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Neutral silicon vacancy (SiV0) centers in diamond are promising candidates for quantum networks
because of their excellent optical properties and long spin coherence times. However, spin-dependent
fluorescence in such defects has been elusive due to poor understanding of the excited state fine
structure and limited off-resonant spin polarization. Here we report the realization of optically
detected magnetic resonance and coherent control of SiV0 centers at cryogenic temperatures, enabled
by efficient optical spin polarization via previously unreported higher-lying excited states. We assign
these states as bound exciton states using group theory and density functional theory. These bound
exciton states enable new control schemes for SiV0 as well as other emerging defect systems.

Point defects in solid-state materials are promising
candidates for quantum memories in a quantum network.
These quantum defects combine the excellent optical and
spin properties of isolated atoms with the scalability of
solid-state systems [1–3]. Long-range, kilometer-scale en-
tanglement generation has been demonstrated with the
nitrogen vacancy (NV) center in diamond [4]. However,
the entanglement generation rate in such demonstrations
is limited by the optical properties of the NV center,
which exhibits significant spectral diffusion [5, 6] and a
small Debye-Waller factor [7]. The neutral silicon va-
cancy center in diamond (SiV0) has the potential to mit-
igate many of these problems; its inversion symmetry
guarantees a vanishing permanent dipole moment, which
minimizes spectral diffusion, and over 90% of its emis-
sion is in the zero-phonon line (ZPL) [8]. However, there
has been no report of optically detected magnetic reso-
nance (ODMR) for this defect, a key first step towards
establishing a spin-photon interface, and the electronic
structure of SiV0 is still not well understood [9]. A de-
tailed understanding of the optical transition and excited
state structure of SiV0 is key in developing preparation,
manipulation and readout schemes for quantum informa-
tion processing applications.

In this work, we present the observation of previously
unreported optical transitions in SiV0 that are capable
of efficiently polarizing the ground state spin. Previous
studies on SiV0 have reported a strong ZPL transition
at 946 nm, and a weaker strain-activated transition at
951 nm [9]. Through a combination of optical and elec-
tron spin resonance (ESR) measurements, we are able to
assign groups of transitions from 825 to 890 nm to higher-
lying excited states of SiV0. We interpret these spectro-
scopic lines as transitions to bound exciton (BE) states
of the defect. We observe highly efficient bulk spin po-
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larization through optical excitation of these transitions,
providing another manifold of states that can be used for
spin initialization. Spin polarization via these BE states
while collecting emission from the ZPL and phonon side-
band enables the observation of ODMR. We use ODMR
measurements to probe the low magnetic field behavior
of SiV0 where we observe no spin relaxation (T1) out to
30 ms, spin dephasing times (T ∗2 ) of 202 ns, and spin
coherence times (T2) of 55.5 µs at 6 K.

We observe ODMR in an ensemble of SiV0 centers us-
ing excitation at one of the BE transitions (855.65 nm)
in a chemical-vapor deposition grown sample doped with
isotopically enriched 29Si during growth, described pre-
viously in Ref. [10]. As the microwave frequency is
swept across the zero-field splitting of SiV0, we observe
three resonance peaks in continuous-wave (CW) ODMR
[Fig. 1(a)]. The two outer peaks correspond to spin tran-
sitions associated with centers containing 29Si, while the
central peak at 944 MHz is associated with 28Si and 30Si.
The position and splitting of the lines are consistent with
previously measured hyperfine parameters [11].

We realize coherent control using pulsed ODMR on
the lower frequency 29Si hyperfine transition at 912 MHz
and observe Rabi oscillations that decay over 499 ± 28 ns
[Fig. 1(b)]. We measure the spin dephasing time to be
T ∗2 = 202±16 ns [Fig. 1(c)] using a Ramsey sequence. By
using a Hahn echo sequence to refocus the coherence, we
measure the spin coherence time to be T2 = 55.5±10.6 µs
[Fig. 1(d)]. The spin coherence time measured here is
shorter than previous measurements of this sample using
X-band pulsed ESR, T2 = 280− 480 µs [10]. This likely
arises from the high density of SiV0 centers in this sam-
ple, which gives rise to instantaneous diffusion [10, 13].
At ambient magnetic fields, the effects of instantaneous
diffusion are more pronounced because centers of differ-
ent orientations and nuclear spin projections are nearly
degenerate. This effect limits T2 to 56 µs (see Supple-
mental Material Sec. III B [12]).
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FIG. 1. Optically detected magnetic resonance and
coherent properties of SiV0 spins. (a) CW ODMR spec-
trum measured at 6 K. The two outer peaks correspond to
two hyperfine lines associated with the 29Si nucleus and the
central peak is associated with 28Si and 30Si species. The
solid line is a Lorentzian fit and the linewidths are microwave
power broadened. Inset: relevant energy levels for individ-
ual spin transitions, where D denotes the zero-field splitting
and A denotes the hyperfine interaction from the 29Si nucleus.
(b) Rabi oscillation measured at 6 K performed at the lower
hyperfine transition at 912 MHz. The data is fitted using
a× e−t/T cos(ωt+ b) + c with T = 499 ± 28 ns. (c) Spin de-
phasing time (T ∗2 ) measured at 6 K using a Ramsey sequence
with microwave frequency detuned from the spin resonance by
1.6 MHz. The decay is fitted using a× e−τ/T

∗
2 cos(ωτ + b) + c

with T ∗2 = 202 ± 16 ns. (d) Spin coherence time (T2) mea-
sured at 6 K with a Hahn echo sequence. The decay is fitted
using a×e−2τ/T2 +b with T2 = 55.5 ± 10.6 µs. The relatively
large fitting error is due to the partially resolved modulation
(see Supplemental Material Sec. III A [12]). (e) Spin relax-
ation times (T1) measured at 6 K and 50 K. At 6 K, no decay
is observed up to 30 ms. The blue line is a flat line as a guide
to the eye. At 50 K, we observe an exponential decay with
a decay constant 1.38 ± 0.21 ms. The red line is a fit to the
data with the form a× e−t/T1 + b. ODMR measurements are
performed at ambient magnetic field.

We measure the spin relaxation time (T1) using pulsed
ODMR by measuring spin population decay after a vari-
able dark time between the initialization and readout
pulses. We observe no decay up to 30 ms at 6 K
[Fig. 1(e)], consistent with previous measurements of
T1 = 46 s at this temperature [10]. At higher temper-
atures, the spin lifetime shortens significantly due to an
Orbach process with an activation energy of 16.8 meV
[10] and we measure T1 = 1.38± 0.21 ms at 50 K.

Our temperature-dependent ODMR T1 measurements
on the lower hyperfine transition are consistent with the
previously measured activation energy (see Fig. S7 [12]),
but we observe the Orbach rate prefactor to be ∼260
times larger. This is largely due to hyperfine-induced
mixing of the SiV0 spin states (see Supplemental Mate-
rial Sec. III C [12]). The hyperfine interaction for SiV0

is ∼30 times larger than that for the NV center and the
zero-field splitting is three times smaller [11, 14], so at
low magnetic field the influence of the hyperfine interac-
tion is much more pronounced. Unlike nitrogen, however,
silicon has spin-free nuclear isotopes which may be used
to circumvent these effects.

0.0

0.1

0.2

O
pt

ic
al

 D
ep

th

0.0

0.1

0.2

0.0

0.5

1.0

P
LE

 [a
rb

. u
ni

ts
]

0.2

0.5

820 840 860
Wavelength [nm]

0

20

40
O

S
P

 [%
] I1

I0

880 890
0

5

10

(a)

(b)

(c)

FIG. 2. Spectroscopy and spin polarization of higher-
lying excited states. (a) Absorption measurements at 5.5 K
showing narrow absorption peaks. The raw data is baseline
subtracted to eliminate contribution from broadband absorp-
tion. The orange curve shows a Lorentzian fit to the data.
(b) PLE measurement at 5.5 K with detection at 946 nm
showing resonant features that line up with the observed ab-
sorption peaks. (c) Pump-probe OSP measurement at 5.5 K
showing narrow resonances after initialization into ms = 0
(I0, magenta) or ms = 1 (I1, green). The amplitude of each
spectrum Ii represents probe induced population change of
sublevel ms = i, with the baseline subtracted. The blue tri-
angle denotes the wavelength used for ODMR measurements.
The wavelength range from 875 to 880 nm is not shown.

The observation of ODMR in SiV0 is enabled by the
discovery of additional higher-lying excited states beyond
the ZPL. Previous studies on SiV0 excited states were
limited to the 3Eu (ZPL at 946 nm) and 3A2u (ZPL at
951 nm) states but higher energy states were never ex-
plored. Transitions between 820 and 950 nm in silicon-
doped diamonds have been previously observed with pho-
toconductivity and absorption measurements, but there
has been no detailed spectroscopy of these spectral lines,
nor assignment of their microscopic origin [15–17].

In order to probe whether these transitions are associ-
ated with the SiV0 center, we correlate several types of
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optical spectroscopy at low temperature (5.5 K) at am-
bient magnetic field. First we perform absorption spec-
troscopy over a large wavelength range, from the ion-
ization threshold (∼826 nm [15]) to 900 nm. We ob-
serve several families of peaks near 830, 855, and 870 nm
[Fig. 2(a)]. Then we perform photoluminescence excita-
tion (PLE) spectroscopy, wherein we excite at these ab-
sorption wavelengths and detect emission at 946 nm, the
ZPL of SiV0. We observe the same clusters of resonances
in PLE, confirming that the transitions are associated
with the SiV0 center [Fig. 2(b)].

Finally, we probe the interaction between these higher
lying transitions and the ground state spin of SiV0

by measuring optical spin polarization (OSP) in bulk
ESR (∼3100 G) after excitation at these wavelengths
[Fig. 2(c)]. Specifically, we use a pump-probe measure-
ment to isolate the contributions from ms = 0 (I0)
and ms = 1 (I1) spin states (see Supplemental Material
Sec. VI [12]). Remarkably, the bulk OSP reaches values
up to 40%−60% (see Supplemental Material Sec. V [12]),
a key enabling capability for the observation of ODMR.

Using OSP measurements, we also observe a new clus-
ter of transitions near 886 nm that are not evident in
absorption or PLE spectroscopy [Fig. 2(c), right]. This
indicates that these transitions have a weak oscillator
strength, but are strongly spin polarizing.

The number of observed transitions cannot be de-
scribed by models utilizing only the orbitals localized on
the SiV0 center. Group theoretic considerations describe
three triplet excited configurations for SiV0: 3Eu, 3A1u

and 3A2u [18]. Bulk photoluminescence measurements
under uniaxial stress suggest that the 946 nm transition
arises from the 3Eu state and the 951 nm transition arises
from the 3A2u state [9]. Only the transition from the
3A1u state has not been experimentally identified.

