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Abstract Concerted community efforts have been devoted to producing an authoritative climatology
of air-sea CO, fluxes, but identifying decadal trends in CO, fluxes has proven to be more challenging. The
available surface pCO, estimates are too sparse to separate long-term trends from decadal and seasonal
variability using simple linear models. We introduce Markov Chain Monte Carlo sampling as a novel
technique for estimating the historical pCO, at the ocean surface. The result is a plausible history of surface
pCO, based on available measurements and variability inferred from model simulations. Applying the
method to a modern database of pCO, data, we find that two thirds of the ocean surface is trending toward
increasing uptake of CO,, with a mean (year 2000) uptake of 2.3 + 0.5 PgC yr~! of anthropogenic carbon
and an increase in the global annual uptake over the 30 year time period of 0.4 + 0.1 PgC yr~' decade™'. The
results are particularly interesting in the Southern Ocean, where we find increasing uptake of carbon over
this time period, in contrast to previous studies. We find evidence for increased ventilation of deep ocean
carbon, in response to increased winds, which is more than offset by an associated surface cooling.

1. Introduction

The flux of CO, at the air-sea interface controls atmospheric CO, concentrations on centennial timescales
and is an important term in the year-to-year carbon budget of the atmosphere. Currently, the ocean absorbs
CO, from the atmosphere. Each year the uptake is equivalent to about 30% of annual fossil fuel emissions
[Sarmiento et al., 2010]. The flux amounted to 2.0 + 1.0 PgC yr~! in the decade surrounding the year 2000,
according to multiple estimation techniques [Takahashi et al., 2009; Wanninkhof et al., 2013], though other
estimates show smaller uncertainties, 2.0 + 0.6 PgC yr~' [Gruber et al., 2009].

Recently, analysis of the atmospheric carbon content has shown that the combined land-ocean sink

of CO, from the atmosphere has grown from 2.4 + 0.8 PgC yr~" in 1960 to 5.0 + 0.9 PgC yr~' in 2010
[Ballantyne et al., 2012]. Partitioning the growth into terrestrial and oceanic components will be helpful
in developing an understanding of the dynamics that lead to trends in the land and ocean sinks and how
they affect the response of the climate system to anthropogenic forcing through carbon cycle feedbacks
[Friedlingstein et al., 2006]. In the future, if we wish to have a system that monitors the carbon budget
between the atmosphere, terrestrial biosphere, and ocean, having an updated estimate of the air-sea flux
and an understanding of its trends will be essential.

The scarcity of measurements makes it difficult to examine trends in the air-sea CO, flux [Doney et al., 2009a]
and estimates of the trend in the global flux vary significantly [Wanninkhof et al., 2013]. Studies of the trends
in the oceanic uptake of CO, largely hinge on surface measurements of pCO,. Since the air-sea CO, flux

is based on the disequilibrium in the partial pressure of the gas, pCO, in patm yr~!, a common metric of
the flux trend is the rate of change of pCO, in the sea surface compared to the atmospheric pCO, growth
rate. Fay and McKinley [2013] calculated trends in surface pCO,, globally but divided into ocean biomes, and
showed that trends in pCO, from the surface measurements are strongly influenced by decadal variability
and that the multidecadal trend, measured over 30 years, in surface pCO, for the tropics and subtropics is
consistent with or slightly slower than the atmospheric growth rate. Time series at two of the most highly
sampled oceanic regions, from the ocean stations BATS and HOT, also show that the surface ocean pCO,
growth rate is similar to the atmospheric growth rate [Bates, 2007; Dore et al., 2009].

In the Subtropical North Pacific, Takahashi et al. [2006] argued that the increase in the surface pCO, in
the Subtropical North Pacific has been slower than that of the atmosphere over the last few decades. In
the North Atlantic, surface pCO, trends imply a decreasing air-sea flux. Schuster and Watson [2007] found
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regions of decreasing ocean uptake, between 1994-1995 and 2002-2004, in the Atlantic Basin between
20°N and 65°N. Feely et al. [2006] used surface pCO, data to show that the degassing flux from the Equato-
rial Pacific increased in the mid-1990s, concurrent with the shift in the Pacific Decadal Oscillation in 1997. Le
Quéré et al. [2010] showed that Southern Ocean pCO, was increasing faster than the atmospheric value in
the winter months from 1981 to 2007. The trends that are implied by these local studies might point to sub-
stantial changes in the oceanic CO, uptake and it is important to understand how the global trend emerges
from the regional trends.

Takahashi et al. [2009] have collected a substantial set of surface pCO, measurements and used them to
build an authoritative atlas of the annual cycle of pCO, in the surface ocean and implied climatology of
air-sea CO, flux. The observations that were used to make the climatology, mostly underway measure-
ments of pCO, from research cruises and volunteer ships of opportunity, have been released as a database,
LDEO2010, for public download [Takahashi et al., 2012]. More recently, the efforts of Pfeil et al. [2012] and
Sabine et al. [2012] have resulted in the Surface Ocean CO, Atlas (SOCAT) database and gridded products,

a quality controlled and publicly documented collection of surface pCO, measurements. These initiatives
allow for the continued use of surface measurements as a source of information about the surface ocean
carbon system. For us, the availability of these data provides an opportunity for a global analysis of trends in
the sea surface pCO, and the air-sea CO, flux over the past few decades.

Despite the size of the LDEO2010 database, the available surface pCO, measurements are sparse. The resul-
tant climatology [Takahashi et al., 2009] is reported on a grid of 5° (longitude) x 4° (latitude) boxes. The
observations cover less than 5% of the values needed if one wishes to have a pCO, history on that grid with
monthly values from 1980 to 2005. Data availability is highest in the North Atlantic and North Pacific. Large
parts of the Southern Hemisphere, tropics, and subtropics are sampled with a seasonal bias, once or twice or
not at all. The small number of available measurements over the whole globe makes it difficult to separate
trends from interannual variability, the seasonal cycle, and transient variations in each region of the ocean.

We introduce the Markov Chain Monte Carlo (MCMC) method in section 2 below. We then demonstrate
the MCMC method on a synthetic data set and finally use it to estimate pCO, time series and trends using
data from the LDEO2010 database. Section 3 shows the estimated trends, sensitivity to the representation
of seasonal and interannual variability, and the fluxes that result from the pCO, time series associated with
our inversions. Lastly, we discuss the implications of the inversion for the ocean carbon sink and the global
carbon cycle.

