ A∗

λW = 2

∫
σW

r
∂tV

(1)
λ

(
∂rW +

1 + V
(1)
λ

r
W

)

= 2

∫
σ
W 2

r2

[
(1 + V

(1)
λ )∂tV

(1)
λ − r

2
∂t∂rV

(1)
λ

]
−
∫
W 2

r
∂rσ∂tV

(1)
λ .Inserting this together with (6.14) into (6.13) yields:

1

2

d

dt

{∫
σ[(∂tW )2 + (∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2 − 4

r
∂tV

(1)
λ ∂twW ]

}

=

∫
σ
W 2

r2

[
1

2
(2∂tV

(1)
λ + ∂tV

(2)
λ ) + 2((1 + V

(1)
λ )∂tV

(1)
λ − r

2
∂t∂rV

(1)
λ )

]

+

∫
σ∂tW

[
AλFB1 +

∂ttV
(1)
λ w

r

]
− 2

∫
σ
W

r

[
∂ttV

(1)
λ ∂tw + ∂tV

(1)
λ FB1

]

+
1

2

∫
∂tσ[(∂tW )2 + (∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2] −

∫
∂rσ∂rW∂tW

−
∫
W 2

r
∂rσ∂tV

(1)
λ − 2

∫
∂tσ∂tV

(1)
λ

W∂tw

r
.



42 P. RAPHAËL AND I. RODNIANSKIAn expliit omputation from (2.6), (2.12) yields:
∂tV

(1)
λ = k

b

λ
(ΛQg′′(Q))λ, ∂tV

(2)
λ = k2 b

λ
(ΛQ[g′g′′ − gg′′′](Q))λ (6.15)and

V
(1)
λ ∂tV

(1)
λ − r

2
∂t∂rV

(1)
λ =

bk2

2λ
(ΛQ(g′g′′ − gg′′′)(Q))λ =

1

2
∂tV

(2)
λ ,and (6.12) follows.Remark 6.8. A fundamental feature of (6.12) is that the �rst term on the RHS of(6.12) whih ould not be treated perturbatively has a sign. Indeed, in the (WM)ase, g(u) = sin(u) and thus from (2.3):

3b

λ

∫
σW 2

r2

[
ΛQ

(
kg′′ +

k2

2
(g′g′′ − gg′′′)

)
(Q)

]

λ

= −3k2b

λ

∫
σ
W 2

r2
sin2(Q) < 0.In the (YM), we ompute from g(u) = 1

2(1 − u2) and (2.3):
3b

λ

∫
σW 2

r2

[
ΛQ

(
kg′′ +

k2

2
(g′g′′ − gg′′′)

)
(Q)

]

λ

= −3b

λ

∫
σ
W 2

r2
(1−Q)(1−Q2) < 0.For future referene, we reord here an estimate on ∂tV

(1)
λ :

|∂tV
(1)
λ (r)| .

b

λ

(
rk

1 + r2k

)

λ

, (6.16)whih applies in both the (WM) and (YM) ase. In the former, however, we alsohave a strengthened estimate
|∂tV

(1)
λ (r)| .

b

λ

(
r2k

1 + r4k

)

λ

, (6.17)whih follows from the vanishing properties of g(Q) = sin(Q). We an unify themin the following bound
|∂tV

(1)
λ (r)| .

b

λ

(
r2

1 + r4

)

λ

. (6.18)As a onsequene the last term on the LHS of (6.12) an be estimated as follows:
∣∣∣∣
∫
σ

2

r
∂tV

(1)
λ ∂twW

∣∣∣∣ .
b

λ

(∫
(∂tw)2

r2

) 1
2
(∫

W 2(
r4

1 + r8
)λ

) 1
2

. C(M)b (|∂tW |L2 + |A∗
λW |L2) |A∗

λW |L2 . C(M)
b

λ
E

.
b

1
4 E
λ2where we used (2.16), (B.19).We now aim at estimating all the terms in the RHS (6.12)step 3 Control of the boundary terms in σ.



43We treat the boundary terms in σ whih appear in the third line of the RHS(6.12). Observe from the expliit hoie of σBc with Bc = 2
b and (5.28) that

∂tσBc =
1

λ

[
b+

bs
b

]
(y∂yσ)(

r

λBc
) ≤ −b(1 − η)

λ
|∂yσ|(

r

λBc
),

|∂rσBc | =
1

λBc
|∂yσ|(

r

λBc
) ≤ b

2λ
|∂yσ|(

r

λBc
)and hene

∂tσBc ≤ −3

2
|∂rσBc |.This re�ets the fat that r = Cλb−1 are spae-like hypersurfaes for any hoie ofonstant C ≥ 1. Reall also from (2.14), (2.15) that

k2 + 1 + 2V
(1)
λ + V

(2)
λ ≥ 0and hene:

1

2

∫
∂tσ

[
(∂tW )2 + (∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2

]
−
∫
∂rσ∂rW∂tW

≤ −1

4

∫
∂tσ

[
(∂tW )2 + (∂rW )2

]
. (6.19)The other term is estimated by brute fore:

∣∣∣∣2
∫
∂tσ

W

r
∂tV

(1)
λ ∂tw

∣∣∣∣ .
b2

λ2

∫
W |∂tw|

r

(
r2

1 + r4

)

λ

.
b2

λ

(∫
(∂tw)2

r2

) 1
2

|A∗
λW |L2 . C(M)

b2

λ3
E

.
b

λ3
b

1
4 Ewhere we used (2.16), (B.19). Finally, observe that ΛQg′′(Q) ≤ 0 and ∂rσ ≤ 0imply that

−b
∫
∂rσ

W 2

r
(kΛQg′′(Q))λ ≤ 0.step 4 ∂ttV

(1)
λ terms.We ompute:

∂ttV
(1)
λ = k

bs + b2

λ2
(ΛQg′′(Q))λ + k2 b

2

λ2
(ΛQ(g′(Q)g′′(Q) + g(Q)g′′′(Q))λand hene using the bootstrap bound (5.28):

|∂ttV
(1)
λ | .

|bs| + b2

λ2

(
r2k

1 + r4k

)

λ

.
b2

λ2

(
r2k

1 + r4k

)

λ

(6.20)in the (WM) ase and
|∂ttV

(1)
λ | .

|bs| + b2

λ2

(
r2

1 + r4

)

λ

.
b2

λ2

(
rk

1 + r2k

)

λ

(6.21)for the (YM) k = 2 ase. We an unify them in the following bound:
|∂ttV

(1)
λ | .

b2

λ2

(
r2

1 + r4

)

λ

. (6.22)



44 P. RAPHAËL AND I. RODNIANSKIAs a onsequene, we obtain using (2.16), (B.11), (B.19):
∣∣∣∣∣

∫
σ∂ttV

(1)
λ

r
[w∂tW − 2W∂tw]

∣∣∣∣∣

.
b2

λ2

(∫
(∂tW )2

) 1
2
(∫

w2

(
r4

r2(1 + r8)

)

λ

) 1
2

+
b2

λ2

(∫
(∂tw)2

r2

) 1
2
(∫

W 2

(
r4

1 + r8

)

λ

) 1
2

.
b2

λ2
‖∂tW‖L2

(
λ2

∫
ε2

y4(1 + |logy|2)

) 1
2

+
b2

λ2

(
‖∂tW‖2

L2 + ‖A∗
λW‖2

L2

) 1
2
(
λ2‖A∗

λW‖L2

) 1
2

. C(M)
b2

λ

[∫
(∂tW )2 + (A∗

λW )2
]

. C(M)
b2

λ3
E .

b

λ3
b

1
4 E .step 5 Deomposition of FB1 terms.We now deompose the term involving FB1 , given by (4.10) in (6.12), as follows.We �rst write:

FB1 = F1 − ∂tF2 with F2 =
1

λ
(∂sPB1)λ. (6.23)Reall from Remark 4.1 that there is no satisfatory pointwise bound for bss andhene for ∂tF2. We thus have to integrate by parts in time:

−2

∫
σW

r
∂tV

(1)
λ FB1 +

∫
σ∂tWAλFB1

= −2

∫
σW

r
∂tV

(1)
λ (F1 − ∂tF2) +

∫
σ∂tWAλ(F1 − ∂tF2)

=
d

dt

{
2

∫
σW

r
∂tV

(1)
λ F2 −

∫
σ∂tWAλF2

}

− 2

∫
F2∂t(

σW

r
∂tV

(1)
λ ) +

∫
AλF2 (σ∂ttW + ∂tσ∂tW )

− 2

∫
σW

r
∂tV

(1)
λ F1 +

∫
σ∂tWAλF1 +

∫
σ∂tW

∂tV
(1)
λ

r
F2We then use the equation (4.13) to ompute:

∫
σAλF2∂ttW

= −
∫
σAλF2H̃λW +

∫
σAλF2

(
AλF1 −Aλ∂tF2 +

∂ttV
(1)
λ w

r
+

2∂tV
(1)
λ ∂tw

r

)

= −
∫

(A∗
λW )A∗

λ(σAλF2) +

∫
σAλF2

(
AλF1 +

∂tV
(1)
λ

r
F2 +

∂ttV
(1)
λ w

r
+

2∂tV
(1)
λ ∂tw

r

)

− d

dt

{
1

2

∫
σ(AλF2)

2

}
+

1

2

∫
∂tσ(AλF2)

2.



45We �nally arrive at the following identity:
−2

∫
σW

r
∂tV

(1)
λ FB1 +

∫
σ∂tWAλFB1 (6.24)

=
d

dt

{
2

∫
σW

r
∂tV

(1)
λ F2 −

∫
σ∂tWAλF2 −

1

2

∫
σ(AλF2)

2

}

− 2

∫
σW

r
∂tV

(1)
λ F1 +

∫
σ∂tWAλF1

−
∫
F2

[
2∂tσ

W

r
∂tV

(1)
λ + σ

∂tW

r
∂tV

(1)
λ + 2σ

W

r
∂ttV

(1)
λ

]

+

∫
σAλF2

[
AλF1 +

∂tV
(1)
λ

r
F2 +

∂ttV
(1)
λ w

r
+

2∂tV
(1)
λ ∂tw

r

]

+

∫
∂tσAλF2

[
∂tW +

1

2
AλF2

]
−
∫

(A∗
λW )A∗

λ(σAλF2)We now treat all terms on the RHS (6.24).step 6 F2 terms.In what follows we use the rude bounds:
|∂bPB1 | . yk

(1+yk)|logb|1y≤2B1 + 1
byk 1B0

2
≤y≤2B1

,

|∂b∂yPB1 | . yk−1

(1+yk)|logb|1y≤2B0 + 1
by1+k 1B0

2
≤y≤2B1

,
(6.25)We treat all F2 terms on the RHS of (6.24).First line in the RHS of (6.24): The rude bound |∂bPB1 |L∞ . 1 follows from(6.25). Therefore, from (5.31), (6.18):

∣∣∣∣
∫
σW

r
∂tV

(1)
λ F2

∣∣∣∣ .
b|bs|
λ2

(∫

r≤2λB1

σ
W 2

r2(1 + r2

λ2 )

) 1
2 (∫

y≤2B1

(
r4(1 + r2)

1 + r8

)

λ

) 1
2

.
|bs|b

√
|logb|

λ2

√
Eσ .

|bs|
λ2

√
Eσ

∣∣∣∣
∫
σ∂tWAλF2

∣∣∣∣ .
|bs|
λ

|
√
σ∂tW |L2

(∫ (
1

(1 + y2)log2b
1y≤2B1 +

1

b2y4
1B0

2
≤y≤2B1

)) 1
2

.
|bs|
λ

|
√
σ∂tW |L2 .

|bs|
λ2

√
Eσ,

∫
σ(AλF2)

2 .
|bs|2
λ2

∫ (
1

(1 + y2)log2b
1y≤2B1 +

1

b2y4
1B0

2
≤y≤2B1

)
≤ |bs|2

λ2
. (6.26)Third line in the RHS of (6.24): From (6.18):

∣∣∣∣
∫
F2∂tσ

W

r
∂tV

(1)
λ

∣∣∣∣ .
b2|bs|
λ3

(∫

2λBc≤r≤3λBc

W 2

r2(1 + (λr)2)

) 1
2
(∫

y≤2B1

(
r4(1 + r2)

1 + r8

)

λ

) 1
2

≤ b2|logb||bs|
λ2

|A∗
λW |L2 ≤ b

λ3

(
|bs|2 +

E
|logb|2

)
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∣∣∣∣
∫
F2σ

∂tW

r
∂tV

(1)
λ

∣∣∣∣ .
b|bs|
λ2

|
√
σ∂tW |L2

(∫

y≤2B1

(
r4

r2(1 + r8)

)

λ

) 1
2

≤ b|bs|
λ2

|
√
σ∂tW |L2 .

b

λ3
|bs|
√

Eσ,and from (6.22):
∣∣∣∣
∫
F2σ

W

r
∂ttV

(1)
λ

∣∣∣∣ .
|bs|b2
λ3

(∫

r≤3λBc

W 2

r2(1 + r2

λ2 )

) 1
2 (∫

y≤2B1

(
r4(1 + r2)

1 + r8

)

λ

) 1
2

≤ b2|logb||bs|
λ2

|A∗
λW |L2 .

b

λ3

(
|bs|2 +

E
|logb|2

)
.Fourth line in the RHS of (6.24): We leave aside the term involving F1 whih willbe treated in the next step. From (6.18):

∣∣∣∣∣

∫
σAλF2

∂tV
(1)
λ

r
F2

∣∣∣∣∣ .
b|bs|2
λ5

∫

y≤2B1

(
r2

r(1 + r4)

)

λ

≤ b

λ3
|bs|2.From (6.25):

∣∣∣∣∣

∫
σAλF2

∂ttV
(1)
λ w

r

∣∣∣∣∣ .
|bs|b2
λ4

(∫
w2

(
r4

r2(1 + r7)

)

λ

) 1
2
(∫

y≤2B1

(
1

(1 + r3)

)

λ

) 1
2

.
|bs|b2
λ4

(
λ2

∫
ε2

y4(1 + |logy|2)

) 1
2

. C(M)
|bs|b2
λ2

|A∗
λW |L2

.
b

λ3

(
|bs|2 +

E
|logb|2

)where we used (B.11) in the last steps. Finally, from (B.19) and with the help ofslightly stronger bounds
|∂bPB1 | .

yk

(1 + yk)|logb|
(b(1 + y))

1
2

1 + (b(1 + y))
1
2

1y≤2B1 +
1

byk
1B0

2
≤y≤2B1

,

|∂b∂yPB1 | .
yk−1

(1 + yk)|logb|
(b(1 + y))

1
2

1 + (b(1 + y))
1
2

1y≤2B0 +
1

by1+k
1B0

2
≤y≤2B1

,we obtain
∣∣∣∣∣

∫
σAλF2

∂tV
(1)
λ ∂tw

r

∣∣∣∣∣

.
b|bs|
λ2

(∫
(∂tw)2

r2

) 1
2
(∫

y≤2B1

y4

(1 + y8)

(
by

y2log2b
1y≤2B1 +

1

b2y4
1B0

2
≤y≤2B1

))1
2

. C(M)
b

3
2 |bs|

|logb|λ2

(
|∂tW |2L2 + |A∗

λW |2L2

) 1
2 .

b

λ3

(
|bs|2 +

E
|logb|2

)
.



47Fifth line in the RHS of (6.24): From (6.25):
∣∣∣∣
∫
∂tσAλF2[∂tW +

1

2
AλF2]

∣∣∣∣

.
b

1
2 |bs|
λ

5
2

|
√
∂tσ∂tW |L2

(∫

2Bc≤y≤3Bc

(
1

(1 + r2)log2b

)

λ

) 1
2

+
b2|bs|2
λ5

∫

2Bc≤y≤3Bc

(
1

1 + r2

)

λ

.

