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Abstract—Mobile crowdsensing takes advantage of perva-
sive mobile devices to collect and process data for a variety
of applications (e.g., traffic monitoring, spectrum sensing). In
this study, a socially-aware crowdsensing system is advocated,
in which a cloud-based platform incentivizes mobile users to
participate in sensing tasks by leveragingsocial trust among
users, upon receiving sensing requests. For this system,social
trust assisted reciprocity(STAR) - a synergistic marriage of
social trust and reciprocity, is exploited to design an incentive
mechanism that stimulates users’ participation.

Given the social trust structure among users, the efficacy
of STAR for satisfying users’ sensing requests is thoroughly
investigated. Specifically, it is first shown that all requests
can be satisfied if and only if sufficientsocial credit can be
“transferred” from users who request more sensing service
than they can provide to users who can provide more than
they request. Then utility maximization for sensing services
under STAR is investigated, and it is shown that it boils
down to maximizing the utility of a circulation flow in the
combined social graph and request graph. Accordingly, an
algorithm that iteratively cancels a cycle of positive weight in
the residual graph is developed, which computes the optimal
solution efficiently, for both cases of divisible and indivisible
sensing service. Extensive simulation results corroborate that
STAR can significantly outperform the mechanisms using
social trust only or reciprocity only.

Index Terms—Mobile crowdsensing, incentive mechanism,
social trust assisted reciprocity, utility maximization.

I. I NTRODUCTION

Mobile crowdsensing has recently emerged as a promis-
ing paradigm for a variety of applications, thanks to the
pervasive penetration of mobile devices to people’s daily
lives. Indeed, with the development of 4G networks and
powerful processors, smartphone sales crossed 1 billion
units in 2013 [2]. As smartphones are equipped with ad-
vanced sensors such as accelerometer, compass, gyroscope,
and camera, they can collectively carry out many sensing
tasks, e.g., monitoring the environment. In a nutshell, by
leveraging a crowd of mobile users, one can collect and
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Fig. 1. A motivating example of social trust assisted reciprocity for
spectrum crowdsensing. Users 1 and 4 have social trust in user 3 and 2,
respectively (denoted by solid edges); user 2 and 3 request user 1 and 4
to sense channel 1 and 2, respectively (denoted by dashed edges). User 1
is willing to help user 2 in exchange for that user 4 helps user1’s social
friend, user 3, while user 4 is willing to help user 3 in exchange for that
user 1 helps user 4’s social friend, user 2.

process sensed data far beyond the scope of what was
possible before.

Although the benefit of crowdsensing is pronounced,
performing a sensing task typically incursoverheadfor
the participating user, in terms of the user’s resource con-
sumption devoted to sensing, such as battery and computing
power. Further, the participating user also incurs the riskof
potential privacy loss by sharing its sensed data with others.
In general, a user may not participate in sensing without
receiving adequate incentive. Therefore, effectiveincentive
designis essential for realizing the benefit of crowdsensing.

There have been some recent studies on incentive design
for crowdsensing (see, e.g., [3]–[5]). Most of these works
use monetary reward to stimulate users’ participation,
which rely on a global (virtual) currency system. However,
enforcing the circulation of a global currency typically
incurs a high implementation overhead, especially for large-
scale networks, due to the need to, e.g., resolve disputes and
punish counterfeiters. Therefore, it is appealing to design a
crowdsensing system that can motivate a large number of
users to participate without using a global currency, which
is a goal of this study.

Online social networks have been explosively growing
over the past few years. In 2013, the number of online social
network users worldwide reached 1.73 billion, nearly one
quarter of the world’s population [6]. As a result, social
relationships increasingly influence people’s behaviors in
their interactions. In particular, as an important aspect
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of social relationships,social trust can be exploited to
stimulate crowdsensing: if Alice has social trust in Bob,
then Alice is willing to help Bob, since Alice can trust
Bob in that Bob would help Alice in the future to return
the favor.

In this paper, we devise an incentive mechanism to
stimulate users’ participation in crowdsensing, by using
Social Trust Assisted Reciprocity(STAR) - a synergistic
marriage of social trust and reciprocity. Herereciprocity
means than a user helps another while it is also helped by
the other. The basic idea of STAR is that Alice is willing
to help Bob if someone who trusts Bob can help someone
trusted by Alice. This is because the overhead of Alice for
helping Bob is compensated, as the one trusted by Alice
will help Alice in the future to return the favor. We further
illustrate this idea by an example of spectrum crowdsensing
in Fig. 1. Without adequate incentive, user 1 and 3 are
not willing to sense channel 1 and 2 for user 2 and 4,
respectively. However, if user 2 and 4 are friends of user
1 and 3, respectively, then user 1 would be willing to help
user 2, since user 2’s friend, user 3, will help user 1’s friend,
user 4, in return for user 1’s help. Therefore, both user 1
and 3 have incentive to help.

By taking advantage of reciprocity (“synchronous ex-
change”) with the assistance of social trust (“asynchronous
exchange”), STAR can efficiently encourage users’ par-
ticipation in crowdsensing. In particular, STAR greatly
enhances the chance that sensing requests are matched,
since they can be matched through existing social trust
among users. As illustrated in Fig. 1, without using either
social trust or reciprocity, neither of user 1 and user 3
would be willing to help user 2 and user 4, respectively.
If users are well connected in the social network, the
number of requests that can be matched with the assistance
of social trust can be significant. Furthermore, compared
to traditional currency-based schemes, STAR can incur
much lower implementation overhead due to the use of the
already existing social trust. We will discuss the overhead
of STAR and related work in Section VI.

The main thrust of this study is devoted to characterizing
the fundamental performance of STAR, particularly for
satisfying users’ sensing requests given the social trust
structure among them. Since sensing requests are mis-
matched in general and social trust levels are limited, it may
not be possible to satisfy all requests. Therefore, a natural
question is“Can all requests be satisfied?”The benefit of
sensing service provided under STAR can be quantified by
the utility of users who receive the service. In the case
that not all requests can be satisfied, another important
question arises:What is the maximum utility that can be
achieved by the provided service?These two questions are
similar in spirit to admission control and network utility
maximization, respectively.

We summarize the main contributions of this paper as
follows.
• We propose a socially-aware crowdsensing system

that stimulates users’ participation by leveraging their
social trust. The incurred overhead can be significantly

lower than that of traditional currency-based schemes,
since it usessocial creditas a “local” currency enabled
by social trust, rather than a global currency.