2. Methods

Here we describe the formulation of the simple model we use for the surface pCO, and the Markov Chain
Monte Carlo inversion technique. Then we discuss how we implement the two using the LDEO2010 data.
The MCMC inversion is a Bayesian technique and requires us to impose an a priori distribution for the param-
eters in the pCO, model. The a priori distribution represents our best knowledge about the model before it
is inverted with data. In this section, we describe how we estimate the prior distribution for the pCO, model
from a selection of ocean general circulation model simulations with biogeochemistry, which are described
in Table 1.

Briefly, the MOM4p1-BLING model we used for prior information is based on the NOAA Geophysical Fluid
Dynamics Laboratory (GFDL) Modular Ocean Model version 4.1 [Griffies et al., 2004] with 3° horizontal
resolution. The circulation model is coupled to the Biology Light Iron Nutrient and Gas (BLING) idealized
biogeochemistry model [Galbraith et al., 2011]. This model configuration was included in several variations,
with simulations forced by different reanalysis products: CORE-Il [Large and Yeager, 2009], ERA-40 [Uppala et
al., 2005] and NCEP1 [Kalnay et al., 1996] and a simulation forced with a climatology derived from CORE-II.
Additionally, we used two simulations from the latest versions of the NEMO-PISCES model [Aumont and
Bopp, 2006], using the ORCA2 configuration of NEMO Version 3.2, with 2 degree horizontal resolution and
31 vertical levels. This model was forced with the DRAKKAR Forcing Set 4.1, or DFS4.1 [Brodeau et al., 2010].

2.1. Estimating pCO, Time Series
We implement and perform inversion of a simple model for the surface water pCO,, shown in equation (1),
which has terms for four modes of variability with monthly resolution:

pCOFA(x,y, 1) = A(x,y) - t + B(x,¥) + C(x,y) - SEAS(x,y, T) + D(x,y) - IAV(x, y, 1) (1)
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Table 1. Coupled Ocean-Biogeochemistry Models

Model Forcing Resolution Dates
MOM4p1-BLING [Griffies et al., 2004; Galbraith et al., 2011] CORE-Il [Large and Yeager, 2009] 3° 1980-2006
CORE-II-NY 3° 1960-19802
NCEP-1 [Kalnay et al., 1996] 3° 1980-2006
ERA-40 [Uppala et al., 2005] 3° 1980-2003
OPA-PISCES (A) [Aumont and Bopp, 2006] DRAKKAR [Brodeau et al., 2010] 2° 1980-2006
OPA-PISCES (B)P DRAKKAR [Brodeau et al., 2010] 2° 1980-2006

@This simulation was run with the atmospheric CO, from 1980 to 2006, but with the climatological forcing of the ocean circulation.
bThe two versions of the OPA-PISCES model use different parameterizations of mixed layer turbulence as in Rodgers et al. [2013].

The coefficient of the first term, A in yatm yr~', is meant to represent the multidecadal linear trend with time.
We generally expect A to have a positive value, as a warming ocean that is also absorbing anthropogenic
CO, from the atmosphere should exhibit increasing pCO,. B gives the June 1995 value for pCO, in patm; t

is referenced to that month. The constant term allows for regional differences in the mean carbon content
of the surface ocean. The seasonal and interannual variabilities about that linear model are represented by
the remaining two terms. In this case, we consider seasonal variations to be a climatological repeating cycle,
SEAS in patm, based on the average annual cycle for a grid box. The time dependence of this term is climato-
logical, and thus, it depends on the repeating monthly time grid, T. The monthly value of SEAS is calculated
as the average deviation from the linear trend for each month, from 1980 to 2006. The interannual term, IAV
in patm yr~', represents mean year-to-year variability, such as decadal trends, and interannual variability at
monthly timescales, such as an early spring bloom or the increasing seasonality in pCO,. Both the seasonal
and interannual terms have zero averages over the whole time period. Thus, the trend parameter, A, should
fully represent the changes in surface pCO, over the 30 year window. Figure 1a shows how the model rep-
resents the surface pCO, data in the Eastern Pacific 5° x 4° box centered at (132.5°W, 16°N), with different
coefficients from before and after inversion.

Previous attempts to estimate pCO, as a function of time have generally been limited to a simple linear
function including the A(x,y) - t and B(x, y) terms and some representation of the seasonal cycle, our
C(x,y) - SEAS(x,y, T), Takahashi et al. [2009]; and using ordinary least squares to estimate the model
parameters. Our contribution is to add the interannual variability, D(x, y) - IAV(x, y, t) and to implement a
Bayesian inversion scheme that allows us to include prior estimates as constraints on the model parameters.

2.2. MCMC Inversion
The inversion scheme we implement is a version of Markov Chain Monte Carlo sampling. Each of the param-
eters (A, B, C, D) in equation (1) is subject to Bayesian inversion using the observations in LDEO2010 and the
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Figure 1. These figures show (a) pCO, time series and (b) the distributions associated with the parameter A for a grid cell
in the Eastern Pacific. The green line shows the posterior estimate for the pCO, time series and the magenta shows the
prior estimate. The red dots indicate the monthly averaged measurements from LDEO2010.
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pCO, values predicted by the simple model. The prior distribution for the parameters (A, B, C, D) is updated
with the available observations to yield posterior distributions for each of the parameters. Thus, the inver-
sion can change the probability distributions governing the trend, initial value, and the amplitude of the
prescribed seasonal and interannual variability. In this implementation, it cannot change the phase of the
seasonal cycle or modify the model-based estimate of a singular event such as a particular El Nifio.

The MCMC performs an iterative random walk of the parameter space of the pCO, model to arrive at an
optimal parameter estimate given the prior information and available data. Given a seed vector x,, in param-
eter space (A, B, C, D), the MCMC algorithm randomly selects a nearby point as a proposed step, x,,..;, and
uses a specific decision criterion to accept or reject that next step based on the misfit of the observations
and model predictions and the prior probability assigned to that point in parameter space. If the proposed
step is accepted, then the walk moves to that position and starts again, otherwise, it starts again from the
current position.

Our implementation of the MCMC uses the Metropolis-Hastings decision criterion. The proposed step is
approved with probability, @, determined by

a=min |1, PO LM, ) | ®)

px)LMIx,)

Under this decision criterion, the set of positions occupied during the random walk converge to a sampling
of the posterior distribution of the parameters given the observations [Hastings, 1970]. In equation (2), p(x)
is the prior probability of the point x in parameter space. L(M|x) is the likelihood function for the parame-
ter given the data available. The likelihood is the probability of obtaining the pCO, measurements M from
LDEO2010, in the case that the true parameters of the model are located at x. If the misfit between the mod-
eled pCO, at the parameter values in x is larger than the error associated with the measurements, then the
likelihood will be low at that point. The likelihood calculation requires the error covariance matrix for the
observations M, and M varies in size depending on how many observations are available in each grid box of
the inversion.

