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Abstract
Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to

adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid

growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some char-

acteristics with classic forms of filamentous growth, but differing in crucial aspects of mor-

phology, growth conditions and genetic regulation. The constitutive pseudohyphal state is

observed in fus3mutants containing various septin assembly defects, which we refer to as

sadF growth (septin assembly defect induced filamentation) to distinguish it from classic fila-

mentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated

chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid

rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and

Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background,

which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polar-

ized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin

structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing

tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is

induced by synergism between Kss1p-dependent signaling and septin assembly defects;

mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacer-

bates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-

hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-pro-

tein β and γ subunits from the pheromone response pathway, respectively. A swe1mutation

largely abolished signaling, breaking the positive feedback that leads to amplification of sadF

signaling. Taken together, our findings show that budding yeast can access a stable constitu-

tive pseudohyphal growth state with very few genetic and regulatory changes.

Author Summary

Many pathogenic fungi alternate between unicellular and multicellular filamentous forms,
which is often critical for host-cell attachment, tissue invasion, and virulence. Certain
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strains of the nonpathogenic budding yeast Saccharomyces cerevisiae are also capable of
forming invasive pseudohyphal filaments in nutrient poor conditions, which has served as
a model system for the study of filamentous fungal pathogens. Here, we show that the
most commonly used laboratory strain, S288c, previously known as being non-filamen-
tous, can adopt a permanent stable pseudohyphal growth phase even under rich growth
conditions. Although some features are shared, the degree of filamentation, genetic
requirements, cell cycle, and mechanism of regulation are distinct from the previously
described forms of filamentous growth. Stable pseudohyphal growth arises as a result of
only two mutations, neither of which causes pseudohyphal growth on their own. One
mutation causes subtle defects in the mechanism of cell separation (septation), which acti-
vate intracellular signaling pathways that slow cell division and promote filamentation.
Normally this pathway is kept in check by a related signaling protein. However, when the
inhibitor is also defective, activation of the filamentation signaling pathway exacerbates
the septation defects, which causes a synergistic hyper-activation of pseudohyphal growth.
These findings expand our understanding of fungal pathogenesis mechanisms at the
molecular level.

Introduction
Many fungal pathogens undergo a developmental transition from unicellular to multicellular
filamentous forms that are important for the invasion of host tissue and virulence [1]. Certain
strains of nonpathogenic Saccharomyces cerevisiae are also capable of developing filament-like
growth under starvation conditions, which is thought to serve as a foraging mechanism. For
example, diploid yeast cells starved for nitrogen exhibit pseudohyphal growth on solid agar
medium [2]. Pseudohyphae consist of invasive filaments comprising chains of elongated cells
that remain physically connected after cytokinesis, divide in a unipolar manner, and have an
altered cell cycle to a prolonged budded period [2,3]. Haploid yeast undergoes a similar mor-
phological transition called “haploid invasive growth” in response to glucose depletion. Under
these conditions, haploid cells penetrate the agar, but do not become as elongated as cells in
diploid pseudo-hyphal cells and do not form extensive filaments on the agar surface [4].

The regulation of the known patterns of dimorphic growth is complex, but requires at least
two major signaling pathways, the filamentation mitogen activated protein kinase (fMAPK)
and the nutrient-sensing cyclic AMP-protein kinase A (cAMP/PKA) pathway (reviewed by
[5]). Both pathways coordinately upregulate FLO11, a cell surface flocculin; flo11mutant cells
fail to form chains or invade agar in both haploid and diploid yeast.

The fMAPK pathway includes several protein kinases, Ste20p, Ste11p, Ste7p, and the
MAPK Kss1p, which act sequentially to activate the transcription factor Ste12p/Tec1p hetero-
dimer and regulate expression of genes responsible for filamentous growth [5]. Several ele-
ments of the fMAPK cascade are also essential for the pheromone response pathway required
for mating. However, activation of the MAPK for mating, Fus3p, blocks the filamentation pro-
gram by down-regulating Kss1p and Tec1p [6,7]. Signal specificity is also provided by the
Ste5p scaffold protein, which transduces pheromone signaling after recruitment to the G-pro-
tein β/γ dimer (Ste4p/Ste18p) at the plasma membrane. Ste5p is absolutely required for activat-
ing Fus3p [8], but is not required for the fMAPK pathway. Although upstream signaling events
for the fMAPK pathway are not well understood, Ras2p GTPase and the plasma membrane-
linked receptors, Msb2p and Sho1p have been reported to be implicated in fMAPK activation,
along with Cdc42p, the rho GTPase that activates Ste20p [5].
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Ras2p activates a second signal transduction pathway by stimulating adenylate cyclase and
cAMP production [9]. Increased cAMP levels activates the Tpk2p catalytic subunits of PKA,
which phosphorylates and displaces the repressor Sf1lp, activating the key filamentous tran-
scription factor Flo8p [5]. Many commonly used laboratory strains, including S288C, the refer-
ence strain for the yeast genome project, carry a flo8mutation and are unable to form pseudo-
hyphal filaments or undergo haploid invasive growth [10]. A G-protein-coupled receptor
(GPCR) called Gpr1p also appears to act upstream of adenylate cyclase, dependent on Gpa2p, a
G-protein α subunit. Phospholipase Plc1p modulates the interaction of Gpa2p with Gpr1p [5].

Less clear are the cell biological mechanisms governing the morphological change to fila-
mentous growth, as distinct from budding growth. It seems likely that at least three conditions
must be met for cells to form filaments. First, individual cells must maintain a polarized pattern
of growth, rather than the isotropic growth observed in budding cells. Second, because filamen-
tous cells grow to much larger volumes than budding cells, they must alter the normal coupling
between growth and mitosis. Finally, for cells to stay together as filaments, they must suppress
the completion of septation to form long chains.

Cytokinesis, septation, and polarized growth are governed in part by a conserved family of
proteins called septins. The yeast septins (Cdc3p, Cdc10, Cdc11p, Cdc12p and Shs1p) polymer-
ize into membrane-associated filaments that form an ordered ring structure at the future bud-
ding site. During mitosis the septin ring expands into an hourglass-shaped collar that serves as
a diffusion barrier and as a scaffold to direct a variety of cellular processes, including morpho-
genesis and bud site selection (reviewed by [11]). The formation of higher-ordered septin struc-
tures requires several post-translational modifications (reviewed by [12]). The protein kinases
Elm1p, Gin4p and Cla4p promote proper septin assembly. Both Gin4p and Cla4p phosphory-
late the septins and regulate the dynamics and organization of septin filaments [13,14]. Cla4p
is also required for Gin4p activation [15] and recruitment to the bud neck and septins [13,16].
Elm1p directly phosphorylates Gin4p [17] and is required for mitotic hyper-phosphorylation
of Cla4p [18]. In addition, genetic data suggests that each kinase functions in parallel to regu-
late septin behavior [16,19]. Proper organization of the septins at the bud-neck is critical for
coupling morphogenesis and cell cycle progression (reviewed by [20]). Defects in septin assem-
bly lead to accumulation of Swe1p, an inhibitory kinase of mitotic CDK. As a result, septin-
defective cells, including elm1, gin4, and cla4mutants, fail to switch from apical growth to iso-
tropic growth, leading to formation of elongated buds.