• For the proposed system, we design STAR, an incen-
tive mechanism which stimulates users’ participation
by using social trust assisted reciprocity. We inves-
tigate thoroughly the efficacy of STAR for satisfying
users’ sensing requests, given the social trust struc-
ture among users. Specifically, we first show that all
requests can be satisfied if and only if users who
request more sensing service than they can provide
can transfer sufficient social credit to users who can
provide more than they request. Then we investigate
utility maximization for sensing service, and show
that this problem is equivalent to maximizing the
utility of a circulation flow in the combined social
graph and request graph. Based on this observation,
we develop an algorithm that iteratively cancels the
cycles of positive weights in theresidual graph, and
hence computes the optimal solution efficiently, for
both cases of divisible and indivisible service.

• We evaluate the performance of STAR through ex-
tensive simulations for a random setting based on the
Erdős-Rényi graph model, and for a practical setting
based on real social data with application to spectrum
crowdsensing. For both settings, simulation results
demonstrate that STAR can achieve significantly better
system efficiency and individual user performance than
only using social trust or reciprocity.

The rest of this paper is organized as follows. In Sec-
tion II, we propose a socially-aware crowdsensing system.
In Section III, we design an incentive mechanism based on
social trust assisted reciprocity for the proposed system.
Based on STAR, Section IV investigates conditions for
satisfying all sensing requests and the utility maximization
for sensing service. Section V provides simulation results
to illustrate the efficacy of STAR. Related work is reviewed
in Section VI and the paper is concluded in Section VII.

II. SOCIALLY-AWARE CROWDSENSINGSYSTEM

In this section, we describe a crowdsensing system that
stimulates users’ participation by leveraging their social
trust.

A. Motivation

Social relationships play an increasingly important role in
people’s interactions with each other. One important aspect
of the social relationship between two users is theirsocial
trust: one user has belief in and relies on the other user’s
behavior in the future. To stimulate users’ participation in
crowdsensing, social trust can be exploited in the form
of social credit. Specifically, social credit is transferred
between two users with social trust if one user owes a
favor to the other and commits to return the favor later.
Therefore, a user is willing to participate if it receives social
credit from another user that it has social trust in. This
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Fig. 2. Illustration of socially-aware crowdsensing system.

“asynchronous exchange” of favors via social credit is in
the same spirit as a global currency. However, since this
pairwise credit commitment is enabled by existing social
trust between two users, social credit would incur a much
lower overhead than a global currency.

Most existing crowdsensing systems assume that a plat-
form announces sensing tasks and motivates users to par-
ticipate in these tasks by providing monetary incentives
[3], [5]. In contrast, we are interested in a system where
sensing requests are generated by users. Indeed, a few
crowdsensing systems that have been deployed are based
on this model. For example, the Waze [7] system employs
traffic monitoring data collected from a crowd of drivers to
answer an individual driver’s request (e.g., navigation toa
specific destination).

B. System Description

We consider a crowdsensing system as illustrated in
Fig. 2. The system consists of aplatform that operates
in the cloud, and a set of mobileusersV = {1, · · · , N}
connected to the platform via the cloud. Initially, each user
registers at the platform and publishes its social informa-
tion (e.g., Facebook account) such that users can identify
their social relationships with each other. Then, each user
declares to the platform a social creditlimit for each other
user that it has social trust in, based on the strength of
their social relationship. The social credit limit quantifies
the social trust level by specifying how much social credit
one user is willing to accept from another. For example,
a user typically has high social trust in a close friend,
while it may have low social trust in an acquaintance. The
system proceeds in rounds and the workflow in each round
consists of four major components as depicted in Fig. 3.
We describe each component in detail below.

• Sensing request formation.A user can submit to the
platform asensing requestthat describes the sensing
service it needs. For example, a user may request to
know if a licensed channel is available. Upon receiving

Time 

. . . . . . Round Round Round 

Sensing request 

formation 

Sensing task 

allocation 

Data sensing and 

aggregation 

Social credit 

transfer 

Fig. 3. Workflow of socially-aware crowdsensing system.

a request, the platform can find a particular set of users
who can serve the request, based on users’ sensing
capabilities, such as their physical locations and the
functions of sensors on their devices. In this way, the
platform determines the request relationships among
users, i.e., which user requests service from which
other users. For example, a user with a good sensing
channel condition for a licensed channel can serve
another user’s request to sense that channel.

• Sensing task allocation.Based on the sensing re-
quests, the platform allocates sensing tasks to users.
A sensing task specifies how much sensing service is
needed from that user. For example, a sensing task
may require a user to sense a licensed channel for a
period of time. A key challenge for the platform is
to ensure that users have incentive to carry out their
allocated tasks.
As expected, a user who requests sensing service
can also receive requests from others for service.
Therefore, it is plausible to take advantage ofdirect
(bilateral) or indirect (multi-lateral) reciprocity (as
illustrated in Fig. 4(a),(b)): Alice is willing to help
Bob if Bob simultaneously helps Alice. While this
“synchronous exchange” of favors is appealing as it
obviates the need for currency, a major drawback
is that users’ requests have to be simultaneously
matched, which does not hold in general. As illustrated
by the example in Fig. 1, user 1 has a good sensing
channel for channel 1 while user 2 does not. Therefore,
user 2 needs user 1’s help while user 1 does not need
user 2’s help.

• Social credit transfer. The platform can stimulate
users’ participation by using social credit. The plat-
form maintains the social credit limit for each pair of
users, and updates it for the next round to reflect the
amount of social credit transferred between them in
the current round. Besides the update performed by
the platform, each user can also change its credit limit
for another by reporting the new value to the platform.

• Data sensing and aggregation.Based on the trans-
ferred social credit, users have incentive to carry
out their allocated sensing tasks. After collecting and
processing the sensing data from users, the platform
distributes the aggregated data to the intended users.
Therefore, most of the communication and computa-
tion burdens shifts from the users to the platform.



4

(a)

(d)

1

2

1

2

3

1

32

(e)

(c)(b)

1

2

1

4

1 2

(f)

2

3 3 4

Fig. 4. Examples of social trust assisted reciprocity cycles. (a)-(d) are
special cases: (a) direct reciprocity cycle; (b) indirect reciprocity cycle; (c)
direct social trust based cycle; (d) indirect social trust based cycle. Solid
edges are social edges and dashed edges are request edges.