Under the probabilistic metropolis rule, the random walk will tend to move toward areas of parameter space
where both the prior probability and the model likelihood are high and thus a good fit of the data. That ten-
dency generates the sampling of the posterior distribution. Figure 1b demonstrates how inversion with the
data in LDEO changes the model-based prior distribution for the slope parameter A. The MCMC inversion
both changes the mean and the standard deviation of the parameter’s distribution, indicating that the data
has substantial information about this parameter in that region.

2.3. Calculating Fluxes From pCO,
The air-sea flux of CO, is a function of the difference in pCO, between the two mediums, ApCO,, and an
exchange velocity, k,,, according to the form in equation (3).

@ = k,ApCO, 3)

The gas exchange velocity is calculated as a function of the squared wind speed at 10 m above sea level, the
solubility of CO, in seawater, &, and the local Schmidt number, Sc [Wanninkhof et al., 2009].
-0.5

b=ra(gg) G @

The value of y in these calculations is 0.27 [Sweeney et al., 2007]. In the year 2000, we use the gas exchange
piston velocity from Takahashi et al. [2009] so that the fluxes are directly comparable to those from

the climatology. We then diagnose the time variation in k,, from the reanalysis forced simulation with
MOM4p1-BLING.

In this work, we define ApCO, to be positive for excess pCO, in the ocean relative to the atmosphere, such
that a positive flux is out of the ocean and a negative flux is into the ocean.

ApCO, = pCO5™ — pCO3" (5)

We use the atmospheric mixing ratio of CO, from the global monitoring stations at Mauna Loa and the
South Pole, assigning the Mauna Loa value north of Hawaii and linearly interpolating between Hawaii and
the South pole for the rest of the globe [Keeling et al., 2001]. This was the same atmospheric pCO, that was
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used to force the MOM4p1-BLING model simulations. The difference between fluxes calculated with this
atmospheric pCO, and the atmospheric pCO, from Takahashi et al. [2009] in the year 2000 are negligible. We
also use local sea level pressure to calculate the atmospheric pCO, at the sea surface. We assume that the
atmospheric CO, is zonally homogeneous. Thus, the estimates of the air-sea carbon flux can follow directly
from estimates of the surface water pCO,. Likewise, trends in the air-sea carbon flux can be related to the rel-
ative trends in pCO, in the sea surface and lower atmosphere. We assume a preindustrial air-sea CO, flux of
0.4 + 0.2 PgC yr~! out of the ocean when calculating the global anthropogenic CO, uptake as in Takahashi
et al. [2009].

2.4. Defining Inversion Parameters

Each of the parameters (A, B, C, D) in the pCO, model in equation (1) needs to be supplied with a prior
distribution. We assume that the parameters are independent and normally distributed when assigning
the prior. For the trend and intercept (A, B), we generate the prior mean and standard deviation using an
ensemble of six ocean general circulation model simulations that were coupled with biogeochemistry.
The physical circulation of the individual models was forced with atmospheric reanalysis products and the
ocean-biogeochemistry models were forced with atmospheric CO, concentrations. We use the models as
different representations of how the ocean biogeochemistry would be expected to respond to the increas-
ing atmospheric concentrations of CO, and the climate experienced over 1980-2006. Each of the models
was spun-up from preindustrial conditions with the historical atmospheric CO, and forced by a climatologi-
cal year (monthly averaged values from 1959 to 1979 with imposed 6-hourly variability) of the atmospheric
forcing until the start of the atmospheric reanalysis time period in the 1950s.

We used ordinary least squares to calculate the linear slope and mean value for each model’s time series

of pCO, in the 5° X 4° grid boxes and then calculated the ensemble mean and standard deviation for both
parameters to form the prior distributions. The number of samples in this case is small and the sample stan-
dard deviation that results is not robust. Thus, we increased the standard deviation of the ensemble by a
factor of 3 to define the prior standard deviation of A. This is consistent with setting the standard deviation
at the upper range of the confidence interval for the true standard deviation between the 90 and 95% levels.
The prior standard deviation for the geographical mean, B, is assumed to be the sample standard deviation
from the ensemble. The construction of the SEAS and IAV signals is described in the next paragraphs.

The seasonal variability can be diagnosed from observations for some areas [Takahashi et al., 2009], but
sampling scarcity makes it hard to do so for the global ocean. The seasonal cycle can also be estimated
with harmonic functions for boxes of a few degrees [Schuster and Watson, 2007] or basin-scale regions [Fay
and McKinley, 2013], but data scarcity is again a problem. Coupled ocean-ecosystem models are attractive
because they offer pCO, time series without gaps, but the modeled seasonal cycle can be biased [Woloszyn
et al, 2011]. In our inversion, we use the seasonal cycle from the MOM4.1-BLING simulation and the
Takahashi et al. [2009] seasonal cycle and compare the results between the two inversions to examine the
sensitivity to the imposed seasonal cycle. The modeled seasonal cycle is defined for each montbh, is set to
be a climatology of deviations from the annual mean, and is a repeating cycle for the 30 year time period.
Likewise, the climatological seasonal cycle based on observations has no variation between years, but it is
constructed from interpolated observations from the LDEO2010 database.

In this work, the interannual variability was taken from the MOM4.1-BLING simulations under CORE-II forc-
ing. The CORE-Il forced simulation was chosen for the |AV term because of the improved representation of
the wind forcing fields in the Southern Ocean and Equatorial Pacific [Large and Yeager, 2009]. The interan-
nual term, IAV(x, y, t), is defined for each month as the difference between the MOM4.1-BLING pCO, and
the ordinary least squares linear fit against the model plus the repeating seasonal cycle from the model.
We chose to use the interannual variability from the reanalysis forced model because the signals would

be “time-stamped” in the same way as the data in LDEO2010. If the data show a strong response to the El
Nifio in 1997-1998, for instance, that response should be adjusted for using the modeled response from the
MOM4p1-BLING simulation as the surface forcing reflects the conditions at that time. Since the CORE-Il forc-
ing product ends in 2005, interannual variability after that year is set to zero. The effect of introducing the
IAV term from the forced-model simulations is examined in the sensitivity analysis. The imposed seasonal
cycle and interannual variability might be inconsistent with the observations of surface pCO, and thus intro-
duce additional bias. Our framework allows for the scaling parameter for each, (C, D) in equation (1), to be
subject to inversion. In this framework, the imposed signals can be muted or amplified to provide a better fit
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Table 2. Coupled CMIP5 to the observations. For the prior of the amplitude
Ocean-Atmosphere-Biogeochemistry Models? parameters (C, D), we assume a normal distribution