[
|
√
∂tσ∂tW |2L2

|logb| +
b|bs|2
λ3

]whih is absorbed thanks to (6.19).For the last term, we need to exploit an additional anellation in the ase k = 1.We ompute from (3.65):
A∗(σA∂bPB1) = σH(∂bPB1) + ∂yσA∂bPB1

= σH

(
χB1

∂b(b
2T1)

∂b
− ∂logB1

∂b

y

B1
χ′

B1
(Qb − π)

)
+ ∂yσA∂bPB1Using the estimate (3.61) on ∂bPB1 and its derivatives

∣∣∣∣
dm

dym

∂PB

∂b

∣∣∣∣ .
by1−m(1 + |logby|)

|logb| 1
y≤B0

2

+
1

b|logb|y1+m
1B0

2
≤y≤2B1

+
1

by1+m
1B1

2
≤y≤2B1

+ C(M)
b

1 + y1+m
,as well as (3.19) for T1, we an easily onlude that

A∗(σA∂bPB1) = σχB1

∂b(b
2HT1)

∂b
+

1

b|logb|y3
1B0

2
≤y≤2B1

+
1

by3
1B1

2
≤y≤2B1

δσ≡1We use that HT1 veri�es the equation
HT1 = −DΛQ+ cbΛQχB0

4

,whih immediately implies from DΛ( 1
y ) = 0 that |DΛQ| . y

1+y4 and
∂b(b

2HT1)

∂b
≤ by

1 + y3
+

by

(1 + y2)|logb|χB0
2As a onsequene,

|A∗(σA∂bPB1)| . σ

[
by

1 + y3
1y≤2B1 +

by

(1 + y2)|logb|1y≤2B1

]

+
1

b|logb|y3
1B0

2
≤y≤2B1

+
1

by3
1B1

2
≤y≤2B1

δσ≡1 (6.27)For σ ≡ 1, this yields:
∣∣∣∣
∫

(A∗
λW )A∗

λ(σAλF2)

∣∣∣∣

.
|bs|
λ2

|A∗
λW |L2

(∫

y≤2B1

b2y2

(1 + y6)
+

b2y2

(1 + y4)(logb)2
+

1

b2y6
1B1

2
≤y≤2B1

) 1
2

.
b|bs|
λ2

|A∗
λW |L2 .

b

λ3
|bs|

√
E .



48 P. RAPHAËL AND I. RODNIANSKIFor σ ≡ σBc , observe that (6.27) on the set y ≤ B0/2 is an improvement relative toa more straightforward estimate
|A∗(σA∂bPB1)| .

by(1 + |logby|)
(1 + y2)|logb| 1

y≤B0
2

+
1

b|logb|y3
1B0

2
≤y≤2B1

+C(M)
b

1 + y3
1y≤2B0whih follows from (3.61). Suh an estimate would imply that

∫
|A∗(σA∂bPB1)|2 . b2|logb|,as opposed to the improved bound
∫

|A∗(σA∂bPB1)|2 . b2 (6.28)We also note that (6.27) and thus (6.28) follow similarily from Proposition 3.3 forall k ≥ 2. Hene:
∣∣∣∣
∫

(A∗
λW )A∗

λ(σAλF2)

∣∣∣∣ .
|bs|
λ2

|A∗
λW |L2

(∫

B0
2
≤y≤2B1

1

b2|logb|2y6

) 1
2

+
|bs|
λ2

|
√
σA∗

λW |L2

(∫

y≤2B1

b2y2

(1 + y6)
1y≤2B1 +

b2y2

(1 + y4)(logb)2
1y≤2B1

) 1
2

.
b|bs|
λ2

(
|
√
σA∗

λW |L2 +
|A∗W |L2

|logb|

)
.

b

λ3

(
|bs|
√

Eσ + |bs|2 +
E

|logb|2
)In the last step, we used the inequality

(1 + V (1))2 . k2 + 1 + 2V (1) + V (2), (6.29)whih an be veri�ed by a diret omputation. Hene:
∫
σ(A∗

λW )2 =

∫
σ

[
∂rW +

1 + V
(1)
λ

r
W

]2

.

∫
σ

[
(∂rW )2 +

k2 + 1 + 2V
(1)
λ + V

(2)
λ

r2
W 2

]

. λ−2Eσ.step 7 F1 terms.We now turn to the ontrol of F1 terms appearing in the RHS (6.24). For this,we �rst split F1 into four di�erent omponents:
F1 = F1,1 + F1,2 + F1,3 −

1

λ2
(ΨB1)λ (6.30)with

F1,1 = − 1

λ2
[bΛ∂sPB1 + bsΛPB1 ]λ , F1,2 =

k2

r2
[
f ′(Q) − f ′(PB1)

]
λ
w, F1,3 =

k2

r2
N(w).

F1,1 terms: We estimate from Proposition 3.1
|ΛPB1 | .

byk

(1 + yk)|logb|1y≤2B1 +
yk

1 + y2k
1y≤2B1 (6.31)whih together with (6.25) yields:

| d
m

dym
F1,1| .

|bs|
λ2

(
byk−m

(1 + yk)|logb|1y≤2B1 +
yk−m

1 + y2k
1y≤2B1

)
, 0 ≤ m ≤ 1.



49Next, the anellation A(ΛQ) = 0 implies the bound
|AΛPB1 | .

byk−1

(1 + yk)|logb|1y≤2B1 +
1

yk+1
1B0

2
≤y≤2B1and thus:

|AλF1,1| .
|bs|
λ3

(
byk−1

(1 + yk)|logb|1y≤2B1 +
1

yk+1
1B0

2
≤y≤2B1

)
.From (5.31), (6.18):

∣∣∣∣
∫
σW

r
∂tV

(1)
λ F1,1

∣∣∣∣

.
|bs|b
λ3

(∫
σ

W 2

r2(1 + r2

λ2 )

) 1
2 (∫

y≤2B1

(
r4(1 + r2)

1 + r8

[
b2

|logb|2 +
r2k

1 + r4k

])

λ

) 1
2

.
b

λ3
|bs|
√

Eσ

∣∣∣∣
∫
σ∂tWAλF1,1

∣∣∣∣ .
|bs|
λ3

|
√
σ∂tW |L2

(∫

y≤2B1

(
b2

(1 + r2)log2b
+

1

r4
1B0

2
≤r≤2B1

)

λ

) 1
2

.
b|bs|
λ2

|
√
σ∂tW |L2 .

b

λ3
|bs|
√

Eσ,

∣∣∣∣
∫
σAλF2AλF1,1

∣∣∣∣ .
|bs|2
λ3

×
∫

1

y2

(
by

(1 + y)|logb|1y≤2B1 +
1

y
1B0

2
≤y≤2B1

)(
y

(1 + y)|logb|1y≤2B1 +
1

by
1B0

2
≤y≤2B1

)

.
|bs|2
λ3

∫

y≤2B1

(
b

(1 + y2)(logb)2

)
.

b

λ3
|bs|2.

F1,2 terms: Take note that the term F1,2 is not loalized inside the ball y ≤ 2B1.We �rst reall the estimate:
|PB1 −Q| = |(1−χB1)(a−Q)+χB1(Qb−Q)| . C(M)

b2yk

1 + y2k−2
1y≤2B1 +

1

yk
1

y≥B1
2

,whih follows from Proposition 3.1. It implies:
|f ′(PB1)−f ′(Q)| . |PB1−Q|

∫ 1

0
|f ′′(τPB1+(1−τ)Q)|dτ . C(M)

b2y2

1 + y2
1y≤2B1+

1

y2
1

y≥B1
2

.In the last inequality we used that for the (WM) problem |f ′′(π + R)| . R whilethe (YM) bound |f ′′(R)| . 1 only applies to the ase k = 2. Hene from (B.11):
∫

|AλF1,2|2 .
C(M)

λ3

∫

y≤2B1

b4
(

y

y2(1 + y2)

)2

|ε|2 +
C(M)

λ3

∫

y≤2B1

b4
(

y2

y2(1 + y2)

)2

|Aε|2

+
1

λ3

∫

y≥B1
2

|ε|2
y10

+
1

λ3

∫

y≥B1
2

|Aε|2
y8

.
C(M)

λ3

[
b4|A∗Aε|2L2 + b5|A∗Aε|2L2

]
. C(M)

b4

λ2
|A∗

λW |2L2. (6.32)



50 P. RAPHAËL AND I. RODNIANSKIThis implies:
∣∣∣∣
∫
σW

r
∂tV

(1)
λ F1,2

∣∣∣∣ .
b

λ

∫ |wW |
r

(
y2

1 + y4

)

λ

1

r2

[
C(M)

b2y2

1 + y2
1y≤B +

1

y2
1y≥B

]

λ

. C(M)
b3

λ3

∫ |εAε|
1 + y5

. C(M)
b3

λ3

(∫ |Aε|2
1 + y5

) 1
2
(∫ |ε|2

1 + y5

) 1
2

. C(M)
b3

λ
|A∗

λW |2L2

. C(M)
b3

λ3
E .

b

λ3
bEfrom (B.11). Similarily, from (6.32):

∣∣∣∣
∫
σ∂tWAλF1,2

∣∣∣∣ . C(M)
b2

λ
|A∗

λW |L2 |
√
σ∂tW |L2 . C(M)

b2

λ3

√
EEσ .

b

λ3
b

1
2E .Finally, from (6.32):

∣∣∣∣
∫
σAλF2AλF1,2

∣∣∣∣ . C(M)
b2

λ2
|A∗

λW |L2 |bs|
(∫

y≤2B1

1

1 + y

) 1
2

. C(M)
b

3
2

√
|logb||bs|
λ2

|A∗
λW |L2 . b

b
1
4 |bs|
λ3

√
E

.
b

λ3
(|bs|2 + b

1
2E).

F1,3 terms: We now turn to the ontrol of the nonlinear term. In this setion wewill also use the bootstrap assumption (5.34) in the form:
λ2
(
|A∗W |2L2 + |∂tW |2L2

)
≤ Cb4 (6.33)for some positive onstant C. We may assume that C is dominated by the onstant

C(M), whih in turn, as before, an be assumed to satisfy C(M) < η−
1
10 .We laim the following preliminary nonlinear estimates:

∫ |w|4
r4

≤ η
1
2 |A∗

λW |2L2 (6.34)and ∫

r≤3λB1

|w|4
r4

≤ b
3
2 |A∗

λW |2L2. (6.35)Proof of (6.34), (6.35): We rewrite
∫ |w|4

r4
=

1

λ2

∫ |ε|4
y4and split the integral in three zones. Near the origin, we rewrite:

Aε = −∂yε+
V (1)

y
ε = −y∂y

(
ε

y

)
+
V (1) − 1

y
εfrom whih:

∫

y≤1

∣∣∣∣∂y

(
ε

y

)∣∣∣∣
2

.

∫

y≤1

(Aε)2

|y|2 +

∫

y≤1

|V (1) − 1|2
y4

ε2.



51We now estimate for k ≥ 2 from (2.16), (B.9):
∫

y≤1

(Aε)2

|y|2 +

∫

y≤1

|V (1) − 1|2
y4

ε2 .

∫
(Aε)2

|y|2 +

∫

y≤1

ε2

y4
. C(M)

∫
(Aε)2

y2

. C(M)|A∗Aε|2L2 .In the k = 1 ase, we use the anellation |V (1)(y) − 1| . y (in fat y2) for y ≤ 1and (2.16), (B.11):
∫

y≤1

(Aε)2

|y|2 +

∫

y≤1

|V (1) − 1|2
y4

ε2 .

∫

y≤1

(Aε)2

|y|2 +

∫

y≤1

ε2

y2
. C(M)|A∗Aε|2L2 .We thus onlude from the standard interpolation estimates

∫

y≤1

(ε)4

y4
.

[∫

y≤2

∣∣∣∣∂y

(
ε

y

)∣∣∣∣
2

+

∫

y≤2

(ε)2

y2

]∫

y≤2

(ε)2

y2
. |A∗Aε|4L2

. C(M)b4|A∗Aε|2L2 . b
3
2 |A∗Aε|2L2 (6.36)where we used (B.11) and (6.33) in the last step. For 1 ≤ y ≤ 4B1, we have from(B.2), (B.11) and (6.33) that:

|ε|2L∞(1≤y≤4B1) . B2
1 |logb|2|A∗Aε|2L2 . C(M)b2|logb|4 (6.37)and hene:

∫

1≤y≤4B1

|ε|4
y4

. |ε|2L∞(1≤y≤4B1)

∫

y≤4B1

ε2

y4
. C(M)b2|logb|6|A∗Aε|2L2

≤ C(M)b
5
3 |A∗Aε|2L2 . b

3
2 |A∗Aε|2L2 (6.38)where we used (B.11). This onludes the proof of (6.35). It remains to ontrol theintegral in (6.34) for y ≥ 4B. For k ≥ 2, we have from (B.9), the orbital stabilitybound (6.1) and (2.16):

∫ |ε|4
y4

. |ε|2L∞

∫ |ε|2
y4

. C(M)η|A∗Aε|2L2whih yields (6.34) for k ≥ 2. For k = 1, we need to deal with the logarithmi lossesin (B.11) and have to sharpen the ontrol. We argue as follows. Let ψB1(y) = ψ( y
B1

)be a ut-o� funtion with ψ(y) = 0 for y ≤ 1 and ψ(y) = 1 for y ≥ 2. We ompute:
∫
ψB1

(ε)4

y4
= −1

2

∫
ψB1(ε)

4∂y

(
1

y2

)
dy =

1

2

∫
1

y3

[
(ε)4∂yψB1 + 4ψB1(ε)

3∂yε
]

≤ C

∫

B1≤y≤2B1

(ε)4

y4
+ 2

∫
ψB1

(ε)3

y3

[
V1

y
ε−Aε

]

≤ C

∫

B1≤y≤2B1

(ε)4

y4
+ C|ε|2L∞

∫
ψB1

|ε|2
y5

− 2

∫
ψB1

(ε)3

y3

[
1

y
ε+Aε

]

≤ C(M)η2|A∗Aε|2L2 − 2

∫
ψB1

(ε)3

y3

[
1

y
ε+Aε

]



52 P. RAPHAËL AND I. RODNIANSKIwhere we used that |V1(y)+1| . 1
y (in fat 1

y2 ) for y ≥ 1, the orbital stability bound(6.1)and (B.11), (6.38). We now use Hölder and Sobolev inequalities to derive:
3

∫
ψB

(ε)4

y4
. C(M)η2|A∗Aε|2L2 +

∫
ψB1

(ε)3

y3
|Aε| . η|A∗Aε|2L2 +

(∫
ψB1

(ε)4

y4

) 3
4

|Aε|L4

. η|A∗Aε|2L2 +

(∫
ψB1

(ε)4

y4

)3
4

|Aε|
1
2

L2 |∇(Aε)|
1
2

L2

. η

(∫
ψB1

(ε)4

y4
+ |A∗Aε|2L2

)where we used the orbital stability bound (6.1)whih implies
|Aε|2L2 . |∇ε|2L2 + | ε

y
|2L2 . η2.This onludes the proof of the global bound (6.34) for k = 1.We now laim the following ontrols:∫

|F1,3|2 . η
1
2 |A∗

λW |2L2, (6.39)
∫

r≤3λB
|F1,3|2 . b

3
2 |A∗

λW |2L2, (6.40)
∫

|∂tF1,3|2 .
b2b

3
2

λ2
|A∗

λW |2L2 , (6.41)Proof of (6.39), (6.40), (6.41): First reall the formula:
F1,3 =

k2

r2
[
f((PB1)λ + w) − f((PB1)λ) − f ′((PB1)λ)w

]
.We thus derive the rude bound

|F1,3| .
|w|2
r2and hene (6.39), (6.40) diretly follow from (6.34), (6.35). Next, we ompute:

∂tF1,3 =
k2

r2
∂t(PB1)λ

[
f ′((PB1)λ + w) − f ′((PB1)λ) − f ′′((PB1)λw

]

+
1

r2
∂tw

[
f ′((PB1)λ + w) − f ′((PB1)λ)

]whih yields the bound:
|∂tF1,3| .