We have identified a novel constitutive pseudohyphal growth phase of yeast distinct from
the previously described pseudohyphal and haploid invasive growth patterns. Although some
features are shared, many others are different, including the degree of filamentation, genetic
requirements, and mechanism of regulation. Constitutive pseudohyphal growth arises from
synergism between septin assembly defects and loss of Fus3p. The ease by which budding yeast
can adopt a stable pseudohyphal growth state is consistent with recent findings that the transi-
tion from unicellular to filamentous growth requires relatively few regulatory changes.

Results

Identification and characterization of constitutive pseudo-hyphal growth
Strain BY4741, the reference strain for the yeast genome, is a haploid derived from the filamen-
tation-deficient S288C background. In the course of routine strain construction, we observed
that elm1Δ fus3Δ double mutants exhibited unusual colony and cell morphologies (Fig 1).
ELM1 encodes a protein kinase that regulates septins and cytokinesis. The elm1Δ caused elon-
gated buds and slightly rough colony morphology (Fig 1A and 1C). Fus3p is a pheromone-acti-
vated MAP kinase and functions during mating [21]. Although fus3Δ had no obvious effect on

Stable Pseudohyphal Growth in Budding Yeast

PLOS Genetics | DOI:10.1371/journal.pgen.1005684 December 7, 2015 3 / 21



Fig 1. Filamentous growth of elm1Δ fus3Δ cells. All of indicated strains (MY8092, 12158, 12886 and
12948) were BY4741-derivative haploids and grown to exponential phase in liquid YPD at 30°C unless stated
otherwise. (A) Arrows indicate the buds that emerge from the pole opposite previous division site. (B) elm1Δ
fus3Δ (MY12948) harboring empty vector (MR1865) or pCEN-FUS3 (MR5048) were grown in liquid synthetic
complete (SC) medium containing 2% glucose. (C) Cells were streaked for single cells on YPD plate at 30°C
for 7 days, and representatives in a zone of low colony density were photographed. (D) Indicated cells
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the cell or colony morphology in the wild-type (WT) background, combination with elm1Δ led
to dramatic morphological changes (Fig 1A). The elm1Δ fus3Δ cells grew as large aggregates in
liquid YPD medium, forming extensive filaments comprising chains of highly elongated cells.
The abnormal morphology was completely reversed by a CEN plasmid carrying FUS3 (Fig 1B).

Colony morphology can be influenced both by growth conditions and by cellular morphol-
ogy. Colonies of fus3Δ displayed a smooth circular outline with a lustrous surface, identical to
WT (Fig 1C). The elm1Δ colonies exhibited a slightly notched outline (Fig 1C). In contrast,
elm1Δ fus3Δ colonies were highly ruffled and rough-edged, with filaments extending beyond
the perimeter of the colony (Fig 1C). Colonies of elm1Δ fus3Δ were comparable in size to WT,
indicating that they grow with a similar rate as WT (Fig 1D).

The morphology of the elm1Δ fus3Δ cells resembled diploid pseudohyphal filaments; both
cells are highly polarized and form extensive surface-spread filaments. However, the elm1Δ
fus3Δ filaments are clearly distinct from pseudohyphal growth, which is restricted to diploid
cells, occurs only on solid medium deficient in nitrogen, and requires FLO8 [2]. In contrast, the
elm1Δ fus3Δ filaments formed from haploid cells, carrying a flo8mutation, and grew stably in
rich liquid media (YPD). Given these differences, and because of significant differences in regu-
lation described later, we refer to the morphology observed in the elm1Δ fus3Δmutant as “sep-
tin assembly defect induced filamentous” growth (sadF).

One major characteristic of sadF growth is the extreme elongation of the cells. In WT cells
the ratio of the long axis to the short axis was 1.22 ±0.15 (n = 112), which was not affected by
the fus3Δ (1.21 ±0.13, n = 106) (Fig 1E). The elm1Δ had a ratio of 2.15 ±0.67 (n = 132), consis-
tent with their slight elongation. In contrast, elm1Δ fus3Δ was almost 4 times longer than WT
(4.31 ±1.48, n = 101) (Fig 1E). Thus, the fus3Δmutation greatly enhanced polarized cell growth
of elm1Δ.

The elm1Δ fus3Δ strain grew in large multicellular clumps (Fig 1A), suggesting a high level
of cell-cell adhesion. To assess the level of aggregation, we used a spectrophotometric assay to
measure the rate at which cells settled out of liquid culture. Both WT and fus3Δ cultures
showed very little decrease in optical density (Fig 1F) and the elm1Δ showed a slight decrease.
In contrast, elm1Δ fus3Δ cells rapidly settled out of suspension, with a half-time less than 5
minutes; almost all settled by 15 minutes. Thus the fus3Δmutation enhanced greatly cell-cell
adhesion in elm1Δ.

Next, we examined if elm1Δ fus3Δ cells are able to penetrate solid growth media as do pseu-
dohyphal diploids and invasive haploids. Non-adherent cells were easily washed off with a
stream of water, after which two classes of cells remained: invasive cells and adherent non-inva-
sive cells (Fig 1G, gentle post-wash). Adherent non-invasive cells can be removed by vigorous
rubbing of the agar surface under running water (Fig 1G, hard post-wash). Haploid S1278b, a
standard background for filamentous growth, began to penetrate the solid medium after 3
days, as a result of glucose depletion. In contrast, both WT haploid BY4741 and fus3Δ failed to
invade even after prolonged growth (Fig 1G, hard post-wash). The elm1Δ strain exhibited very
weak invasiveness (Fig 1G). Remarkably, agar penetration by elm1Δ was enhanced strongly by
fus3Δ. Although elm1Δ fus3Δ surface cells were easily removed by gentle washing, showing that
the strain is less adherent than S1278b (Fig 1G, gentle post-wash), a significant portion

(MY8092, 12158, 12886 and 12948) were streaked on YPD solid medium and incubated at 30°C. (E) The
ratio of long axis (x) to short axis length (y) was expressed in a histogram. For example, 1.1 and 1.3 at the x-
axis indicate the range from 1.00 to 1.19 and 1.20 to 1.39, respectively. (F) Flocculation assay was performed
as described in Materials and methods. Data are representative of three independent experiments and
expressed relative to WT. (G) Cells were spotted on YPD plate and grown at 30°C for 6 days. Haploid Σ1278b
(MY13465) was used as a positive control of invasive growth. (A and B) Bar, 10 μm.

doi:10.1371/journal.pgen.1005684.g001
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invaded the agar (Fig 1F, hard post-wash). Agar penetration began to be visible after 2 days
and increased over time. These data suggest that elm1Δ fus3Δ pseudohyphal growth is more
invasive, but less adherent, than haploid invasive growth.