The proximity of several of these resonances to the
ionization threshold of SiV0 (∼826 nm [15]) provides a
clue to their nature. We propose that SiV0 can act as a
pseudo-acceptor, forming BE states composed of a hole
weakly bound to a transiently generated SiV− center.
BE states of neutral defects have been observed in SiC
[19, 20], Si [21–25], and GaP [26]. One manifestation
of BE states is a progression of peaks that can be de-
scribed qualitatively as transitions between hydrogenic
states and labeled with principal quantum numbers, n,
and angular momentum labels (s, p, d, etc.). These pro-
gressions are observed in both PLE and OSP measure-
ments, shown in Fig. 3(a). A schematic level diagram
for the states described here is depicted in Fig. 3(c).
Based on this model, transitions to “s”-like states are
expected to be electric-dipole forbidden, since both the
ground state and BE state are of gerade symmetry. In-
deed, we observe transitions at 886 and 837 nm in OSP,
but not in absorption or PLE. The isotopic shift of the 1s
transition suggests that this transition is phonon assisted
in nature (see Supplemental Material Sec. VII [12]). We
fit the observed energies (En) of the “p”-like transitions
to the Rydberg scaling, En = EI − Ey/n
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FIG. 3. s- and p-like states in PLE and ESR measure-
ments. (a) State assignments and comparison of experimen-
tal and calculated energy splittings. The upper panel shows
PLE spectra. The lower panel is constructed using decom-
posed OSP spectra as 2I1 + I0 to resemble absorption. (b)
Scaling of the peak positions extracted from PLE in (a). The
fit uses Rydberg scaling En = EI − Ey/n2. Because of sim-
ilar fine structures of 2p and 3p states, we fit different fine
structure transitions separately corresponding to the differ-
ent colored curves. The fitted ionization energy (EI) and
Rydberg energy (Ey) are 1.53 and 0.4 eV, respectively. The
horizontal dashed line indicates the fitted ionization energy.
States with s-like character are taken from spin-polarization
measurements, and are shown with triangles. ∆1 and ∆2 are
energy deviations for 1s and 2s states compared to the fit-
ted Rydberg scaling that involve both central cell correction
and the localized phonon energy. (c) Proposed bound exci-
ton model for the higher-lying excited states showing orbital
ground and excited states and BE states at higher energies in
the hole picture. The lower levels closer to the valence band
maximum for electrons require higher excitation energy.

Fig. 3(b), where EI is the ionization energy and Ey is
the Rydberg energy. We find the fitted ionization en-
ergy EI to be in good agreement with photoconductivity
measurements [15], and the Rydberg energy to be con-
sistent with an effective-mass description of the system
(see Supplemental Material Sec. VIII A [12]).

The s-like states were excluded from this analysis be-
cause of their vibronic nature and the central-cell correc-
tion expected for these types of states [27]. This expec-
tation is borne out in density functional theory (DFT)
calculations (see Fig. S20 and Supplemental Material
Sec. IX G [12]), where the calculated 1s-2s energy differ-
ence of 57 meV is in better agreement with experimental
measurements (86 meV) than the > 250 meV difference



4

expected from a hydrogenic model without a central cell
correction. The calculated energy difference between the
2s and 2p states is also consistent with experimental ob-
servations [Fig. 3(a)]. The central cell correction arises
because the BE states are effectively excluded from oc-
cupying the 6 carbon atoms adjacent to the SiV− center,
increasing the effective Bohr radius and decreasing the
effective Rydberg energy. This effect is less pronounced
for p-like states because they have radial nodes at the
SiV− center.

Within each labeled manifold in Fig. 3(a), significant
structure is observed. This likely arises from a combina-
tion of spin-orbit structure in the valence band, crystal-
field interactions from the presence of the symmetry-
lowering SiV0 defect, and coupling between the bound
hole and SiV−. We note that the bulk inhomogeneous
linewidth likely obscures the full multiplicity of these
transitions.

Transitions above the n = 3 level are not clearly ob-
servable in the experimental data. We believe this is
a combination of the oscillator strength scaling (n−3),
proximity to the ionization threshold, and competition
with other nonradiative, non-spin-polarizing relaxation
pathways.

With this model for the nature of the transitions, we
now turn to the details of the spin polarization and
ODMR contrast. The magnitude of the ODMR signal
depends sensitively on the excitation wavelength, and we
observe resonant features that match the linewidths ob-
served in absorption, PLE, and OSP measurements for
the n = 2 and n = 3 BE transitions [Fig. 4(a), upper
panel]. This is in stark contrast to ODMR in the NV
center, which shows significant ODMR contrast for off-
resonant excitation due to its spin dependent intersystem
crossing. This indicates that the mechanism for ODMR
relies on selective excitation of these transitions, which
can arise from both the resonant nature of OSP and spin-
selective optical pumping leading to population shelving
into a “dark” spin state.

Furthermore, we observe that the ODMR signal can
be both positive and negative. Optical transitions with
nonunity cyclicity lead to population of ground states
(e.g., other ms levels here) that are not addressed by the
spectrally narrow excitation [Fig. 4(b)]. This process has
no preferential direction of spin-polarization (addressing
different optical transitions may result in net polariza-
tion in either ms = 0 or ms = ±1), but should result
in positive contrast (brighter emission) under resonant
microwave driving, as population is restored to the state
being addressed by the optical excitation.

Another possible mechanism involves spin-dependent
shelving of population in the excited state into a
metastable state, which then decays back to the ground
state [Fig. 4(c)]. This mechanism is observed in the NV
center under off-resonant excitation at room tempera-
ture. Here, the excitation addresses all spin sublevels in
the ground state, and the different branching ratios in
the excited state for different spin projections result in
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FIG. 4. Wavelength dependence of ODMR and mech-
anisms for ODMR contrast. (a) Upper panel: CW
ODMR contrast as a function of excitation wavelength mea-
sured at 60 K. Microwave frequency is fixed at the lower hy-
perfine transition. Lower panel: OSP as a function of ex-
citation wavelength at 5.5 K. ODMR contrast is measured
at ambient magnetic field while OSP measurements are per-
formed at X-band frequencies (∼3100 G). (b) Level scheme
for ODMR based on selective excitation of optical transitions
with nonunity cyclicity. Dashed arrows indicate spin-non-
conserving decay paths. (c) Level scheme for ODMR based
on spin-dependent shelving. Dashed arrows represent non-
radiative decay. Solid arrows indicate radiative transitions.
MW denotes microwave driving.

a spin polarization direction independent of excitation
wavelength [28]. The sign of the ODMR contrast, how-
ever, has no such general restriction, and should depend
on the specific details of the excited state manifold.

We compare the OSP and the ODMR contrast for the
n = 2 and n = 3 BE transitions in Fig. 4(a). Spin polar-
ization both into and out of the ms = 0 state is observed,
depending on the excitation wavelength. This suggests
that optical pumping plays a role in the excitation cycle
of these transitions. The ODMR contrast data, how-
ever, reveals that this is not a complete description. Al-
though the n = 3 data shows primarily positive contrast
(brighter emission), the n = 2 data shows clear negative
contrast for some excitation wavelengths. This suggests
that decay from the excited state into a different manifold
of states is involved.

In conclusion, we report the first realization of ODMR
in SiV0 centers in diamond. We demonstrate coherent
control of an ensemble of SiV0 spins at low magnetic
field and measure T1 much longer than 30 ms and T2 of
55.5 µs at 6 K. ODMR is enabled by newly discovered
higher-lying excited states of SiV0, which allow for effi-
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cient optical spin polarization. We propose that these
transitions arise from BE states, and we provide DFT
calculations for the ionization threshold, central cell cor-
rection, and energy splitting between different states that
are consistent with experimental observations. On-going
work includes single center ODMR measurements, as well
as investigating the microscopic mechanism for ODMR
via BE states. Our measurements indicate that ODMR
cannot arise solely from spin-dependent shelving of pop-
ulation or resonant optical pumping into a dark state,
and it is likely that a combination of processes give rise
to the observed features.

Optical spin polarization via these BE states enables
a powerful method of spin initialization and readout for
SiV0 centers in diamond. In particular, their resonant
nature allows for the use of much lower excitation pow-
ers, which circumvents optically induced noise from the
bath [29]. More broadly, this scheme can potentially be
deployed in other emerging defect systems, such as other
neutral group IV vacancy centers in diamond [30, 31] and
neutral divacancy centers in SiC [32].
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O. Benson, Physical Review Letters 110, 027401 (2013).

[6] Y. Chu, N. P. de Leon, B. J. Shields, B. Haus-
mann, R. Evans, E. Togan, M. J. Burek, M. Markham,
A. Stacey, A. S. Zibrov, A. Yacoby, D. J. Twitchen,
M. Loncar, H. Park, P. Maletinsky, and M. D. Lukin,
Nano Letters 14, 1982 (2014).

[7] P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and
R. G. Beausoleil, Physical Review X 1, 011007 (2011).

[8] B. C. Rose, D. Huang, Z.-H. Zhang, P. Stevenson, A. M.
Tyryshkin, S. Sangtawesin, S. Srinivasan, L. Loudin,
M. L. Markham, A. M. Edmonds, D. J. Twitchen, S. A.
Lyon, and N. P. de Leon, Science 361, 60 (2018).

[9] B. L. Green, M. W. Doherty, E. Nako, N. B. Manson,
U. F. S. D’Haenens-Johansson, S. D. Williams, D. J.
Twitchen, and M. E. Newton, Physical Review B 99,
161112 (2019).

[10] B. C. Rose, G. Thiering, A. M. Tyryshkin, A. M. Ed-
monds, M. L. Markham, A. Gali, S. A. Lyon, and N. P.
de Leon, Physical Review B 98, 235140 (2018).

[11] A. M. Edmonds, M. E. Newton, P. M. Martineau, D. J.

Twitchen, and S. D. Williams, Physical Review B 77,
245205 (2008).

[12] See Supplemental Material for methods, additional char-
acterization data, theoretical descriptions and calcula-
tions.

[13] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann,
N. V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel,
M. L. W. Thewalt, K. M. Itoh, and S. A. Lyon, Nature
Materials 11, 143 (2012).

[14] S. Felton, A. M. Edmonds, M. E. Newton, P. M. Mar-
tineau, D. Fisher, D. J. Twitchen, and J. M. Baker,
Physical Review B 79, 075203 (2009).

[15] L. Allers and A. T. Collins, Journal of Applied Physics
77, 3879 (1995).

[16] U. F. S. D’Haenens-Johansson, A. M. Edmonds, M. E.
Newton, J. P. Goss, P. R. Briddon, J. M. Baker, P. M.
Martineau, R. U. A. Khan, D. J. Twitchen, and S. D.
Williams, Physical Review B 82, 155205 (2010).

[17] U. F. S. D’Haenens-Johansson, A. M. Edmonds, B. L.
Green, M. E. Newton, G. Davies, P. M. Martineau,
R. U. A. Khan, and D. J. Twitchen, Physical Review
B 84, 245208 (2011).

[18] A. Gali and J. R. Maze, Physical Review B 88, 235205
(2013).

[19] T. Egilsson, J. P. Bergman, I. G. Ivanov, A. Henry, and
E. Janzén, Physical Review B 59, 1956 (1999).

[20] L. Storasta, F. H. C. Carlsson, S. G. Sridhara, J. P.
Bergman, A. Henry, T. Egilsson, A. Hallén, and
E. Janzén, Applied Physics Letters 78, 46 (2001).

[21] J. Wagner, A. Dörnen, and R. Sauer, Physical Review
B 31, 5561 (1985).

[22] M. Kleverman, J.-O. Fornell, J. Olajos, H. G. Grimmeiss,
and J. L. Lindström, Physical Review B 37, 10199 (1988).

http://dx.doi.org/10.1038/nphoton.2015.58
http://dx.doi.org/10.1038/s41578-018-0008-9
http://dx.doi.org/10.1038/s41566-018-0232-2
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/ 10.1103/PhysRevLett.110.027401
http://dx.doi.org/10.1021/nl404836p
http://dx.doi.org/ 10.1103/PhysRevX.1.011007
http://dx.doi.org/10.1126/science.aao0290
http://dx.doi.org/ 10.1103/PhysRevB.99.161112
http://dx.doi.org/ 10.1103/PhysRevB.99.161112
http://dx.doi.org/ 10.1103/PhysRevB.98.235140
http://dx.doi.org/ 10.1103/PhysRevB.77.245205
http://dx.doi.org/ 10.1103/PhysRevB.77.245205
http://dx.doi.org/10.1038/nmat3182
http://dx.doi.org/10.1038/nmat3182
http://dx.doi.org/10.1103/PhysRevB.79.075203
http://dx.doi.org/10.1063/1.358566
http://dx.doi.org/10.1063/1.358566
http://dx.doi.org/ 10.1103/PhysRevB.82.155205
http://dx.doi.org/ 10.1103/PhysRevB.84.245208
http://dx.doi.org/ 10.1103/PhysRevB.84.245208
http://dx.doi.org/10.1103/PhysRevB.88.235205
http://dx.doi.org/10.1103/PhysRevB.88.235205
http://dx.doi.org/ 10.1103/PhysRevB.59.1956
http://dx.doi.org/ 10.1063/1.1334907
http://dx.doi.org/10.1103/PhysRevB.31.5561
http://dx.doi.org/10.1103/PhysRevB.31.5561
http://dx.doi.org/10.1103/PhysRevB.37.10199


6

[23] J. H. Svensson, B. Monemar, and E. Janzén, Physical
Review Letters 65, 1796 (1990).