Unlike most existing work, our proposed crowdsensing
system exploits social trust to stimulate users’ participation,
which obviates the need of a global currency. For this
system, one key challenge is to make the best use of
social credit such that users have incentive to carry out
sensing tasks, and more importantly, the system achieves
good performance, which is the focus in the rest of this
paper.

III. STAR: SOCIAL TRUST ASSISTEDRECIPROCITY

BASED INCENTIVE MECHANISM

In this section, we design an incentive mechanism based
on social trust assisted reciprocity.

A. System Model

We model users’ sensing requests by arequest graph
GR , (V,ER), in which useri and userj are connected
by a directedrequest edgeeRij ∈ ER if user j requests
sensing service1 from user i. The capacityRij > 0 of
each request edgeeRij represents theamount of service
requested by userj from useri2. The flowfR

ij > 0 on the
request edgeeRij represents the amount of service provided
by useri to userj. Each unit of service captures a unit
of sensing cost (e.g., energy consumption, privacy loss)
incurred for the user who provides the service. Depending
on the specific application, sensing service can bedivisible
(e.g., quantified by sensing time) such thatRij andfR

ij for
eacheRij ∈ ER have continuous values, orindivisible (e.g.,
quantified by the number of sensing data samples) such that
they have to be integers. In some situations, a user cannot
provide all the service requested from it (e.g., due to its
resource constraints). To take this into account, letCi be
the maximum amount of service that useri can provide and

1For brevity, we use “sensing service” and “service” interchangeably
throughout the paper.

2Recall that users’ request relationships are determined bythe platform
in the sensing request formation phase as described in Section II-B.

EC
i be the set of outgoing request edges of useri. Then

the following constraint applies:
∑

j:eij∈E
R

i+

fR
ij ≤ Ci. (1)

We will discuss how to capture constraint (1) in our
incentive mechanism in Section IV.

A user obtains utility from its requested sensing service,
which depends on the amount of service provided by each
user who is requested for that service. We assume that user
j obtains a utility ofUij for eachunit of service provided
by useri. In general, userj can request different types of
service from useri, which have utilities of different values.
For example, a user may request sensing multiple channels
from another user, whose sensing capability varies across
different channels. In this case, there are multipleparallel
request edges (in the same direction) from useri to user
j, each with a specific utility of service3. In this paper, we
assume that there existsat most onerequest edge from one
user to another. However, all the results obtained under this
assumption can be directly extended to the case of parallel
request edges. We further assume that a user’s utility is
equal to the total utility of the service provided to that
user. More complex forms of utility will be studied in our
future work.

We model the social trust structure among users by a
social graphGS , (V,ES), in which useri and userj are
connected by a directedsocial edgeeSij ∈ ES if user j has
social trust in useri. The capacitySij > 0 of each social
edgeeSij represents the social credit limit, which specifies
the maximum amount of social credit that can be transferred
from useri to userj. The flow fS

ij on the social edgeeSij
represents the amount of social credit transferred between
useri and userj. The social credit unit is the same as the
sensing service unit, and is the same for all users. Note that
fS
ij = −f

S
ji holds for each pair of social edges between two

users, wherefS
ij > 0 (or fS

ji > 0) indicates that a credit of
fS
ij (or fS

ji, respectively) is transferred from useri to user
j (or from userj to useri, respectively).

B. An Example of Spectrum Crowdsensing

As an illustrative example, we next discuss how the
system model described above can be applied to spectrum
crowdsensing.

Spectrum sensing is an important and challenging task in
cognitive radio networks [8]. To access a licensed channel
in a cognitive radio network, a user needs to sense the
channel to ensure that the channel is not used by licensed
transmitters. When a user’s sensing channel condition is
impaired by severe fading (e.g., path loss, shadowing), the
user needs other users’ help to sense the channel. Consider
a cognitive radio network where each user intends to sense
one or multiple licensed channels for access. A user’s
sensing capability for a channel depends on its sensing
channel condition, which can vary across different users

3For brevity, we say “utility of service” instead of “utilityper unit
service”.
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Fig. 5. An example of (a) social graph; (b) request graph; (c)the
combined social and request graph; (d) two STAR cycles in thesocial-
request graph.

and different channels. If useri has a good sensing channel
condition for a channel, userj may request useri to sense
that channel. The overhead incurred by sensing that channel
can be useri’s resource consumption (e.g., device battery)
for the sensing task. Therefore, the amount of sensing
servicefR

ij provided by useri to userj can be quantified
by useri’s sensing time. The utilityUij,k of userj derived
from the service provided by useri on channelk, can
depend on useri’s sensing capability on channelk as well
as userj’s utilization efficiency (e.g., transmission rate) of
channelk.

C. Design Description

The basic incentive structure of the STAR mechanism is
a social trust assisted reciprocity cycle(STAR) in which a
set of users have incentive to provide service. It is defined
in the combined social and request (social-request) graph
G , (V,ES ∪ ER) (as illustrated in Fig. 5).

Definition 1: A social trust assisted reciprocity cycle is
a directed cycle in the social-request graphG.

In a STAR cycle, a user is willing to provide service
since the overhead is compensated by receiving credit or
service from another user in that cycle. For example, user
1 in Fig. 4(e) is willing to provide service to user 3 since
it receives credit from user 2; user 1 in Fig. 4(f) is willing
to provide service to user 3 since it receives service from
user 2. Note that a STAR cycle can involveintermediate
users that only transfer credits with their social neighbors.
For example, in Fig. 4(f), user 4 is an intermediate user.

For each user in a STAR cycle, the amount of service or
credit it receives should beequalto that of service or credit
it provides or spends, respectively. Letfc denote abalanced
flow along a STAR cyclec, which has the same flow value
on each edge inc. The flow on a social or request edge in
theaggregateflow f of a set of balanced flows{fc, c ∈ C}
along cyclesC is given by

fS
ij =

∑

c∈C:eS
ij
∈c

fc −
∑

c∈C:eS
ji
∈c

fc, fR
ij =

∑

c∈C:eR
ij
∈c

fc

1

2

3

1
′

2

3

1⇒
C1

Fig. 6. An example of modifying a social-request graph to capture the
constraint (1) withER

1+
= {eR

12
, eR

13
}. The notation next to an edge is

its capacity.

respectively. Note that the credit transferred from useri

to j (i.e., the flow oneSij ∈ ES) in the balanced flow
along a STAR cycle can be partly or completelycanceled
by that from userj to i in another STAR cycle. Users
can participate in a set of balanced flows along STAR
cycles if and only if the aggregate flow satisfies the capacity
constraints on request and social edges.