Highly polarization and altered budding pattern in sadF growth
The reiteration of the axial budding pattern in haploids produces tight clusters of cells that
form mounds on the surface of solid media ([22] and Fig 1C). In contrast, elm1Δ fus3Δ cells
budded from the pole opposite the previous division site (distal pole, Fig 1A, arrows) and
formed mats of branching chains of cells extending beyond the colony margin (Fig 1C). To
characterize the elm1Δ fus3Δ growth pattern in detail, we used time lapse microscopy. Cells
were sonicated lightly and applied to YPD agar pads. Because most elm1Δ fus3Δ cells are in
large clumps, cells remaining in suspension were observed. Bud site selection was determined
for all buds that emerged after the initial observation; none of the cells present at time zero was
scored, as the previous division site could not always be determined. In all of 14 WT and 12
elm1Δ cells, the new buds emerged adjacent to the first mother/daughter bud site (proximal
pole; Fig 2A). In contrast, in 11 elm1Δ fus3Δ cells the new buds emerged at the distal pole; in 10
cells they emerged at the proximal pole (Fig 2A). Surprisingly, even with fus3Δ, budding was
not always axial (Fig 2A); 5 of 14 buds formed at the distal pole and 9 at the proximal pole (Fig
2A). These results show that Fus3p is required for the normal axial budding pattern and its loss
induces the polar budding pattern that is critical for growth and extension of a filament [2].

To further quantify the budding pattern, cells were stained with calcofluor white, which
binds to chitin in the cell wall, most strongly at the bud scars (Fig 2B–2D). Cells with 1 bud
scar were divided into three classes based on the position of the bud scar relative to the birth
scar: (1) proximal, (2) distal, and (3) medial. Cells with 2 or more bud scars were divided into
three classes: (4) axial, if all bud scars are adjacent at one end of the cell, (5) bipolar, if all bud
scars are positioned at the distal pole or distributed between the proximal and distal pole, and
(7) random, if one or more bud scars is positioned in the midsection. WT haploids always had
the first bud scar proximal to their birth scar and multiple bud scars were clustered in a chain
at one end of the cells. The elm1Δ haploids behaved like WT (Fig 2B and 2C). Consistent with
the time-lapse microscopy, only 66% of the fus3Δ cells exhibited the axial budding pattern; in
about 30% of cells the first bud was opposite the birth scar and 28% of cells with multiple bud
scars showed bipolar budding (Fig 2B and 2C). As expected, WT diploids always budded in the
bipolar mode (Fig 2B and 2C).

The elm1Δ fus3Δ filamentous aggregates could not be dispersed to single cells even by exten-
sive sonication, suggesting that the cells remained strongly attached. Staining with calcofluor
showed greatly enhanced staining over most of the cell wall except for the distal tips (Fig 2D),
unlike WT in which staining was confined to bud scars and septa (Fig 2C). Although staining
was observed at abnormal sites (arrows), most cells showed intense staining at the junction
between cells, suggesting the presence of a complete septum (Fig 2D). Staining of the plasma
membrane with the fluorescent styryl dye FM4-64 showed most bud necks had plasma mem-
brane except where buds were growing at the end of cell chains (Fig 3E). These data suggest
that although septum formation may be abnormal, the elongated cells do eventually complete
cytokinesis. We conclude that chain formation is largely due to decreased abscission.

Analysis of the budding pattern of the smaller elm1Δ fus3Δ clusters supported the hypothe-
sis that they are defective for cell separation. A representative cell is shown in Fig 2D with an
interpretative drawing of the budding pattern. In this cluster, only one clear bud scar (arrow
head and black ring in the carton) is visible, suggesting that very few cells have separated from
the cell mass. Nevertheless, the branching pattern allows one to deduce the budding history.
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Most new buds (85%) were positioned at the distal pole and the bipolar budding pattern
increased to 90%, compared to 28% of fus3Δ (Fig 2B–2D). Only 5.5% exhibited axial budding
(Fig 2B and 2D). Importantly, among cells classed as “bipolar”, 72% exhibited a more polarized
unipolar budding pattern (Fig 2B and 2D), a characteristic of diploid pseudohyphal growth in
which new buds form only at the distal poles of both the mother and the daughter cells. Taken
together, our data show that sadF growth is due to extreme cell elongation, coupled with to uni-
polar budding, resulting in extensive growth beyond the colony margin as seen in Fig 1C.

Cell biological characteristics of sadF growth
The filamentous nature of elm1Δ fus3Δ raises the question of how nuclear division is coupled to
cell division, and whether the cells are multi-nucleate or uninucleate. To monitor cell cycle

Fig 2. Budding pattern of elm1Δ fus3Δ cells. All of indicated strains (MY8092, 12158, 12886 and 12948) were BY4741-derivative haploids and grown to
exponential phase in liquid YPD at 30°C. S288C-derivative diploid (MY13411) was used as a positive control of bipolar budding. (A) Budding pattern was
examined by time lapse microscopy as described in Materials and methods. Representative images are shown at 10-min interval. Arrows and arrow heads
indicate the daughters that emerge adjacent or opposite to the preceding division site, respectively. (B) Cells were classified by number and distribution of
bud scars. For each sample, more than 200 cells were counted and the score was expressed as a percentage. N.D, not determined. (C and D) Cells were
stained with 0.1% calcofluor. The classified budding patterns are denoted as numbers that correspond to that of (B). (C) Arrows indicate birth scar. (D)
Representative cluster of elm1Δ fus3Δ cells is shown with an interpretative drawing of the budding pattern (right). Arrow head (left) and black ring (drawing)
indicate a bud scar. Arrows indicate abnormal chitin accumulations. (A, C, and D) Bar, 10 μm.

doi:10.1371/journal.pgen.1005684.g002
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progression, we visualized the nucleus using GFP-tagged histone, Htb1p. WT displayed the typi-
cal asymmetric cell division in which a bud emerged on the mother prior to bud emergence on
the daughter. The interval between two sequential nuclear divisions defines the cell cycle time.
For WT (Fig 3A), the nucleus #1 in the mother (m) divided after about 1h 30min, while the
nucleus #2 in the daughter (d) divided after about 2h 30min. Similar times were observed for
other cells (1h 56 min ± 14, for the mother, n = 14; 3h 9 min ± 35, for daughters, n = 15). In con-
trast, elm1Δ fus3Δ cells commonly showed simultaneous bud emergence on both the mother
and daughter (Fig 3A, arrows). The cell cycle was significantly longer and more variable, com-
pared toWT. For example, after nucleus #3 divided into two nuclei, it took 4h 20min for nucleus
#4 in the mother (m) to divide while nucleus #5 in the daughter (d) remained undivided over
the time course (5h 30min). In 8 of 14 cells, the time between nuclear divisions was almost 3
times longer thanWT (5h 33min ±48); in 6 cells the nucleus remained undivided by 8h.