[24] A. M. Frens, M. T. Bennebroek, A. Zakrzewski,
J. Schmidt, W. M. Chen, E. Janzén, J. L. Lindström, and
B. Monemar, Physical Review Letters 72, 2939 (1994).

[25] N. T. Son, M. Singh, J. Dalfors, B. Monemar, and
E. Janzén, Physical Review B 49, 17428 (1994).

[26] K. Pressel, A. Dörnen, G. Rückert, and K. Thonke,
Physical Review B 47, 16267 (1993).

[27] M. Cardona and Y. Y. Peter, Fundamentals of semicon-
ductors (Springer, 2005).

[28] L. Robledo, H. Bernien, T. van der Sar, and R. Hanson,
New Journal of Physics 13, 025013 (2011).

[29] P. Siyushev, H. Pinto, M. Vörös, A. Gali, F. Jelezko,
and J. Wrachtrup, Physical Review Letters 110, 167402
(2013).

[30] G. Thiering and A. Gali, Physical Review X 8, 021063
(2018).

[31] G. Thiering and A. Gali, npj Computational Materials
5, 18 (2019).

[32] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine,
and D. D. Awschalom, Nature 479, 84 (2011).

[33] B. L. Green, S. Mottishaw, B. G. Breeze, A. M. Edmonds,
U. F. S. D’Haenens-Johansson, M. W. Doherty, S. D.
Williams, D. J. Twitchen, and M. E. Newton, Physical
Review Letters 119, 096402 (2017).

[34] A. Dietrich, K. D. Jahnke, J. M. Binder, T. Teraji,
J. Isoya, L. J. Rogers, and F. Jelezko, New Journal of
Physics 16, 113019 (2014).

[35] H.-P. Komsa, T. T. Rantala, and A. Pasquarello, Phys-
ical Review B 86, 045112 (2012).

[36] G. Makov and M. C. Payne, Physical Review B 51, 4014
(1995).

[37] C. Freysoldt, J. Neugebauer, and C. G. Van de Walle,
Physical Review Letters 102, 016402 (2009).

[38] S. Lany and A. Zunger, Physical Review B 78, 235104
(2008).

[39] W. Wu and A. J. Fisher, Physical Review B 77, 045201
(2008).

[40] J. M. Luttinger and W. Kohn, Physical Review 97, 869
(1955).

[41] C. Kittel and A. H. Mitchell, Physical Review 96, 1488
(1954).

[42] W. Kohn and J. M. Luttinger, Physical Review 98, 915
(1955).

[43] A. T. Collins, Philosophical Transactions of the Royal
Society of London. Series A: Physical and Engineering
Sciences 342, 233 (1993).

[44] C. J. Rauch, in Proceedings of the International Confer-
ence on the Physics of Semiconductors, edited by A. C.
Stickland (Institute of Physics and the Physical Society
of London, 1962) pp. 276–280.

[45] F. Herman, C. D. Kuglin, K. F. Cuff, and R. L. Kortum,
Physical Review Letters 11, 541 (1963).

[46] J. Serrano, A. Wysmolek, T. Ruf, and M. Cardona,
Physica B: Condensed Matter 273-274, 640 (1999).

[47] M. Willatzen, M. Cardona, and N. E. Christensen, Phys-
ical Review B 50, 18054 (1994).

[48] N. W. Ashcroft and N. D. Mermin, Solid state physics
(New York: Holt, Rinehart and Winston, 1976).

[49] A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras,
Physical Review Letters 103, 186404 (2009).

[50] E. Londero, G. Thiering, L. Razinkovas, A. Gali, and
A. Alkauskas, Physical Review B 98, 035306 (2018).

[51] G. Kresse and J. Furthmüller, Physical Review B 54,
11169 (1996).

[52] S. Steiner, S. Khmelevskyi, M. Marsmann, and
G. Kresse, Physical Review B 93, 224425 (2016).
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Supplemental Material for
“Optically detected magnetic resonance in neutral silicon vacancy centers in diamond

via bound exciton states”

I. SUPPLEMENTARY EXPERIMENTAL METHODS

A. Experimental Setups

Sample preparation: Three different {110} diamonds grown by chemical vapor deposition were studied. The
first two samples (D1 and D2) were doped during growth with silicon. The silicon precursor was isotopically enriched
with 90% 29Si (resulting in similar residual concentration of 28Si and 30Si). After high-pressure-high-temperature
annealing, the SiV0 concentration is 4.0 × 1016 cm−3 for sample D1 [10]. Sample D2 was cut along the growth
direction so its SiV0 concentration depends on the specific region under study. We estimate its SiV0 concentration to
be 2.4× 1015 cm−3 for the region studied in photoluminescence excitation (PLE) measurements. The third diamond
(D3) was doped during growth with boron and implanted with 28Si, as described in [8]. After annealing, the resulting
SiV0 concentration in the implanted layer is 5.1 × 1015 cm−3. Sample D1 is studied in the main text while samples
D2 and D3 are measured to provide additional data in the supplemental material. Sample D1 shows a preferential
alignment of SiV0 such that the in-plane and out-of-plane sites have a density ratio of 1:3 [17].

Electron spin resonance (ESR): Pulsed X-band (∼9.5 GHz) ESR is performed on a modified Bruker Elexsys
580 system using a dielectric volume resonator (Bruker MD5) and a 1.4-T electromagnet, the details of which
are thoroughly described elsewhere [10]. Optical illumination is applied through a multi-mode fiber (Thorlabs
FT400EMT) positioned above the sample. A narrow linewidth tunable CW Ti:Sapphire laser (Msquared SolsTis) is
used as the excitation source for 800 nm - 1000 nm. For pump-probe ESR measurements, a second narrow linewidth
tunable laser (Toptica CTL 950) is used as the pumping laser. All measurements are performed on the ms = 0↔ +1
transition with the magnetic field aligned to a 〈111〉 direction of the sample unless otherwise noted. Optical spin
polarization (OSP) is measured using a two-pulse Hahn echo sequence (200 ns π pulse) after optical excitation. The
echo intensity is normalized to the echo intensity resulting from thermal polarization in the dark. The sign of OSP
is defined as the relative population of the spin levels, with positive (negative) OSP being more polarization into
ms = 0 (ms = 1) state. OSP is measured on the 29Si hyperfine line for samples D1 and D2 unless otherwise noted.
All ESR measurements are performed at 5.5 K.

Photoluminescence excitation (PLE): All optical measurements are performed in a helium flow cyrostat
(Janis ST-100) with the sample mounted on a copper cold finger. Excitation and detection channels for PLE are
separated by a dichroic beam splitter (Semrock FF924-Di01). Excitation is focused on the sample with a 30 mm
doublet lens. Emission is further filtered with a tunable 937 nm long-pass filter (Semrock FF01-937/LP-25) and
coupled to a 50 µm multimode fiber that routes the signal to a grating spectrometer (Princeton Instruments Acton
SP-2300i). At each excitation wavelength, we acquire a photoluminescence (PL) spectrum and plot integrated
emission at the 946 nm peak.

Absorption: For absorption measurements, the laser is split into two paths. One path travels through both the
diamond and the windows of the cryostat while the other travels through only the windows of the cryostat, serving
as a reference. Transmitted power through each path is measured with a Si photodiode (Thorlabs DET100A). The
thickness of the diamond sample (D1) used for absorption is 0.66 mm.

Optically detected magnetic resonance (ODMR): For ODMR, the laser is coupled to an acousto-optic
modulator (AOM, Isomet 1305C-1) for pulsed excitation. ODMR experiments use the same optical setup as PLE
except that the signal is sent to a single photon detector (Excelitas SPCM-AQRH) and the excitation is focused
on the sample with a 10X near infrared objective (Olympus LMPLN10XIR) outside of the cryostat. Microwave
(MW) excitation is applied using a 70 µm wire stretched across the sample. The MW excitation is generated with a
signal generator (Rohde and Schwarz SMATE200A) and then amplified by a high-power MW amplifier (Ophir 5144).
Two 0.8 - 2 GHz MW circulators (Ditom D3C0802S) are added after the amplifier for circuit protection. The MW
excitation is pulsed using a fast MW switch (Mini-Circuits ZASWA-2-50DR+). The timing of MW pulses and optical
pulses are synchronized using a TTL pulse generator (SpinCore PBESR-PRO-500). A home-built Helmholtz coil is
used to apply a magnetic field along one of the in-plane 〈111〉 directions. For time-tagging the photon counts, a
time-correlated single photon counting system (PicoQuant PicoHarp 300) is used.
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B. ESR Pulse Sequences

MW init. ms = 0

MW init. ms = 1
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FIG. S1. Pulse sequences for ESR. (a) Echo detected optical spin polarization. (b) Pump-probe measurement with different
spin initialization sequences. (c) Pulse sequence for measuring polarization saturation curves.

In pulsed ESR, the echo intensity is proportional to the population difference of the two spin levels under study.
Spin polarization is measured by monitoring the integrated echo intensity from a standard Hahn-echo sequence after
an optical pump pulse [Fig. S1(a)]. For state-resolved measurements, the spins are first initialized into ms = 0 with
a long optical pump pulse at 946.76 nm to achieve efficient OSP from ZPL excitation. For ms = 1 initialization,
a MW π pulse is then applied to invert the population. After initialization, a short optical probe pulse is applied
[Fig. S1(b)]. For data shown in Fig. 2(c), the length of the optical pump pulse (80 mW excitation power) is 6 s for
measurements between 820 nm to 875 nm, and 4 s for measurements between 880 nm and 895 nm. The length of
the optical probe pulse (∼45 mW excitation power) is 100 ms for measurements between 820 nm and 875 nm, and
500 ms for measurements between 880 nm and 895 nm. Polarization saturation curves are measured by shining an
optical pump pulse with different pulse lengths. To avoid waiting for the spins to reset after each pulse sequence, an
off-resonant optical pulse and N evenly spaced π/2 pulses are applied to scramble the spin polarization before the
pump pulse [Fig. S1(c)]. For these measurements, N=6. The analysis for these data is described in Section V and
Section VI.

C. ODMR Pulse Sequences

To suppress slow noise in continuous-wave (CW) ODMR measurements, we modulate the MW pulses on and off
at a rate of 1 kHz. Photon counts are gated when the MW tone is on (Psig) and off (Pref ), and ODMR contrast is
normalized using ∆PL/PL = Psig/Pref − 1 [Fig. S2(a)].

For pulsed ODMR measurements, the large dynamic range of laser pulse duty cycle gives rise to systematic fluctua-
tions in the laser power because of AOM heating. To correct for this effect, we use two types of normalization for pulsed
ODMR experiments. For Rabi and T ∗2 measurements where the laser is gated mostly on, we use a standard detection
scheme [Fig. S2(b) and Fig. S2(c)]. Two 10 µs detection windows separated by 50 µs are applied during the readout
pulse. The first window measures the transient spin population (Psig) after the MW pulses while the second window
measures the steady state spin population (Pref ). The normalized signal is calculated as ∆PL/PL = Psig/Pref − 1.