Definition 2: A set of balanced flows along STAR cy-
cles is feasible if the aggregate flow satisfies the following
capacity constraints:

−Sji ≤ fS
ij ≤ Sij , f

S
ji = −f

S
ij , ∀eij ∈ ES (2)

0 ≤ fR
ij ≤Rij , ∀eij ∈ ER. (3)

Recall that the amount of service a user can provide
can be constrained (i.e., constraint (1)). To capture this
constraint, we can modify the social-request graphG as
follows. We first construct a virtual nodei′ ∈ V and change
all the outgoing request edges from nodei to being from
nodei′, and then we add a virtual edgeeRii′ ∈ ER and set its
capacity and utility asCi and 0, respectively (as illustrated
in Fig. 6). Note that all other edges keep unchanged. It can
be easily shown that it suffices to focus on the modified
graph: any feasible set of balanced flows along STAR cycles
in the modified graph has aone-to-one correspondencein
the original graph that also satisfies constraint (1).

Under the STAR mechanism, all users are willing to
participate in any feasible set of balanced flows along STAR
cycles.

IV. EXPLOITING STAR TO SATISFY SENSING

REQUESTS

In this section, we characterize the efficacy of the STAR
mechanism. We first investigate conditions under which
all sensing requests can be satisfied. Then we study the
maximum total utility that can be achieved by provided
sensing service.

A. Satisfying All Sensing Requests

Based on the STAR cycles, we first show that it suffices
to focus oncirculation flows in the social-request graph
defined as follows.

Definition 3: A flow f in the social-request graphG is
a circulation iff satisfies the capacity constraints (2), (3),
and the flow conservation constraints

∑

j:eij∈ER

fR
ij +

∑

j:eij∈ES

fS
ij =

∑

j:eji∈ER

fR
ji , ∀i ∈ V. (4)
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It is clear that the aggregate flow of any feasible set of
balanced flows along STAR cycles is a circulation flow in
G. The following lemma shows that the converse is also
true.

Lemma 1: Any circulation flow in the social-request
graph amounts to the aggregate flow of a feasible set of
balanced flows along STAR cycles.

Proof: Consider a non-empty circulation flowf . We
can find a nodev1 with a positive flow on an outgoing
edge fromv1 and trace along this edge to another node
v2. Due to the flow conservation constraint, we can find
an outgoing edge fromv2 with a positive flow and trace
along it to a nodev3. We continue this tracing process
until we visit a nodevj that has been visited before, i.e.,
vi = vj for some i < j, and hence we find a STAR
cycle vi → vi+1 → · · · → vj . Then we subtract flowf
by a balanced flow along this cycle with value equal to
the minimum flow value on an edge in that cycle. Thus
the remaining flow is still a circulation flow in which the
number of edges with non-zero flows is reduced. We can
repeat this argument to subtract the remaining flow by a
balanced flow along a cycle until it is empty. This implies
that flowf is the aggregate flow of the subtracted balanced
flows along the cycles, which is also feasible. �

We definePi as the total amount of service requested by
useri deducted by the amount that useri can provide:

Pi ,
∑

j:eji∈ER

Rji −
∑

j:eij∈ER

Rij .

Then we construct an extended social graphGS+

from the
social graphGS by adding a directed edge with capacity
Pi from a virtual source nodes to each nodei with Pi > 0,
and adding a directed edge with capacity−Pi from each
node i with Pi < 0 to a virtual destination nodet (as
illustrated in Fig. 7). LetP be defined as

P ,
∑

i:Pi>0

Pi = −
∑

i:Pi<0

Pi.

Theorem 1: All sensing requests can be satisfied under
STAR if and only ifP is equal to the maximum flow value
from s to t in the extended social graphGS+

.
Proof: By Lemma 1, all requests can be satisfied if and

only if there is a circulation flowf in the social-request
graphG that saturates all request edges (i.e.,fR

ij = Rij ,

(a)

1 2

(b)

1/3(2)

2/4(3)

1/2(0)

−1/4(0)
1 2

1(−2)

2(−3)

1(0)

5(0)

2(2)

2(3)

Fig. 8. An example of a social-request graph with a flow in (a) and
its residual graph in (b). For each edge, the number before/ is the flow
value; the number before () is the capacity; the number in () is the weight.

∀eRij ∈ ER).
We first show the “if” part. SupposeS is equal to the

value of the maximum flowfS+

from s to t in GS+

. Let
fS be the flow comprised of the flows on the social edges
ES in fS+

(i.e., not including the edges froms and to t
in GS+

). Let fR be the flow in the request graphGR that
saturates all request edges. Then we augment flowfS in
the social-request graphG with flow fR to obtain a flow
f in G. According to the construction ofGS+

, we have
∑

j:eS
ij
∈ES fS

ij = Pi for each nodei ∈ V , while we also

have
∑

j:eR
ji
∈ER fR

ji−
∑

j:eR
ij
∈ER fR

ij = Pi. This shows that
f is a circulation flow.

Next we show the “only if” part. Supposef is a
circulation flow inG that saturates all request edges. Let
fS be the flow comprised of the flows on the social edges
ES in f . Then we augment flowfS with saturated flows
on the edges froms and tot in GS+

to obtain a flowfS+

in GS+

. According to the construction ofGS+

, fS+

is a
flow in GS+

satisfying the capacity and flow conservation
constraints, with a flow value ofP from s to t. �

Remark 1: Theorem 1 provides a useful insight: all
requests can be satisfied if and only ifusers who request
more service than they can provide can transfer sufficient
social credit to users who can provide more than they
request, to compensate their imbalance in requests. Intu-
itively speaking, the social graph serves as a “buffer” to
partially or completely “absorb” the mismatch among users’
requests. It is worth noting that the maximum amount of
service provided under STAR is in generalnot equal to the
maximum flow value froms to t in GS+

.
Remark 2: We note that an important difference be-

tween [9] and our study is that the results in [9] is based
on the assumption thatall users are connected in the
social network, whereas our model here does not have this
assumption. This is essentially because that reciprocity is
used in STAR but not in [9]. As illustrated in Fig. 1, without
using reciprocity, user 1 and 4 are not willing to help
user 2 and 3, respectively. In Section V, simulation results
demonstrate that the STAR mechanism can significantly
outperform the mechanism in [9].