1

r2
|∂t(PB1)λ||w|2 +

1

r2
|f ′′((PB1)λ)||w||∂tw| +

1

r2
|∂tw||w|2.We now square this identity, integrate and estimate all terms. From (6.25), (6.31),(5.28):

|∂t(PB1)λ|L∞ .
1

λ

∣∣∣∣
(
bs
∂PB1

∂b
+ bΛPB1

)

λ

∣∣∣∣ | .
|bs| + b

λ
.
b

λ
,and thus from (6.34):

∫ |∂t(PB1)λ|2|w|4
r4

.
b2

λ2

∫

r≤2λB1

|w|4
r4

.
b2b

3
2

λ2
|A∗

λW |2L2,Next, we have from (B.19):
|∂tw|2L∞ . |∇∂tw|L2 |∂tw

r
|L2 . C(M)

(
|A∗

λW |2L2 + |∂tW |2L2

)
. (6.42)



53For k ≥ 2, we then use the fat that |f ′′(PB1)| . 1 and is supported in y ≤ 2B1,with additional help of (6.33) and (B.9) followed by (5.30) to estimate:
∫

1

r4
|f ′′((PB1)λ)|2|w|2|∂tw|2 . C(M)

(
|A∗

λW |2L2 + |∂tW |2L2

) 1

λ2

∫

y≤2B

1

y4
|ε|2

. C(M)
b4

λ4
|A∗Aε|2L2 .

b2b
3
2

λ2
|A∗

λW |2L2 .For k = 1, we use the improved bound |f ′′(PB1(y))| . y
1+y2 and (B.11):

∫
1

r4
|f ′′((PB1)λ)|2|w|2|∂tw|2 . C(M)

(
|A∗

λW |2L2 + |∂tW |2L2

) 1

λ2

∫

1≤y≤2B

y2

y4(1 + y4)
|ε|2

. C(M)
b4

λ4
|A∗Aε|2L2 .

b2b
3
2

λ2
|A∗

λW |2L2 .Finally, from (6.34) and (6.42):
∫ |∂tw|2|w|4

r4
. C(M)η

1
2
(
|A∗

λW |2L2 + |∂tW |2L2

) ∫ |w|4
r4

. C(M)
b4

λ2
|A∗

λW |2L2 .
b2b

3
2

λ2
|A∗

λW |2L2 .This onludes the proof of (6.41).We are now in position to ontrol the F1,3 terms in (6.24). First from (6.39),(B.1):
∣∣∣∣
∫
W

r
∂tV

(1)
λ F1,3

∣∣∣∣ .
b

λ2
|F1,3|L2

(∫ (
r4

r2(1 + r8)

)

λ

W 2

)1
2

. η
1
4
b

λ
|A∗

λW |2L2 .
b

λ3
η

1
4E , (6.43)

∣∣∣∣
∫
σBc

W

r
∂tV

(1)
λ F1,3

∣∣∣∣ .
b

λ2
|F1,3|L2(r≤3λBc)

(∫ (
r4

r2(1 + r8)

)

λ

W 2

) 1
2

.
bb

3
4

λ
|A∗

λW |2L2 .
b

λ3
b

3
4 E (6.44)The seond term in (6.24) requires an integration by parts in time:

∫
σ∂tWAλF1,3 =

d

dt

{∫
σWAλF1,3

}
−
∫
W

[
σAλ∂tF1,3 + σ

∂tV
(1)
λ

r
F1,3 + ∂tσAλF1,3

]

=
d

dt

{∫
F1,3 [σA∗

λW + ∂rσW ]

}
−
∫
∂tF1,3 [σA∗

λW + ∂rσW ] −
∫
σ
W

r
∂tV

(1)
λ F1,3

−
∫
F1,3

[
∂tσA

∗
λW + ∂2

rtσW
]
.ase σ ≡ 1: From (6.39):

∣∣∣∣
∫
F1,3A

∗
λW

∣∣∣∣ . η
1
4 |A∗

λW |2L2 .
η

1
4E
λ2

.From (6.41) and (6.43):
∣∣∣∣
∫
∂tF1,3A

∗
λW

∣∣∣∣+
∣∣∣∣
∫
W

r
∂tV

(1)
λ F1,3

∣∣∣∣ . η
1
4
b

λ
|A∗

λW |2L2 .
b

λ3
η

1
4 E .



54 P. RAPHAËL AND I. RODNIANSKIase σ = σBc : From (6.40),
∣∣∣∣
∫
σBcF1,3A

∗
λW

∣∣∣∣ . b
3
4 |A∗

λW |2L2 .
b

3
4 E .
λ2

.From (6.40) and (B.1):
∣∣∣∣
∫
F1,3∂rσBcW

∣∣∣∣ . b
3
4 |A∗

λW |L2

(∫

λBc≤r≤3λBc

W 2

r2

) 1
2

. b
3
4 |logb||A∗

λW |2L2

. b
1
2 |A∗

λW |2L2 .
b

1
2 E
λ2

.Arguing similarily from (6.41) and (B.1) yields:
∣∣∣∣
∫
∂tF1,3 [σBcA

∗
λW + ∂rσBcW ]

∣∣∣∣ .
bb

3
4

λ
|A∗

λW |2L2 +
bb

3
4

λ
|A∗

λW |L2

(∫

λ≤r≤3λB

W 2

r2

) 1
2

.
bb

1
2

λ
|A∗

λW |2L2 .
b

λ3
b

1
2E .From (6.44):

∣∣∣∣
∫
σBc

W

r
∂tV

(1)
λ F1,3

∣∣∣∣ .
bb

3
4

λ
|A∗

λW |2L2 .
b

λ3
b

3
4 E .From (6.40):

∣∣∣∣
∫
F1,3∂tσA

∗
λW

∣∣∣∣ .
b

λ

(∫

r≤3λBc

|F1,3|2
)1

2

|A∗
λW |L2 .

bb
3
4

λ
|A∗

λW |2L2 .
b

λ3
b

3
4E ,

∣∣∣∣
∫
F1,3∂

2
trσW

∣∣∣∣ .
b

λ

(∫

r≤3λBc

|F1,3|2
) 1

2
(∫

λ≤r≤3λBc

W 2

r2

) 1
2

| .
bb

3
4 |logb|
λ

|A∗
λW |2L2

.
bb

1
2

λ
|A∗

λW |2L2 .
b

λ3
b

1
2 E .The last F1,3 term to bound in (6.24) is estimated for the either hoie of σ ≡ 1 and

σ = σBc with the help of (6.28), using (6.40) and the fat that F2 is supported in
y ≤ 2B1:
∣∣∣∣
∫
σAλF2AλF1,3

∣∣∣∣ =

∣∣∣∣
∫
F1,3A

∗
λ(σAλF2)

∣∣∣∣ .
|bs|
λ3

|F1,3|L2(r≤2λB1)|A∗
λ(σAλ∂bPB1)|L2(r≤2λB1)

.
|bs|bb

3
4

λ2
|A∗

λW |L2 .
b

λ3
|bs|b

3
4

√
E .

b

λ3
(|bs|2 + b

3
2E).step 8 F1 terms involving ΨB1 .We now turn to the ontrol of the leading order term on the RHS of (6.24) whihis given by ΨB1 in the deomposition (6.30). These estimates will be sensitive to thehoie of σ ≡ 1 or σ = σBc with a deisive improvement in the latter ase. Indeed,

σBcΨB1 = σBcΨbAs a onsequene, the slowly deaying leading order �ux terms, loalized around
y ∼ B1, in the estimates of Proposition 3.3 disappear.



55ase k even, k ≥ 4: We estimate from (3.56), (5.30):
∣∣∣∣
∫
σW

r
∂tV

(1)
λ

(ΨB1)λ
λ2

∣∣∣∣ .
b

λ2

(∫
W 2

r2

) 1
2
(∫

|ΨB1 |2
y4

1 + y8

) 1
2

.
b

λ2
|A∗

λW |L2

(∫
y4

1 + y8

[
bk+4yk

1 + yk+1
1y≤2B1 + bk+2

1B1≤y≤2B1

]2
)1

2

.
bk+3

λ2
|A∗

λW |L2 .
b

λ3
bk+2

√
E (6.45)Next, there holds from (3.56):

∫ [
Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ4

∫

y≤2B

1

y2

[
bk+4yk

1 + yk+1
1y≤2B1 + bk+2

1B1≤y≤2B1

]2

.
b2k+4

λ4
,

∫
σBc

[
Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ4

∫

y≤2Bc

1

y2

[
bk+4yk

1 + yk+1
1y≤2B1

]2

.
b2k+8

λ4
,from whih:

∣∣∣∣
∫
∂tWAλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
bk+2

λ2
|∂tW |L2 .

b

λ3
bk+1

√
E ,

∣∣∣∣
∫
σ∂tWAλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
bk+4

λ2
|
√
σ∂tW |L2 .

b

λ3
bk+3

√
Eσ.Finally, we derive from (6.25) the rude bound valid for all k ≥ 1:

|AλF2| .
|bs|
λ2

(
1

1 + y
1y≤2B1

) (6.46)whih yields:
∣∣∣∣
∫
AλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
|bs|
λ3

∫

y≤2B1

1

y(1 + y)

[
bk+4yk

1 + yk+1
1y≤2B1 + bk+2

1B1≤y≤2B1

]

.
bk+2|bs|
λ3

.
b

λ3
[b2k+2 + |bs|2],

∣∣∣∣σBc

∫
AλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
|bs|
λ3

∫

y≤2Bc

1

y(1 + y)

[
bk+4yk

1 + yk+1

]

.
bk+4|bs|
λ3

.
b

λ3
[b2k+6 + |bs|2].ase k odd, k ≥ 3: We estimate from (3.58):

∣∣∣∣
∫
σW

r
∂tV

(1)
λ

(ΨB1)λ
λ2

∣∣∣∣ .
b

λ2

(∫
W 2

r2

) 1
2
(∫

|ΨB1 |2
y4

1 + y8

) 1
2

.
b

λ2
|A∗

λW |L2

(∫
y4

1 + y8

[
bk+3yk

1 + yk+2
1y≤2B1 +

bk+1

y
1B1≤y≤2B1

]2
) 1

2

.
bk+3

λ2
|A∗

λW |L2 .
b

λ3
bk+2

√
E



56 P. RAPHAËL AND I. RODNIANSKINext, from (3.58) there holds:
∫ [

Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ3

∫

y≤2B1

1

y2

[
bk+3 yk

1 + yk+2
1y≤B1 +

bk+1

1 + y
1B1≤y≤2B1

]2

.
b2k+4

λ3
,

∫
σBc

[
Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ3

∫

y≤2B1

1

y2

[
bk+3yk

1 + yk+2
1y≤B

]2

.
b2k+6

λ3
,from whih: ∣∣∣∣

∫
∂tWAλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
bk+2

λ2
|∂tW |L2 .

b

λ3
bk+1

√
E ,

∣∣∣∣
∫
σBc∂tWAλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
bk+3

λ2
|√σBc∂tW |L2 .

b

λ3
bk+2

√
Eσ.Finally, from (6.46):

∣∣∣∣
∫
AλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣

.
|bs|
λ3

∫

y≤2B1

1

y(1 + y)

[
bk+3yk

1 + yk+2
1y≤2B1 +

bk+1

y
1B1≤y≤2B1

]

.
bk+2|bs|
λ3

.
b

λ3
[b2k+2 + |bs|2].

∣∣∣∣σ
∫
AλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
|bs|
λ3

∫

y≤2B1

1

y(1 + y)

[
bk+3yk

1 + yk+2

]

.
bk+3|bs|
λ3

.
b

λ3
[b2k+4 + |bs|2].ase k = 2: The hain of estimates (6.45) is still valid even taking into aountthe term cbb

4ΛQ in (3.60) and leads to:
∣∣∣∣
∫
σW

r
∂tV

(1)
λ

(ΨB1)λ
λ2

∣∣∣∣ .
bk+3

λ2
|A∗

λW |L2 .
b

λ3
bk+2

√
E .Next, we use in a ruial way the anellation

A(ΛQ) = 0to onlude from (3.60) that for k = 2:
∫ [

Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ3

∫

y≤2B1

1

y2

[
C(M)bk+4 yk

1 + yk+1
1y≤2B1 + bk+2

1B1≤y≤2B1

]2

.
b2k+4

λ4
,

∫
σBc

[
Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ3

∫

y≤2B1

1

y2

[
C(M)

bk+4yk

1 + yk+1
1y≤2B1

]2

.
b2k+7

λ4
.Observe that without the anellation we would expet to have an additional term

b4yk

1+yk+2 1y≤2B1 , whih would not disappear after appliation of the ut-o� funtion
σBc and therefore destroy the extra gain in the loalized estimate. Thus:

∣∣∣∣
∫
∂tWAλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
bk+2

λ2
|∂tW |L2 .

b

λ3
bk+1

√
E ,
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∣∣∣∣
∫
σ∂tWAλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
bk+7/2

λ2
|
√
σ∂tW |L2 .

b

λ3
bk+2

√
Eσ.Finally, using (6.46):

∣∣∣∣
∫
AλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
|bs|
λ3

∫
1

y(1 + y)

∣∣∣∣C(M)
bk+4yk

1 + yk+1
1y≤2B1 + bk+2

1B1≤y≤2B1

∣∣∣∣

.
|bs|bk+2

λ3
.

b

λ3
[b2k+2 + |bs|2],

∣∣∣∣σ
∫
AλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
|bs|
λ3

∫
1

y(1 + y)

∣∣∣∣C(M)
bk+4yk

1 + yk+1

∣∣∣∣

.
|bs|bk+3

λ3
.

b

λ3
[b2k+4 + |bs|2].ase k = 1: We estimate from (3.62):

∣∣∣∣
∫
σW

r
∂tV

(1)
λ

(ΨB1)λ
λ2

∣∣∣∣ .
b

1
2

λ
3
2

(∫
σ
W 2

r2
|∂tV

(1)
λ |
) 1

2
(∫

|ΨB1|2
y2

1 + y4

) 1
2

. c

∫
σ
W 2

r2
|∂tV

(1)
λ | + b

cλ3

∫
y2

1 + y4

[
b2

y
1B1≤y≤2B1 +

b2

|logb|
y

1 + y2

]2

. c

∫
σ
W 2

r2
|∂tV

(1)
λ | + b

λ3

b4

c|logb|2 .for some small universal onstant c > 0. By the Remark 6.8 the �rst term on theRHS above an be absorbed in the energy identity (6.12).Next, we use again the fundamental anellation:
|A(χB0

4

ΛQ)| .
1

y2
1B0

8
≤y≤B0

2whih implies from (3.62) and cb ∼ 1
|logb| :

∫ [
Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ4

∫

y≤2B1

1

y2

[
b2

y
1B1≤y≤2B1 + C(M)b4

y

1 + y4
+ b4

(1 + |log(by)|)
|logb| y1

1≤y≤B0
2

+
b2

|logb|y1B0
2
≤y≤2B1

]2

.
b6

λ4
,

∫
σBc

[
Aλ

(
(ΨB1)λ
λ2

)]2

.
1

λ4

∫

y≤2B

1

y2

[
C(M)b4

y

1 + y4
+ b4

(1 + |log(by)|)
|logb| y1

1≤y≤B0
2

+
b2

|logb|y1B0
2
≤y≤3Bc

]2

.
b6

|logb|2λ4
,from whih: ∣∣∣∣
∫
∂tWAλ

(
(ΨB1)λ
λ2

)∣∣∣∣ .
b3

λ2
|∂tW |L2 .