For T1 and T2 measurements where the duty cycle varies significantly with delay time, we alternately apply different
microwave pulses before the readout pulse to invert the phase of detection. For T1, we alternate between applying a
π pulse and not applying any MW pulse in order to provide a reference count rate [Fig. S2(d)]. This also ensures the
timescale we measure is related to the spin-relaxation, and does not include contributions from other optical processes.
For T2, we alternate between applying a π/2 pulse or a 3π/2 pulse [Fig. S2(e)]. The data taken with phase inversion
is normalized as ∆PL/PL = (Psig − Pref )/(Psig + Pref ).

D. Transient Spin-dependent Fluorescence

To determine the optimum integration window for ODMR measurements, we measure transient spin-dependent PL
by time-tagging the photon counts. A long optical pulse (30 µs) first polarizes the spin ensemble. Then we apply an
on-resonant (off-resonant) MW π pulse to flip (not flip) the spin state. The time traces for different spin states are
shown in Fig. S3. We observe spin-dependent PL up to 15 µs. The integration windows and optical pulse duration
are set accordingly: we set the spin polarization time to 75 µs, and we set the detection window to 10 µs.
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FIG. S2. Pulse sequences for ODMR. (a) Pulse sequence for CW ODMR. The switching rate for MW pulses is set to
1 kHz. (b) Pulse sequence for Rabi measurement. The MW pulses on resonance with spin transitions are applied with varying
duration. (c) Ramsey sequence for T ∗2 measurement. The free precession time between two π/2 pulses is swept. (d) Pulse
sequence for T1 measurement. The phase of detection is alternated between ms = 0 (no MW pulse) or ms = ±1 (with MW π
pulse). (e) Pulse sequence for T2 measurement. The phase of detection is alternated between ms = 0 (with MW π/2 pulse) or
ms = ±1 (with MW 3π/2 pulse).
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FIG. S3. Transient PL response. PL traces for different spin initialization. The spike at the beginning is from a pile-up
artifact of the time-tagger due to the high photon rate compared to pulse repetition rate.

II. ADDITIONAL CHARACTERIZATION ON MULTIPLE SAMPLES

To confirm that the higher-lying excited states are a feature intrinsic to SiV0 centers rather than some sample
dependent phenomenon, we measure OSP and PLE on two bulk-doped samples (D1 and D2) and a third implanted
sample, D3.

The spectra show consistent optical transitions and spin polarization behavior (Fig. S4). An isotopic shift is observed
between D1, D2 (29Si enriched) and D3 (28Si implanted), arising from differences in the zero-point energy of the local
phonons.
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FIG. S5. Magnetic field dependence of ODMR spectrum and T2 modulation. (a) ODMR spectrum for the lower
hyperfine transition is measured at different magnetic fields. The peaks observed here come from the three off-axis sites
(∼ 109.5◦ misalignment). The traces are intentionally offset with each other. (b) Echo decay envelope measured with fine
time steps at different magnetic fields. Faster modulation is observed at higher applied magnetic field. 2τ is the total free
precession time. The lower signal amplitude at higher magnetic fields is due to decreased microwave pulse fidelity because of
more spatially inhomogeneous magnetic fields. The legends indicate the voltages applied for the Helmholtz coil. We find that
a scaling factor of 6 G/V best reproduces our observations.

III. LOW-FIELD SPIN DYNAMICS

A. Magnetic Field Dependence of ODMR Spectrum and Envelope Modulation

A Helmholtz coil positioned along the in-plane 〈111〉 direction of sample D1 applies a small magnetic field. With this
configuration the magnetic field is misaligned by ∼ 109.5◦ with respect to three sites, which are therefore degenerate.
Due to the lower concentration of defects oriented in-plane (Section I), significantly lower signal-to-noise ratio is
expected for that site. As a result, we focus on the sites oriented ∼ 109.5◦ to the field. Upon applying magnetic field,
Zeeman splitting is observed, confirming the spin-dependent nature of these ODMR transitions [Fig. S5(a)]. The
broadening of the lines at higher magnetic fields likely arises from a combination of inhomogeneity of the magnetic
field for different sites and splitting of hyperfine transitions in the presence of an off-axis magnetic field.

A pronounced modulation of the spin echo decay is observed in our data [Fig. S5(b)]. The observed oscillation
frequency increases with magnetic field, and arises from a set of hyperfine transitions being driven simultaneously
in our experiment. To probe this further, we simulated the expected ODMR spectrum at low magnetic fields. Four
transitions are present in total [Fig. S6(a)], but the separations are often smaller than the linewidths measured from
CW ODMR. The four transitions at zero applied field can be labeled approximately as (from lowest to highest
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FIG. S6. Magnetic field dependence of level splitting and modulation frequency. (a) Simulated ODMR spectrum
as a function of off-axis (113.76◦ misalignment) magnetic field (blue traces). We include a stray field term B = [0, 0.9, 0.65]
G before applying any magnetic field. The red dots are experimental ODMR peak positions. Note that the closest pairs of
simulated transitions are comparable the experimental linewidth and so cannot be resolved. (b) Modulation frequency as a
function of magnetic field. The blue curve is calculated using the simulated level splittings. The red dots are experimental
values. The applied magnetic field strength is estimated using the ODMR peak positions. We find that a scaling factor of
6 G/V best reproduces our data. We note that due to experimental limitations, we are only able to get a rough estimation of
field alignment and strength based on ODMR peak positions.

frequency)

|−1〉|↑〉 ↔ |0〉(|↑〉 − i|↓〉), (1)

|−1〉|↑〉 ↔ |0〉(|↑〉+ i|↓〉), (2)

|1〉|↓〉 ↔ |0〉(|↑〉 − i|↓〉), (3)

|1〉|↓〉 ↔ |0〉(|↑〉+ i|↓〉), (4)

where the triplet electronic spin levels are labeled by |1〉,|0〉, |−1〉 and the nuclear spin levels are labeled by |↑〉 and
|↓〉. During the free precession time of spin echo sequence, extra phase accumulates between two nearby hyperfine
levels owing to their energy difference. We simulate the effect of this extra phase accumulation on spin echo using
the rotating frame Hamiltonian H = E∆|g2〉〈g2|+Ω1(|g1〉〈e|+|e〉〈g1|) + Ω2(|g2〉〈e|+|e〉〈g2|) and find that the energy
difference E∆ between the two levels and the modulation frequency f are related by f = 0.5E∆. By measuring the
magnetic field dependence of the modulation frequency, we find consistent results between experiment and simulation
shown in Fig. S6(b).

B. Spin Coherence Times (T2) on Sample D1

The spin coherence time T2 of SiV0 was previously characterized to be ∼1 ms below 20 K at X-band in sample D3,
and was shown to be limited by spectral diffusion arising from the naturally abundant 13C bath. T2 for sample D1 at
X-band was extensively studied in Ref. [10]. It was shown that T2 for sample D1 is instead limited by instantaneous
diffusion due to the high SiV0 concentration to be:

1

T2
=

1

T2(SD)
+

1

T2(ID)
, (5)

where T2(SD) = 0.95 ms is the spectral diffusion-limited T2 and T2(ID) is the instantaneous diffusion-limited T2. The

four orientations of SiV0 in D1 show preferential alignment with a population ratio of 1:1:3:3 [17]. The two out of
plane sites have 3 times higher SiV0 concentration compared to the two in-plane sites with T2(ID) = 0.319 ms. For
the higher (lower) concentration sites, T2 was limited to 0.28 ms (0.48 ms).

In the low magnetic field regime where we performed ODMR measurements, we could not isolate a single site or a
single spin transition. Since instantaneous diffusion is proportional to the spin density, a shorter T2 (limited by greater
instantaneous diffusion) is expected. Driving all four sites leads to a factor of 8/3 increase in SiV0 concentration.
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Another factor of 2 is expected from the fact that X-band measurements address a single nuclear spin level while at
low field, we address both nuclear spin levels simultaneously. These two factors together lead to an instantaneous
diffusion limited T2(ID) of 0.319 × 3/8 × 1/2 = 0.06 ms and T2 ≈ 56 µs. We note that differences in optical spin
polarization and MW pulse fidelity between ODMR and X-band ESR are not considered in the estimation here, which
could also affect the total spin density under MW driving.

C. Temperature Dependence of Spin Relaxation Times at Low Magnetic field
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FIG. S7. Temperature dependence of T1 near zero field. Red line represents the fitted Orbach process limited T1

measured at X-band when the magnetic field is 2.6◦ misaligned to the defect axis. Orange line is for guidance with a 15 times
larger pre-factor for the Orbach process.

Spin relaxation times (T1) are measured at different temperatures for the lower hyperfine transition at low magnetic
field for sample D1. We note that temperature dependence of T1 for SiV0 was previously studied using X-band ESR
and can be described with an Orbach process [10]

1

T1
=

1

T1sat
+A(θ)e−Ea/kbT , (6)

where T1sat is the saturated T1 at low temperature, Ea is the activation energy for the Orbach process and A(θ) is a
prefactor that depends on the misalignment θ between the defect axis and the spin axis.

We find that the measured T1 here is about 15 times shorter compared to the X-band measurement for sample D1
(θ = 2.6◦) and 105 times shorter compared to the X-band measurement for sample D3 (θ = 0.8◦) but still follows an
exponential scaling with increasing temperature. The similar exponential dependence suggests that T1 is likely also
limited by Orbach process. The prefactor A(θ) was shown to be strongly anisotropic due to different mixing rates
between different spin states and phonon-activated Orbach excited state. Normally, when the magnetic field is aligned
with the defect axis, no mixing of spin levels should occur so there shouldn’t be any magnetic field dependence of
the anisotropy. However, for the 29Si enriched sample, we must also consider mixing of the Zeeman states due to
the hyperfine interaction. At X-band, the transverse hyperfine interaction (∼79 MHz) is small compared to Zeeman
splitting (∼9.5 GHz) so it can be ignored. At low magnetic field, the transverse hyperfine interaction is significant
compared to the zero-field splitting (942 MHz) and non-negligable mixing occurs (Table I). For the lower hyperfine
transition being measured here, we estimate using a Wigner rotation matrix R(θ) = eiθSy that at zero field, the
hyperfine interaction induced mixing is equivalent to a θ ∼5.0◦ rotation of the spin basis.

We estimate the reduction in T1 by calculating the ratio between A(0◦) and A(θ) at the experimental misalignments
using the parameters determined in Ref. [10]. For the previous X-band measurements, A(0.8◦)/A(0◦) = 2.52 and
A(2.6◦)/A(0◦) = 17.04. This is consistent with the experimentally determined A(2.6◦) = 2.10 × 103 s−1 for sample
D1 and A(0.8◦) = 3× 102 s−1 for sample D3. For the 5◦ misalignment caused by hyperfine interaction at zero-field,
A(5.0◦)/A(0◦) = 60. This accounts for most of the observed reduction (Aexp/A(0◦) ∼ 17.04 × 15 ∼ 256) in T1

compared to a perfect 0◦ misalignment.
By inspecting the eigenstates from Table I, the 980.15 MHz levels (which are involved in the higher hyperfine

transition) are not mixed by the transverse hyperfine interaction: they remain pure |±1〉 states. The T1 anisotropy
of SiV0 was modeled by extracting a larger ms = 0 state overlap with the Orbach excited state [10]. Therefore, we
expect the higher hyperfine transition to have longer T1.
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TABLE I. Eigenstates for 29SiV0 at zero magnetic field. Each row represents the eigenstate for a specific eigenenergy. The
triplet electronic spin levels are labeled by |1〉, |0〉 and |−1〉 while the nuclear spin levels are labeled by |↑〉 and |↓〉. Without
hyperfine interaction, |±1〉 states are 0.94 GHz higher in energy compared to the |0〉 state. The negative energy for the lowest
eigenstates here is due to hyperfine induced mixing.