Fig 3. Cell biological characteristics of elm1Δ fus3Δ cells. All cells were grown to exponential phase in liquid YPD at 30°C. (A and B) The nuclei of
indicated strains carryingHTB1-GFP (MY13817 and 13820) were examined by time lapse microscopy as described in Materials and methods.
Representative images are shown at 20-min interval. (A) Sequential nuclear division is indicated by the number. For example, the nucleus #1 that had been
just divided was segregated into two nuclei (1a and 1b) during the next round of cell cycle. Arrows indicate the daughter cells that emerge synchronously.
Arrow heads show the nuclear division in mother cells. m, mother. d, daughter. (C) Indicated cells (MY8092, 12948 and MY13411) were stained with
propidium iodide and their intensities were expressed in a histogram as described in Materials and methods. 10 μg/ml α-factor was treated to arrest cells in
G1 with 1N DNA content. (D) elm1Δ fus3Δ (MY12948) were stained with FM4-64 to visualize the plasmamembrane. Arrows indicate an intensive fluorescent
accumulation, Spitzenkörper-like structure. Bar, 5 μm. (E) Indicated cells (MY13161 and 13264) were examined to visualize septin, Cdc3-mCherry. (A, B and
E) Bar, 10 μm.

doi:10.1371/journal.pgen.1005684.g003
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In most elm1Δ fus3Δ cells, the nucleus was located near the bud neck just prior to division
(Fig 3B), as in WT. When the bud emerged, a centrally located nucleus migrated close to the
bud neck. The bud continued to grow apically until mitosis occurred and one daughter nucleus
migrated into the daughter cell. Often, the nucleus retained its aberrant position, leading to
division in the mother or daughter cell (Fig 3A, arrow heads). In these cases, one of the nuclei
always moved into the mother or daughter cell, followed rapidly by formation of a septum.
Thus, each segment in the filament contained a single nucleus. After nuclear separation, the
nuclei remained in separate cell compartments, supporting the suggestion that complete septa
have formed.

The slow nuclear cell division cycle might arise if DNA replication occurred without mito-
sis. We therefore examined the DNA content by quantitative fluorescence microscopy (fluores-
cence-activated cell sorting was not feasible with the filamentous cells). WT haploids arrested
with α-factor yielded a single peak, which corresponds to 1N DNA content (Fig 3C). An asyn-
chronously growing WT haploid strain was a mixture of 1N and 2N cells, with most cells 1N.
Note that post-metaphase nuclei are 1N in this experiment. Similarly, an isogenic diploid
yielded two unequal peaks corresponding to 2N and 4N (Fig 3C). The elm1Δ fus3Δ cells also
had two peaks, coincident with 1N and 2N, with no peak at 4N, showing that these cells are
haploid. However, a significantly higher fraction of the cells had 2N DNA content, indicating
that many are paused in G2, consistent with a delay in nuclear division after replication. In
spite of the dramatically slowed nuclear division cycle, the growth rate of elm1Δ fus3Δ was
comparable to WT at 30°C (Fig 1D). Therefore, the continued elongation of cells in G1 and the
extended G2 phase compensate for the reduced rate of cell division.

FM4-64 binds to the plasma membrane bilayer and only enters the cell via endocytosis.
Unexpectedly, FM4-64 staining revealed discrete bright spots of fluorescence at the tips of grow-
ing filamentous cells and nascent branch points (Fig 3D, arrows). These bright spots are remi-
niscent of Spitzenkörper, which can be transiently visualized with endocytic FM4-64 and act as
an organizing center to concentrate vesicles to the highly polarized, actively growing tips of
hyphae in filamentous fungi [23]. Thus, as for filamentous fungi, pseudohyphal growth might
be associated with a Spitzenkörper-like structure, consistent with highly polarized cell growth.

One of fundamental differences between pseudo and true hyphae is the septin cytoskeleton
[24]. The dimorphic fungal pathogen C. albicans grows as budding yeast, but also forms both
pseudo and true hyphae. During Candida budding, the septin structure is similar to that of Sac-
charomyces budding. However, the localization and organization of the septins are distinct dur-
ing hyphal growth (rings, bars, and caps [24]). In hyphal development a band of longitudinal
septin bars and a cap of septin form at the base or tip of germ tube respectively. Because elm1Δ
fus3Δ cells showed one characteristic of true hyphae, a Spitzenkörper-like structure, we exam-
ined the septin organization, using Cdc3-mCherry (Fig 3E). Strikingly, septins in the elm1Δ
fus3Δ assembled rings composed of discrete and parallel septin bars at the bud neck, and were
also found as a diffuse cap at the growing tip as observed during Candida hyphal growth.
These results further indicate that the pseudohyphae of elm1Δ fus3Δ are distinct from classical
pseudohyphae.

Induction of pseudohyphal growth by disruption of mitotic septin
assembly
The bud-neck protein kinase Elm1p has multiple substrates that regulate distinct cellular func-
tions (Fig 4A). To determine which functions are associated with sadF pseudohyphal growth,
we examined strains carrying mutations in known Elm1p substrates. Kin4p is a component of
the spindle-position checkpoint [25]. Elm1p is also an upstream kinase for Snf1p, the yeast
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AMP-activated protein kinase (AMPK) [26]. Finally, Elm1p functions in a morphogenesis
checkpoint pathway by phosphorylating Hsl1p, which coordinates bud growth and the G2/M
transition by recruiting the Cdk-inhibitory kinase Swe1p to the bud neck for degradation [27].
Although deletions in each of these genes caused slight changes in the average axial ratio, in no
case did the combination with fus3Δ lead to a significant increase in bud elongation (Fig 4B).
Moreover, fus3Δ had no significant effect on the growth rate of kin4Δ, snf1Δ or hsl1Δ.

Fig 4. Genetic interaction of fus3Δwith septin associated genes. All of strains were BY474-derivative
haploids and grown to exponential phase in liquid YPD at 30°C unless stated otherwise. (A) Schematic
representation of Elm1p substrates and a morphogenesis checkpoint. For details, see Introduction. (B-D)
Indicated strains (MY8092, 13826, 13827, 13829, 13830, 13832, 13833, 12156, 12871, 12886, 12941,
12944, 12990, 13125) was photographed. (E) Indicated cells (MY8092, 12886, 12960 and 12961) were
serially diluted on YPD and incubated at either 23°C for 2 days or 37°C for 1 day. (F) MY12960 and 12961
cells grown to exponential phase at 23°C were transferred to 37°C for 12 hr. Cells were fixed with 3.7%
formaldehyde and stained with DAPI. (B-D, and F) Bar, 10 μm.

doi:10.1371/journal.pgen.1005684.g004
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Elm1p contributes to proper formation of the septin cytoskeleton redundantly and/or par-
tially through the protein kinases Gin4p and Cla4p (Fig 4A). To determine if disruption of sep-
tin organization is generally associated with pseudohyphal growth, we deleted FUS3 in gin4Δ
and cla4Δ strains. Each mutant displayed a slightly elongated cell phenotype, compared to WT
(Fig 4C; gin4Δ, 1.46±0.29, n = 164; cla4Δ, 1.32±0.30, n = 139; WT, 1.22 ±0.15, n = 112). How-
ever a significant number of gin4Δ cells were hyper-elongated by loss of Fus3p (3.13±0.99,
n = 118; Fig 4C) and formed large aggregates of cells that rapidly settled out of solution (S1A
Fig). Like elm1Δ, the fus3Δmutation caused enhanced agar penetration of the gin4mutant
(S1B Fig). Similar results were observed with cla4Δ, but the combined effects with fus3Δ on
polarized cell growth (1.91±1.11, n = 225), clumping and invasiveness were not as pronounced
as for the gin4Δmutants (Fig 4C and S1 Fig). However when the septin Cdc3p was tagged with
mCherry, the cla4Δ fus3Δ cells displayed dramatic increases in cell elongation, cell-cell adhe-
sion, and invasiveness (Fig 4C and S1 Fig). Although carboxy-terminally tagged Cdc3p-
mCherry is thought to be fully functional, we observed slightly elongated buds, suggesting that
it causes a slight septin defect. Taken together, the phenotypes of the elm1Δ fus3Δ, gin4Δ fus3Δ,
and cla4Δ fus3Δmutants suggest that mitotic septin defects are responsible for induction of
pseudohyphal growth.