) ) ) with mean of 1.0 and standard deviation 1.0. This prior
Model Simulation Resolution K . X .

was assigned for all grid cells and both time series and

HadGEM2-CC rlitpt 1913 assumes a high uncertainty in the imposed signals
HadGEM2-CC 12ilp1 19x13 9 y P gnats.
HADGEM2-ES rm p1 1.9%x13 To calculate the likelihood, L(M|x), it is necessary to
GISS-E2-R Kitpll 10x13 have an error covariance matrix for the observations
GFDL-ESM2M rlilp1 1.0x 1.0

in LDEO2010. In this application, the data vector, M,
aSee Bellouin et al. [2011], Schmidt et al. [2006], is the array of all of the monthly averaged pCO, mea-
and Dunne et al. [2013] surements from LDEO2010 for each cell. We assume
that the errors are unbiased, independent, and nor-
mally distributed. The standard deviation of the
individual distributions is set equal to the monthly sample standard deviation in each grid cell. In cases
where the standard deviation is undefined or very small, we set a floor for the error at the instrumental
precision of 3.0 patm [Takahashi et al., 2009].

2.5. Demonstration Study

In this section we use an Observing System Simulation Experiment (OSSE) to demonstrate the benefits of
the MCMC method and the importance of including the IAV term for properly calculating to pCO, trend.
We choose output from the NOAA GFDL ESM2M historical simulation for Coupled Model Intercomparison
Project Phase 5 (CMIP5) [Dunne et al., 2012, 2013] for the “true” pCO,. Then, the space-time coordinates of
the observations in LDEO2010 are used to sample the ESM2M and to infer trends from this subsampling

of the model. We add an unbiased normally distributed error term to each synthetic observation with the
same standard deviation that we assign to the measurements in the data-based inversion. The MCMC is
initialized with a prior based on an ensemble of five CMIP5 historical simulations (for a description, see
Table 2). The prior was constructed in the same way as the prior for the LDEO2010 inversion, with the climate
models in place of the reanalysis forced models. The trends inferred from ordinary least squares and the
MCMC inversion applied to this synthetic database are then compared with the full trend explicitly resolved
by ESM2M.

To illustrate the importance of representing the interannual variability for capturing the true slope, we
separate the slope calculation into different components. We find A and B by fitting:

PCOL(X, ¥, Dyt = Apun (X, ) - £+ By (X, ¥) (6)

where Aq, and By, are the “true” value for the parameters obtained from the fully sampled model output.
We then define the signals SEAS and IAV from the residuals of that fit:

PCO, (X, ¥, Dy — [Arun(X.¥) - t + Bryy(x. )] = SEAS(x,y, T) + IAV(x, y, 1). 7
We now subsample the model output at the LDEO2010 points, correcting for SEAS but not IAV,
PCO (X, Y, Digeo — SEASKX, Y, T) ~ Agup (X, ¥, 1) - t + B p (X, ), 8

such that there is potentially a bias imposed by not correcting for the subsampling of the IAV signal. Cor-
recting for that bias is one of the novelties of this work. Since the model output has full resolution, we can
directly estimate the bias that results by fitting a linear model to the subsampled interannual variability,

IAV(X’y’ t)ldeo ~ Aiav(X’ Y, t) -t+ Biav(X’ Y) (9)

Figure 2a shows the fully sampled model trend A, and Figure 2c shows the least squares fit to the sea-
sonally adjusted synthetic data set, A,,. The A, estimates vary significantly from cell to cell and are not
representative of the true value from the climate model simulation. Figure 2e shows the effect of the under-
sampling of the interannual variability on the least squares trend estimation, A;,,. This is the level by which
the trend estimates in Figure 2c are biased by undersampling. Figure 2f shows that when the bias term is
removed, A, — Aj,., then the true pCO, evolution is nearly achieved for the whole globe.

iav/
The trend estimates from the MCMC inversion of the synthetic data, A,mc. are shown in Figure 2b,
where they compare favorably to the true slope exhibited by ESM2M. After updating with the synthetic
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Figure 2. This figure shows different pCO, slope estimates, in patm yr~!, for the GFDL ESM2M verification experiment.
(a) The true case is the slope of the fully sampled model pCO,, Ag. (b) The same slope calculated by MCMC, A\cme:
with the synthetic LDEO2010 measurements. (c) The subsampled slope A, calculated from the synthetic data with
ordinary least squares. (d) The prior used to initialize the MCMC from Figure 2b. (e) A;,,, the bias in slope that results
when subsampling the IAV term. Lastly, (f) the sum of Ay, and Ay,

database, using the same sampling as described in sections 2 and 3, the MCMC technique reduces the
root-mean-squared error of the trend estimates by 95% compared to the A, estimates in Figure 2c. The
majority of that reduction comes from including the interannual variability terms. The differences between
the two estimates, A, and A,,.mc, Shows that the MCMC inversion is a practical technique for including the
interannual variability and avoiding the bias A;,, in the final estimates.

The difference between A, in Figure 2b, and the compensated least squares estimate A, — Aj,,, in
Figure 2f, shows the potential pitfalls of the MCMC method for trend estimation. For example, the prior
slope estimate influences the final slope estimate of the MCMC. When the prior and true slopes are aligned,
the MCMC returns a reasonable slope, as occurs over much of the Southern Hemisphere in this test. When
the prior estimate and true slope are not aligned, the MCMC estimate can only reveal the true slope if the
available measurements and imposed variability provide sufficient constraint. In this test case, the mean
slope of the prior has a different sign, relative to the atmospheric growth rate, than the true case in sub-
stantial areas of the North Pacific and North Atlantic (265 cells). The MCMC inversion with synthetic data
decreases these errors by over half (fixing 156 cells) but does not return the correct sign in continuous

iav/
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regions of the Western North Atlantic or Western Subtropical Pacific. Globally, however, the MCMC inversion
reduces the bias in the prior slope estimate from 0.1 patm yr~1 to 0.04 patm yr~1 and the MCMC-estimated
slope distribution captures the true value within in the +2¢ range for 80% of the cells that are updated
with data.

The model-based OSSE shows that the sparse nature of the surface pCO, data makes local slope estimates
sensitive to the effects of subsampling interannual variability. The MCMC inversion is capable of impos-

ing a model-based estimate of the interannual variability and compensating for much of the bias in local
slope estimates. However, the MCMC result relies on having a decent prior estimate of the slope parame-
ter and the interannual variability that will be imposed. In this demonstration, the imposed seasonal and
interannual variability came from the true modeled case and the prior estimate of slope came from a similar
class of models. Thus, this demonstration may be advantaged compared to the application of the method
to real data, despite the error added to the synthetic observations, and may be thought of as offering a
performance ceiling for interpretation of the MCMC results.