B. Utility Maximization for Sensing Service

Due to the mismatch of sensing service requests and
social credit limits, it is possible that not all requests can be
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Fig. 9. An example of running Algorithm 1. (a) Initial social-request
graph with the empty flow; (b) Residual graph after augmenting with a
flow of value 1 along cycle2 → 3 → 4 → 2; (c) Residual graph after
augmenting with a flow of value 2 along cycle1 → 2 → 3 → 1;
(d) Residual graph after augmenting with a flow of value 1 along cycle
1 → 4 → 3 → 1. For each edge, the number before () is the capacity;
the number in () is the weight.

satisfied. In this case, a natural objective from the platform’s
view is to maximize the total utility of provided service.
The next result follows from Lemma 1.

Theorem 2: The maximum utility of sensing service
provided under STAR is equal to the maximum utility of a
circulation flow in the social-request graph.

Note that the flow on a social edge does not generate
any utility. By Theorem 2, our problem can be written as

maximize
fS
ij
,fR

ij

∑

i,j:eij∈ER

Uijf
R
ij (5)

subject to constraints (2), (3), (4).

Note that we canmaximize the total amount of service
provided under STAR by solving problem(5) with the utility
Uij set to 1 for each request edge.

In the following, we will solve problem (5) using an
algorithm inspired by thecycle-cancelingalgorithm for
solving the minimum cost flow problem [10]. We should
note that problem (5) is quite different from a typical
network flow problem in that two nodes can be connected
by multiple edges (request edges and social edges). Fur-
thermore,request edges and social edges carry different
types of flows(as illustrated in Fig. 8(a)): the flows on
all request edges arenon-negativeand independent(as in
constraint (3)), while the flows on social edges can be
negativeand must beinversebetween a pair of users (as in
constraint (2)).

We start with constructing aresidual graph Gf ,

(V,ES
f ∪ ER

f ) of the social-request graphG for a given
flow f . Specifically, for each request edgeeRij ∈ ER, we
construct a pair offorward edge−→e R

ij ∈ ER
f andbackward

edge←−e R
ji ∈ ER

f with capacities

−→
R ij = Rij − fR

ij ,
←−
R ij = fR

ij

respectively. For eachpair of social edgeseSij , e
S
ji ∈ ES , we

construct a pair of edges−→e S
ij ,
−→e S

ji ∈ ES
f with capacities

−→
S ij = Sij − fS

ij ,
−→
S ji = Sji − fS

ji

respectively. We donot construct an edge in the residual
graph if its capacity is zero. Then we set theweightsof
each forward edge−→e R

ij ∈ ER
f and each backward edge

←−e R
ji ∈ ER

f as

−→
WR

ij = Uij ,
←−
WR

ij = −Uij

respectively. The weights of each pair of edges−→e S
ij ,
−→e S

ji ∈
ES

f are set to
−→
WS

ij =
−→
WS

ji = 0.

We show how to construct the residual graph by an illus-
trative example in Fig. 8. The following lemma establishes
the optimality condition for solving problem (5).

Algorithm 1: Find the optimal flow for problem (5) in
social-request graphG
input : Social-request graphG
output: The optimal flow for problem (5)

1 Initialize an empty flowf in G;
2 while There exists a cycle of positive weight in the

residual graphGf of flow f do
3 Find a cyclec of positive weight inGf ;
4 Compute the residual capacityrc of cycle c;
5 Augment flowf with a balanced flow of valuerc

along cyclec;
6 end
7 return Flow f ;

Lemma 2: A flow f is optimal for problem (5) if and
only if there exists no cycle of positive weight in the
residual graphGf .

Proof: The “only if” part is easy to show: If there exists
a cycle of positive weight inGf , then we can augment the
flow f with a balanced flow of valueǫ > 0 along that cycle
to construct a circulation flow with larger utility.

Next we show the “if” part. Suppose there exists no cycle
of positive weight inGf but there exists a circulation flow
f ′ in G with larger utility thanf . Similar to the residual
graphGf , we construct a graphG , (V,E

S
∪ E

R
) from

G by constructing−→e R
ij ,
←−e R

ij ∈ E
R

for eacheRij ∈ ER and
−→e S

ij ,
−→e S

ji ∈ E
S

for each pair ofeSij , e
S
ji ∈ ES , and setting

their weights the same as those inGf . The difference
betweenGf and G is that all the edges are constructed
in G (an edge is not constructed inGf if its capacity is 0)
and have unlimited capacities. Therefore, the edges inGf

is a subset of the edges inG. Then we can define a flow
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g in G by defining the flows ing on the edges ofG as

−→g R
ij = max{0, f ′Rij − fR

ij }, ∀
−→e R

ij ∈ E
R

←−g R
ij = max{0, fR

ij − f ′Rij }, ∀
←−e R

ij ∈ E
R

−→g S
ij = f ′Sij − fS

ij , ∀
−→e S

ij ∈ E
S
.

It follows from the definition that

−→g R
ij −
←−g R

ij = f ′Rij − fR
ij , ∀e

R
ij ∈ ER.

Then the net flow value at each nodei ∈ V in flow g is
∑

j:−→e R
ij
∈E

R

−→g R
ij +

∑

j:←−e R
ji
∈E

R

←−g R
ji +

∑

j:−→e S
ij
∈E

R

−→g S
ij −

∑

j:←−e R
ij
∈E

R

←−g R
ij −

∑

j:−→e R
ji
∈E

R

−→g R
ji

=
∑

j:eR
ij
∈ER

(

f ′Rij − fR
ij

)

−
∑

j:eR
ji
∈ER

(

f ′Rji − fR
ji

)

+
∑

j:eS
ij
∈ES

(

f ′Sij − fS
ij

)

=

Ñ

∑

j:eR
ij
∈ER

f ′Rij +
∑

j:eS
ij
∈ES

f ′Sij −
∑

j:eR
ji
∈ER

f ′Rji

é

−

Ñ

∑

j:eR
ij
∈ER

fR
ij +

∑

j:eS
ij
∈ES

fS
ij −

∑

j:eR
ji
∈ER

fR
ji

é

= 0

where the last equality follows from thatf ′ and f are
circulation flows inG. Therefore,g is a circulation flow
in G. We observe that the flow on any edgee ∈ E

R
\ER

f

is zero ing because 1) ife = −→e R
ij , then we havefR

ij = Rij

and hence−→g R
ij = 0; 2) if e = ←−e R

ij , then we havefR
ij = 0

and hence←−g R
ij = 0. We further observe that−→g S

ij ≤ 0 for

any edge−→e S
ij ∈ E

S
\ ES

f since we havefS
ij = Sij . Since

−→
WS

ij = 0, ∀−→e S
ij ∈ E

S
, the weight of flowg in G is

∑

i,j:−→e R
ij
∈E

R

Ä−→
WR

ij
−→g R

ij +
←−
WR

ij
←−g R

ij

ä

=
∑

i,j:eR
ij
∈ER

Uij

(

f ′Rij − fR
ij

)