b

λ3
b2
√
E ,

∣∣∣∣
∫
σ∂tWAλ

(
(ΨB)λ
λ2

)∣∣∣∣ .
b3

|logb|λ2
|
√
σ∂tW |L2 .

b

λ3

b2
√
Eσ

|logb| .
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∣∣∣∣
∫
AλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣

.
|bs|
λ3

∫
1

y(1 + y)

[
b2

y
1B1≤y≤2B1 + C(M)b4

y

1 + y4
+ b4

(1 + |log(by)|)
|logb| y1

1≤y≤B0
2

+
b2

|logb|y1B0
2
≤y≤2B1

]
.

|bs|b3
λ3

.
b

λ3
[b4 + |bs|2],

∣∣∣∣
∫
σBcAλF2Aλ

(
(ΨB1)λ
λ2

)∣∣∣∣

.
|bs|
λ3

∫

y≤2Bc

1

y(1 + y)

[
C(M)b4

y

1 + y4
+ b4

(1 + |log(by)|)
|logb| y1

1≤y≤B0
2

+
b2

|logb|y1B0
2
≤y≤2B1

]

.
|bs|b3

|logb|λ3
.

b

λ3
[

b4

|logb|2 + |bs|2]Note the sharpness of the above estimate. Its most signi�ant ontribution is gen-erated by the seond term in the square brakets above.step 9 Conlusion.The olletion of all previous estimates now yields the laimed bounds (6.10),(6.11) and onludes the proof of Lemma 6.5.6.3. Proof of Proposition 5.6. We are now in position to omplete the proof ofProposition 5.6. The key will be to ombine the a priori bound on the blow upaeleration given by Lemma 6.3 with the information provided in (6.10), (6.11).The smallness of the oupling onstant (logM)−1 in Lemma 6.3, linking the behav-ior of the blow aeleration bs with the pointwise behavior of the loal energy Eσ,provides the mehanism allowing us to ombine the two estimates and obtain thedesired bounds. Equally ruial to this strategy is independene of the onstants in(6.10), (6.11) on M noted in the Remark 6.6.step 1 Control of the saling parameter.We begin with the proof of (5.32). First observe from (6.3) and the bootstrapestimate (5.28) that
|bs| ≤ K

b2

|logb| ≤
b2

100k
(6.47)This implies::

d

ds

(
bk+2

λ

)
=
bk+1

λ

[
b2 + (k + 2)bs

]
≥ 0and hene from (5.5):

bk+2(t)

λ(t)
≥ bk+2(0)

λ(0)
≥ 1and (5.32) follows. We derive similarily

bk+1(0)

λ(0)
≤ bk+1(t)

λ(t)
, (6.48)

bk+1(0)

|logb(0)|λ(0)
≤ bk+1(t)

|logb(t)|λ(t)
, b2k+2(0)

λ2(t)

λ2(0)
≤ b2k+2(t) (6.49)



59step 2 Bound on the global energy.We now turn to the proof of (5.34).In this ase we use the bootstrap assumptions (5.28), (5.29) to obtain from (6.10)
E(t)

λ2(t)
.

E(0)

λ2(0)
+

∫ t

0

√
K
b2k+3

λ3
+
b2k+2(t)

λ2(t)
+
b2k+2(0)

λ2(0)
. (6.50)Note that we used the inequalities η 1

4K ≤ 1 and |logb|−1K ≤ 1. We then derivefrom (6.47):
∫ t

0

b2k+3

λ3
= −

∫ t

0

λtb
2k+2

λ3
=
b2k+2(t)

2λ2(t)
− b2k+2(0)

2λ2(0)
− (k + 1)

∫ t

0

btb
2k+1

λ2

≤ b2k+2(t)

λ2(t)
+ (k + 1)

∫ t

0

|bs|b2k+1

λ2

≤ b2k+2(t)

λ2(t)
+

1

2

∫ t

0

b2k+3

λ3and hene the bound: ∫ t

0

b2k+3

λ3
≤ 2

b2k+2(t)

λ2(t)
. (6.51)Note that the above inequality holds is derived under the assumptions of the regimeunder onsideration. We now insert (6.51) into (6.50) and use (6.48) to onlude:

∀t ∈ [0, T1),
E(t) .

λ2(t)

λ2(0)
E(0) +

√
Kb2k+2(t) + b2k+2(0)

λ2(t)

λ2(0)

.
λ2(t)

λ2(0)
E(0) +

√
Kb2k+2(t). (6.52)Observe now from the initial bound (5.15) and (6.49):

λ2(t)

λ2(0)
E(0) .

λ2(t)

λ2(0)

b2k+2
0

|logb0|2
.

b2k+2(t)

|logb(t)|2and thus (6.52) implies:
E(t) .

√
Kb2k+2(t). (6.53)This yields (5.34) for K large enough.step 3 Bound on the loal energy and bs.First observe from the bs bound (6.4) and the bootstrap bound (5.29) that

|bs|2 .
b2k+2

|logb|2
(

1 +
K

logM

)whih implies (5.33). We now substitute (5.33), (5.34) and the improved bound(6.53) into (6.11) and integrate in time to get:
Eσ(t)

λ2(t)
.

E(0)

λ2(0)
+

∫ t

0

b2k+3

|logb|2λ3

(
1 +

√
K +

K√
logM

)

+
b2k+2(t)

log2b(0)λ2(t)
+

b2k+2(0)

log2b(0)λ2(0)
. (6.54)



60 P. RAPHAËL AND I. RODNIANSKIWe now estimate from (6.47):
∫ t

0

b2k+3

|logb|2λ3
= −

∫ t

0

λtb
2k+2

|logb|2λ3
.

b2k+2(t)

2|logb(t)|2λ2(t)
+ (k + 1)

∫ t

0

|bs|b2k+1

|logb|2λ2

≤ b2k+2(t)

|logb(t)|2λ2(t)
+

1

2

∫ t

0

b2k+3

|logb|2λ3and substitute this into (6.54) together with (5.14), (5.27) to get:
Eσ(t) .

(
1 +

√
K +

K√
logM

)
b2k+2(t)

|logb(t)|2 ≤ K

2

b2k+2(t)

|logb(t)|2for K = K(M) large enough, and (5.35) follows.step 4 Finite time blow up.We now have proved that T1 = T . It remains to prove that T < +∞. From(5.27), the saling parameter satis�es the pointwise di�erential inequality
− λt = b ≥ λ

1
k+1 ≥

√
λ (6.55)from whih:

∀t ∈ [0, T ), −2
√
λ(t) + 2

√
λ(0) ≥ t.Positivity of λ implies T < +∞.This onludes the proof of Proposition 5.6.7. Sharp desription of the singularity formationThis setion is devoted to the proof of Theorem 1.1. We will provide a preisedesription of the dynamis of the parameter b and the saling parameter λ, asrequired in (1.11)-(1.12). In partiular, we will prove that b → 0 as t → T , whihtogether with (5.34), (5.35) implies dispersion of the exess of energy at the blow uptime. These estimates are ruial for the proof of the quantization of the blow upenergy as stated in (1.13). The �rst step of the proof relies on a �ux omputationleading to a sharp di�erential inequality for the parameter b. The leading ontribu-tion to the �ux is provided by an expliit behavior of the radiative part of the Qbpro�le. To identify it as a leading ontribution we exploit the logarithmi gain inthe loal energy bound (5.35). This analysis an be thought of as related to the L2�ux alulation in [28℄ leading to the log−log blow up law for the L2 ritial (NLS).7.1. The �ux omputation and the derivation of the bs law. In this setion wederive the preise behavior of the parameter b(t) modulo negligible time osillations.This is ahieved by re�ning the analysis of Lemma 6.3 and projeting the ε equation(4.4) onto the instability diretion of the linearized operator HB0 assoiated to PB0 .De�ne

G(b) = b|ΛPB0 |2L2 +

∫ b

0
b̃(
∂PB0

∂b
,ΛPB0)db̃. (7.1)and

I(s) = (∂sε,ΛPB0)+b(ε+2Λε,ΛPB0)+bs(
∂PB0

∂b
,ΛPB0)−bs

(
∂

∂b
(PB1 − PB0),ΛPB0)

)
.(7.2)We laim:



61Proposition 7.1 (Sharp derivation of the b law). For b ≤ b∗0 small enough, thereholds:
G(b) =

{
b|ΛQ|2L2(1 + o(1)) for k ≥ 2,
4b|logb| +O(b) for k = 1.

(7.3)and
|I| .

{
b2|logb| for k ≥ 2,
b for k = 1.

(7.4)The funtions G,I satisfy the following di�erential inequalities:
∣∣∣∣
d

ds
{G(b) + I(s)} + c̃kb

2k

∣∣∣∣ ≤
b2k

|logb| (7.5)with
c̃k =





c2p
2 for k odd, k ≥ 3,
k2c2p

2 for k even
2 for k = 1.

(7.6)Remark 7.2. Observe that (7.3), (7.4), (7.5) essentially yield a pointwise di�eren-tial equation
bs ∼ −

{
b2k for k ≥ 2

b2

2|logb| for k = 1.whih will allow us to derive the sharp saling law via the relationship −λs

λ = b.Note also that for k ≥ 2, with a little bit more work, the logarithmi gain in theRHS of (7.5) may be turned into a polynomial gain in b.Proof of Proposition 7.1We multiply (4.4) with ΛPB0 � the instability diretion of HB0 � and ompute:
(bsΛPB1 + b(∂sPB1 + 2Λ∂sPB1) + ∂2

sPB1 ,ΛPB0) = −(ΨB1 ,ΛPB0) − (HB1ε,ΛPB0)

−
(
∂2

sε+ b(∂sε+ 2Λ∂sε) + bsΛε,ΛPB0

)
− k2(

N(ε)

y2
,ΛPB0)We further rewrite this as follows:

(bsΛPB0 + b(∂sPB0 + 2Λ∂sPB0) + ∂2
sPB0 ,ΛPB0) = −(ΨB1 ,ΛPB0) − (HB1ε,ΛPB0)

− (bsΛ(PB1 − PB0) + b(∂s(PB1 − PB0) + 2Λ∂s(PB1 − PB0)) + ∂2
s (PB1 − PB0),ΛPB0)

−
(
∂2

sε+ b(∂sε+ 2Λ∂sε) + bsΛε,ΛPB0

)
− k2(

N(ε)

y2
,ΛPB0) (7.7)We now estimate all terms in the above identity.step 1 Transformation of the LHS of (7.7).We laim that the LHS of (7.7) may be rewritten as follows:

(bsΛPB0 + b(∂sPB0 + 2Λ∂sPB0) + ∂2
sPB0 ,ΛPB0)

=
d

ds

[
G(b) + bs(

∂PB0

∂b
,ΛPB0)

]
+ |bs|2|

∂PB0

∂b
|2L2 (7.8)with G given by (7.1) and the bound:

|bs|2|
∂PB0

∂b
|2L2 .

b2k

|logb|2 . (7.9)



62 P. RAPHAËL AND I. RODNIANSKIProof of (7.8) Let
φ(t, y) = (PB0)λ,then:

∂ttφ =
1

λ2

[
∂2

sPB0 + b(∂sPB0 + 2Λ∂sPB0) + b2DΛPB0 + bsΛPB0

]
λ
.Using the anellation

(DΛPB0 ,ΛPB0) = 0,this yields:
(bsΛPB1 + b(∂sPB1 + 2Λ∂sPB1) + ∂2

sPB1 ,ΛPB0) = λ2(∂ttφ(λy),Λφ(λy)) = (∂ttφ,Λφ)

=
d

dt
[(∂tφ,Λφ)] − (∂tφ,Λ∂tφ) =

d

dt
[(∂tφ,Λφ)] +

∫
(∂tφ)2. (7.10)We now ompute eah term separately:

d

dt
[(∂tφ,Λφ)] =

1

λ

d

ds
[λ(∂sPB0 + bΛPB0 ,ΛPB0)]

=
d

ds

[
b|ΛPB0 |2L2 + bs(

∂PB0

∂b
,ΛPB0)

]
− b

[
b|ΛPB0 |2L2 + bs(

∂PB0

∂b
,ΛPB0)

]
.On the other hand,∫

(∂tφ)2 =

∫
(∂sPB0 + bΛPB0)

2 = |bs|2|
∂PB0

∂b
|2L2 + 2bsb(

∂PB0

∂b
,ΛPB0) + b2|ΛPB0 |2L2 .Substituting these two omputations into (7.10) yields:

(bsΛPB1 + b(∂sPB1 + 2Λ∂sPB1) + ∂2
sPB1 ,ΛPB0)

=
d

ds

[
b|ΛPB0 |2L2 + bs(

∂PB0

∂b
,ΛPB0)

]
+ bsb(

∂PB0

∂b
,ΛPB0) + |bs|2|

∂PB0

∂b
|2L2

=
d

ds

[
G(b) + bs(

∂PB0

∂b
,ΛPB0)

]
+ |bs|2|

∂PB0

∂b
|2L2 ,whih gives (7.8). To prove (7.9), we �rst estimate from (6.25):

|∂bPB0 |2L2 .

∫

y≤2B0

(
y2

(1 + y2)|logb|2 +
1

b2y2
1B0

2
≤y≤2B0

)
.

1

b2
,and hene (7.9) follows from (5.33).step 2 The �ux omputation.We now turn to the �rst key step in the derivation of the sharp b law. It is thefollowing outgoing �ux omputation:

(ΨB1 ,ΛPB0) = dpb
2k

(
1 +O

(
1

|logb|

)) as b→ 0. (7.11)The error in this identity is determined by the (non-sharp) hoie of B1 in (1.22).The universal onstant
dp =





k2c2p
2 for k even

c2p
2 for k odd, k ≥ 3
2 for k = 1Proof of (7.11): Let us de�ne the expression, whih in what follows we will referto as the radiation term,

ζb = PB1 − PB0 = (χB1 − χB0)(Qb − a) (7.12)



63with a = π for the (WM) problem and a = −1 for the (YM). It satis�es:
Supp(ζb) ⊂ {B0 ≤ y ≤ 2B1}, (7.13)and the equation:

−∆ζb + b2DΛζb + k2 f(PB0 + ζb) − f(PB0)

y2
= ΨB1 − ΨB0whih we rewrite:

− ∆ζb + b2DΛζb + k2 ζb
y2

= ΨB1 − ΨB0 −M(ζb) (7.14)with
M(ζb) = k2 f(PB0 + ζb) − f(PB0) − f ′(PB0)ζb + (f ′(PB0) − 1)ζb

y2
. (7.15)We now manipulate the identity

(ΨB1 ,ΛPB0) = (ΨB1 ,ΛPB1) − (ΨB1 ,Λζb) = −(ΨB1 ,Λζb).In the last step we used the Pohozaev identity (3.46):
(ΨB1 ,ΛPB1) = (−∆PB1 + b2DΛPB1 + k2 f(PB1)

y2
,ΛPB1) = 0,whih holds for ΛPB1 of ompat support and g(PB1(y)) with the boundary value

limy→+∞ g(PB1(y)) = 0. We now integrate by parts, use the formula (3.66) and theloalization property (7.13) to onlude:
−(Λζb,ΨB1) = −

∫ 2B1

B1

ΛζbΨB1ydy −
∫ B1

B0

ΛζbχB1Ψbydy

= −
∫ 2B1

B1

Λζb(ΨB1 − ΨB0)ydy −
∫ B1

B0

ΛζbχB1Ψbydy

=

∫ 2B1

B1

Λζb[∆ζb − b2DΛζb − k2 ζb
y2

]ydy

−
∫ 2B1

B1

ΛζbM(ζb)ydy −
∫ B1

B0

ΛζbχB1Ψb ydy. (7.16)In the last step we also used (7.14). The �rst term on the RHS above produesthe leading order �ux term from the Pohozaev integration (3.46) and the boundaryonditions ζb(2B1) = ζ ′b(2B1) = 0:
∫ 2B1

B1

Λζb[∆ζb − b2DΛζb − k2 ζb
y2

]ydy =

[
1

2
(b2y2 − 1)|Λζb|2 +

k2

2
ζ2
b

]
(B1).Now from (7.12) and the estimates on Qb from Proposition 3.1 with the hoie

B1 = |logb|
b >> 1

b , there holds: ∀y ∈ [B1
2 , B1],

ζb(y) = (Qb − a)(y) =





cp

y b
k−1(1 +O( 1

|logb|)) for k odd, k ≥ 3,

cpb
k(1 +O( 1

|logb|)) for k even,
2
y (1 +O( 1

|logb|2 )) for k = 1

(7.17)



64 P. RAPHAËL AND I. RODNIANSKIfrom whih
∫ 2B1

B1

Λζb[∆ζb − b2DΛζb − k2 ζb
y2

]ydy =





c2pb2k

2 (1 +O( 1
|logb|2 )) for k odd,

k2c2pb2k

2 (1 +O( 1
|logb|2 )) for k even,

2b2(1 +O( 1
|logb|2 )) for k = 1. (7.18)It remains to estimate the error terms in (7.16). For this, �rst observe the rudebound:

∀y ∈ [B0, 2B1], |ζb(y)| + |Λζb(y)| .