3. Results

We performed the inversion for all of the cells on the same grid used by Takahashi et al. [2009] to build the
pCO, climatology. We chose to use the same grid for validation and comparison purposes. For each grid
cell, the MCMC was initialized at the prior mean values for the parameter set (A,B,C,D) and the random walk
was iterated for 50,000 steps. We excluded the first 10,000 steps to account for the burn-in of the random
walk and allow the MCMC to move away from the prior means. To avoid biasing the samples of the poste-
rior distribution with autocorrelation from the random walk, we use every tenth step in the random walk.
This results in 4000 samples of the joint posterior distribution for (A, B, C, D). In this section, we show the
resulting posterior distributions for the pCO, model parameters and the sensitivity studies to the IAV and
SEAS terms.

3.1. MCMC Output

The global fit of the MCMC pCO, estimates to the measurements in LDEO2010 is comparable to what is
found with linear regression. Supplement 1 shows the posterior estimate of pCO, alongside the data from
LDEO2010 that was used to invert the model parameters for four random grid cells from each of the follow-
ing regions: Polar Southern Ocean, Subpolar Southern Ocean, Equatorial Pacific, Subtropical and Subpolar
North Pacific, and the Subpolar and Subtropical North Atlantic. The global mean residual of the pCO, esti-
mates, against the LDEO2010 data, is —0.1 patm and the root-mean-squared error is 16.8 patm. We find that
the empirical seasonality fits the observations better than the model-based seasonality and treat the empir-
ical seasonality case as the standard inversion (see section 3.3 below). The results that are reported below
are for the MCMC inversion featuring the empirical seasonality and the model-based interannual variability.

The prior and posterior distributions for the pCO, model parameters (A, B) are shown in Figure 3. The slope
parameter A undergoes adjustments in many cells throughout the ocean, with particularly large regional
changes in the North Pacific, North Atlantic, and Equatorial Pacific. These are the same places where the
standard deviation of the prior is reduced by the inversion. The distribution of B also undergoes substan-
tial changes, particularly in the Western Pacific and Subtropical North Atlantic. The uncertainty in the model
parameter, B, is reduced throughout much of the ocean where LDEO2010 has observations. The prior and
posterior time series in Figure 1a show that the MCMC inversion decreases the uncertainty and mean value
of A and B in that cell. The slope parameter, A, has a prior mean estimate of 1.3 + 0.5 patm yr~' and a pos-
terior mean of 0.7 + 0.2 patm yr~' and the intercept parameter B has a prior estimate of 350 + 6 patm

and a posterior estimate 339 + 2 patm. Figure 1b shows the probability distribution function for the slope
parameter A in that cell.

Figure 4 shows the posterior distributions of the scaling parameters C and D. The MCMC procedure scales
the imposed signals to realize a better fit to the observations. The seasonal scaling, C, is decreased in the
Equatorial Pacific and in the Southern Ocean and enhanced in some areas of the North Pacific. The global
posterior mean value of Cis 0.9 + 0.5. The |AV term from MOM4p1-BLING is damped by the MCMC sampling
though much of the globe. The global posterior mean value of D is 0.6 + 0.8. The global damping of these
two parameters indicates that there is substantial misfit from the data when they are imposed. Figure 1a
provides an example of a region where the posterior seasonal cycle and interannual variability have been
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Figure 3. (a and b) The prior and posterior means and (c and d) standard deviations for the slope parameter, A in patm,
and (e-h) the intercept term, B, for the MCMC inversion of LDEO2010. The coloring in Figures 3a and 3b indicates
growth with respect to the atmospheric growth rate in patm yr=' (blue indicates slower than atmospheric growth) and
in Figures 3e and 3f indicates the June 1995 value with respect to the atmospheric pCO, (blue indicates ocean uptake
of CO,).

decreased such that the residuals from the pCO, time series is minimized. The posterior estimate for C is
0.8 + 0.2 and the posterior value for D is 0.3 + 0.2.

3.2. Flux Estimates

The patterns and magnitudes of the time mean fluxes calculated from the MCMC-based pCO, time series,
Figure 5a, are comparable to the estimates of Takahashi et al. [2009]. The difference between the two is
shown in Figure 5b. The MCMC pCO, results in higher ocean uptake of CO, in the Subpolar North Atlantic
and over much of the Southern Ocean and increased outgassing in the Subpolar North Pacific. The regional

._.
o
Posterior Scale

Figure 4. The posterior mean estimates for the scaling parameters (a) C and (b) D from the MCMC inversion of
LDEO2010. Values smaller than 1 indicate that the amplitude of the imposed variability has been muted by the inversion.
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(a) MCMC-derived 1995 Flux differences in the mean flux of CO, integrate

6 to a difference in the global uptake of
anthropogenic CO,, as shown in Figure 6.
This figure shows that in the decade

3 centered on the year 2000, the mean MCMC

—~  estimate is higher than that of Takahashi et
> al. [2009] by approximately 0.2-0.3 PgC yr~'.

0 "E  This difference is well within the +1c uncer-
< tainty estimates from the two products and

3 E s principally due to the increased uptake in

the Southern Ocean.

The time evolution of the MCMC fluxes is
-6 shown in Figure 6. There, we compare the
evolving flux calculated using the MCMC
inverted pCO, time series with a set of other
estimates of anthropogenic CO, uptake,
as compiled by Gruber et al. [2009]. The
literature-based estimates of uptake show
a generally increasing uptake by the ocean
over this time period. Such an increase
is consistent with the estimates from the
MCMC implementations that make use of
the empirical seasonality. The MCMC with
interannual variability and empirical season-
ality results in a global increase in the CO,
uptake of 0.4 + 0.1 PgC yr~' decade™".

o
mole m? yr!

-1 3.3. Sensitivity Studies
60 180 300 The sensitivity tests, where we exclude the

. interannual variability term and change the
Figure 5. (a) The mean flux, 1995-2005, from the MCMC pCO, tati fth | le. sh
inversion is shown. (b) The difference between the MCMC-derived representation o t' e seas'ona cyc e', show
flux in Figure 5a and the climatology of Takahashi et al. [2009]. cell-to-cell and regional differences in both
Positive values mean less uptake in the MCMC-derived estimates. the mean slope estimates and flux estimates

but rather small impacts to the global totals.
The supporting information include regional and global breakdowns of the sensitivity for each perturbation
(Tables S3 and S4).