Energy (MHz) |1 ↑〉 |1 ↓〉 |0 ↑〉 |0 ↓〉 |−1 ↑〉 |−1 ↓〉
980.15 1 0 0 0 0 0

980.15 0 0 0 0 0 1

907.28 0 0.998 0.061 0 0 0

907.28 0 0 0 0.061 0.998 0

-3.43 0 0 0 0.998 -0.061 0

-3.43 0 -0.061 0.998 0 0 0

D. Temperature Dependence of ODMR Contrast
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FIG. S8. Temperature dependence of ODMR contrast. (a) Continuous-wave ODMR spectra measured at different
temperatures using ∼855.65 nm excitation. The plots are offset with each other for comparison. (b) Temperature dependence
of ODMR contrast extracted by performing Lorentzian fits to the peaks in (a). The solid lines are fits using 1/C(T ) =

1/Csat +A× e−Eb/kBT .

We measure the temperature dependence of continuous-wave ODMR spectra on sample D1 [Fig. S8(a)]. ODMR
contrast is flat up to 70 K, and is still observable (about 0.07%) at 187 K. While the underlying physical process
requires further detailed study, we fit the temperature dependence of contrast using a phenomenological model

1

C(T )
=

1

Csat
+A× e−Eb/kBT , (7)

where Csat is the saturated contrast at low temperatures, A is an amplitude prefactor, T is the temperature, kB is
the Boltzmann constant, and Eb is the activation energy of a phonon-activated process. The fits yield an activation
energy of Eb = 50.8 ± 4.6 meV for the lower hyperfine line, and Eb = 56.3 ± 2.6 meV for the higher hyperfine line.
This temperature dependence differs from that of T1 (16.8 meV activation energy), which suggests that shorter T1 at
higher temperature alone cannot explain the observed temperature dependence. Therefore, we suspect that additional
phonon-induced spin mixing, and phonon-mediated non-radiative decay from the bound exciton excited states are
responsible for the observed temperature dependence.

E. Power Dependence of ODMR Spectra

We measure the power dependence of continuous-wave ODMR spectra on sample D1. Upon lowering the microwave
power, narrower linewidths are observed (Fig. S9). When the transition is not power broadened, we measure an
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inhomogeneous linewidth of 1.47±0.44 MHz, which corresponds to an ensemble spin dephasing time of T ∗2 = 216±64 ns.
The spin dephasing time extracted here matches with the result from Ramsey measurement.
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FIG. S9. Microwave power dependence of ODMR spectra. (a) Continuous-wave ODMR spectra measured at different
microwave powers. The plots are offset with each other for comparison. The small splitting is due to ambient stray magnetic
field. (b) Power dependence of ODMR linewidths extracted by performing double Lorentzian fits to the spectra in (a).

IV. ABSORPTION MEASUREMENTS
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FIG. S10. Absorption measurement data processing. Upper panel: Transmission (T ) through the sample normalized
by the reference transmission. We fit a straight line as the baseline (Ts). Lower panel: Optical depth calculated as OD =
−ln(T/Ts). The spike near 834 nm is due to an instability of the laser.

V. SATURATION CHARACTERISTICS OF OPTICAL SPIN POLARIZATION

We measure the time-dependent saturation characteristics of OSP on sample D2. Fig. S11(a) shows an OSP
spectrum using constant pumping power and pumping time. The large difference in amplitude between the bound
exciton (BE) transitions and off-resonant wavelengths demonstrates the wavelength selectivity of OSP for SiV0 centers.
To further characterize the OSP, we measure the time-dependent saturation curves of OSP for several different
wavelengths [Fig. S11(b)]. The ZPL wavelength (946.75 nm) is included for comparison. The initial spin population
is scrambled using off-resonant excitation and a series of MW π/2 pulses to eliminate any residual polarization from
previous interrogation [Fig. S1(c)]. Then, optical pulses with varying duration are applied to measure the saturation
curve of OSP. The wavelengths are categorized into two groups: off-resonant (820 nm, 844 nm and 880 nm, open
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FIG. S11. Saturation of OSP for different wavelengths. (a) Net OSP measured on sample D2 at 5.5 K. The excitation is
kept at constant power (10 mW) and constant pumping time (400 ms). Drastic differences in OSP are observed for BE transitions
and off-resonant wavelengths. The markers are visual guidance for the wavelengths used for saturation measurements in (b).
Resonant wavelengths are labeled with filled markers while off-resonant wavelengths are labeled with open markers. (b) OSP
accumulation as a function of pumping time with 50 mW optical excitation power for all wavelengths. The saturation curves
are fitted by a bi-exponential form: S(t) = a− ble−t/Tl − (a− bl)e−t/Ts .

markers), and resonant (BE states: 855.5 nm and 886.5 nm and ZPL: 946.75 nm, filled markers). We fit the saturation
curves with a bi-exponential function.

Interpretation of the observed timescales is complicated by the bulk nature of the experiment and the spectrally
narrow excitation source, with contributions from far-from-saturation excitation dynamics, spin diffusion, and spin
relaxation. However, some qualitative trends are clear; exciting at the ZPL reaches the highest value (62%) but the
saturation timescale is rather long. Exciting at the BE transition (855.5 nm), however, shows both high saturation
(40%) and a much shorter saturation timescale. OSP saturation with off-resonant excitation (844 nm and 880 nm) is
slow, consistent with our lack of observation of ODMR when detuned from BE transitions [Fig. 4(a) in main text].
For 820 nm excitation above the ionization threshold [15], the saturated OSP is small (12%) but the saturation time
is fast, likely limited by ionization processes. Strikingly, saturated OSP for 886.5 nm shows a slow timescale but a
high saturation value (59%), suggesting high efficiency of OSP per optical cycle.

VI. SPECTRAL DECOMPOSITION OF OPTICAL SPIN POLARIZATION

Optical spin polarization is a measure of both absorption and spin polarization from all ground states. The
ensemble optical linewidths in bulk samples are much larger than the spin splittings so optical excitation addresses
many transitions involving all the spin levels. In order to disentangle the OSP from competing polarization processes,
we develop a spectral decomposition method using a pump-probe scheme [Fig. S1(b)]. The OSP can be initialized
with optical and microwave pulses as

Iinit(p0, p1, p−1) = p0 − p1, (8)

where p0, p1 and p−1 are populations of the three spin sublevels. The population of ms = −1 (p−1) is not involved
because we are measuring spin echo using ms = 0↔ 1 transition. A weak probe pulse then probes the net change in
OSP

I(p0, p1, p−1) = δp1(p0, p1, p−1)− δp0(p0, p1, p−1), (9)

where δpi(p0, p1, p−1) is the population change of sublevel ms = i. We assume that the short-time spectrum
I(p0, p1, p−1) will be proportional to the initial population of each spin sublevels (pi) multiplied by their OSP spectra
[I(pi = 1) = δp1(pi = 1) − δp0(pi = 1), meaning net OSP change after a perfect pi = 1 initialization]. Under this
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assumption, the net OSP spectrum can be written as a superposition of OSP from all spin sublevels

I(p0, p1, p−1) =
∑
i

piI(pi = 1) =
∑
i

pi(δp1(pi = 1)− δp0(pi = 1)). (10)

This expression can be further simplified under specific selection rules as

I(p0, p1, p−1) =
∑
i

pi(δp1(pi = 1)− δp0(pi = 1)) =
∑
i

∆ipiIi, (11)

where we have defined Ii = δpi(pi = 1) as probe induced population change of sublevel ms = i after a perfect
initialization into sublevel ms = i and ∆i are weight factors depending on the selection rules.

Here, we consider two generic types of spin selection rules, assuming echo intensity between ms = 0 and ms = 1 is
measured. For the first case, we consider no selection rules for optical excitation, meaning that ms = 0 and ms = ±1
are treated equivalently. An excitation addressing ms = −1 will not lead to any observable effect since the depleted
population from ms = −1 is distributed equally to ms = 0 and ms = 1 sublevels.

For the second case, we consider selection rules similar to magnetic dipole selection rules, where population transfer
is only allowed from ms = 0 to ms = 1 and ms = 0 to ms = −1. In this case, when measuring echo intensity between
ms = 0 and ms = 1, we expect |∆1/∆−1| = 2 because the depleted population in ms = −1 is not measured in the
echo. We also expect |∆0/∆1| = 0.75 because half of the depleted population from ms = 0 is transferred to ms = −1
which cannot be measured. The detailed derivation of ∆i is summarized in Table II.

TABLE II. Determination of ∆i for two types of spin selection rules. We consider the population change of each spin sublevels
under spin selective excitation. In each column, we assume perfect initialization into ms = i (pi = 1), and the depleted
population (δ) from ms = i is redistributed into other sublevels based on the selection rules.

no selection rules magnetic-dipole-like selection rules

selective excitation of ms = 0 ms = 1 ms = −1 selective excitation of ms = 0 ms = 1 ms = −1

δp0 δ -0.5δ -0.5δ δp0 δ -δ -δ

δp1 -0.5δ δ -0.5δ δp1 -0.5δ δ 0

δp−1 -0.5δ -0.5δ δ δp−1 -0.5δ 0 δ

δp1 - δp0 -1.5δ 1.5δ 0 δp1 - δp0 -1.5δ 2δ δ

∆ -1.5 1.5 0 ∆ -1.5 2 1

Because we cannot fully map out the multiplicity and selection rules for these bound exciton states, we choose the
first case (∆0 = −1.5, ∆1 = 1.5 and ∆−1 = 0) for data processing. The lack of selection rule is a more relaxed
requirement since interactions in the excited states could give rise to spin mixing. We note that although choosing a
specific set of ∆i over another would lead to differences in the relative amplitudes of Ii, the resonance features and
overall shapes of the spectra are still preserved.

Without any initialization, p0 ≈ p1 ≈ p−1, meaning there is equal population in all three spin states. Ideally,
the OSP from individual spin levels can be directly measured if pi = 1. In reality, we achieve p0 ≈ 0.7 using our
most efficient polarization wavelengths. Nevertheless, by initializing the spins differently, individual spectra can be
decomposed. When the magnetic field is aligned to the defect axis, ms = −1 and ms = 1 are symmetric with respect
to ms = 0 so we could assume I−1 ≈ I1 and p1 ≈ p−1 under ms = 0 initialization. This is consistent with the
ms = 0↔ 1 spectrum as the mirror image of ms = 0↔ −1 spectrum, shown in Fig. S12. These simplifications lead
to

I = ∆0p0I0 + ∆1p1I1 + ∆−1p−1I−1 = ∆0p0I0 + (∆1 + ∆−1)p1I1. (12)

By applying a π pulse after the pumping pulse, the spin populations can be inverted

Iπ = ∆0p1I0 + ∆1p0I1 + ∆−1p−1I−1 = ∆0p1I0 + (∆1p0 + ∆−1p1)I1. (13)

The OSP spectra I0 and I1 can then be decomposed from I and Iπ using the measured initial populations p0 and
p1.

After decomposing the OSP spectrum for different spin states, OSP under arbitrary spin initialization can be
reconstructed. To validate the effectiveness of our spectral decomposition, we apply MW pulses with different rotation
angles (0, π/4, 3π/4 and π) between the pump and probe pulses to achieve different spin initializations. We observe
larger net OSP change into ms = 0 (ms = 1) using π rotation (0 rotation) compared to 3π/4 rotation (π/4 rotation),
consistent with the difference in the spin initializations (Fig. S13, upper panel). Using the decomposed spectra I0
and I1, we could also reconstruct the π/4 and 3π/4 spectra, which match well with the raw data using π/4 and 3π/4
rotations (Fig. S13, lower panel).
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FIG. S12. Comparison of OSP for different spin transitions. OSP for the two spin transitions (ms = 0 ↔ 1 and
ms = 0↔ −1) are measured on sample D2 with same pumping time (400 ms) and laser power (10 mW). The two spectra are
mirror image of each other, consistent with ms = 1 and ms = −1 being symmetric with respect to ms = 0.
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FIG. S13. Spectral decomposition and reconstruction with different MW rotations. Upper panel: Net OSP with four
different MW rotations between pump and probe pulses: 0 (no pulse), π, π/4 and 3π/4. Lower panel: Spectral reconstruction
of the π/4 and 3π/4 OSP spectra using the decomposed spectra I0 and I1 from 0 and π OSP spectra. The spike near 865
nm is due to an instability of the magnet. The amplitude represents net probe induced OSP change after initialization. This
measurement is performed on sample D1. The length of the optical pump pulse (80 mW excitation power) is 4 s, and the
length of the optical probe pulse (∼45 mW excitation power) is 100 ms.