To further establish the relationship between Fus3p and septin perturbation in pseudohy-
phal growth, we examined the effect of fus3Δ on septin mutants. Four mutations (cdc3-3,
cdc10Δ, cdc12-6, and shs1Δ) caused strong synthetic growth defects in combination with fus3Δ
(S2A Fig). Two of the double mutants, cdc3-3 fus3Δ and cdc12-6 fus3Δ, displayed more severe
morphologies with extremely elongated buds at the intermediate temperature of 30°C (S2B
Fig). Taken together, these observations demonstrate that the loss of Fus3p exacerbates the
effects of septin perturbation on cell morphology.

Perturbations of septin assembly lead to stabilization of Swe1p and a cell cycle delay at the
G2/M transition, while buds undergo constitutive polarized growth [16]. A role for Swe1p in
sadF pseudohyphal growth was demonstrated by finding that the swe1Δ completely suppressed
the elongated cell morphology of elm1Δ fus3Δ cells (Fig 4D). The greatly enhanced polarization
of elm1Δ fus3Δ, relative to elm1Δ, suggests that Swe1p may be further stabilized by loss of
Fus3p. Mih1p promotes entry into mitosis by dephosphorylating the Swe1p-catalyzed inhibi-
tory phosphorylation of Cdk1p [28]. If the loss of Fus3p affects the stability of Swe1p, then the
fus3Δmih1Δ double mutant should also show increased polarized bud growth and G2/M
delay, relative tomih1Δ. Consistent with this hypothesis, fus3Δ caused increased bud elonga-
tion inmih1Δ and the double mutant exhibited defects in cell growth. These effects were more
severe at elevated temperature (37°C), where most of cells were arrested with a single nucleus
at the bud neck, indicative of G2 arrest (Fig 4E and 4F). However, because the fus3Δmih1Δ
mutant does not form chains of elongated cells, the effect of elm1Δ fus3Δmust entail more
than Swe1p stabilization.

Activation of Kss1p MAP kinase signaling by septin defects
Pheromone-activated Fus3p blocks classical pseudohyphal growth by down-regulating Kss1p
and Tec1p (Fig 5A; [29]). Because deletion of either KSS1 or TEC1 also eliminated the sadF
pseudohyphal phenotype of elm1Δ fus3Δ (Fig 5B), we monitored the expression of a Tec1p-
dependent filamentation response element (FRE). Expression of a FRE(Ty)-lacZ reporter was
synergistically elevated 15 fold in elm1Δ fus3Δ relative to WT (8-fold in fus3Δ, and 3-fold in
elm1Δ), which was obliterated by either kss1 or tec1mutation (Fig 5C). FRE-lacZ expression
was also elevated in the other septin assembly mutants, gin4Δ and cla4Δ, although less than in
elm1Δ (Fig 5D). These data show that septin disruption upregulates Kss1p-dependent
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signaling, contributing to sadF pseudohyphal growth. Moreover, kss1Δ restored the normal
axial budding pattern to a fus3Δmutant (Figs 2 and 5E), suggesting that Kss1p signaling regu-
lates the normal haploid budding pattern.

How could Kss1p-dependent signaling be activated by septin assembly defects? Disruptions
of mitotic septin organization and function could stimulate pheromone signaling, leading to

Fig 5. Upregulation of Kss1p-dependent signaling by fus3Δmutation and septin assembly defects. All of strains were BY474-derivative haploids and
grown to exponential phase in liquid YPD at 30°C unless stated otherwise. (A) Schematic representation of pheromone and filamentous growth pathway. For
details, see the Introduction. (B) MY13049, 13122, 13144 and 13281 were photographed. (C and D) Indicated strains (MY8092, 12156, 12158, 12886,
12941, 12948, 13122, and 13281) harboring FRE(Ty)-lacZ (MR6857) were used. (E) The budding pattern of fus3Δ kss1Δ (MY13289) was analyzed as
described in Fig 2B–2D. (F and G) MY8092, 12156, 12941 and 12948 strains were used. (F) Strains carry FUS1-lacZ (MR0727). (G) Intensities of
phosphorylated Fus3p and Kss1p were normalized to total Fus3p and Kss1p and expressed relative to WT. (H) Indicated strains (MY8092, 13049, 13144,
13484, 13523, 13525, 14319, 14320, 14321, 14322, 14323, 14324, 14325, 14326, 14327, 14328, 14329 and 14330) harboring FRE(Ty)-lacZ (MR6857) were
used. (I) Indicated strains (MY8092, 12886, 13049, 13144, 13523, 13525, 14319, 14320, 14321, 14322, 14323, 14324, 14325, 14326, 14327, 14328, 14329
and 14330) were used. (C, D, F, and H) Cells were grown to exponential phase in liquid SC containing 2% glucose. The activity of β-galactosidase was
determined as described in Materials and Methods and expressed relative to wild type. Data are mean ± standard deviation from three independent
experiments. (D and H) WT are identical to (C). (G and I) Active Fus3p and Kss1p were shown by phospho-p42/44 MAPK antibody. Total Fus3p, Kss1p and
Kar2p were detected with anti-Fus3p, -Kss1p and -Kar2p respectively. (B and E) Bar, 10 μm.

doi:10.1371/journal.pgen.1005684.g005
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increased activation of Kss1p in the absence of Fus3p inhibition. Expression of the mating-spe-
cific FUS1-lacZ reporter was activated>100-fold by pheromone. In contrast, the basal expres-
sion was reduced 2–3 fold in the elm1, gin4, or cla4mutants (Fig 5F). Because there is a basal
level of Kss1p-dependent signaling, septin defects might reduce the kinase activity and/or level
of Fus3p, resulting in the upregulation of Kss1p signaling. However, neither the protein level
nor the phosphorylation of Fus3p was significantly affected by elm1Δ, gin4Δ, or cla4Δ (Fig 5G).
In contrast, the level of phosphorylated Kss1p was significantly elevated in elm1Δ, gin4Δ, and
cla4Δ cells. Taken together, we conclude that septin assembly defects trigger signaling through
Kss1p, independent of pheromone signaling and Fus3p.

To identify upstream regulators of the constitutive activation of Kss1p, we screened candi-
date deletion mutations in BY4741 for their effects on FRE-lacZ expression during vegetative
growth. Basal FRE-driven expression was greatly reduced in strains lacking elements shared by
both the pheromone response and pseudohyphal pathways, including ste20, ste11, ste7 and
ste12 (Fig 5A and 5H). Remarkably, FRE-driven expression was also abolished by loss of com-
ponents specific to the pheromone response, including Ste4p (Gβ), Ste18p (Gγ), and Ste5p
(scaffold), but not by loss of the pheromone receptor, Ste2p. Ras2p and the plasma membrane-
linked receptors Msb2p and Sho1p have been implicated in the activation of the fMAPK cas-
cade during filamentous growth (Fig 5A). However, they are not required for basal signaling;
null mutants showed ~80%WT expression (Fig 5H). Gpr1p (plasma membrane G-protein
coupled receptor), Gpa2p (Gα), and Plc1p (phospholipase C) trigger filamentous growth by a
pathway that is independent of fMAPK signaling (Fig 5A). FRE-driven expression was
markedly abolished in gpr1Δ and plc1Δ, while gpa2Δ had no effect (Fig 5H).