The sensitivity case designed to test the impact of including the IAV term on the pCO, inversion shows
significant regional differences from the standard inversion, where IAV is excluded. Figure 7a shows the
difference in the posterior slope estimate, A, between the standard case and the NOIAV case. We see that
adding the interannual variability gives reduced posterior values of A in the Subtropical North Pacific,
Western Equatorial Pacific, and in the Pacific and Indian sectors of the Southern Ocean. It also gives
increasing values of A in the Eastern Equatorial Pacific, the Western Subpolar Atlantic, and the Southern
Atlantic. The global difference is small, 0.0 + 0.1 PgC yr~', though this is largely a result of compensat-
ing changes between regions (cf. Figure 7c). The global difference in the nominal year 2000 (1995-2005
average) flux is again small, with the IAV term decreasing the mean uptake by 0.017 + 0.04 PgC yr~'. The
interannual variability in the NOIAV flux time series in Figure 6 comes from interannual variability in the
atmospheric pCO, values.

The sensitivity of the inversion results to the representation of the seasonal cycle is larger than that for
interannual variability, for both the posterior values of A and the decadal-mean flux about the year 2000
(cf. Figures 7b and 7d). Using the empirical seasonality instead of the model-based estimate maintains the
global mean value of A. The global difference is 0.0 + 0.3 patm yr~', though there are particularly large
decreases in the posterior value of A in the Atlantic and Equatorial Pacific. These decreases are partially
compensated by increases in the value of A in the North Pacific. The flux is significantly altered in the North
Atlantic and the Southern Ocean, with both regions showing reduced uptake under the empirical seasonal

MAJKUT ET AL.

©2014. American Geophysical Union. All Rights Reserved. 344



@AG U Global Biogeochemical Cycles 10.1002/2013GB004585

Annual Uptake [PgC yr—'1

Of = @ Takahashi (2009) " BT Matsumoto (2004) @ "Gurriey (2004) " 1

3 o
A Khatiwala (2009) ] : Manning (2006) : ¥ Gruber (2001)
X Gruber (2009) B : Manning (2006) : ¥ Joos (1999)
X Gloor(2003) O : Bender (2005) V Jacobsen (2007)
B Watson (2003) : : :
1 I I I
1980 1985 1990 1995 2000

Year

Figure 6. The total uptake of anthropogenic CO, time series, 1980-2009, for the MCMC featuring the MOM4p1-BLING
seasonal cycle (green) and the empirical seasonal cycle (red) and the MCMC version with the MOM4p1-BLING sea-
sonal cycle and no interannual variability (black). The dotted lines indicate + 1 o for the global integral, including the
uncertainty in gas exchange piston velocity. The red dot and associated error bars represent the anthropogenic uptake
calculated by Takahashi et al. [2009] of 2.0 + 1.0 PgC yr~". The black triangles show the decadally averaged estimates
from Khatiwala et al. [2009]. The other box and whisker plots indicate other estimates for anthropogenic CO, uptake by
the ocean from Table 1 in Gruber et al. [2009].

cycle. The global difference in the nominal flux is a decreased uptake of 0.2 = 0.05 PgC yr~'. The flux time
series in Figure 6 shows the combined results of the differences in the mean flux and the evolution of the
surface pCO,. The fluxes calculated from the inversion with the MOM4p1-BLING seasonality show larger
uptake than the other inversion cases but also show less increase in CO, uptake of the ocean through time.
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Figure 7. (a) The difference in the mean of A between the standard MCMC inversion and the run with no interannual
variability and (b) the same between the standard case and the run with the MOM4p1-BLING based seasonality. In both
panels, positive values indicate faster growth in the standard case. (c) The difference in mean year 2000 flux between the
standard and no interannual variability cases and (d) the same for the seasonal difference. Here positive values indicate
more outgassing or less uptake.
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4. Discussion

In the following subsections, we discuss the results of the MCMC-based inversion of surface pCO, in light
of previous studies. We show how this global analysis is consistent with the results of previous regional
analyses of pCO,. This is an important check, as much of the data that was used in these previous studies
is included in LDEO2010. The section ends with an analysis of the Southern Ocean pCO, trend, where our
trend differs significantly from recently published results.

As a matter of terminology, in this section, we often refer to the significance of the posterior trend estimate,
A. We refer to the trend as significantly “lagging” the atmosphere when the 90th percentile of the posterior
distribution for A is less than the atmospheric growth rate of 1.6 patm yr='. The trend is significantly
“leading” the atmosphere with the 10th percentile of the posterior distribution for A is greater than the
atmospheric growth rate. When results are referred to as not significant, though the mean estimate may
be different from 1.6 patm yr=', it means that the value of A is cannot be separated from the atmospheric
increase at the 10% certainty level in our one-sided test. A surface pCO, trend that lags the atmosphere
tends toward more uptake of CO, by the ocean and a trend that leads the atmosphere tends toward

less uptake.

The MCMC estimates a global mean increase in surface ocean pCO, of 1.4 + 0.5 patm yr~'. The posterior
mean value of A is less than the atmospheric growth rate for 73% of the ocean surface. The difference from
the atmospheric value is significant for 42% of the ocean surface, with 34% lagging and 8% leading the
atmospheric growth rate. Regionally, we see a significant lagging of the atmospheric pCO, through much of
the North Pacific, the Subpolar North Atlantic, and parts of the Southern Ocean. We calculate a surface pCO,
growth faster than the atmosphere in parts of the Eastern Equatorial Pacific, Subtropical North Atlantic, and
Southern Ocean.

For comparison of the time evolution of the fluxes, which is closely related to the time evolution of surface
pCO,, the inverse estimate of Khatiwala et al. [2009] shows an increase of 0.5 PgC yr~! decade~! from the
1980s (1.8 + 0.5) to the 2000s (2.3 + 0.6), similar to the growth rate that we find, 0.4 + 0.1 PgC yr~" decade™".
The other estimates of the global ocean CO, uptake seem consistent with the decadal increases in the
MCMC-derived oceanic uptake (cf. Figure 6).

4.1. Pacific

In the MCMC result, the Northern Subtropical Pacific shows a slower than atmospheric growth in the surface
pCO,, in agreement with Takahashi et al. [2006]. The average slope in the region is 1.5 + 0.4 patm yr~' with a
small standard error, cf. Table 3, which indicates a coherent behavior in the basin. We find that many cells in
this regions significantly lag the atmosphere, indicating that the MCMC-derived pCO, is estimating a grow-
ing flux. The whole North Pacific shows a total increased uptake greater than 0.25 PgC yr~' over the whole
period, see Table S2 (supporting information).