{
bk−1

y for k odd
bk for k even (7.19)and from (7.15):

∀y ∈ [B0, 2B1], |M(ζb)| .
1

y2

[
|ζb|2 +

|ζb|
yk

]
. (7.20)ase k ≥ 3 odd: From (3.14):

∫ B1

B0

|ΛζbχB1Ψb|ydy .

∫ B1

B0

bk−1

y

bk+3

y2
ydy . b2k+3.Next, (7.19) and (7.20) imply

∫ 2B1

B1

|ΛζbM(ζb)|ydy .

∫ 2B1

B1

bk−1

y

1

y2
(
b2k−2

y2
+
bk−1

yk+1
)ydy . b3k.ase k ≥ 4 even: From (3.11), (7.19) :

∫ B1

B0

|ΛζbχB1Ψb|ydy .

∫ B1

B0

bk
bk+4

y
ydy . b2k+3.From (7.19) and (7.20):

∫ 2B1

B1

|ΛζbM(ζb)|ydy .

∫ 2B1

B1

bk

y2
(b2k +

bk

yk
)ydy . b3kase k = 2: From (3.17), (7.19) :

∫ B1

B0

|ΛζbχB1Ψb|ydy .

∫ B1

B0

bk
[
C(M)

bk+4

y2
+
b4

y2

]
ydy . b2k+1.From (7.19) and (7.20):

∫ 2B1

B1

|ΛζbM(ζb)|ydy .

∫ 2B1

B1

bk

y2
(b2k +

bk

yk
)ydy . b3k.ase k = 1: We reall that aording to (3.51), |Ψb| . b4

1+y for y ≥ B0. Therefore,
∫ B1

B0

|ΛζbχB1Ψb|ydy .

∫ B1

B0

1

y

b4

y
ydy ≤ b4|logb| ≤ b3.Next, (7.19) and (7.20) imply

∫ 2B1

B1

|ΛζbM(ζb)|ydy .

∫ 2B1

B1

1

y

1

y2
(

1

y2
+

1

y2
)ydy . b3.This onludes the proof of (7.11).step 3 Seond line of (7.7).



65We �rst observe
bsΛ(PB1 − PB0) + b(∂s(PB1 − PB0) + 2Λ∂s(PB1 − PB0)) + ∂2

s (PB1 − PB0)

= bsΛζb + b(∂sζb + 2Λ∂sζb) + ∂2
s ζbWe further rewrite

(bsΛζb + b(∂sζb + 2Λ∂sζb) + ∂2
sζb,ΛPB0) =

d

ds
(∂sζb,ΛPB0) + (bsΛζb + b(∂sζb + 2Λ∂sζb),ΛPB0)

− (∂sζb,Λ∂sPB0) =
d

ds
[bs(∂bζb,ΛPB0)] + bs(Λζb + b(∂bζb + 2Λ∂bζb),ΛPB0) − b2s(∂bζb,Λ∂bPB0)We use rude bounds similar to (7.19), ∀y ∈ [B0, 2B0],

|ζb(y)| + |Λζb(y)| + b|∂bζb(y)| + b|Λ∂bζb(y)| . bk,

|ΛPB0 | + |Λ∂bPB0 | . bkAs a onsequene,
|bs||(∂bζb,ΛPB0)| .

bk+1

|logb|b
2k−3 ≤ b3k−2

|logb|and
|bs| |(Λζb + b(∂bζb + 2Λ∂bζb),ΛPB0)| .

bk+1

|logb|b
2k−2 ≤ b3k−1

|logb| , (7.21)
b2s|(∂bζb,Λ∂bPB0)| .

b2k+2

|logb|2 b
2k−4 ≤ b4k−2

|logb|2 (7.22)step 4 The main linear term.
ΛPB0 is only approximate element of the kernel of H∗

B1
. The orrespondinglinear term (ε,H∗

B1
(ΛPB0)) on the RHS of (7.7) is therefore potentially a highlyproblemati term. The ontrol of this term requires the improved loal estimate(5.35). We laim:

|(HB1ε,ΛPB0)| .
b2k

|logb| . (7.23)Proof of (7.23): Let us �rst ompute H∗
B1

(ΛPB0). Observe �rst from spae loaliza-tion that
H∗

B1
(ΛPB0) = H∗

B0
(ΛPB0) + S, S := k2 f

′(PB1) − f ′(PB0)

y2
ΛPB0with S supported only on the set y ∈ [B0, 2B0].Resaling (3.53), we �nd that (PB0)λ satis�es:

∆(PB0)λ − b2

λ2
DΛ(PB0)λ − f((PB0)λ)

y2
= −(ΨB0)λ

λ2
.Di�erentiating this relation with respet to λ and evaluating the result at λ = 1yields:

HB0ΛPB0 + 2b2DΛPB0 = 2ΨB0 + ΛΨB0or equivalently from (6.5):
H∗

B0
ΛPB0 = 2ΨB0 + ΛΨB0.We thus rewrite the main linear term in (7.7):

(HB1ε,ΛPB0) = (ε,H∗
B1

ΛPB0) = (ε, 2ΨB0 + ΛΨB0 + S).



66 P. RAPHAËL AND I. RODNIANSKILet us now de�ne
eb =

(2ΨB0 + ΛΨB0 + S,ΛQ)

(ΛQ,χMΛQ)
, (7.24)we laim that we an �nd Σb solution to:

HΣb = 2ΨB0 + ΛΨB0 + S − ebχMΛQ (7.25)with the property that
Σb = Σ1

b + Σ2
b ,where Supp(Σ1

b , AΣ2
b) ⊂ {y ≤ 2B0} and

|Σ1
b(y)|L∞ . bk, (7.26)

|AΣ2
b(y)| .

bk+1

|logb|1y≤2B0 +
bk+1

logM
1y≤2M + bk+1

1B0≤y≤2B0 . (7.27)Assume (7.26),(7.27). We then use the orthogonality ondition (5.12) and (B.4),(B.5) to estimate:ase k ≥ 2:
|(ε, 2ΨB0 + y · ∇ΨB0)| = |(ε, 2ΨB0 + y · ∇ΨB0 − ebχMΛQ)| = (A∗Aε,Σb)

. bk
(∫

y≤2B0

(A∗Aε)2
) 1

2
(∫

y≤2B0

1

) 1
2

+bk+1

(∫

y≤2B0

(Aε)2

y2

(
1

|log2b|
1y≤2B0 +

1

log2M
1y≤2M + 1B0≤y≤2B0

)) 1
2
(∫

y≤2B0

y2

)1
2

. bk−1

(∫

y≤2B0

|A∗Aε|2
) 1

2

+ bk−1

(∫

y≤2B0

|Aε|2
y2

) 1
2

. (7.28)From (6.29):
∫

y≤2B0

|A∗Aε|2 =

∫

y≤2B0

|∂y(Aε) +
1 + V (1)

y
Aε|2

.

∫

y≤2B0

[
|∂y(Aε)|2 +

k2 + 1 + 2V (1) + V (2)

y2
(Aε)2

]

. λ2Eσ (7.29)and thus from (5.35) for k ≥ 2:
∫

y≤2B0

|Aε|2
y2

+

∫

y≤2B0

|A∗Aε|2 . λ2Eσ .
b2k+2

|logb|2 . (7.30)Inserting this into (7.28) yields:
|(ε, 2ΨB0 + y · ∇ΨB0)| . bk−1

(
b2k+2

|logb|2
) 1

2

.
b2k

|logb| ,whih gives (7.23).ase k = 1: We �rst obtain the bound
|(ε, 2ΨB0 + y · ∇ΨB0)| . bk−1

(
b2k+2

|logb|2
) 1

2

.
b2k

√
|logb|

, (7.31)



67Using (7.26),(7.27), the orthogonality ondition (5.12) and (B.4), (B.5) we obtain:
|(ε, 2ΨB0 + y · ∇ΨB0)| = |(ε, 2ΨB0 + y · ∇ΨB0 − ebχMΛQ)| = (A∗Aε,Σb)

. bk
(∫

y≤2B0

(A∗Aε)2
) 1

2
(∫

y≤2B0

1

) 1
2

+bk+1

(∫

y≤2B0

(Aε)2
(

1

|log2b|
1y≤2B0 +

1

log2M
1y≤2M + 1B0≤y≤2B0

)) 1
2
(∫

y≤2B0

1

) 1
2

. bk−1

(∫

y≤2B0

|A∗Aε|2
) 1

2

+ bk−1
√

|logb|
(∫

y≤1
|Aε|2 +

∫

y≤2B0

|∇Aε|2
) 1

2

. (7.32)Sine by (7.29) and (5.35):
∫

y≤1
|Aε|2 +

∫

y≤2B0

|∇Aε|2 +

∫

y≤2B0

|A∗Aε|2 . λ2Eσ .
b2k+2

|logb|2 . (7.33)we obtain
|(ε, 2ΨB0 + y · ∇ΨB0)| . bk−1

√
|logb|

(
b2k+2

|logb|2
) 1

2

.
b2k

√
|logb|

.To obtain the stronger estimate
|(ε, 2ΨB0 + y · ∇ΨB0)| .

b2k

|logb| , (7.34)we laim that we an rede�ne the deomposition Σb = Σ̃1
b +Σ̃2

b so that (7.26), (7.27)are replaed by the estimates
|Σ̃1

b | . b, (7.35)
|AΣ̃2

b(y)| .
b2

|logb|1y≤2B0 +
b2

logM
1y≤2M . (7.36)The absene of the term bk+1

1B0≤y≤2B0 in (7.36) eliminates the additional logarith-mi divergene in (7.32) and leads to the desired bound. We omit the straightfor-ward details.Remark 7.3. The gain in (7.34) with respet to the simpler bound (7.31) will allowus to obtain the O( b2

|logb|) estimate on the remaining terms in the RHS of (7.5). Thisin turn will lead to the O(1) term in the derivation of the blow up speed (1.12) afterreintegration of the modulation equations, see in partiular (7.65).Proof of (7.26),(7.27): Let
gb = 2ΨB0 + ΛΨB0 + S − ebχMΛQ,so that

(gb,ΛQ) = 0 (7.37)from (7.24). Then, as in (A.16), a solution to (7.25) is given by
Σb(y) = Γ(y)

∫ y

0
ΛQgbudu− ΛQ(y)

∫ y

1
gbΓudu = Σ1

b + Σ2
b .The ompat support of ΨB0 and hene of gb in y ≤ 2B0 and (7.37) ensure

Supp(Σ1
b) ⊂ {y ≤ 2B0}. On the other hand, using that A(ΛQ) = 0,

AΣ2
b = ΛQgbΓy (7.38)



68 P. RAPHAËL AND I. RODNIANSKIand the property Supp(AΣ2
b) ⊂ {y ≤ 2B0}. follows. We now turn to the proof ofthe L∞ estimates (7.26), (7.27).In what follows we will use the bound

|S| . b2k+2
1B0≤y≤2B0 , (7.39)whih easily follows from

|f
′(PB1) − f ′(PB0)

y2
ΛPB0 | ≤

1

y2
|PB1 − PB0 ||ΛPB0 |ase k ≥ 3: We use the bound from (3.56), (3.58):

|ΨB0 | + |ΛΨB0 | . bk+3
1y≤2B0 + bk+2

1B0≤y≤2B0 ,whih yields:
|eb| .

∫
bk+2yk

1 + y2k
ydy . bk+2,

|Σ1
b(y)| .

1 + y2k

yk

∫ 2B0

y

bk+2uk

1 + u2k
udu . bk.On the other hand, taking into aount that |ΛQΓ| . 1,

|AΣ2
b(y)| = |ΛQΓ gby| ≤ bk+2

1y≤2B0 + bk+1
1B0≤y≤2B0ase k = 2: We estimate from (3.60):

|ΨB0 | + |ΛΨB0 | .
b4y2

1 + y4
1y≤B0 + b41B0≤y≤2B0 ,and hene:

|eb| .

∫
yk

1 + y2k

[
b4y2

1 + y4
+ b41B0≤y≤2B0 ,

]
ydy . b4,

|Σ1
b(y)| .

1 + y4

y2

∫ 2B0

y

u2

1 + u4

[
b4u2

1 + u4
+ b41B0≤u≤2B0

]
udu . b2.

|AΣ2
b(y)| . |gby| . b41y≤2B0 + b31B0≤y≤2B0ase k = 1: We estimate from (3.62):

|ΨB0 | + |ΛΨB0 | .
b2

|logb|
y

1 + y2
1y≤2B0 +

b2

y
1B0≤y≤2B0 ,and hene:

logM |eb| .

∫

y≤2B0

y

1 + y2

[
b2y

|logb|(1 + y2)
+
b2

y
1B0≤y≤2B0 ,

]
ydy . b2,

|Σ1
b(y)| .