VII. ISOTOPIC SHIFTS OF THE BOUND EXCITON TRANSITIONS

According to the BE model, the pure electronic transition to the n = 1 excited state is dipole forbidden so our
level assignment for PLE in Fig. 3(a) starts from n = 2. However, we observe OSP resonances near 886 nm that have
no correspondence to PLE and absorption peaks [Fig. 2(c)]. These transitions are tentatively assigned to the n = 1
transitions. The n = 1 states typically do not follow the Rydberg scaling due to the substantial central cell correction
expected. Transition to the n = 1 state is dipole forbidden so its observation in the OSP spectrum suggests the
involvement of a phonon-related process. We find evidence of these phonon processes from the isotopic shift measured
on different samples and ESR hyperfine lines. For n = 3 transitions, we observe a ∼0.4 meV isotopic shift between
28Si and 29Si lines [Fig. S14(a)], consistent with the isotopic shift observed for the SiV− ZPL transition [34]. However,
a larger isotopic shift of 0.7 meV is observed for the n = 1 transitions [Fig. S14(b)] which suggests a different origin
of isotopic shift.

VIII. THEORETICAL DESCRIPTION OF BOUND EXCITON STATES OF SIV0

A. Effective Mass Description

The problem of describing (pseudo-) donor and acceptor defects in the solid state is discussed extensively in many
textbooks [27, 48]. We revisit some key concepts here to clarify our description in the main text and outline our
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FIG. S14. Isotopic dependence of OSP. (a) Isotopic dependence of n = 3 transitions, showing a 0.44 meV shift between
28Si (orange) and 29Si (blue). The 29Si (28Si) OSP is measured from sample D1 (D3). (b) Isotopic dependence of the n = 1
transitions, showing a 0.7 meV shift between 28Si (orange) and 29Si (blue) and between 29Si (blue) and 30Si (orange), indicating
a different phonon process for n = 1 transitions. The 28Si and 30Si spin transitions are degenerate so they are measured
simultaneously on sample D1. The 6 meV splitting between the two transitions is consistent with spin-orbit coupling in the
valence band of diamond.

approach to simulations.
The simplest description of these systems is a hydrogenic model of the pseudo acceptor, where a positive charge is

bound to a heavy central negative charge. The Hamiltonian here is thus [39–42]

Ĥ = − h̄2

2m?
∆− e2

4πεr
, (14)

where m? is the effective mass of the exciton, and ε is the dielectric constant of the diamond host ε = 5.7ε0. This
description neglects the spatial anisotropy imposed by the diamond lattice and the further lowering of symmetry from
crystal-field effects introduced by the SiV0 defect. These effects are important and will be discussed below, but this
simple model is useful for order-of-magnitude estimates.

The Schrödinger equation here can be solved as ĤΨn,l,m = En,l,mΨn,l,m, where Ψn,l,m are the hydrogen-atom
eigenstates and En,l,m are their eigenenergies. The energies depend only on the principle quantum number, n, so we
may write

En,l,m = −Ey
n2

Ey =
e4m?

2(4πε)2h̄2 =
m?

me

ε2
0

ε2
ERy ERy = 13.6 eV. (15)

The Bohr radius of our artificial atom in diamond can be expressed as

rn = r0n
2 = a0

me

m?

ε

ε0
n2 a0 =

4πε0h̄
2

mee2
= 0.5292 Å. (16)

At the Γ-point in diamond, three different effective masses are experimentally observed: m?
light = 0.7me; m

?
heavy =

2.12me; m
?
split−off = 1.06me [43, 44]. From Table III, we can see that the simplest hydrogenic approximation is poor

for all n = 1 states, and for the heavy hole n = 2 state. The dimensions of the SiV0 point defect are on the order of
a few Å, comparable to the spatial extent of these wavefunctions as shown in Fig. S15.

TABLE III. The simplest hydrogen atom model for the VBM hole with the corresponding effective masses (m?), the and
relative dielectric constant (ε) of diamond as a function of the principal quantum number n.

n Elight
n (eV) Eheavy

n (eV) Esplit−off
n (eV) rlight

n (Å) rheavy
n (Å) rsplit−off

n (Å)

1 0.2930 0.8874 0.4437 4.31 1.42 2.85

2 0.0733 0.2219 0.1109 17.24 5.69 11.38

3 0.0326 0.0986 0.0493 38.78 12.81 25.61

4 0.0183 0.0555 0.0277 68.94 22.76 45.53

. . . . . . . . . . . . . . . . . . . . .

+∞ 0 0 0 +∞ +∞ +∞
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FIG. S15. Relative spatial extent of SiV0 defect and n = 1 bound exciton. (a) Geometry of the SiV0 defect. The
eg/eu localized orbitals span the central silicon atom and its six first neighbor carbon atoms. (b) Diameter of the n = 1 bound
exciton state from the Bohr model, see Table III.

Several features of the experimentally observed transitions are in good agreement with this description. From Fig. 3
of the main text, we extract values of

En = EI − Ey
1

n2
EI = 1.53 eV Ey = 0.4 eV. (17)

The ionization threshold is in good agreement with previous photoconductivity measurements, and the effective Ryd-
berg energy is in the range predicted by the light and split-off effective masses (0.293 eV and 0.444 eV, respectively).
The data in Fig. 3(b) also shows that the n = 1 level significantly deviates from the model of a simple hydrogenic
series, as expected.

To gain further insight into these states, we go beyond a simple hydrogenic model and explicitly consider the effects
of spin-orbit coupling and the crystal field. Parameters which cannot be determined from experimental data in the
main text are calculated by DFT, as described in Section IX.

B. Effective Hamiltonian For n = 1 (1s)

The Γ-point of the valence band in diamond is triply degenerate and splits into the light-hole band, heavy-hole
band and split-off band parabolic edges. In order to interpret the character of the weakly bound hole, we assume that
the hole wavefunction is similar to that of the Γ-point (uk(r)). However, it is confined to the envelope function taken
from the hydrogenic model (Ψn,l,m(r)), yielding

Φ(r) = uk(r)Ψn,l,m(r). (18)

For n = 1, Ψ1,0,0(r) is a totally symmetric 1s orbital that transforms as the A1g representation of the local D3d

symmetry. The wavefunction at the Γ-point in pristine diamond is triply degenerate, which becomes Eg ⊕ A1g due
to the “crystal-field” induced by the SiV0 defect. The k index is ±1 for Eg and k = 0 for the A1g orbital. The total
Φ(r) wavefunction transforms as the product of the two constituent wavefunctions, A1g ⊗ (Eg ⊕ A1g) = Eg ⊕ A1g.
In other words, Φ(r) inherits the threefold multiplicity of the valence band maximum (VBM) states. The following
effective Hamiltonian describes this orbitally three-dimensional hole system,

Ĥ = ĤCF + ĤSO = −δ
3
|Eg〉〈Eg|+

2δ

3
|A1g〉〈A1g|+ λ

(
L̂xŜx + L̂yŜy + L̂zŜz

)
, (19)

where “CF” and “SO” are the crystal field and spin-orbit terms, respectively, and δ and λ are the strength of
crystal-field and spin-orbit interactions. If we choose the quantization axis along the [111] direction, parallel with the
symmetry axis of the SiV0 defect, then we may express the operators in Eq. (19) as

|Eg〉〈Eg| =

1

0

1

 |A1g〉〈A1g| =

0

1

0

 L̂x =
1√
2

 1

1 1

1

 L̂y =
1√
2

 −i
+i −i

+i

 L̂z =

1

0

−1

 .

(20)
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The crystal field lifts the degeneracy of the states |A1g〉 = (0 1 0) and |Eg+〉 = (1 0 0); |Eg−〉 = (0 0 1)

(|Eg±〉 = [|Eg(x)〉±i|Eg(y)〉]/
√

2). The three orbitals can be treated as an L = 1 system, where the k quantum number

labels the eigenstates of the Γ-point as L̂zuk(r) = k · uk(r), or in the matrix representation as L̂z|A1g〉 = 0|A1g〉 and

L̂z|Eg±〉 = ±|Eg±〉.
Now we consider the effect of the spin-orbit interaction. We assume that the weakly bound hole is almost spherically

symmetric, therefore ĤSO is also spherically symmetric, thus it can be described by a single λ value. The λ parameter
can be connected with the spin-orbit splitting of the VBM of diamond: ∆0 = 3

2λ.
The experimental value of the spin-orbit splitting of diamond is ∆exp.

0 = 6 meV [44–46]. Ab initio calculations tend
to overestimate this value by a factor of two (∆0 ≈ 13 meV [45–47]), consistent with our ab initio DFT calculations
yielding ∆p.w.

0 = 13.5meV. We calculated this value on a Γ-point centered 8×8×8 k-point set for a diamond primitive
cell, which results in λp.w.Γ = 9.03 meV. The factor of two between the experimental data and calculated value might
indicate the uncertainty in our DFT method or may represent a subtlety in the interpretation of the 6 meV signatures
in the spectrum for λ, as noted in an earlier study [46]. Nevertheless, we cannot unambiguously determine the source
of this discrepancy and this issue is beyond the scope of the present manuscript.

We used the following parameters to construct our model directly taken from DFT calculations. According to ab
initio ∆SCF [49] results, the hole experiences δ ≈ 8.8 ± 0.1 meV D3d crystal field [see Sec. IX C and Fig. S17(b)].
The spin-orbit energy is estimated from DFT calculations on the SiV− defect and λ ≈ 9.88 ± 0.05 meV is obtained
(Fig. S18). The results of the direct diagonalization of this effective Hamiltonian are listed in Table IV.

TABLE IV. Single particle eigenstates of the effective Ĥ Hamiltonian as given in Eq. (19). Note that the total angular

momentum J can be calculated by J(J + 1) = 〈Ĵ2〉 = 〈(L̂+ Ŝ)2〉 formula which can be reduced to the J =
√

1
2

+ 〈L̂ + Ŝ〉2− 1
2

expression. Additionally, the presence of the crystal field splitting (δ) reduces rotational symmetry, thus J is not a good number
and its expectation value is not a half integer. Nevertheless, without any D3d crystal field J is a good quantum number. The
heavy and light-hole bands combine to form a 4-fold degenerate J = L+ S = 3/2 level, and the split-off band constitutes the
J = L− S = 1/2 level. In other words, if one considers the effect of the crystal field, which lowers the spherical symmetry to
D3d point group symmetry, then the two E 1

2
g representations are allowed to mix with each other and, as a consequence, the J

quantum number deviates from the half-integer value.

energy (meV) L S J 〈Ĵz〉 〈L̂z〉 〈Ŝz〉 〈L̂Ŝ〉

E 1
2
g split-off band

-10.802 1 0.5 0.57 0.5 0.85 -0.35 -0.43

-10.802 1 0.5 0.57 -0.5 -0.85 0.35 -0.43

E 3
2
g heavy-hole band

2.007 1 0.5 1.50 1.5 1 0.50 0.50

2.007 1 0.5 1.50 -1.5 -1 -0.50 0.50

E 1
2
g light-hole band

8.795 1 0.5 1.46 0.5 0.15 0.35 -0.07

8.795 1 0.5 1.46 -0.5 -0.15 -0.35 -0.07

We calculate a ∼9 meV splitting between the quasi-particle hole levels. The experimentally-observed splitting
between the two n = 1 spin polarization resonances is 5.86 meV (difference between 886 nm and 889 nm peaks in
the spectrum), which is consistent with the experimental value of the spin-orbit parameter. The discrepancy between
our calculation and experimentally observed values is consistent with the general observation that ab initio methods
appear to overestimate this value.