In the Eastern Equatorial Pacific, we found oceanic pCO, increasing faster than the atmosphere in the region
of upwelling, with a slower than atmospheric growth north of the upwelling. These trends are consistent
with the analysis of Feely et al. [2006]. In the Western Equatorial Pacific, we see a trend toward increasing
ocean uptake as in Ishii et al. [2004]. The whole Equatorial Pacific is characterized by strong mean trends
(cf. Figure 3b), but the uncertainty in the estimates is too large for the slope to be significantly different
from the atmospheric one (cf. Figure 3b). The high level of uncertainty in the cell-by-cell estimates leads to
substantial uncertainty in the mean trends for the region, cf. Table 3.

4.2. Atlantic

In the MCMC estimate, the subtropical gyre region of the North Atlantic has a regional average trend param-
eter of 1.6 + 0.4 patm yr~' (cf. Table 3). Figure 3b shows that the eastern subtropical gyre has a region

of faster than atmospheric growth, which has been identified previously [Schuster and Watson, 2007]. A
slower than atmospheric growth in the western part of the gyre compensates for the faster than atmo-
spheric growth in our result. Thus, our estimate of the regional average is not significantly different from the
atmospheric growth rate because we average over strong lagging and leading signals.

Of note in both the Subtropical and Subpolar North Atlantic is the basin-averaged consistency with the
recent results of McKinley et al. [2011]. They were the first to show that the regional trends in the North
Atlantic were strongly influenced by the time window over which they were reported. They showed that
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Table 3. pCO, Slope Estimates?

Region cT Regionsb Area (%)  MCMC Slope (patm yr‘1) (SE)
World All 100.0 1.4 + 0.6 (0.0)
North Pacific 10-16 123 1.4 + 0.4 (0.0)
Eastern Equatorial Pacific 19 4.8 1.6 + 0.7 (0.1)
Subpolar North Atlantic 2,3 48 1.3+ 0.5(0.1)
Subtropical North Atlantic 4 3.9 1.6 + 0.4 (0.1)
Southern Ocean (<45°S) 9,10,25,30 17.3 1.4 + 0.5 (0.0)

@Regionally averaged pCO, slopes with uncertainty listed from both the sum of
squares and the standard error for the region.

bRegions from CARBONTRACKER, http://www.estl.noaa.gov/gmd/ccgg/carbontracker/
index.html.

trends in the surface pCO, became indistinguishable from the atmospheric growth rate for time series
approaching 30 years. This is true in our estimates of the North Atlantic growth rates as well. While our result
shows that within each region, there are cells with significantly different growth rates than the atmosphere,
that significant difference is lost in regional averaging.

4.3. Southern Ocean

The most notable difference between our results and previous studies is in the Southern Ocean (< 45°S)
where we show a slower than atmospheric growth in the mean, 1.4 + 0.5 patm yr~', but not a signifi-

cant difference from the atmosphere. This result differs from that of Lenton et al. [2012], who showed an
increasing trend of 2.2 + 0.2patm yr~! for the period 1995-2008 using ordinary least squares fitting of the
measurements in LDEO2010. We can examine the reasons for the disparity by sampling the pCO, time series
generated by the MCMC inversion and using ordinary least squares fitting to calculate the pCO, trends for
the whole region as in [Lenton et al., 2012]. To evaluate the influence of the seasonal cycle and interannual
variability, we then apply corrections to the sampled MCMC fields from the SEAS and IAV time series and
recalculate the trend.

Table 4 shows the slope estimates that result from estimating the pCO, trends with the MCMC output, in
the manner laid out in section 2.5, for the full period, 1980-2009, and the shorter period, 1995-2008, where
LDEO2010 has values. The slope estimates calculated directly from the MCMC pCO, output, sampled where
observations exist in LDEO2010, show a faster than atmospheric growth rate, consistent with the one from
Lenton et al. [2012]. The table shows that including seasonal and interannual adjustments from the IAV and
SEAS terms brings the basin slope estimates closer to the MCMC-based estimate of 1.4 + 0.5 patm yr~'.In
this case, including the seasonal cycle plays a larger role than the interannual variability, but both decrease
the slope estimate in the 1995-2008 time period.

The role of the SEAS and IAV adjustments is lessened by taking the whole period into account, which

is shown in the second row of Table 4. As more samples are included, covering a wider time window,

the calculated trends come to resemble the mean behavior of the MCMC-based pCO, history. This result

is consistent with the study of Fay and McKinley [2013] where the authors show that the multidecadal

trend in the Southern Ocean pCO, is slower but statistically indistinguishable from that in

the atmosphere and that trends calculated from shorter time periods can vary substantially,
compared to the atmospheric trend, under
decadal variability.

Table 4. Alternative pCO, Estimates® In order to better understand the pCO,
Dates A Awb Acb + Aiay trend in the Southern Ocean, we sep-

07/1995 t0 06/2008  223+031  150+0.18  145+019 arated the MCMC-derived pCO, into
01/1980 to 12/2009 1.87 + 0.09 1.68 + 0.05 164 +006 temperature- and nontemperature-driven
components [McKinley et al., 2006] and cal-

aThe slope calculated by sampling the MCMC output with- i
out adjustments Ay, with seasonal adjustments A, and with  culated the trend in each component from
seasonal and interannual adjustments (IAV) at LDEO2010 points 1980 to 2005 using the monthly values
within two time windows. and ordinary
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(a) Total Trend least squares methods. For the temperature record, we used

i e the NOAA monthly sea surface temperature (SST) optimal inter-

g F 2.6 polation product NOAA-OI.v2 [Reynolds et al., 2002]. This SST
product shows a cooling trend in the surface temperatures
south of 45°S for the 1980-2005 period. That negative trend in
temperature drives a negative trend in the temperature-driven
pCO,, as in Figure 8b. A qualitatively similar surface cooling is

0.6 expressed in the Hadley Center SST product HadISST1 [Rayner
et al., 2003], the temperature measurements made coinciden-

tally with the pCO, samples [Fay and McKinley, 2013], and in
analyses based on float data (albeit for a shorter period) [Gille,

0.5 2008]. The negative trend in surface pCO, masks a trend in the
chemically driven pCO,, shown in Figure 8¢, which is faster than
the atmospheric growth for much of the ocean between 50°S

0.0 and 65°S, in the region of the Antarctic Circumpolar Current
(ACCQ). The faster than atmospheric growth is strongest in the
Drake Passage and the Southern Atlantic Oceans. The zonal
means of the component trends for the Southern Ocean are

-0.5
shown in Table 5 where it can be seen that the trend in temper-
ature component moderates a faster than atmospheric growth

(c) Non-temperature Trend . p' P J
= o o 5 in the chemical component between 50°S and 62°S.