1 + y2

y

∫ 2B0

y

u

1 + u2

[
b2u

|logb|(1 + u2)
+
b2

u
1B0≤u≤2B0 +

b2

logM(1 + u)
1u≤2M

]
udu . b.

|AΣ2
b(y)| . |gby| .

b2

|logb|1y≤2B0 +
b2

logM
1y≤2M + b21B0≤y≤2B0This onludes the proof of (7.26), (7.27).Proof of (7.35),(7.36): As before let

gb = 2ΨB0 + ΛΨB0 + S − ebχMΛQ,



69so that
Σb(y) = −Γ(y)

∫ ∞

y
ΛQgbudu− ΛQ(y)

∫ y

1
gbΓuduWe now reall that aording to (3.66)

ΨB0 = χB0Ψb +
k2

y2
{f(PB0) − χB0f(Qb)} − (Qb − π)∆χB0 − 2χ′

B0
Q′

b

+ b2
{
(Qb − π)DΛχB0 + 2y2χ′

B0
Q′

b

}Set
Ψ1

B0
=

2

y
∆χB0 −

4

y2
χ′

B0
− 2b2

y

{
DΛχB0 − 2yχ′

B0

}
,

Ψ2
B0

= χB0Ψb +
1

y2
{f(PB0) − χB0f(Qb)} − (Qb − π +

2

y
)∆χB0

− 2χ′
B0

(Qb +
2

y
)′ + b2

{
(Qb − π +

2

y
)DΛχB0 + 2y2χ′

B0
(Qb −

2

y
)′
}and de�ne

Σ1
b(y) = −Γ(y)

∫ ∞

y
ΛQgbudu− 1

4
ΛQ(y)

∫ y

0
∂u(u2Ψ1

B0
)udu,

Σ2
b(y) = −ΛQ(y)

∫ 1

0
∂u(u2Ψ1

B0
)Γdu− ΛQ(y)

∫ y

1

(
gb − 2Ψ1

B0
− ΛΨ1

B0

)
Γudu

− ΛQ(y)

∫ y

0
∂u(u2Ψ1

B0
)(Γ − u

4
)duTherefore,

AΣ2
b(y) = −(gb − 2Ψ1

B0
− ΛΨ1

B0
)ΛQΓy = (2Ψ2

B0
+ ΛΨ2

B0
+ S − ebχMΛQ)ΛQΓy

− ∂y(y
2Ψ1

B0
)(Γ − y

4
)ΛQand thus we need to show that

1

y
|∂y(y

2Ψ1
B0

)(Γ− y
4
)|+y |2Ψ2

B0
+ΛΨ2

B0
+S−ebχMΛQ| .

b2

|logb|1y≤2B0 +
b2

logM
1y≤2MFrom (3.20) we have that on the support of χB0

|Ψb| + |ΛΨb| .
b2

|logb|
y

1 + y2Furthermore, (7.39) gives
|S| . b2k+2

1B0≤y≤2B0 ,and
|ebχMΛQ| .

b2

|logM |
y

1 + y2
1y≤2M .



70 P. RAPHAËL AND I. RODNIANSKIUsing that f(π) = 0, f ′(π) = 1, we also obtain
| 2

y2
(f(PB0) − χB0f(Qb)) + Λ

[
1

y2
(f(PB0) − χB0f(Qb))

]
=

1

y
∂y [f(PB0) − χB0f(Qb)]

=
1

y
∂y [PB0 − π − χB0((Qb − π)]

+
1

y
∂y

[∫ 1

0
τ

∫ 1

0

(
f ′′(ττ ′PB0)(PB0 − π)2 − χB0f

′′(ττ ′Qb)(Qb − π)2
)]

=
1

y
∂y

[∫ 1

0
τ

∫ 1

0

(
f ′′(ττ ′PB0)(PB0 − π)2 − χB0f

′′(ττ ′Qb)(Qb − π)2
)]

.
1

y4
.Sine f(PB0) − χB0f(Qb) vanishes outside the interval B0 ≤ y ≤ 2B0, the abovebound an be replaed by b41B0≤y≤2B0 . The estimate for the remaining part of Ψ2

B0follows from the bounds
| d

m

dym
(Qb − π +

2

y
)| . | d

m

dym
(Q− π +

2

y
)| + b2| d

m

dym
T1| .

1

y3+m
+

1

|logb|y1+m
,

| d
m

dym
Ψ1

B0
| .

b2

y1+m
, |Γ − y

4
| . 1whih hold for B0 ≤ y ≤ 2B0 (in partiular on the support of χ′

B0
) and follow from(3.19), (A.9) and (A.14).These estimates imply the desired bound (7.36).To prove (7.35) it su�es to show that ΛQ(y)

∫ y
0 ∂u(u2Ψ1

B0
)Γdu is supported in

y ≤ 2B0 and establish the bound
|ΛQ(y)

∫ y

0
∂u(u2Ψ1

B0
)Γdu| . bWe argue that a areful hoie of B0 ensures that

∫ ∞

0
∂u(u2Ψ1

B0
)udu = 0. (7.40)Assuming this we immediately onlude the statement about the support, sine Ψ1

B0is supported in B0 ≤ y ≤ 2B0. Furthermore, from (3.67) and (3.68) for y ≥ 2B0

|ΛQ(y)

∫ y

0
∂u(u2Ψ1

B0
)Γdu| .

y

1 + y2

∫ y

0

1 + u2

u
b21B0≤u≤2B0du . b.To show (7.40) we rewrite

y2Ψ1
B0

= 2y(1 − b2y2)χ
′′

B0
− 2χ′

B0

∫ ∞

0
∂u(u2Ψ1

B0
)udu = −

∫ ∞

0
u2Ψ1

B0
du = −

∫ ∞

0

(
2y(1 − b2y2)χ

′′

B0
− 2χ′

B0

)
dy

= −2 + 2

∫ ∞

0
(1 − 3b2y2)χ′

B0
dy

= −4 + 12b2
∫ ∞

0
yχB0dy = −4 + 12b2B2

0

∫ ∞

0
yχdyTherefore, the hoie

B2
0 =

1

3b2
∫∞
0 yχdygives the desired property.



71step 4 Lower order linear terms in ε.We are left with estimating the third line on the RHS of (7.7). We �rst laim:
∣∣∣∣
(
∂2

sε+ b(∂sε+ 2Λ∂sε) + bsΛε,ΛPB0

)
− d

ds
[(∂sε,ΛPB0) + b(ε+ 2Λε,ΛPB0)]

∣∣∣∣

.
b2k

|logb| . (7.41)Indeed, we integrate by parts to obtain:
(
∂2

sε+ b(∂sε+ 2Λ∂sε) + bsΛε,ΛPB0

)
=

d

ds
[(∂sε,ΛPB0) + b(ε+ 2Λε,ΛPB0)]

− bs

[
(∂sε+ bΛε,Λ

∂PB0

∂b
) + (ε,ΛPB0 + bΛ

∂PB0

∂b
) + b(Λε,Λ

∂PB0

∂b
) + (Λε,ΛPB0)

]

=
d

ds
[(∂sε,ΛPB0) + b(ε+ 2Λε,ΛPB0)] − bs

[
(∂sε+ bΛε,Λ

∂PB0

∂b
) + (ε,Φb)

] (7.42)with
Φb = −ΛPB0 − Λ2PB0 − bΛ

∂PB0

∂b
− bΛ2∂PB0

∂b
. (7.43)We now estimate the RHS of (7.42). To wit, let

rb =
(Φb,ΛQ)

(ΛQ,χMΛQ)
, (7.44)we laim that we an �nd Φ̃ = Φ̃1 + Φ̃2 suh that

HΦ̃ = Φb − rbχMΛQ, Supp(Φ̃1) ∪ Supp(AΦ̃2) ⊂ [0, 2B0],and
|Φ̃1|L∞ .

{
1 for k ≥ 2
|logb|

b for k = 1,
(7.45)

|AΦ̃2(y)| .

{
yk+1

1+y2k 1y≤2B0 for k ≥ 2
y2

1+y2 [1y≤2B0 + |logb|1y≤2M ] for k = 1,
(7.46)Let us assume (7.45), (7.46) and onlude the proof of (7.41).ase k ≥ 2: First reall from (5.33) the bound:

|bs| . bk+1.Moreover, (3.57), (3.59) imply:
|Λl∂bPB0 | . C(M)b1y≤2B0 , 0 ≤ l ≤ 2. (7.47)We onlude from (B.19), (5.33), (5.34):

|bs|
∣∣∣∣(∂sε+ bΛε,Λ

∂PB0

∂b
)

∣∣∣∣ . C(M)bk+1λ|∂tw|L∞

∫

y≤2B0

b

. C(M)λbk
(
|A∗

λW |2L2 + |∂tW |2L2

) 1
2 . C(M)b2k+1. (7.48)Next, from (7.45), (7.46) and the hoie of the orthogonality ondition (5.12):

|bs||(ε,Φb)| = |bs||(A∗Aε, Φ̃b)| . bk+11

b
|A∗Aε|L2 + bk+1|Aε

y
|L2

(∫

y≤2B0

y2k+2y2

1 + y4k

) 1
2

. b2k+2 1

b
. b2k+1,



72 P. RAPHAËL AND I. RODNIANSKIwhere we used (2.16), (5.34).ase k = 1: By (3.61)
|Λl∂bPB0 | . 1y≤2B0 , 0 ≤ l ≤ 2.Thus, using (B.19), (5.33), (5.34), (6.25):

|bs|
∣∣∣∣(∂sε+ bΛε,Λ

∂PB0

∂b
)

∣∣∣∣ .
b2

|logb|λ|∂tw|L∞

∫

y≤2B0

ydy

.
λ

|logb|
(
|A∗

λW |2L2 + |∂tW |2L2

) 1
2 .

b2

|logb| .Next from (7.45) and the hoie of the orthogonality ondition (5.12):
|bs||(ε,Φb)| = |bs||(A∗Aε, Φ̃b)|

.
b2

|logb|

[
|logb|
b2

|A∗Aε|L2(y≤2B0) + |Aε
y
|L2(y≤2B0)

(∫
y6

1 + y4
[1y≤2B0 + log2b1y≤2M ]

) 1
2

]
.We then observe from (7.33) and (B.5):

|Aε
y
|L2(y≤2B0) . |logb| b2

|logb| . b2 (7.49)and hene from the re�ned bound (7.33):
|bs||(ε,Φb)| =

b2

|logb|

[ |logb|
b2

b2

|logb| + b2
1

b2

]
.

b2

|logb| .This onludes the proof of (7.41).Proof of (7.45), (7.46): We let
Φ̃b = Γ(y)

∫ y

0
ΛQ(Φb − rbχMΛQ)udu− ΛQ(y)

∫ y

0
Γ(Φb − rbχMΛQ)udu

= Φ̃1 + Φ̃2. (7.50)The support of Φb belongs to the set y ≤ 2B0. Therefore Supp(Φ̃1) ⊂ [0, 2B0] bythe hoie of rb in (7.44) and Supp(AΦ̃2) ⊂ [0, 2B0] whih follows from the identity
AΦ̃2 = ΛQΓ(Φb − rbχMΛQ)y.ase k ≥ 2: We derive from (7.43), (3.59), (3.57) the bound:

|Φb| .
yk

1 + y2k
1y≤2B0 ,and hene rb, given by (7.44), satis�es:

|rb| . 1.We then estimate:
|Φ̃1(y)| .

1 + y2k

yk

∫ 2B0

y

uk

1 + u2k

uk

1 + u2k
udu .

1

1 + yk−2
. 1and (7.45) follows. Similarily,

|AΦ̃2(y)| . y|Φb − rbχMΛQ| .
yk+1

1 + y2k
1y≤2B0



73and (7.46) follows.ase k = 1: We estimate from (7.43), (3.61):
|Φb| .

y

1 + y2
1y≤2B0from whih rb, given by (7.44), satis�es:

|rb| . |logb|and
|Φ̃1(y)| .

1 + y2

y

∫ 2B0

y

u

1 + u2

u

1 + u2
[1 + |logb|1y≤M ]udu .

|logb|
band (7.45) follows. Next,

|AΦ̃2(y)| . y|Φb − rbχMΛQ| .
y2

1 + y2
1y≤2B0 + |logb| y2

1 + y2
1y≤2Mand (7.46) follows.This onludes the proof of (7.45) (7.46).step 5 Control of the nonlinear term.ase k ≥ 2: There holds from (B.9), (5.30), (5.34):

∣∣∣∣(
N(ε)

y2
,ΛPB0)

∣∣∣∣ .

∫
|ε|2 yk

y2(1 + y2k)
.

∫ |ε|2
y4

. λ2|A∗
λW |2L2 . b2k+2. (7.51)ase k = 1: From (6.35)

∣∣∣∣(
N(ε)

y2
,ΛPB0)

∣∣∣∣ .

(∫

y≤2B0

|ε|4
y4

) 1
2

|ΛPB0 |L2 . |logb|b 3
4λ|A∗

λW |L2

. b2+
1
2 . (7.52)step 5 Control of G(b) and I.Using estimates (7.8), (7.11), (7.21), (7.22), (7.23), (7.41), (7.51), (7.52) in on-juntion with the the algebrai formula (7.7) onludes the proof of (7.5). It remainsto prove (7.3), (7.4).Proof of (7.3): Reall the formula (7.1) for G(b). We ompute

ΛPB0 = χB0ΛQb + ΛχB0(Qb − a) = χB0ΛQ+ χB0Λ(Qb −Q) + ΛχB0(Qb − a)It then follows from Proposition 3.1 that for any k ≥ 1

|ΛPB0 − χB0ΛQ| . C(M)b2
yk

1 + y2k−2
1y≤2B0As a onsequene,

|ΛPB0 |2L2 =

{
|ΛQ|2L2 +O(b2) = |ΛQ|2L2(1 + o(1)) for k ≥ 2,
|χB0ΛQ|2L2 +O(1) = 4|logb| +O(1)) for k = 1.

(7.53)Similarly, using (6.25):
|(∂PB0

∂b
,ΛPB0)| .

∫

y≤2B0

yk

1 + y2k
.

{
|logb| for k ≥ 2,
1
b for k = 1,from whih: ∣∣∣∣

∫ b

0
b′(
∂PB0

∂b
,ΛPB0)db

′
∣∣∣∣ .

{
b2|logb| for k ≥ 2,
b for k = 1,



74 P. RAPHAËL AND I. RODNIANSKIwhih together with (7.1), (7.53) onludes the proof of (7.3).Proof of (7.4): We integrate by parts in spae in (7.2) to rewrite:
I(s) = (∂sε+bΛε,ΛPB0)+bs(

∂PB0

∂b
,ΛPB0)−b(ε,ΛPB0+Λ2PB0)−bs

(
∂

∂b
(PB1 − PB0),ΛPB0)

)
.(7.54)The last term above has been estimated in step 3. We let

r̃b =
(ΛPB0 + Λ2PB0 ,ΛQ)

(χMΛQ,ΛQ)
(7.55)and laim that we an solve:

LΘb = ΛPB0 + Λ2PB0 − r̃bχMΛQwith Θb = Θ1 + Θ2, Supp(Θ1) ∪ Supp(AΘ2) ⊂ [0, 2B0] and
|Θ1|L∞ .

{
1 for k ≥ 2
|logb|

b for k = 1,
(7.56)

|AΘ2(y)| .