Consistently, levels of phosphorylated Kss1p and Fus3p were almost abolished in cells car-
rying mutations in any genes of the pheromone pathway, with the exception of STE2 (Fig 5I).
Similarly, gpr1Δ and plc1Δ, but not mutations in other upstream regulators of filamentous
growth also caused decreased phosphorylation (Fig 5I). Our data indicate that basal signaling
through Kss1p in the S288C derived BY4741 strain is mediated by Gpr1p and the pheromone
response pathway downstream of the pheromone receptor. Importantly, deletion of ELM1
greatly elevated FRE-lacZ expression in gpr1Δ (Fig 5H), indicating that septin defects activate
the pathway independent of Gpr1p.

We next asked if Fus3p’s kinase activity is required for regulating sadF pseudohyphal
growth. The kinase-defective fus3K42R could partially suppress cell elongation and FRE-driven
expression (S3 Fig). We conclude that Fus3p down-regulation of sadF pseudohyphal growth is
only partially dependent on its kinase activity.

The signaling pathway of sadF pseudohyphal growth
To identify the signaling pathway for sadF pseudohyphal growth, we screened the mutants for
their effects on the induced level of FRE-lacZ in the elm1Δ fus3Δmutant. Note that the elm1Δ
fus3Δ induced level of FRE-lacZ expression is roughly 15-fold higher than the basal level (Fig
5C). As shown in Fig 6A, all the genes required for the basal level of FRE-driven expression are
also essential for elm1Δ fus3Δ stimulated expression, with the exception of GPR1 and PLC1.
Deletion of either gene had no effect, indicating that Gpr1 and Plc1are not required for sadF
pseudohyphal growth. As found for basal expression, themsb2 and sho1mutants were essen-
tially wild type (~70–80%) (Fig 6A). In contrast, deletion of RAS2 largely abolished the induced
level of FRE-driven expression, suggesting that defects in mitotic septin organization/function
might stimulate sadF pseudohyphal signaling via Ras2p. Accordingly we investigated other
components of the cAMP/PKA pathway, although BY4741 like other S288C strains carries a
mutation in FLO8. As expected, sfl1Δ, tpk2Δ and flo8Δ did not cause any significant decrease in
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Fig 6. Identification of sadF pseudohyphal signaling pathway. All of strains were BY474-derivative haploids and grown to exponential phase in liquid
YPD at 30°C unless stated otherwise. (A and B) Indicated strains (MY8092, 12948, 13122, 13125, 13145, 13281, 13313, 13315, 13317, 13319, 13378,
13380, 13382, 13384, 13413, 13417, 13500, 13502, 13504, 13506, 13508, 13531, 13582, 14331, 14332, 14333, 14334 and 14335) harboring FRE(Ty)-lacZ
(MR6857) were used. β-galactosidase activity was determined as described in Fig 5C. Data are expressed relative to (A) elm1Δ fus3Δ or (B) WT. Data are
mean ± standard deviation from three independent experiments. Note that (A) elm1Δ fus3Δ, elm1Δ fus3Δ kss1Δ, elm1Δ fus3Δ tec1Δ and (B) WT are
identical to Fig 5C. (C) MY8092, 12886, 13144 and 13145 strains were used. Each protein was detected as described as Fig 5G. (D-G) Indicated strains
(MY12158, 12948, 13413, 13901, 13903, 13907 and 14336) were used. (D) Bar, 30μm. (E) Flocculation assay was performed as described in Fig 1F. Data
are representative of three independent experiments and expressed relative to WT. Note that elm1Δ and elm1Δ fus3Δare identical to Fig 1F. (F and G) Plate
washing assay was performed as described in Fig 1G. (H and I) A model for sadF pseudohyphal signaling pathway. See the Discussion for details.

doi:10.1371/journal.pgen.1005684.g006
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FRE-driven expression (Fig 6A). All triple mutants with significantly-reduced FRE-lacZ expres-
sion also failed to display the sadF pseudohyphal phenotype, consistent with the critical role
for induced levels of Kss1p activation and Tec1p dependent transcription.

Given that swe1Δ suppresses sadF pseudohyphal growth, we examined its effect on FRE-
driven transcription. Surprisingly, loss of Swe1p also strongly suppressed FRE-driven transcrip-
tion in elm1Δ fus3Δ (Fig 6A). The swe1Δ also reduced basal expression of FRE-lacZ (Fig 6B), but
it had little effect on basal Kss1p phosphorylation (Fig 6C), suggesting that Swe1p acts down-
stream of Kss1p to regulate FRE-driven expression. Because Swe1p negatively regulates the
mitotic Cdk, the reduction in FRE-driven expression by deletion of SWE1might be due to the
increased Cdk activity. If so, then FRE-driven expression should be upregulated in a strain lack-
ing Clb2p, the major mitotic cyclin. However, clb2Δ did not stimulate FRE-reporter expression;
instead, cells exhibited a 2-fold reduction (Fig 6C). These results suggest that Swe1p’s function
in sadF pseudohyphal signaling is not solely dependent on reduction of mitotic Cdk activity.

The classic forms of filamentous growth require Flo11p, a cell surface flocculin, to promote
filamentation and agar invasion. We therefore examined whether sadF pseudohyphae are
Flo11p-dependent. Deletion of FLO11 had no effect on sadF pseudohyphal signaling (Fig 6A),
basal FRE-driven expression (Fig 6B), filamentation (Fig 6D), aggregation (Fig 6E) or agar
invasion of elm1Δ fus3Δ cells (Fig 6F). Recently it was shown that S288C strains bypass fMAPK
signaling for Flo11p induction; instead, Rpi1p regulates transcription of FLO11 [30]. The rpi1Δ
had no effect on the sadF pseudohyphal phenotype or signaling (Fig 6A and 6B) again showing
that sadF pseudohyphal growth is independent of Flo11p and the cAMP/PKA pathway.

Budding yeast has several cell wall proteins related to the adhesins of pathogenic fungi
including Flo1p, Flo10p, Flo11p, and Fig2p. Flo1p and Flo10p promote cell-cell adhesion to
form multicellular clumps, leading to flocculation [31]. Fig2p is induced during mating and
implicated in cell-cell adherence for cell fusion [32]. As shown in Fig 6D–6F, flo1Δ and flo10Δ
had no effect on the morphology, clumping or invasiveness of sadF pseudohyphal cells. In con-
trast, fig2Δ partially suppressed sadF pseudohyphal growth, showing reduced cell clump size,
reduced clumping, and reduced agar invasion of the elm1Δ fus3Δ strain (Fig 6D–6G). Thus
sadF pseudohyphal growth also differs from the classical forms of filamentation in requiring a
different adhesin to promote multicellular growth.