We have so far only considered the wavefunction of the hole. The resulting SiV− defect also has non-zero spin,
and can be described by a second hole localized on the defect. This second hole may be described as a 2Eg orbitally
degenerate spin-half system that splits into the E 1

2 g
⊕ E 3

2 g
Kramers doublets. Under the assumption that the two

holes are independent of each other, we can construct the two-hole wavefunction as a direct product of the localized
hole in the SiV− eg orbital and the weakly-bound hole as follows:

split− off hole : E 1
2 g
⊗
(
E 1

2 g
⊕ E 3

2 g

)
= A1g ⊕A2g ⊕ 3Eg; (21)

heavy hole : E 3
2 g
⊗
(
E 1

2 g
⊕ E 3

2 g

)
= 2A1g ⊕ 2A2g ⊕ 2Eg; (22)

light hole : E 1
2 g
⊗
(
E 1

2 g
⊕ E 3

2 g

)
= A1g ⊕A2g ⊕ 3Eg. (23)
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One finds from Eqs. (21-23) that the E 1
2 g

split-off hole, the E 3
2 g

heavy hole, and the E 1
2 g

light hole Kramers

doublets will split further due to the coupling of the additional eg hole. Note, the A1g, A2g, Eg representations are
double group representations.

TABLE V. Two-hole eigenstates of the effective Ĥ Hamiltonian of Eq. (24). We depict the relative contributions of the S = 0
singlet and S = 1 triplet subspaces for each eigenstate. We also list the ms = 0 and ms = ±1 projections inside the triplet
subspace. For example, one can say that the heavy hole with 2.007 meV energy is 100% composed of an ms = ±1 triplet.
However, the light hole with 8.506 meV exhibits only 85% singlet probability since the spin-orbit coupling introduces 15%
ms = ±1 character into this dominantly singlet state.

triplets

singlets ↙ S = 1↘
energy (meV) S = 0 ms = 0 ms = ±1

split-off band

-10.948 0.44 0.42 0.15

-10.948 0.44 0.42 0.15

-10.948 0.44 0.42 0.15

-10.948 0.44 0.42 0.15

-10.853 0.15 0 0.85

-10.853 0.15 0 0.85

-10.802 0 0.15 0.85

-10.802 0 0.15 0.85

heavy-hole band

1.838 0.49 0.51 0

1.838 0.49 0.51 0

1.838 0.49 0.51 0

1.838 0.49 0.51 0

2.007 0 0 1

2.007 0 0 1

2.007 0 0 1

2.007 0 0 1

light-hole band

8.506 0.85 0 0.15

8.506 0.85 0 0.15

8.770 0.07 0.08 0.85

8.770 0.07 0.08 0.85

8.770 0.07 0.08 0.85

8.770 0.07 0.08 0.85

8.795 0 0.85 0.15

8.795 0 0.85 0.15

We note that both singlet and triplet spin configurations appear in these two-hole wavefunctions. The energy levels
of these states cannot be predicted by this simple model and we approximate those by ab initio simulations. We again
rely on the ∆SCF method. We can impose a triplet coupling between the localized eg hole and the weakly bound
hole, thus their spin state is maximally polarized |↑↑〉. However, we can also determine when the two holes exhibit
different spin projections such as |↑↓〉 which mimics the singlet configuration.

In this way, we are able to determine the difference between the singlet and triplet states as Λ = 0.34± 0.01 meV,
see Sec. IX E for details. Our DFT results follow Hund’s rule in that the triplet configuration is lower in energy than
the singlet configuration. Thus our effective Hamiltonian now becomes

Ĥ = ĤCF + ĤSO + Λ|singlets〉〈singlets|, (24)

where the singlet operator raises the energy of the singlet states as |singlets〉 = (|↑↓〉 − |↓↑〉)/
√

2 while leaving the
three triplet projections ms = −1, 0,+1 untouched. Considering the two-hole wavefunction significantly increases
the dimensionality of the problem, as can be seen from Table V. However, the coupling of the second hole only
perturbatively splits the three levels by ∼0.2 meV. Thus the single hole picture from Table IV is representative of the
physical nature of the system.
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FIG. S16. Schematic overview of the bound exciton model. (a) Depiction of orbitals and energy levels associated with
ground and excited states of SiV0. (b) Depictions of the bound exciton excitations, where the model is a SiV− with a weakly
bound hole that is orbiting around the negative defect.
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C. Extension to the n > 1 Bound Excitons

The computational complexity of the system increases rapidly with n, thus our calculations for the n = 2 transitions
in Sec. IX G are only a crude approximation. However, we can use the physical intuition we developed for the n = 1
states to describe some properties of these states. We summarize the energy levels of the bound exciton states in
Fig. S16.

For example, at n = 2, four different envelope functions are possible with Ψ2,l,m(r). There is a “2s” hole with l = 0
and m = 0 that transforms as A1g. There is also a 3-fold degenerate “2p” solution, which under the D3d crystal field
splits into 2pz with A2u representation and (2px,2py) with Eu representation. These states are visually depicted in
Fig. S16.

We make the following observations regarding the n = 2, 3 manifolds:

• If the primary source of the spin-orbit splitting again comes from the uk(r) wavefunction at the Γ-point then the
spin-orbit interaction for n = 2, 3 levels will be similar to the n = 1 value, approximately λ ∼ 10 meV. In this
case, this splitting would be independent of n since the uk(r) wavefunction will be the same for all n = 1 . . .∞.

• Only transitions to states with p-like envelope functions are expected to be optically active. Clusters of four
peaks are observed experimentally for “2p” and “3p”, see Fig. 3(a) of the main text.

• The energies of “1s”, “2s” peaks deviate most significantly from the Bohr model Eq. (17) [Fig. 3(b)]. However
the “2p” and “3p” states largely follow the 1/n2 law of the Bohr model. We treat this difference as a central cell
correction which alters the energy level of the “1s” state significantly (see Sec. IX G for details). The localized
eg orbital of the SiV− excludes the 1s from the 6 first neighbor carbon atoms, where it would exhibit otherwise
the highest probability density, increasing the spatial extent of this wavefunction. This central cell correction
effectively increases the excitation energy of “1s” and “2s”, but leaves “2p” and “3p” intact due to the radial
node at the origin in their probability density.

• It is extremely complicated to setup an effective Hamiltonian for “2p” and “3p” states in a similar fashion as
we did for “1s” in Eq. (19). Not only would the uk(r) wavefunction at the Γ-point would carry the orbital
momentum of Lz = −1, 0,+1, but the envelope function of “p” orbitals would also exhibit an L = 1 angular
momentum. However, the “2s” should behave very similarly to “1s”, albeit with altered crystal-field and spin-
orbit parameters.

IX. RESULTS OF DFT CALCULATIONS FOR THE ENERGY LEVELS OF BOUND EXCITON
RESONANCES

A. Method Summary

First principles plane-wave supercell DFT calculations are used to study the SiV0 center in diamond as implemented
in the vasp code [51]. The excited states are considered by the ∆SCF method which involves electron-hole interaction
and relaxation of ions upon excitation [49]. The paramagnetic states are treated by spin polarized functionals. The
spin-orbit energies are calculated within the scalar relativistic approximation [52]. The usual projector augmented
wave (PAW) projectors [53, 54] are applied on the carbon and silicon atoms with a plane wave cutoff of 420 eV. We
provide a foundation for the accurate calculation of the effective mass (acceptor) states within supercell modeling
in the subsequent sections. Our approach requires scaling of the properties as a function of supercell size. In the
scaling procedure, supercells of up to 8000 atoms are applied within the semilocal Perdew-Burke-Ernzerhof (PBE)
DFT functional [57], whereas supercells of up to 1000 atoms are employed in the hybrid Heyd-Scuseria-Ernzerhof
(HSE) DFT functional [55, 56].

B. Determining the n = 1, δ Parameter From Kohn-Sham Levels

We calculate the electronic structure of an SiV− defect embedded in diamond cubic supercells of 64, 216, 512, 1000,
1728, 2744, 4096, 5832, and 8000 carbon atoms within Γ-point sampling of the Brillouin-zone without incorporating
the spin-orbit interaction by means of the PBE [57] DFT functional. In this case, the VBM at the Γ-point should be
triply-degenerate in the perfect supercell calculation. However, due to the presence of the crystal field induced by the
defect in the defective supercell, the cubic symmetry of the supercell is lowered to D3d, thus the VBM at the Γ-point
splits into eg and a1g states. We define the Kohn-Sham energy difference of these two as δ = E(a1g) − E(eg). The
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FIG. S17. Crystal field splitting. We fit the δKS and δtot energy from Table VI versus supercell size.

TABLE VI. Kohn-Sham eigenstates of 64-8000 atom supercells in the spin minority channel. This spin channel corresponds
to the spin allowed optical transitions that are triplet-to-triplet transitions of SiV0.

C atom count 64 216 512 1000 1728 2744 4096 5832 8000 +∞
lattice constant Å 7.13 10.70 14.26 17.84 21.40 24.97 28.54 32.10 35.67 +∞

localized εKS(e′↑u )
eV 8.810 9.389 9.308 9.432 9.516 9.575 9.616 9.646 9.668

eV 8.810 9.389 9.308 9.432 9.516 9.575 9.616 9.646 9.668

delocalized εKS(e↑g)
eV 8.894 9.710 9.615 9.675 9.702 9.716 9.725 9.730 9.735

eV 8.894 9.710 9.616 9.675 9.702 9.716 9.725 9.730 9.735

delocalized εKS(a↑1g) eV 9.500 9.931 9.705 9.724 9.733 9.740 9.745 9.749 9.754

localized εKS(e′↑g )
eV 11.082 11.090 10.831 10.886 10.934 10.975 11.007 11.033 11.055

eV 11.082 11.090 10.831 10.886 10.934 10.975 11.007 11.033 11.055

δKS = εKS(a↑1g)− εKS(e↑g) meV 605.3 221.5 89.7 48.6 31.1 24.5 20.3 19.1 18.8 18.5±0.2

δtot = Etot(a
↑
1g)− Etot(e

↑
g) meV 757.6 247.4 102.4 55.0 35.9 27.1 20.8 18.5 7.91

optical excitation process can be described as promotion of an electron from the delocalized a1g or eg levels to the
unoccupied and localized eg level in the same spin channel. We use spin majority (minority) channel to refer to the
appropriate Kohn-Sham level in the calculation. As an example, for a S = 1 spin system in the ms = +1 configuration,
the spin-up electrons are in the majority, whereas in the ms = −1 configuration the situation is reversed.

Table VI lists the Kohn-Sham energies of the VB states and the localized eg and e′u orbitals for the excitation
process of SiV0 that occurs at 946 nm (taking the relaxation of ions upon excitation into account). We note that the
in-gap localized e′g level is occupied only by one electron, so we put half-half electrons onto e′g(x) and e′g(y) states, in

order to average out the Jahn-Teller instability of 2Eg state of SiV−.
Fig. S17(a) shows the δ crystal-field parameter as calculated from the energy gap of the Kohn-Sham levels. In order

to scale the result to the infinite system (isolated defect), we fit an δ(L) = A
L3 exp(− L

D ) + δ(+∞) function to the data
ranging in size from 216-atom to 8000-atom supercells. The Kohn-Sham energies, however, are auxiliary quantities
in Kohn-Sham DFT, thus we move to the next task of calculating the total energy differences by means of ∆SCF
method.