{
yk+1

1+y2k 1y≤2B0 for k ≥ 2
y2

1+y2 [1y≤2B0 + |logb|1y≤2M ] for k = 1,
(7.57)The proof of (7.56), (7.57) is ompletely similar to the one of (7.45), (7.46) and leftto the reader.ase k ≥ 2: From (B.19), (5.34):

|(∂sε+ bΛε,ΛPB0)| . λ|∂tw|L∞ |ΛPB0 |L1 . |logb|bk+1 . b2.Next, from (5.33):
∣∣∣∣bs(

∂PB0

∂b
,ΛPB0)

∣∣∣∣ . bk+1|ΛPB0 |L1 . b2.Finally, from (5.34), (7.56) and the hoie of the orthogonality ondition (5.12):
b|(ε,ΛPB0 + Λ2PB0) = b|(A∗Aε,Θb)|

. b|A∗Aε|L2
1

b
+ b|Aε

y
|L2

(∫

y≤2B0

y2y2k+2

1 + y4k

) 1
2

. b|A∗Aε|L2
1

b
+ b|Aε

y
|L2

1

b
. bk+1 . b2.ase k = 1: From (B.19), (5.34):

|(∂sε+ bΛε,ΛPB0)| . λ|∂tw|L∞ |ΛPB0 |L1 .
b2

b
. b.Next, from (5.33):

∣∣∣∣bs(
∂PB0

∂b
,ΛPB0)

∣∣∣∣ .
b2

|logb| |ΛPB0 |L1 .
b

|logb| .Finally, from (7.56) and the hoie of orthogonality ondition (5.12):
b|(ε,ΛPB0 + Λ2PB0) = b|(A∗Aε,Θb)|

. b|A∗Aε|L2(y≤2B0)
|logb|
b2

+ b

(∫

y≤2B0

(Aε)2

y2

) 1
2
(∫

y≤2B0

y2y4

1 + y4

(
1 + |logb|21y≤2M

)) 1
2

. |A∗Aε|L2(y≤2B0)
|logb|
b

+ b
b2

|logb|
|logb|
b2

. b



75where we used (B.5), the improved loalized bound (7.33) and (7.49).This onludes the proof of (7.4).This onludes the proof of Proposition 7.1.7.2. Proof of Theorem 1.1. We are now in position to onlude the proof ofTheorem 1.1.First reall that �nite time blow up is a onsequene of Proposition 5.6. Thisoupled with the standard saling lower bound:
λ(t) ≤ T − timplies that the resaled time s is global:

ds

dt
=

1

λ
≥ 1

T − t
and hene s(t) → +∞ as t→ T.step 1 Derivation of the saling law.We begin with with the proof of (1.11), (1.12), whih are onsequenes of (7.5).Proof of (1.11): For k ≥ 2 let G,I, c̃k be given by (7.1), (7.2), (7.6) and

J = G+ I.From (7.3), (7.4), (7.5) we have that:
J (b) = b|ΛQ|2L2 + o(b) and Js + c̃kb

2k = o(b2k). (7.58)In partiular, this yields:
Js + c̃k

( J
|ΛQ|2

L2

)2k

= o(J 2k).Dividing by J 2k, whih is stritly positive by (7.58), (5.32), and integrating in syields:
1

(2k − 1)J 2k−1(s)
=

1

(2k − 1)J 2k−1(s0)
+

c̃k

|ΛQ|4k
L2

s+ o(s).Together with (7.58), this provides the asymptotis:
b(s) =

( |ΛQ|2L2

(2k − 1)c̃ks

) 1
2k−1

(1 + o(1)) as s→ +∞. (7.59)We now integrate the law for the saling parameter −λs

λ = b to obtain:
−logλ(s) =

2k − 1

2k − 2

( |ΛQ|2L2

(2k − 1)c̃k

) 1
2k−1

s
2k−2
2k−1 (1 + o(1)) as s→ +∞.In partiular, taking into aount (7.59):

b =
dk

|logλ|
1

2k−2

(1 + o(1)) with dk =

( |ΛQ|2L2

(2k − 2)c̃k

) 1
2k−2

.As a result λ satis�es the following di�erential equation:
− λt = b =

dk

|logλ|
1

2k−2

(1 + o(1)) with λ(t) → 0 as t→ T. (7.60)



76 P. RAPHAËL AND I. RODNIANSKIIntegrating this in time yields:
λ(t) =

dk(T − t)

|log(T − t)|
1

2k−2

(1 + o(1)).This gives (1.11).Proof of (1.12): Let k = 1, then (7.3), (7.4), (7.5) imply:
J (b) = 4b|logb| +O(b) and Js +

J 2

8|log(J /|logJ |)|2 = O(
J 2

|logJ |3 ). (7.61)Let
4β =

J
|logJ | −

J
|logJ |2 log|logJ |, logβ = logJ − log|logJ | +O(1)so that

4β =
4b|logb| +O(b)

|logb+ log|logb| +O(1)| −
4b|logb| +O(b)

(logb+ log|logb| +O(1))2
(log|logb| +O(

log|logb|
|logb| ))

= 4b+O(
b

|logb|) (7.62)We ompute
4βs =

Js

|logJ |(1 − log|logJ |
|logJ | ) + JsO

(
1

|logJ |2
)
,

16β2

|logβ| =
J 2

|logJ |2|log(J /|logJ |)| −
2J 2log|logJ |

|logJ |3|log(J /|logJ |)| +O(
J 2

|logJ |4 )and therefore
4βs +

2β2

|logβ|2 = − J 2

8|logJ | |log(J /|logJ |)|2 (1 − log|logJ |
|logJ | ) +

J 2

8|logJ |2|log(J /|logJ |)|

− J 2log|logJ |
4|logJ |3|log(J /|logJ |)| +O(

β2

logβ2
)

= − J 2

8|logJ |3 (1 − 3
log|logJ |
|logJ | )

+
J 2

8|logJ |3 (1 − 3
log|logJ |
|logJ | ) +O(

β2

logβ2
) = O(

β2

logβ2
)To solve the problem

βs = − β2

2|logβ| +O(
β2

|logβ|2 )we multiply by |logβ|
β2 so that

βslogβ

β2
=

1

2
+O(

1

|logβ|).Now
(
logu

u
+

1

u
)′ = − logu

u2and thus
− logβ + 1

β
=
s

2
+O

(∫ s

0

dτ

|logβ|

)
.To leading order, this leads to:

β =
2logs

s
(1 + o(1)), logβ = loglogs− logs+O(1)



77from whih
−logβ

β
=
s

2

(
1 +O

(
1

logs

))
, β =

−2logβ

s

(
1 +O

(
1

logs

))
. (7.63)Therefore,

β =
2logs

s
− 2

loglogs

s
+O

(
1

s

)
.Using (7.62) we also onlude that

b =
2logs

s
− 2

loglogs

s
+O

(
1

s

)
. (7.64)We now integrate the law for λ:

−λs

λ
= b =

2logs

s
− 2

loglogs

s
+O

(
1

s

)resulting in
−log(λ) = (logs)2−2(logs)loglogs+O(logs) = (logs)2

(
1 − 2

loglogs

logs
+O

(
1

logs

))whih implies:
√

−logλ = logs

(
1 − loglogs

logs
+O

(
1

logs

))
= logs− loglogs+O(1). (7.65)and thus

e
√
−logλ+O(1) =

s

logs
, s =

√
−logλe

√
−logλ+O(1) (7.66)We now observe from (7.64):

√
−logλ =

bs

2
+O(1) = −λt

2
s+O(1) (7.67)and thus

− λt√
−logλ

s = 2 + o(1).Taking into aount (7.66) gives the di�erential equation for λ:
− λte

√
|logλ|+O(1) = 2 + o(1) and equivalently − λte

√
|logλ| = eO(1). (7.68)Integrating this in time gives:

λ(t) = (T − t)e−
√

|log(T−t)|+O(1). (7.69)It remains to prove the strong onvergene of the exess of energy (1.13) whiheasily implies the quantization of the foused energy (1.14).step 2 Sharp derivation of the b law.Let us start with the following slightly di�erent ontrol on b:
b(t) =

λ(t)

T − t
(1 + o(1)) as t→ T. (7.70)For k ≥ 2, this follows diretly from (1.11), (7.60). We need to be more areful for

k = 1. Indeed, (7.68) and (7.69) imply:
b(t) = O(1)e−

√
|log(T−t), (7.71)



78 P. RAPHAËL AND I. RODNIANSKIbut this together with (7.69) is not su�ient to yield (7.70). However, we ompute:
∫ T

t
b2 =

∫ T

t
−bλt = b(t)λ(t) +

∫ T

t
λbt

= b(t)λ(t) +

∫ T

t
bs = b(t)λ(t) + o

(∫ T

t
b2
)where we used (5.33) in the last step. Hene:

1

b(t)λ(t)

∫ T

t
b2 = 1 + o(1) as t→ T. (7.72)On the other hand,

∣∣∣∣
1

(T − t)b2(t)

∫ T

t
b2 − 1

∣∣∣∣ =
2

(T − t)b2(t)

∣∣∣∣
∫ T

t
bbt(T − τ)

∣∣∣∣

.
1

(T − t)b2(t)

∫ T

t

b2

|logb|
b(T − τ)

λ(τ)
dτ. (7.73)We now observe from (7.61) that

∀τ ∈ [t, T ),
b2(τ)

|logb(τ)| ≤ 2
b2(t)

|logb(t)|and hene (7.73) yields the bound:
∣∣∣∣

1

(T − t)b2(t)

∫ T

t
b2 − 1

∣∣∣∣ .
1

(T − t)|logb(t)|

∫ T

t

b(T − τ)

λ(τ)
dτ. (7.74)We now laim

1

(T − t)|logb(t)|

∫ T

t

b(T − τ)

λ(τ)
dτ = o(1) as t→ T. (7.75)Assume (7.75), then (7.72) and (7.74) yield

∫ T

t
b2 = bλ(1 + o(1)) = (T − t)b2(1 + o(1))whih implies (7.70).Proof of (7.75): We ompute:

∫ T

t

b(T − τ)

λ(τ)
dτ = −

∫ T

t

λt(T − τ)

λ(τ)
dτ = (T − t)logλ(t) −

∫ T

t
logλdτ. (7.76)We now substitute (1.12) whih implies

logλ(t) = log(T − t) −
√

|log(T − t)| +O(1)and derive from (7.76) after some expliit integration by parts:
∫ T

t

b(T − τ)

λ(τ)
dτ = O((T − t)) as t→ T.We hene onlude from (7.71) that:

1

(T − t)|logb(t)|

∫ T

t

b(T − τ)

λ(τ)
dτ = o

(
1

|logb(t)|

)
= o(1) as t → T,and (7.75) is proved.step 3 Strong onvergene of (w, ∂tw) in H.



79We are now in position to onlude the proof of (1.13) whih is a onsequeneof the sharp asymptotis (1.11), (1.12) and (7.70) and the ontrol of the exess ofenergy (5.34).Statement (1.13) is equivalent to the existene of the strong limit for (w(t), ∂tw(t))in H as t → T .Let ζ be a ut-o� funtion with ζ(r) = 0 for r ≤ 1 and ζ(r) = 1 for r ≥ 2 andlet ζR(r) = ζ(Rr). The non-onentration of energy of the full solution u outsidethe origin is well known and follows by a simple domain of dependene argumentombined with the results in [36℄. Therefore, using the deomposition (5.11) weobtain existene of u∗, g∗ suh that
∀R > 0, ‖ζR(w(t) − u∗), ζR(∂tw − g∗)‖H → 0 as t→ T. (7.77)The proof of the strong onvergene (1.13) is now equivalent to the non-onentrationof the energy for w or equivalently:

E(u∗, g∗) = lim
t→T

E(w(t), ∂tw(t)). (7.78)Proof of (7.78): We adapt the argument from [29℄. For t ∈ [0.T ) de�ne
R(t) = B1(t)λ(t).and

ER(u, v) =

∫
ζR

[
v2 + (∂ru)

2 + k2 g
2(u)

r2

]
.Integrating by parts using the equation (1.3), we ompute:

∣∣∣∣
d

dτ
ER(t)(u(τ), ∂tu(τ))

∣∣∣∣ .
1

R(t)

∫

R(r)≤r≤2R(t)

[
(∂tu)

2 + (∂ru)
2 + k2 g

2(u)

r2

]
.

1

R(t)
,where in the last step we used onservation of energy. Integrating this from t to Tusing (7.77) yields:

∣∣ER(t)(u
∗, g∗) − ER(t)(u(t), ∂tu(t))

∣∣ .
T − t

R(t)
=

T − t

λ(t)B1(t)
. (7.79)We now observe from (1.22), (7.70) that:

T − t

λ(t)B1(t)
=
b(t)(T − t)

λ(t)

1

b(t)B1(t)
→ 0 as t→ T.Letting t→ T in (7.79), we onlude:

ER(t)(u(t), ∂tu(t)) → E(u∗, g∗) as t→ T.(7.78) now follows from:
ER(t)(u(t), ∂tu(t)) − E(w(t), ∂tw(t)) → 0 as t → T (7.80)Indeed, observe that:

∣∣ER(t)(u(t), ∂tu(t)) − E(w(t), ∂tw(t))
∣∣ .

∫

R(t)≤r≤2R(t)

[
(∂tw)2 + (∂rw)2 + k2 g

2(w)

r2

]
.For the �rst term, we have from (B.19), (5.29):

∫

r≤2R(t)
(∂tw)2 . R2(t)

∫
(∂tw)2

r2
. B2

1(t)E(t) .
|logb|4
b2

b4 → 0 as t→ T. (7.81)



80 P. RAPHAËL AND I. RODNIANSKISimilarily, from (B.11):
∫

2r≤2R(t)

[
(∂rw)2 +

g2(w)

r2

]
. R2|logb|2

∫

r≤2R(t)
(∇W )2

.
|logb|4
b2

E(t) → 0 as t→ T. (7.82)This onludes the proof of (7.80) and (7.78).step 2 Proof of the quantization of the blow up energy (1.14).From the onservation of the Hamiltonian:
E0 = E ((PB−1)λ + w, ∂t [(PB1)λ + w]) .We develop this identity. The onstrution of PB implies from diret hek
E ((PB1)λ, ∂t [(PB1)λ]) → E(Q) as t→ Tand the rossed term is easily proved to onverge to zero using (7.81), (7.82) andthe spae loalization of PB1 .(7.78) now yields (1.14).This onludes the proof of Theorem 1.1.Appendix A. Inversion of HWe formulate the following lemma about solutions of the inhomogeneous problem

Hv = h with the linear operator
H = −∆ + k2 f

′(Q)

y2assoiated to Q. Hamiltonian H is a standard Shrödinger operator with the kernelgenerated by the Ḣ1 saling invariane:Ker(H) = span(ΛQ),see [34℄ for a further introdution to the spetral struture of H. The followingLemma is elementary but ruial for the onstrution of Qb:Lemma A.1 (Inversion of H). For k ≥ 4 let 1 ≤ j ≤ k
2 − 1 and let hj(y) be asmooth funtion with

(hj ,ΛQ) = 0. (A.1)and the following asymptotis:
hj(y) =

{
yk(ej +O(y2)) as y → 0

dj
y2j

yk (1 +
fj

y2 +O( 1
y3 )) as y → +∞,

(A.2)Then there exists a smooth solution Hvj+1 = hj with
(vj+1, χMΛQ) = 0 (A.3)and the following asymptotis:(i) for j + 1 < k

2 , for 0 ≤ m ≤ 2,
dmvj+1

dym
(y) =

{
yk−m(αj+1,m +O(y2)) as y → 0,

βj+1
dmy2(j+1)−k

dym

[
1 +

γj+1

y2 +O( 1
y3 )
] as y → +∞,

(A.4)



81(ii) for j + 1 = k
2 with k even:

vj+1(y) =

{
yk(αj+1 +O(y2)) as y → 0,

βj+1

[
1 +

γj+1

y2 +O( 1
y3 )
] as y → +∞,

(A.5)For 1 ≤ m ≤ 2

dmvj+1(y)

dym
=

{
yk−m(αj+1,m +O(y2)) as y → 0,

βj+1γj+1
dmy−2

dym +O( 1
y3+m ) as y → +∞,

(A.6)Moreover, if
h′j(y) =

{
kyk−1(ej +O(y2)) as y → 0

dj(2j − k)y2j−1

yk (1 +
fj

y2 +O( 1
y3 )) as y → +∞,

(A.7)then (A.4), (A.6) hold form = 3. The onstants αj+1, αj+1,m, γj+1 impliitly dependon dj , ej and βj+1 an be found from the relation:
βj+1 = − dj

4(j + 1)(k − (j + 1))
. (A.8)Proof. The proof relies on the aessibility of the expliit expression for the Green'sfuntion of H.step 1 Solving the linear equation.From (1.4) in the Wave Map ase Q has the following asymptotis

Q(y) =

{
2yk(1 +O(yk)) as y → 0,
π − 2

yk (1 +O( 1
yk )) as y → ∞.