Discussion
In this paper we report the discovery of a stable constitutive pseudohyphal growth state for the
budding yeast, Saccharomyces cerevisiae. The constitutive pseudohyphal growth, referred to as
sadF growth, is triggered by two regulatory inputs: perturbation in the assembly of the septin
ring required for cytokinesis and relief of the negative regulation of Kss1p by the mating path-
way MAP kinase, Fus3p. As for classical filamentous growth, sadF growth is characterized by
hyperpolarized cell growth, a unipolar budding pattern and increased cell adhesion, leading to
growth as large clumps of branched filaments. Although sadF pseudohyphal growth shares
some characteristics with classical diploid pseudohyphal growth, it differs in significant ways,
including the conditions in which it occurs (liquid rich media versus solid starvation media),
the overall genetic requirements (haploid S288C background versus diploid ∑), the regulatory
pathway (dependent on Ste5p, but independent of the cAMP/PKA pathway and Flo11p), and
the degree of hyperpolarized growth. Besides nitrogen starvation, various environmental sti-
muli such as alcohol and slowed DNA synthesis have also been revealed to promote filamenta-
tion [33, 34]; short-chain alcohols were able to stimulate filamentous growth even in liquid
media with properties similar to classical pseudohyphal growth. However, these filamentous
growths were not induced in strains of the S288C lineage [33, 34].

Stable Pseudohyphal Growth in Budding Yeast

PLOS Genetics | DOI:10.1371/journal.pgen.1005684 December 7, 2015 15 / 21



The sadF pseudohyphal cells achieve a degree of polarized growth that is significantly more
extreme than that previously reported for diploid filamentous growth (mean axial ratio of 4.3,
versus 3.4; [2]). However, the distribution of sadF pseudohyphal cell lengths was highly vari-
able, with some cells superficially resembling the hyphae of true filamentous fungi. Like fila-
mentous fungi, sadF pseudohyphal yeast contain a Spitzenkörper-like structure at the tips of
the growing cells (Fig 3D). Comprised of secretory and endocytic vesicles, the Spitzenkörper is
thought to be a staging area for secreted material that will form the new cell surface. During
budding, S. cerevisiae growth is isotropic over the bud surface, with no evidence of a Spitzen-
körper. Although Spitzenkörper have not been reported in S. cerevisiae pseudohyphal growth,
in the related human pathogen, Candida albicans, which can grow both as true hyphae and as
pseudohyphae, Spitzenkörper are observed only in true hyphae [35]. Interestingly, a Spitzen-
körper-like structure is seen in budding yeast during the response to pheromone ([36], Bagam-
ery and Rose, submitted), indicating that budding yeast have the machinery for Spitzenkörper
formation. Moreover, a Spitzenkörper-like structure is observed in budding yeast, early in the
cell cycle, prior to the “apical to isotropic” switch (Bagamery and Rose, submitted). Thus it
seems likely that the sadF hyper-polarized growth reflects the maintenance of a growth pattern
that is normally restricted to mating and/or the early phases of the cell cycle.

Septin assembly defects appear to induce pseudohyphal growth through two different sig-
naling pathways (Fig 6H and 6I). First, septin defects activate a MAP kinase pathway (sadF--
MAPK) comprising most components of the pheromone response pathway, including ones
that are not shared with the pseudo-hyphal signaling pathway (Ste4p/Ste18p and Ste5p). It is
not known how the sadF-MAPK signaling pathway is activated by septin defects, although we
note the presence of increased levels of Ste5-GFP at cortical puncta and the bud neck in strains
undergoing sadF pseudohyphal growth (S4 Fig). Septin assembly must be normally monitored
by the sadF-MAPK pathway; mutations affecting septins caused up to 3 fold higher Kss1p
phosphorylation and Tec1p-dependent FRE-reporter expression. Under normal conditions,
the expression of the filamentation response genes is ameliorated by Fus3p. In the absence of
Fus3p, filamentation response gene expression is greatly enhanced; the expression of which
leads to further suppression of septin assembly and the pronounced changes in cell morphol-
ogy characteristic of pseudohyphal growth.

Septin assembly defects is also monitored by Swe1p, whose activation leads to cell cycle
arrest prior to the switch from apical to isotropic growth [20]. A role for Swe1p-dependent
cell-cycle arrest in sadF pseudohyphal growth is supported by the finding that loss of Mih1p
(which antagonizes Swe1p activity) leads to cell elongation in a fus3Δmutant (Fig 4F). At the
same time, Swe1p is also required for high level sadF-MAPK signaling. Surprisingly, Swe1p
does not appear to be required upstream in the signaling pathway; Swe1p is not required for
Kss1p phosphorylation. To explain this finding, we propose that activation of the Swe1p-
dependent septin assembly checkpoint blocks cell cycle progression at the precise stage during
which septin assembly is actively being monitored by the sadF-MAPK pathway. Because high-
level expression of the filamentation response genes appears to exacerbate septin assembly
defects (S2 Fig), cells become locked in a state in which both Swe1p and sadF-MAPK signaling
remain high, essentially creating a positive feedback loop (Fig 6H). Because cells remain
blocked in the cell cycle prior to the switch from apical to isotropic growth, they continue to
grow in a highly polarized, hyphal-like fashion. The cell cycle block is not permanent as cells
eventually succeed at completing cytokinesis, albeit after most have grown to a length that is at
least 4 to 5 times longer than wild-type.

We presume that other cellular functions associated with the filamentation response genes
contribute to the unique cell morphology of sadF pseudohyphal growth. For example, loss of
Fus3p is sufficient to switch about 30% of cells from the haploid axial budding pattern to the
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bipolar budding pattern (Fig 2), rising to 90% when coupled to elm1Δ. Similarly, the Fig2p adhe-
sin is required for the full level of cell adhesion. Although FIG2 has not been reported to be a
filamentation response gene, overexpression causes increased filamentation and the promoter
region binds Phd1p, a transcription factor that enhances filamentous growth. Moreover, in Ash-
bya gossypii FIG2 expression was abolished in a tec1mutant [37]. Thus the sadF pseudohyphal
growth state can be viewed as the product of synergism between the set of genes which regulate
aspects of cell morphology and genes which regulate progression through the cell cycle.

Aside from notable differences in the regulatory mechanism, sadF pseudohyphal growth is
remarkable because it is a stable growth state that is independent of the external environmental
cues that trigger classical pseudohyphal growth. The various growth states of budding yeast
can be thought of as being dominated by the activity of specific master regulatory protein
kinases. For example, mitosis is dominated by the activity of the CDK, Cdc28p. Mating is dom-
inated by the activity of the MAPK, Fus3p. Meiosis is dominated by Ime1p. Each growth state
activates mechanisms to suppress the activity of alternate growth phase kinases. For example,
phosphorylation of Ste5p by Cdc28p blocks activation of Fus3p prior to G2 [38]. During mat-
ing, activation of Far1p by Fus3p blocks activation of Cdc28p to prevent reentry into mitosis.
Similarly, sadF pseudohyphal growth can be thought of as being dominated by Swe1p and
Kss1p, which synergistically activate genes responsible for the alternate growth state and block
Cdc28p-dependent mitotic progression.