=
∑

i,j:eR
ij
∈ER

Uijf
′R
ij −

∑

i,j:eR
ij
∈ER

Uijf
R
ij > 0

where the last inequality follows from the assumption that
f ′ has larger utility thanf in G. Sinceg only has positive
flows on the edges inGf , using a similar argument as in
the proof of Lemma 1,g is the aggregate flow of balanced
flows along cycles each comprised of edges inGf . Then
the total weight of these flows along the cycles inGf is
equal to the weight of flowg in G, which is greater than 0.
This implies that there must exist a cycle of positive weight
in Gf , which is a contradiction to the previous assumption.
This completes the proof. �

Using Lemma 2, we can develop an algorithm as de-
scribed in Algorithm 1 to solve problem (5). The algorithm
starts with the empty flow in the network. It iteratively finds
a cycle ofpositive weightin the residual graph and cancels
each cycle by augmenting the current flow in the graph with
a balanced flow along that cycle, until no cycle of positive
weight exists. In each iteration, the value of the flow to
augment with is set to be theresidual capacityof the cycle,
which is the minimum capacity of all edges in that cycle.

We show how Algorithm 1 works by an illustrative example
in Fig. 9.

As for the step 2 and 3 in Algorithm 1, we can use
an algorithm similar to the Bellman-Ford algorithm [11]
to find a cycle of positive weight in the residual graph,
if there exists one. In particular, the algorithm iteratively
updates the maximum weightM(t) from a source node
s ∈ V to each other nodet ∈ V \ {s}. In each iteration,
the algorithm checks each edgeeSij ∈ ES

f or eRij ∈ ER
f once,

and increases the maximum weightM(j) to M(i) +
−→
WS

ij

if M(i) +
−→
WS

ij > M(j). The algorithm runs for|V | − 1
iterations. When it terminates, ifM(t) for somet ∈ V \{s}
can be further reduced by checking some edge, then there
exists a cycle of positive weight in the graph. The algorithm
has running timeO(|V |(|ES |+ |ER|).

For ease of exposition, we will focus on problem (5) with
rational parameters: the utilities and capacities of all social
and request edges are rational numbers. This setting is of
important interest in general, since the parameters of most
practical problems are rational numbers. Then problem (5)
with rational parameters can be equivalently converted to
one withintegral parameters by multiplying with a suitably
large integer4 K. The solution of the original problem (with
rational parameters) is equal to the solution of the new
problem (with integral parameters) divided byK.

For problem (5) with rational parameters, letU and
R denote the maximum utility and maximum capacity of
a request edge, respectively (i.e.,U = maxeij∈ER Uij ,
R = maxeij∈ER Rij). The following theorem shows that
Algorithm 1 is correct and computationally efficient when
the service divisible.

Theorem 3: For problem (5) with divisible sensing ser-
vice and rational parameters, Algorithm 1 computes the
optimal flow and has running timeO(|V ||ER|(|ER| +
|ES |)RUK2).

Proof: As discussed earlier, we first equivalently convert
the problem to one with integral parameters by multiplying
them by an integerK.

Since the capacities of all edges in the graph are integral
and the initial empty flow is integral, the residual capacity
of the cycle found in the first iteration of the algorithm is
integral, and hence the flow after augmentation is integral.
Thus, by induction, the updated flow after each iteration is
also integral. This shows that the algorithm finds an integral
flow when it terminates, which is optimal by Lemma 2.

The utility of the initial empty flow is 0. The utility of
any flow is upper bounded by the utility of the flow that
saturates all request edges, which is|ER|RUK2. Since
the capacities of all edges are integral, the flow utility
increases by an integer no less than one at each iteration
of Algorithm 1. Therefore, it takes the algorithm at most
|ER|RUK2 iterations to terminate. Since each iteration
has running timeO(|V |(|ES | + |ER|), the desired result
follows. �

4For example, it can be the least common multiple of the denominators
in the fractional forms of the rational numbers.
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In many practical situations, sensing service is indivisible
such that the optimization variables of problem (5) have
to be integers. In this case, we can equivalently convert
problem (5) with rational parameters to one with integer
parameters by rounding the capacities of all social and
request edges to their respective nearest integers below (i.e.,
taking the floor function) and multiplying the utilities of all
request edges by a suitably large integerK. Using a similar
proof as that of Theorem 3, we have the following result.

Theorem 4: For problem (5) with indivisible sensing
service and rational parameters, Algorithm 1 computes the
optimal flow and has running timeO(|V ||ER|(|ER| +
|ES |)⌊R⌋UK).

In Section V, simulation results demonstrate that the
running time of Algorithm 1 is much lower than the above
bound.

Remark 3: The underlying rational of Algorithm 1 can
be interpreted as follows. In each iteration of Algorithm 1,
the flow in the social-request graph is augmented with
a balanced flow along a cycle of positive weight in the
residual graph. For each edge with positive weight in that
cycle, the utility of flow on the corresponding request edge
increases, while for each edge with negative weight in
that cycle, that utility decreases. Since the total weight of
the edges in the cycle is positive, the total utility of flow
increases. In other words, a balanced flow along the positive
weight cycle capturesthe tradeoff between increasing the
utilities on some request edges and decreasing the utilities
on some other request edges such that the total utility
increases. Note that although the flows on social edges
does not generate utility, the edges with zero weights in
the residual graph, which are constructed from the social
edges, contribute to forming a cycle, and hence the utility
obtained on request edges.

Remark 4: It is worth noting that, when sensing service
is indivisible, problem (5) is essentially an integer linear
program (ILP), which is NP-hard to solve in general.
However, using a network flow approach, we can capture
and exploit the specific combinatorial structure of the
problem, based on which a polynomial-time algorithm can
be developed to solve it.