(A.9)and:
J = ΛQ =

{
2kyk(1 +O(yk)) as y → 0,
2k
yk (1 +O( 1

yk )) as y → ∞,
(A.10)Similarly, in the (YM) ase (k = 2, not overed by the Lemma) we �nd

Q(y) =

{
(1 +O(yk)) as y → 0,
(−1 +O( 1

yk )) as y → ∞.
(A.11)and:

J = ΛQ =

{
−2kyk(1 +O(yk)) as y → 0,

− 2k
yk (1 +O( 1

yk )) as y → ∞,
(A.12)Let now

Γ(y) = J(y)

∫ y

1

dx

xJ2(x)be the other (singular) element of the kernel of H, whih an be found from theWronskian relation:
Γ′J − ΓJ ′ =

1

y
. (A.13)From this we an easily �nd the asymptotis of Γ:

Γ(y) =

{
− 1

4k2yk (1 +O(yk)) as y → 0,
yk

4k2 (1 +O( 1
yk )) as y → ∞,

(A.14)



82 P. RAPHAËL AND I. RODNIANSKIin the (WM) ase. In the (YM) ase
Γ(y) =

{
1

4k2yk (1 +O(yk)) as y → 0,

− yk

4k2 (1 +O( 1
yk )) as y → ∞,

(A.15)Using the method of variation of parameters and (A.13), we �nd that a solution to
Hwj+1 = hj is given by:

wj+1(y) = Γ(y)

∫ y

0
hj(x)J(x)xdx − J(y)

∫ y

1
hj(x)Γ(x)xdx. (A.16)Step 2 Asymptotis of wj+1.We ompute the asymptotis of wj+1 near +∞. In what follows we restrit ouranalysis to the (WM) ase. For the �rst term in (A.16), we use (A.1), (A.2) toderive:

Γ(y)

∫ y

0
hj(x)J(x)xdx = −Γ(y)

∫ +∞

y
hj(x)J(x)xdx

= − yk

2k2

(
1 +O(

1

yk
)

)∫ +∞

y
x
k

xk

djx
2j

xk

(
1 +

fj

x2
+O(

1

x3
)

)
dx

= −djy
k

2k

(
1 +O(

1

yk
)

)∫ +∞

y

x2j+1

x2k

(
1 +

fj

x2
+O(

1

x3
)

)
dx

= − dj

4k(k − (j + 1))

y2(j+1)

yk

(
1 +

f
(1)
j+1

y2
+O(

1

y3
)

)In the above f (1)
j+1 is a onstant dependent only on fj, k and j.For the seond term, we estimate

−J(y)

∫ y

1
hj(x)Γ(x)xdx = − k

yk

(
1 +O(

1

yk
)

)∫ y

1

xxk

2k2

djx
2j

xk

(
1 +

fj

x2
+O(

1

x3
)

)
dx

= − dj

2kyk

(
1 +O(

1

yk
)

)∫ y

1
x2j+1

(
1 +

fj

x2
+O(

1

x3
)

)
dx.and (A.4), (A.5) and (A.8) follow for y → +∞.We ompute the asymptotis of vj+1 near the origin. First,

Γ(y)

∫ y

0
hj(x)J(x)xdx = − 1

2k2yk
(1 +O(yk))

∫ y

0
xejx

kkxk(1 +O(x2))dx

= yk(O(y2))For the seond term in (A.16),
−J(y)

∫ y

1
hj(x)Γ(x)xdx = kyk(1 +O(yk))

∫ y

1
ejx

kx
1

2k2xk
(1 +O(x2))dx

=
ej
2k
yk

[
−
∫ 1

0
(x+O(x2))dx+O(y2)

]and (A.4) and (A.5) follow for vj+1 as y → 0.step 3 Estimates for the derivatives.



83For 2j < k − 2, the estimates for the derivatives (A.4) are derived similarily andleft to the reader. For k even and j = k
2 − 1, there holds an extra anellation as

y → +∞ leading to (A.6) whih we now exploit. Indeed,
w′

j+1(y) = −Γ′(y)
∫ +∞

y
hj(x)J(x)xdx − J ′(y)

∫ y

1
hj(x)Γ(x)xdx.For the �rst term,

−Γ′(y)
∫ +∞

y
hj(x)J(x)xdx = −ky

k−1

2k2

(
1 +O(

1

yk
)

)∫ +∞

y

kdjx
2j+1

x2k

(
1 +

fj

x2
+O(

1

x3
)

)
dx

= − dj

2ky

(
1 +

f
(2)
j+1

y2
+O(

1

y3
)

)
.Similarly,

−J ′(y)
∫ y

1
hj(x)H(x)xdx =

k2

yk+1

(
1 +O(

1

yk
)

)∫ y

1

djx
2j+1

2k2

(
1 +O(

1

x3
)

)
dx

=
dj

2ky

(
1 +

f
(3)
j+1

y2
+O(

1

y3
)

)
,resulting in the anellation leading to (A.6). The onstants f (2)

j+1, f (3)
j+1 depend onlyon fj, k and j.The seond derivative w′′

j+1 is estimated using the equation and the asymptotisfor (wj+1, w
′
j+1), this is left to the reader.step 4 Satisfying the orthogonality ondition.We now let

vj+1 = wj+1 −
(wj+1, χMΛQ)

(ΛQ,χMΛQ)
ΛQso that (A.3) is satis�ed. Moreover, L(ΛQ) = 0 implies Lvj+1 = Lwj+1 = fj. Itnow remains to observe from (A.10) that the behavior of vj+1 near the origin and

+∞ is the same as of wj+1.This onludes the proof of Lemma A.1. �Appendix B. Some linear estimatesLemma B.1 (Logarithmi Hardy inequalities). ∀R > 2, ∀v ∈ Ḣ1
rad(R

2), there holdsthe following ontrols:
∫

y≤R

|v|2
y2(1 + |logy|)2 ydy .

∫

y≤R
|∇v|2, (B.1)

|v|2L∞(1≤y≤R) .

∫

1≤y≤2
|v|2 +R2

∫ |∇v|2
y2

ydy, (B.2)
∫

y≤R
|v|2ydy . R2

(∫

y≤2
|v|2ydy + logR

∫

y≤R
|∇v|2ydy

)
, (B.3)

∫

R≤y≤2R

|v|2
y2

ydy .

∫

y≤2
|v|2ydy + logR

∫

y≤2R
|∇v|2ydy. (B.4)

∫

y≤2R

|v|2
y2

ydy . logR

∫

y≤2
|v|2ydy + log2R

∫

y≤2R
|∇v|2ydy. (B.5)



84 P. RAPHAËL AND I. RODNIANSKIProof. Let v smooth. To prove (B.1), let f(y) = − ey

y(1+|log(y)|) so that ∇ · f =
1

y2(1+|logy|)2 , and integrate by parts to get:
∫

ε≤y≤R

|v|2
y2(1 + |logy|)2 ydy =

∫

ε≤y≤R
|v|2∇ · fydy

= −
[ |v|2
1 + |log(y)|

]R

ε

+ 2

∫

y≤R
v∂yv

1

y(1 + |logy|)ydy

.
|v(ε)|2

1 + |logε| +

(∫

y≤R

|v|2
y2(1 + |logy|)2 ydy

) 1
2
(∫

y≤R
|∇v|2ydy

) 1
2

. (B.6)On the other hand,
|v(ε)|2 . |v(1)|2 +

(∫

ε≤y≤1
|v′(y)|dy

)2

. |v(1)| + |logε|
∫

y≤R
|∇v|2ydyand hene:

lim sup
ε→0

|v(ε)|2
1 + |logε| .

∫

y≤R
|∇v|2ydy.Injeting this into (B.6) and letting ε→ 0 yields (B.1). To prove (B.2), let y0 ∈ [1, 2]suh that

|v(y0)|2 .

∫

1≤y≤2
|v|2ydy.Then: ∀y ∈ [1, R],

|v(y)| = |v(y0) +

∫ y

y0

v′(r)dr| . |v(y0)| +R

(∫ |∇v|2
y2

ydy

) 1
2

,and (B.2) follows. Similarily,
|v(y)| = |v(y0) +

∫ y

y0

v′(r)dr| . |v(y0)| +
(∫

y≤R
|∇v|2ydy

) 1
2 √

logR,and (B.3), (B.4) follow by squaring this estimate and integrating in R. Finally,(B.5) follows from (B.4) by summing over dyadi R-intervals. �Lemma B.2 (Hardy type estimates with A). Let M ≥ 1 �xed. Then there exists
c(M) > 0 suh that the following holds true. Let u ∈ H1 with

(u, χMΛQ) = 0,then:(i) ∫ (
|∇u|2 +

|u|2
y2

)
≤ C(M)

∫
|Au|2 (B.7)(ii) if ∫ |u|2

y4
+

∫ |∇u|2
y2

< +∞; (B.8)then: ∫ |∇u|2
y2

+

∫ |u|2
y4

≤ c(M)

∫ |Au|2
y2

; (B.9)(iii) if ∫ |u|2
y4(1 + |logy|)2 +

∫
|∇(Au)|2 < +∞, (B.10)



85then:
∫ |∇u|2
y2(1 + |logy|)2 +

∫ |u|2
y4(1 + |logy|)2

≤ c(M)

[∫ |Au|2
y2(1 + y2)

+

∫
|∇(Au)|2ydy

]

. c(M)|A∗Au|2L2 . (B.11)Remark B.3. The norm (B.8) is �nite for u = w for k ≥ 2. For k = 1, the �nitnessof the H2 norm implies that
w

y
,∇(Aw) ∈ Ḣ1and hene the norm (B.10) is �nite using (B.1).Proof. (B.7) is equivalent to (2.10) ie the oeritivity of the linearized energy. Theproof of the global Hardy type inequality (B.9), (B.11) with c(M) follows as inRodnianski-Sterbenz' [34℄ Appendix for k ≥ 3. The ases k = 1, 2 require somemore attention. We treat k = 1 whih is the most deliate ase and leave k = 2 tothe reader.We laim the key suboerivity property:

∫ |Au|2
y2(1 + y2)

+

∫
|∇(Au)|2

≥ C

[∫ |∂yu|2
y2(1 + |logy|)2 +

∫ |u|2
y4(1 + |logy|)2 −

∫ |u|2
1 + y5

]
. (B.12)Assume (B.12), then (B.11) follows by ontradiation. LetM > 0 �xed and onsidera sequene un suh that

∫ |∂yun|2
y2(1 + |logy|)2 +

∫ |un|2
y4(1 + |logy|)2 = 1, (un, χMΛQ) = 0, (B.13)and ∫ |Aun|2

y2(1 + y2)
+

∫
|∇(Aun)|2 ≤ 1

n
, (B.14)then by semiontinuity of the norm, un weakly onverges on a subsequene to u∞ ∈

H1
loc solution to Au∞ = 0. u∞ is smooth away from the origin and hene the expliitintegration of the ODE and the regularity assumption at the origin u∞ ∈ H1

locimplies
u∞ = αΛQ.On the other hand, from the uniform bound (B.13) together with the loal om-patness of Sobolev embeddings, we have up to a subsequene:

∫ |un|2
1 + y5

→
∫ |u∞|2

1 + y5
and (un, χMΛQ) → (u∞, χMΛQ).We thus onlude that

α(ΛQ,χMΛQ) = (u∞, χMΛQ) = 0 and thus α = 0.On the other hand, from the suboeritivity property (B.12) and (B.13), (B.14)
α2

∫ |ΛQ|2
1 + y5

=

∫ |u∞|2
1 + y5

≥ C > 0 and thus α 6= 0.A ontradition follows. Finally, the last step in (B.11) is a diret onsequene of(2.16) ie the struture of the onjuguate Hamiltonian H̃.



86 P. RAPHAËL AND I. RODNIANSKIProof of (B.12): Let a smooth ut o� funtion χ(y) = 1 for y ≤ 1, χ(y) = 0 for
y ≥ 2, and onsider the deomposition:

u = u1 + u2 = χu+ (1 − χu).Then from (B.1):
∫ |Au|2
y2(1 + y2)

+

∫
|∇(Au)|2 ≥ C

[∫ |Au|2
y2(1 + y2)

+
|Au|2

y2(1 + |logy|)2
]
. (B.15)For the �rst term, we rewrite:

∫ |Au|2
y2(1 + y2)

≥
∫ |Au1|2

y2
+ 2

∫
(Au1)(Au2)

y2(1 + y2)

≥ C



∫ |y∂y

(
u1
y

)
|2

y2
−
∫ |V (1) − 1|2

y2
|u1|2 −

∫

1≤y≤2
|u|2

where in the last step we integrated by parts the quantity:

(Au1)(Au2) = (χAu−χ′u)((1−χ)Au+χ′u) ≥ χ(Au)χ′u−χ′u(1−χ)(Au)−(χ′)2u2.We hene onlude from |V (1)(y)− 1| . y for y ≤ 1 and the Hardy inequality (B.1)applied to u1
y that:

∫ |Au|2
y2(1 + y2)

≥ C

[∫ |u1|2
y4(1 + |logy|)2 −

∫

y≤2
|u|2
]
. (B.16)Similarily we estimate:

∫ |Au|2
y2(1 + |logy|)2 ≥

∫ |Au2|2
y2(1 + |logy|)2 + 2

∫
(Au1)(Au2)

y2(1 + |logy|)2

≥ C

[∫
1

y2(1 + |logy|)2 |∂yu2 +
u2

y
|2 −

∫ |V (1) + 1|2
y2(1 + |logy|)2 |u2|2 −

∫

1≤y≤2
|u|2
]

≥ C

[∫ |∂yu2|2
y2(1 + |logy|)2 +

∫ |u2|2
y4(1 + |logy|)2 −

∫ |u2|2
y6(1 + |logy|)2

] (B.17)where we integrated by parts for the last step and used the bound |V (1)(y)+1| . 1
y2for y ≥ 1. (B.15), (B.16) and (B.17) imply:

∫ |Au|2
y2(1 + y2)

+

∫
|∇(Au)|2 ≥ C

[∫ |u|2
y4(1 + |logy|)2 −

∫ |u|2
1 + y5

]
. (B.18)This implies using again (B.1):

∫ |∂yu|2
y2(1 + |logy|)2 .

∫ |Au|2
y2(1 + |logy|)2 +

∫ |u|2
y4(1 + |logy|)2

.

∫
|∇(Au)|2 +

∫ |Au|2
y2(1 + y2)

+

∫ |u|2
1 + y5whih together with (B.18) onludes the proof of (B.12).This onludes the proof of Lemma B.2. �Lemma B.4 (Control of the ∂t derivative). There holds:

∫
|∇∂tw|2 +

∫ |∂tw|2
r2

≤ C(M)

[∫
(∂tW )2 +

∫
|A∗

λW |2
]
. (B.19)



87Proof. We ompute from (2.7):
∂tW = A(∂tw) +

∂tV
(1)
λ w

rand hene: ∫
(A∂tw)2 .

∫
(∂tW )2 +

∫
(
∂tV

(1)
λ w

r
)2. (B.20)We now reall the following oeritivity property of the linearized Hamiltonian:

∫
(A∂tw)2 ≥ c(M)

(∫
|∇∂tw|2 +

∫ |∂tw|2
r2

)
− 1

c(M)λ4
(∂tw, (χMΛQ)λ)2.From the hoie of orthogonality ondition (5.12):

|(∂tw, (χMΛQ)λ)| = |(w, ∂t((χMΛQ)λ))| =
b

λ
|(w, (Λ(χM ΛQ))λ)|

≤ c(M)bλ

(∫

y≤2M
|ε|2
) 1

2

.Combining this with (B.20) and the pointwise bound (6.18) yields:
∫

|∇∂tw|2 +

∫ |∂tw|2
r2

.

∫
(∂tW )2 +

b2

λ2

∫
|ε|2

[
1y≤M +

y4

y2(1 + y8)

]
. (B.21)We then estimate from (B.11):

∫
|ε|2

[
1y≤M +

y4

y2(1 + y8)

]
.

∫ |ε|2
y4(1 + |logy|2)

≤ C(M)

∫
|A∗Aε|2 = λ2

∫
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