Much recent interest has focused on the mechanism by which unicellular organisms transi-
tioned to multicellular patterns of growth. Using different selection schemes two different labo-
ratory groups have evolved yeast strains into forms that show a striking degree of
multicellularity [39,40]. In both cases cells showed dramatic increases in the level of adhesion,
although neither showed significant changes in cell morphology. The relative ease of the transi-
tion for budding yeast has suggested that the evolution of multicellularity might be generally
easy for unicellular eukaryotes under proper selective pressure. Our results show that loss of
function mutations in just two genes can also induce a high degree of multicellularity in bud-
ding yeast. Thus this organism may already contain the genomic complexity required for
robust multicellular growth.

Materials and Methods

Yeast strains, plasmids, growth conditions and general methods
All yeast culture and genetic techniques were performed as described by [41]. Yeast strains and
plasmids are listed in S1 Table. All yeast strains are haploid congenic to the S288C genetic
background and were grown in liquid culture of rich YPD (yeast extract/peptone/dextrose)
media unless indicated otherwise. The gene disruption and GFP tagging of HTB1 were per-
formed by PCR-based methods [42]. To determine cell-cell adhesion quantitatively, a floccula-
tion assay was performed as described previously [43]. Briefly, exponentially growing cells in
liquid YPDmedia were thoroughly mixed and the absorbance (A600) was determined immedi-
ately (t = 0) with a spectrophotometer. Optical density was read at 5 min intervals for 30 min
without agitation and normalized by those of t = 0. β-galactosidase assays were performed with
extracts from exponentially growing cells in synthetic minimal medium containing 2% glucose
as described previously [29].

Protein analysis
Proteins were prepared by TCA precipitation as described previously [41] and probed with
polyclonal anti-Kss1p (Santa Cruz), polyclonal anti-Fus3p (Santa Cruz), monoclonal anti-
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phosphor-p44/42 MAPK (Cell signaling), and polyclonal Kar2p (Rose Lab, Princeton Univer-
sity). Band intensity was quantified using G:BOX imaging system (Syngene).

Microscopy and cell imaging
Images for colony morphology were acquired with G:BOX imaging system (Syngene). Flores-
cence microscopy was performed essentially as described previously [44]. Images were
acquired on a DeltaVision Microscopy System (Applied Precision, LLC) using an inverted
microscope (TE200; Nikon), a charge-coupled device camera (CoolSNAP HQ; Roper Scien-
tific) and either a 40× objective with a 0.75 NA or a 20× with a 0.50 NA (Nikon). Figures were
prepared for publication using Adobe Photoshop and Adobe Illustrator. No further manipula-
tions other than adjustments in brightness and contrast were made. To determine DNA con-
tents, cells were grown to exponential phase, fixed with 70% ethanol, and treated with RNAase.
The cells were then stained with propidium iodide overnight at 4°C and fluorescent intensity
was quantified with CellProfiler image analysis software [45]. For time-lapse experiments, cells
were grown to early exponential phase in liquid YPD medium and were placed on YPD agarose
pads. 10 z sections spaced 1 μm apart without binning were acquired every 2 min. All images
were projected and processed with the softWoRx program (Applied Precision, LLC).

Supporting Information
S1 Fig. Cell adhesion and invasive growth of gin4Δ fus3Δ and cla4Δ fus3Δmutants. All of
strains were BY474-derivative haploids and grown to exponential phase in liquid YPD at 30°C.
MY8091, 12156, 12871, 12886, 12941, 12944, and 12990 strains were used. (A) Flocculation
assay was performed as described in Fig 1F. Data are representative of three independent
experiments and expressed relative to wild type. Note that wild type and fus3Δ are identical to
Fig 1F. (B) Plate washing assay was performed as described in Fig 1G.
(TIF)

S2 Fig. Genetic interaction of fus3Δmutation with septin mutants. All of strains were
BY474-derivative haploids. MY8092, 12886, 12969, 12970, 14050, 14054, 14056, 14058, 14132,
14134, 14136 and 14139 strains were used. The temperature-sensitive cdc3-3, cdc11-6 and
cdc12-6mutants were constructed in BY4741. (A) Cells were serially diluted on YPD and incu-
bated at 23°C for 2 days, 30°C for 1 day, or 37°C for 1 day. (B) Cells grown to exponential
phase in YPD liquid at 23°C were transferred to 30°C for 12 hr. Bar, 10 μm. To further establish
the relationship between Fus3p and septin perturbation in pseudohyphal growth, we examined
the effect of fus3Δ on the growth and morphology of septin mutants. Neither Cdc10p nor
Shs1p are essential in BY4741 and their absence resulted only in a slightly elongated bud phe-
notype that was not sensitive to elevated temperature. In contrast, Cdc3p, Cdc11p and Cdc12p
are essential proteins and temperature-sensitive mutants displayed elongated cell morphology
that became significantly more severe at elevated temperatures, becoming inviable at 37°C. The
different septin mutations exhibited a variety of interactions with fus3Δ. Four of the five muta-
tions (cdc3-3, cdc10Δ, cdc12-6, and shs1Δ) showed strong synthetic growth defects with fus3Δ,
such that the growth of the double mutants was greatly reduced relative to either single mutant
at otherwise permissive temperatures (S2A Fig). Two of the double mutants, cdc3-3 fus3Δ and
cdc12-6 fus3Δ, displayed more severe morphologies with extremely elongated buds at the inter-
mediate temperature of 30°C (S2B Fig). Although shs1Δ fus3Δ double mutant did not show
elongated buds, the cells aggregated into clumps that were not dispersed by sonication (S2B
Fig). In contrast to the other septin mutants, fus3Δ did not cause an obvious synthetic growth
defect in combination with cdc11-6 (S2A Fig) and the effect of fus3Δ on cdc11-6morphology
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was less severe compared to cdc3-3 and cdc12-6 (S2B Fig). Taken together, these interactions
suggest that the various septin mutations perturb septation in a variety of ways leading to dif-
ferential genetic interactions with fus3Δ.
(TIF)

S3 Fig. Fus3p kinase activity in sadF pseudohyphal growth. elm1Δ fus3Δ (MY12948) harbor-
ing kinase-defective pCEN-fus3K42R (MR6763) were grown in liquid SC contacting 2% glucose
and photographed (left). elm1Δfus3Δ (MY12948) harboring either pCEN-FUS3 (MR5048) or
pCEN-fus3K42R (MR6763) were transformed with FRE(Ty)-lacZ (MR6857) and β-galactosi-
dase activity was determined as described in Materials and Methods. Bar, 10 μm.
(TIF)

S4 Fig. Recruitment of Ste5p-3GFP at the plasma membrane in elm1Δ fus3Δ and gin4Δ
fus3Δmutants. Indicated cells (MY13378, 13394 and 14322) harboring pCEN-STE5-3GFP
(pMR6725) were grown to exponential phase in liquid SC media containing glucose at 30°C.
GFP fluorescence was observed in living cells. Bar, 10 μm.
(TIF)

S1 Table. Yeast strains and plasmids used in this study.Unless indicated otherwise, all strains
were constructed in this study.
(DOCX)
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