2.6 The balance between the temperature- and nontemperature-
driven variations in surface pCO, in the Southern Ocean points

16 to an interesting set of dynamics, relating to the response of the

carbon fluxes in the Southern Ocean to changes in climate and
the proposed feedbacks to changes in wind stress [Le Quéré et

0.6 al., 2007]. Over the 1980-2010 period, reanalysis products show
a significant increase in the Southern Annular Mode (SAM)

Figure 8. (2) The MCMC slope estimate for the index and an intensification of the westerly winds [Swart and
Southern Ocean in patm yr=". (b) The trend in  F¥fe, 2012]. Surface cooling in the Southern Ocean has previ-
the temperature-driven component of pCO,  ously been associated with positive phases of the SAM index,
and (c) the nontemperature component trend. with the intensification and poleward shift of the westerlies and
increased Ekman flow and sea-air interaction playing a signifi-
cant role in that cooling [Verdy et al., 2006; Ciasto and Thompson, 2008]. Likewise, previous modeling studies
of the Southern Ocean have proposed that positive deviations of the SAM index can drive enhanced north-
ward transport and upwelling of carbon-rich deep water via increases in Ekman flow and the associated

meridional overturning [Treguier et al., 2010].

The results of the MCMC pCO, inversion seem to be consistent with the model-based process studies of
carbon flux, where the circulation-driven pCO, has increased in the surface Southern Ocean as the SAM
index has increased over the last 30 years, resulting from the net effect of upwelling of carbon-rich waters
that is not fully compensated by increasing biological production [Lovenduski et al., 2008]. We find that

this increase was counteracted by a cooling of the surface temperatures, possibly due to the same circula-
tion processes, such that the total outgassing from the Southern Ocean actually reduced, i.e., the uptake of
anthropogenic CO, increased. How these processes will continue to respond to the projected changes in the
annual mean and seasonal SAM indices [Polvani et al., 2011] is an open area of research, particularly as some
high-resolution modeling studies indicate that permanent changes in the SAM index might drive long-term
warming of the Southern Ocean SST as eddy heat fluxes compensate for the increased Ekman flow [Hogg et
al., 2008; Screen et al., 2009]. Forthcoming modeling studies with high-resolution models aim to address
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how the carbon system responds to

Table 5. pCO, Component Trends®
changes in SAM at the process level.

Latitude Total Temperature Nontemperature

44.0 0.13+0.15 0.06 + 0.17 0.18 + 0.27 .

480 0104016  -001+0.15 0.09 + 021 5. Conclusions

520 007+0.18  —0.09+0.12 ~0.02+0.17 In this paper, we present the applica-

56.0 0.14 +0.12 -0.13 £0.14 —0.00 +0.18 . . . .

00 0.15 4 0.24 016 4013 0,03 1027 tion of MCMC sampl!ng to the estimation

64.0 028+040  —0.14+0.14 0.09 + 0.40 of long-term trends in surface pCO,

68.0 0.36 + 0.50 —0.03 + 0.06 0.26 + 0.48 and air-sea CO, fluxes based on surface

720 0.75 + 0.46 -0.00 + 0.03 0.67 +0.44 pCO, data and model-based variability.
3The zonally averaged trend in surface pCO, patm yr~! and This method allows us to formally intro-

the temperature and nontemperature components thereof for duce modeled interannual and seasonal

the Southern Ocean. The total and nonthermal pCO, trends variability to the trend estimation prob-

are shoyvn as dewatlons‘ from the atmospheric growth ratg. The lem and reduce biases that result from
uncertainty listed here is the zonal sample standard deviation h p b X ¢
of the mean trend and conveys the level of zonal discord in the the sparse nature of our observations o
calculated surface trend. ocean carbon. The results can be thought

of as a plausible time history of surface
pCO,, and its trends, that is constrained to data where it is available and otherwise model based. The
model-based variability incorporates the effects of ocean circulation, biogeochemistry, and air-sea
interaction on surface pCO, as represented by an ocean general circulation model is that forced by atmo-
spheric reanalysis. Thus, this is a first step toward estimating surface pCO, history while incorporating
process-based constraints.

The mean flux estimates generated by the MCMC method are broadly consistent with the canonical esti-
mates of Takahashi et al. [2009] and other studies based on ocean inversion. For global trends, we found that
the ocean exhibits an increasing uptake of CO, over the time period 1980-2009, consistent with a global
surface pCO, that is growing more slowly than the atmospheric value. The MCMC with interannual variabil-
ity and empirical seasonality results in a global increase in the CO, uptake of 0.4 + 0.1 PgC yr~'! decade™".
This would account for nearly 50% of the global carbon sink increase calculated by Ballantyne et al. [2012].

Some regions show pCO, trends that are notably different from the global average. The subtropical North
Atlantic and Equatorial Pacific are the two regions that show the fastest growth in surface pCO,, indicating
a decreasing uptake of carbon by the ocean. Some parts of the Southern Ocean also show faster than
atmospheric growth in the surface pCO,, but the region as a whole (south of 45°S) is an increasing sink.
Interestingly, our results indicate that dissolved inorganic carbon (DIC) is increasing throughout the
Southern Ocean, but that surface cooling trends are more than compensating for the growth in DIC such
that a slower than atmospheric pCO, growth rate and increasing uptake are maintained.

We note that these are regions of high seasonal and interannual variability and that detecting secular trends
against the background variations will remain a challenge in the future. Including interannual variability via
the MCMC method has a notable effect on local trend estimates and is an important consideration for stud-
ies of surface pCO,, although we found that the effect tended to be smaller when taking regional averages
and calculating global trends in the air-sea CO, flux.

Proper representation of the seasonal cycle around the global ocean remains a priority. Different estimates
of the seasonal cycle lead to substantial differences in the MCMC-based estimates of local and regional
pCO, trends and mean fluxes. Ultimately, the sensitivity to the seasonal cycle drives significant differences
in the global CO, fluxes. Based on this sensitivity, improved observations and models of the seasonal cycle
in surface pCO, are a necessity for improving carbon flux estimates based on surface observations and for
providing additional constraints on the seasonal variations in surface pCO,.

The MCMC technique that we present is a promising method for continued investigation of the historical
pCO,. Possible extensions of this work might use the flexibility of the MCMC method to include other types
of observation-driven data to improve the pCO, estimation. For example, SST observations and ocean color
data might help to resolve the seasonal cycle in pCO,. Likewise, allowing the grid structure to be refined
by the MCMC where there is sufficient information in the pCO, data would benefit the regional veracity of
the resulting pCO, history and could take advantage of the improved spatial and temporal resolution in
updating global databases of surface pCO, measurements, such as SOCAT [Pfeil et al., 2012].
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