V. PERFORMANCEEVALUATION

In this section, we provide simulation results to evaluate
the performance of the STAR mechanism. We compare
STAR with two incentive mechanisms as benchmarks,
which use social trust only and reciprocity only, respec-
tively:

• Social trust based mechanism(ST): Under this mech-
anism, a user is willing to provide service to another
if and only if it receives social credit from that user or
an intermediate user. Therefore, in the social-request
graph, this mechanism can use a cycle consisting of
social edges andexactly onerequest edge (e.g., as
illustrated in Fig. 4(c),(d));

• Reciprocity based mechanism(RP): Under this mecha-
nism, a user is willing to provide service if and only if
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Fig. 10. A social network of 20 users in real dataset Brightkite [12]: (a)
social network structure; (b) degree of social edge.
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Fig. 11. (a) Average number of social edge (b) average degreeof social
edge vs. number of users in real dataset Brightkite [12].

it also receives service from another. Therefore, in the
social-request graph, this mechanism can use a cycle
consisting ofonly request edges (e.g., as illustrated in
Fig. 4(a),(b)).

We observe that each benchmark mechanism only uses a
subsetof the incentive structures (i.e., the cycles in the
social-request graph) used in the STAR mechanism. Note
that the incentive mechanism only using social trust is
equivalent to that in [9].

A. Simulation Setup

To illustrate the impact of different parameters of the
mobile social network on the performance, we consider a
random setting as follows. We simulate the social graph
GS and the request graphGR using the Erdős-Rényi (ER)
graph model [13], where a social edge and a request edge
exist from one node to another with probabilityPS and
PR, respectively. We assume that service is divisible. If a
social edge exists, its social credit limit follows a normal
distributionN(µS , σ

2
S), whereµS andσ2

S denote the mean
and variance, respectively; if a physical edge exists, the
amount of requested service and the utility per unit service
follows a normal distributionN(µR, σ

2
R) andN(µU , σ

2
U )

respectively. We set default parameter values as:N = 10,
PS = 0.2, PR = 0.2, µS = µR = 5, σ2

S = σ2
R = 1,

µU = 10, σ2
U = 2.

To evaluate the performance of the STAR mechanism in
practice, we also consider a practical setting. Specifically,
we generate the social graph according to the real dataset
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Fig. 12. Impact ofPS on total service amount
for the random setting.
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Fig. 13. Impact ofPR on total service amount
for the random setting.
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Fig. 14. Impact ofµS on total service amount
for the random setting.
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Fig. 15. Impact ofµR on total service amount
for the random setting.
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Fig. 16. Impact ofN on total service amount
for the random setting.
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Fig. 17. Impact ofµU on total service utility for
the random setting.
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Fig. 18. Impact ofPR on request completion
ratio for the random setting.
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Fig. 19. Impact ofµR on request completion
ratio for the random setting.
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Fig. 20. Impact ofN on request completion ratio
for the random setting.

from Brightkite [12]. Brightkite is a online social network-
ing service based on mobile phones where users share their
checking-in locations in an explicit social network. For this
dataset, we illustrate the social network structure of 20
users in Fig. 10(a) and the users’ degree of social edge
in Fig. 10(b). We also plot the average number of social
edge between a pair of users (in analogy to the probability
of social edge in the ER model) versus the number of
users in Fig. 11(a), and plot the average degree of social
edge in Fig. 11(b). We simulate the request graph based
on the context of spectrum crowdsensing discussed in Sec-
tion III-B. We consider 5 licensed transmitters andN users
randomly located in a1000m× 1000m area. The licensed
transmitters operate on 5 orthogonal channels, respectively.
We assume that the utility of a user’s sensing service for
a channel is equal to the inverse of its distance from the

licensed transmitter that operates on that channel. Each user
randomly selects one channel, and requests sensing service
for that channel from at most 3 users randomly selected
from the other users who have better channel conditions
than itself for that channel. We assume that the sensing
service is indivisible. The social credit limit and the service
request amount are randomly drawn from{1, · · · , NS} and
{1, · · · , NR}, respectively. We setNS = NR = 5 as default
values.

B. Simulation Results

1) System Efficiency:We compare the system perfor-
mance of the STAR mechanism with the benchmark mech-
anisms RP and ST. We first evaluate the maximum total
amount of service provided under different mechanisms.
To highlight the performance comparison, we normalize the
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Fig. 21. Impact ofN on total service amount
for the practical setting.

10 20 30 40 50
0.8

1

1.2

1.4

1.6

1.8

2

Number of users

N
or

m
al

iz
ed

 to
ta

l u
til

ity

 

 

RP
ST
STAR

Fig. 22. Impact ofN on total service utility for
the practical setting.
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Fig. 23. Impact ofN on request completion ratio
for the practical setting.
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Fig. 24. Impact ofPSi
on user service amount

for the random setting.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Individual probability of service request

N
or

m
al

iz
ed

 u
se

r 
se

rv
ic

e

 

 

RP
ST
STAR

Fig. 25. Impact ofPRi
on user service amount

for the random setting.
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Fig. 26. Impact ofµSi
on user service amount

for the random setting.
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Fig. 27. Impact ofµRi
on user service amount

for the random setting.
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Fig. 28. Impact ofµUi
on user service amount

for the random setting.
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Fig. 29. Impact ofµUi
on user service utility

for the random setting.

results of STAR and ST with respect to RP. We illustrate the
impact ofPS , PR, µS , µR, andN on the maximum total
amount of provided service in Figs. 12-16, respectively.
As expected, the performance of STAR always dominates
that of RP and ST, which is due to that STAR jointly
exploits social trust and reciprocity. Figs. 12 and 14 show
that STAR and ST perform better with respect to RP as
PS or µS increases. This is because that as social trust
improves, more service can be provided using social trust
under STAR and ST, while RP does not benefit from the
improved social trust. On the other hand, Figs. 13 and 15
show that STAR and ST perform worse with respect to
RP asPR or µR increases. The reason is that as users
have more service requests among each other, a significant
part of the increment in service request can be satisfied
using reciprocity. We observe from Figs. 12 and 14 that

the performance gap between STAR and ST decreases as
PS increases, while it remains almost the same asµS

increases. This shows that the connectivity of the social
network has a greater impact on the performance of ST
than the social trust levels. Due to this reason, Fig. 16
shows that the performance gap between STAR and ST
decreases asN increases, since the connectivity of the
social network improves as the number of users increases.
We also evaluate the maximum total utility of service
provided under different mechanisms. We illustrate the
impact of µU on the maximum total utility of provided
service in Fig. 17. We observe that the performance gaps
among RP, ST, and STAR remain almost the same asµU

increases. This is as expected, since the utility per unit
service acts as a “scaling” factor that has the same effect
on the performance of different mechanisms.
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Fig. 30. Individual user service amount for the
practical setting.
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Fig. 31. Number of cycle-canceling iterations in
Algorithm 1 vs. number of users for the practical
setting.
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Fig. 32. Running time of Algorithm 1 vs. number
of users for the practical setting.

Next we evaluate therequest completion ratiounder
different mechanisms, which is defined as the ratio of the
amount of provided service to the amount of requested
service. We illustrate the impact ofPR, µR, andN on the
request completion ratio in Figs. 18-20, respectively. We
observe from Figs. 18 and 19 that for all mechanisms, the
total amount of provided service increases faster than thatof
requested service asPR increases, while it increases slower
asµR increases. This shows that a large diversity of users’
service requests is beneficial for system efficiency. Due to
this reason, as illustrated in Fig. 20, the request completion
ratio improves for all mechanisms as the number of users
increases.

For the practical setting, Figs. 21-23 illustrate the total
service amount, total service utility, and request comple-
tion ratio when the total utility of provided service is
maximized, respectively, asN increases. We can see that
STAR always significantly outperforms RP and ST, with
a performance gain ranging from 14% to 82%, especially
when the number of users is small.

2) Individual Performance: We evaluate individual
users’ performance under different mechanisms when the
system efficiency is maximized. To demonstrate the impact
of a particular parameter, we vary that parameter for
different users, while keeping other parameters the same
for all users. We also normalize the results to highlight the
performance comparison. In Figs. 24-27, we illustrate the
amount of received service of each user (i.e., the amount
of satisfied service requests of each user) for a system
of 10 users when the total amount of provided service
is maximized, where users are different only in a user’s
probability of having social edge from another userPSi

,
probability of having service request from another user
PRi

, mean of social credit limit from another userµSi
,

and mean of service request amount from another user
µRi

, respectively. In Figs. 28-29, we illustrate each user’s
received service amount and received service utility when
the total utility of provided service is maximized, where
users are different only in a user’s utility per unit service
µUi

. We observe that each user always performs better
under STAR than under RP and ST. This shows that STAR
can improve each individual user’s performance while the
system objective is to maximize system efficiency. We also

observe that an individual user performs better than other
users if it has a larger parameter value than others. This
shows that STAR can achieveservice differentiation, which
is a desirable property for fairness: if a user has more social
trust or service requests from others than other users have,
then that user can also receive more service than others.

Fig. 30 illustrates each individual user’s received service
amount for the 20 users in the real dataset [12] with the
social network structure as given in Fig. 10. We observe
from Fig. 10(b) that the degree of social edge can be
very different for different users in real social networks.
Accordingly, Fig. 30 shows that users with higher degrees
(with larger user indices) receive more service than those
with lower degrees.

3) Computational Complexity:We evaluate the com-
putational complexity of using Algorithm 1 to find the
maximum total utility of provided service under the STAR
mechanism for the practical setting. We convert the service
utility values into integers by multiplying them by a large
integerK and rounding them down to the respective nearest
integers. We run simulations on a Windows 7 desktop with
3.1GHz CPU and 8GB memory. We illustrate the number of
cycle-canceling iterations (i.e., the iterations of thewhile
loop) and the running time of executing Algorithm 1 as
N increases for different values ofNR and K in Fig.
31 and Fig.32, respectively. We assume thatNS = NR.
We observe that the number of iterations increases almost
linearly in the number of users while the running time is
increasing quadratically. This shows that Algorithm 1 is
scalable for large systems in practice. As expected, we also
observe that the computational complexity is higher when
NR or K is larger.

VI. RELATED WORK

There have been numerous studies on incentive design
for stimulating user cooperation in networks. Existing lit-
erature on this subject can be broadly classified into three
categories. One category of work makes use of reciprocity
(also known asbarter) [14]–[16]. Although a reciprocity-
based approach is simple to implement, it is inefficient in
general since synchronously matched requests are unusual.
Another category is based on (virtual) currency [3], [5],
[17]–[19], in which a user earns currency by providing
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service to others and spends currency to receive service
from others. The use of currency as a medium of exchange
overcomes the shortcoming of reciprocity-based approaches
by enabling users to “asynchronously trade” service. How-
ever, a major drawback of using currency is that it incurs
a high implementation overhead, mainly due to the need
to inhibit malicious manipulation among users without
mutual trust. Consider, for example,Bitcoin [20] which has
recently drawn widespread attention as a promising digital
currency. The creation and transfer of bitcoins need to
consume considerable computing resources so that they can
be secured against potential cheating using cryptographic
tools. Reputation-based approaches [21]–[23] constitutethe
third category. Since reputation score can be viewed as a
form of currency, these approaches share the same advan-
tages and disadvantages as the currency-based ones.

The social credit model used in this paper falls into
the class ofcredit networks[9], [24]–[26]. The credit is
similar to a currency in that there is a need to keep track
of the credit information between each pair of neighbor
users in the credit network. However, since the credit is
ensured by existing trust among users, it obviates the need
to secure the credit against cheating, and therefore can
reduce implementation overhead significantly.

Compared to the studies mentioned above, the STAR
mechanism overcomes the inefficiency of only using reci-
procity by using social credit as a “local” currency, while
it also circumvents the high implementation overhead in-
curred by a currency-based approach since social credit is
“secured” by existing social trust. Therefore, STAR can
efficiently stimulate users to provide service in a cost-
effective way.

Exploiting social aspect for mobile networking is an
emerging paradigm for network design and optimization
[27], [28]. Very few work have exploited both social trust
and reciprocity for stimulating cooperation in networks.
[27] has recently studied using social trust and reciprocity
to stimulate cooperative communication based on a coali-
tional game. Our work is different from [27] in several
ways including that each user in the latter can participate
in at most onereciprocity cycle and social trust levels are
unlimited therein.

VII. C ONCLUSION

In this paper, we have proposed a socially-aware crowd-
sensing system that exploits social trust to stimulate users’
participation. The incurred implementation overhead is low
since it obviates the need of a global currency. For this
system, we have designed STAR, an incentive mechanism
using a synergistic marriage of social trust and reciprocity.
Based on the STAR mechanism, we have shown that all
sensing requests can be satisfied if and only if users who
request more sensing service than they can provide can
transfer sufficient social credit to users who can provide
more than they request. We have also developed an effi-
cient algorithm to maximize the utility of sensing service
provided under STAR, for both cases of divisible and indi-
visible service. Extensive simulation results have confirmed

that STAR can achieve significantly better efficacy than
using social trust only or reciprocity only.
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