C. n = 1, δ Parameter From ∆SCF calculations

To take into account the electron-hole interaction, we calculate the total energies by ∆SCF method at the PBE level,
where we leave and constrain a hole inside a VBM state, and then converge the electronic structure with this constraint.
We calculate the total energy of the SiV− plus a hole left behind in the delocalized a1g state, and also where the hole

left behind is in the delocalized eg state. The calculated ∆SCF energies are scaled by a fit function δ(L) = A
L3 +δ(+∞)
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[Fig. S17(b)]. The fit describes the crystal field from total energy differences [δtot = Etot(a1g)−Etot(eg)] as a function
of supercell sizes ranging from 64-atom to 8000-atom supercells. The fit yields δ ≈ 8.84± 0.06 meV.

D. Spin-Orbit Coupling at the Γ-Point

Calculations of the spin-orbit coupling are performed as described previously [30]. We calculate the ground state of
SiV− and determine the spin-orbit splitting of the eg delocalized level in the Γ-point at the VBM. We can determine

the spin-orbit splitting λ as the energy difference between e↑g+ and e↑g− levels. We find that the accurate calculation
of this property requires scaling of supercell sizes as shown in Fig. S18, where we fit an exponential scaling function
to achieve the isolated defect limit with an infinitely large L → +∞ supercell. The 216-atom supercell is too small
for this quantity within Γ-point approximation and is not taken into account in the fitting procedure.

E. Triplet-Singlet Splitting of the n = 1 Series

We determined the strength of triplet-singlet splitting from the single particle Kohn-Sham levels of SiV− center.
Table VI shows the spin minority (↑) channel, where the optical transition occurs (one electron fills the double
degenerate e′↑g in the ground state which is fully occupied in the excited state). Table VII lists the Kohn-Sham levels

in the spin majority channel, where the e′↓g is fully occupied by two electrons. While the transitions from any occupied
single electron orbital from the spin minority channel are spin allowed upon optical excitation, the excitation process
which flips the spin is forbidden (because of the relatively small spin-orbit interaction). Therefore the energy splitting

Λ = ε(a↓1g)− ε(a
↑
1g) for the same orbitals but with the opposite spin channel provides insight into the spin forbidden

transition. That is, Λ gives a tentative approximation for the energy difference when the “1s” a1g hole couples with
the e′g with a spin triplet or spin singlet wavefunction. We note that the “1s” eg exhibits different triplet-singlet
splitting (λe). However, we use only the definition of Λ to derive the full singlet manifold, see Eq. (24).

F. Determining the n = 1 Excitation Energy by Means of ∆SCF Calculation at the HSE06 Level

Although the PBE functional provides insight into the nature of the bound exciton states, it underestimates
the optical excitation energies. To enable quantitative comparison to experimental data, we determine the optical
excitation energies by means of the HSE06 functional [55, 56], which provides approximately 0.1 eV accuracy for the
excitation and ionization energies of point defects in diamond. However, supercells containing more than 1000 carbon
atoms are computationally too expensive using the HSE06 functional. Thus, we exploit the two functionals for two
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TABLE VII. Kohn-Sham levels in the spin majority channel as obtained in the 64-8000 atom supercells. This spin channel
corresponds to the the spin forbidden optical transitions. These are the triplet to singlet transitions, where the electron spin
is flipped. The definition of triplet-singlet splitting (Λ) for the a1g “1s” involves the values from the spin up channel from
Table VI.

C atom count 64 216 512 1000 1728 2744 4096 5832 8000 +∞

ε(e′↓u )-localized
eV 8.726 9.261 9.219 9.377 9.482 9.553 9.601 9.634 9.659

eV 8.726 9.261 9.219 9.377 9.482 9.553 9.601 9.634 9.659

ε(e↓g)-delocalized
eV 8.731 9.671 9.599 9.667 9.697 9.712 9.722 9.728 9.733

eV 8.731 9.671 9.599 9.667 9.697 9.712 9.722 9.728 9.733

ε(a↓1g)-delocalized eV 9.490 9.928 9.704 9.723 9.732 9.740 9.744 9.749 9.753

ε(e′↓g )-localized
eV 10.884 10.880 10.599 10.644 10.689 10.729 10.760 10.785 10.807

eV 10.884 10.880 10.599 10.644 10.689 10.729 10.760 10.785 10.807

δ′KS = ε(a↓1g)− ε(e↓g) meV 758.7 257.4 105.0 56.0 35.4 27.4 22.4 20.8 18.2 18.5±0.2

Λ = ε(a↓1g)− ε(a
↑
1g) meV 9.92 3.45 1.65 0.99 0.71 0.59 0.50 0.53 0.54 0.34±0.01

Λe = ε(e↓g)− ε(e↑g) meV 163.36 39.31 16.86 8.37 4.97 3.40 2.60 2.19 1.97 0.49±0.13

different purposes: the PBE functional is used to simulate the supercell size dependence of these properties at the
N →∞ limit, i.e., completely isolated defect limit, and the HSE06 functional is used to correct the optical excitation
energies by comparing the PBE and HSE06 results at smaller supercells. We summarize the optical excitation processes
in Fig. S19 and Table VIII, where we depict three excitation processes:

• Excitation from the localized eg orbital into eu: ∆Eloc. This is the optical transition reported previously [8, 9, 33]

• Excitation from the localized eg orbital into the n = 1 bound exciton state: ∆En=1.

• Excitation from the localized eg orbital into the n = ∞ bound exciton state: ∆En=∞. This is the acceptor
adiabatic charge transition level.

TABLE VIII. Ab initio results and their comparison to the experimental data

|eg〉 ↔ |eu〉 n = 1 BE excitation charge transition level (n =∞)

N 1/L (Å) ∆EHSE06
loc ∆Ecorrected

loc ∆EPBE
n=1 ∆EHSE06

n=1 ∆Ecorrected
n=1 ∆EPBE

n→∞ ∆EHSE06
n→∞

64 0.140 1.972 1.943 1.445 1.573 1.616 1.293 1.741

216 0.093 1.489 1.459 1.019 1.234 1.276 0.975 1.309

512 0.070 1.374 1.344 0.946 1.224 1.267 0.929 1.259

1000 0.056 1.328 1.298 0.943 1.256 1.298 0.937 1.276

1728 0.047 0.953 0.952

2744 0.040 0.966 0.971

4096 0.035 0.977 0.985

5832 0.031 0.986 0.997

8000 0.028

+∞ 0 1.297 1.268 1.034 1.437 1.480 1.121 1.547

exp. 1.311 1.393 1.53

1. Excitation between the localized eg ↔ eu states

We determined the excitation process in various supercell sizes between N = 64 . . . 1000 carbon atoms by means of
HSE06 functional. The ∆Eloc excitation process that corresponds to the zero-phonon line optical signals at 946 and
951 nm can be expressed by the following formula:

∆EHSE06
loc (L) = Etot[SiV0

excited](L)− Etot[SiV0
ground](L). (25)
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Here, Etot[SiV0
excited](L) is the total energy of the SiV0 center in its |3A2g〉 ground state in a supercell with lattice

constant L. The second term Etot[SiV0
ground](L) depicts the total energy of the excited state. We showed in a previous

study [31] that the product Jahn-Teller effect plays a significant role in the excitation process of SiV0. Thus, we correct
the pure electronic ab initio data by the following 29.7 meV correction,

∆Ecorrected
loc (L) = ∆EHSE06

loc (L) + ∆Epolaronic
loc (L = 14.26Å)−∆EHSE06

loc (L = 14.26Å)︸ ︷︷ ︸
=−29.7 meV

, (26)

where ∆Epolaronic
loc (L = 14.26Å) = 1.344 eV is the product Jahn-Teller ground state in the 512-atom diamond supercell

and ∆EHSE06
loc (L = 14.26Å) = 1.374 eV is the value as obtained from Eq. (25). Here, we assume that the correction

from the product Jahn-Teller effect does not depend on the size of the supercell.

2. n =∞ transition, charge transition level

Determining correct charge transition levels of defects always has been a difficult task in the supercell method.
The origin of the inaccuracy is the Coulomb interaction which converges to zero with a long range 1/L strength.
In a supercell that embeds a charged point defect, the mirror images of the charged defect and the compensating
jellium charge in the plane wave supercell model interact via the long range Coulomb interaction. There are various
correction schemes developed over the years to correct this artificial interaction such as Makov and Payne [36] (MP),
Freysoldt, Neugebauer, and Van de Walle [37] (FNV), and Lany and Zunger [38] (LZ). However, while the correction
schemes provide accurate charge transition levels for supercells for a given size for moderately localized defect states,
the most reliable method is to calculate the charge transition level with various supercells and fit the 1/L strength of
the Coulomb interaction. Thus we determined the charge transition energy as follows

∆EHSE06/PBE
n→∞ (L) = Etot[SiV−ground](L)− Etot[SiV0

ground](L)− εVBM(L), (27)

which consists of three individual DFT calculations. The first Etot[SiV−ground](L) term is the total energy of the SiV−

defect. The second Etot[SiV0
ground](L) is the total energy of the SiV0 defect. The third εVBM(L) is the valence band

maximum of the perfect supercell. This is the Kohn-Sham eigenvalue of the highest occupied band of the diamond
supercell with L lattice size, where the Brillouin zone is sampled only at the Γ-point. We fit the following curve to
our data to approach the L→ +∞ bulk limit [35]:

∆EHSE06/PBE
n→∞ (L) =

A

L
+
B

L3
+ C ∆EHSE06/PBE

n→∞ (L→∞) = C. (28)

The A
L term is the long range monopole term of Coulomb interaction, the second B

L3 is the quadrupole term, while
we seek the value of C corresponding to the isolated defect limit. We fit this formula to our ab initio data by means
of HSE06 and PBE DFT functionals. The results are depicted in Fig. S19(a). HSE06 provides 1.55 eV which is in
excellent agreement with the experimental data (1.53 eV).

3. Screening Effects in the n = 1 Transition

The n = 1 localized excitation can be considered as a two-particle system. The first particle in SiV− traps a
positively charged hole. We study an analogous system with a hydrogen atom confined into a small supercell. There
the positively charged proton attracts the negative electron. When viewed from a remote distance, both systems are
localized and neutral. If the supercell size is much larger than the Bohr radius of the hydrogen atom-like system (a0)
or rn=1 radius for SiV defect (see Table III), then the effect of the charged central particle is screened. This screening
effect can have non-trivial effects on the functional form of the calculated energy as the supercell size is varied.

First, we determine the ratio of the screening length (DH) versus the Bohr radius of hydrogen (a0). Then, we use
this ratio to approximate the screening length for the n = 1 bound exciton excitation. We note that this screening
effect does not happen for the n = +∞ case as the VBM electron is delocalized all over the diamond lattice.

It can be observed in Fig. 3(b) that the n = 1 state is poorly described by the simple model. The origin of this
correction is that the n = 1 orbital is expelled from the central region of the defect as the eg orbital of SiV− already
occupies this region. Therefore, the binding energy will be increased by ∆ = 0.23 eV, and the effective radius (reff)
will be larger than that of the simple Bohr model (rn=1). However we also take into account that the 1s orbital is
active by an ungerade phonon. Therefore the real central cell correction is only ∆ − h̄ωA2u

. Here we determine this
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effective radius for the n = 1 case. We search for the effective neff that reproduces the excitation-energy (Eeff) by
means of central cell correction as given by

Eeff = EI−Ey/n2
eff = EI − Ey︸ ︷︷ ︸

=En=1

+∆−h̄ωA2u
⇒ neff =

√
Ey

Ey − (∆− h̄ωA2u
)

=

√
0.4

0.4− 0.23 + 0.0434
= 1.37, (29)

where EI is the ionization energy. Thus the effective Bohr radius is more than twice as large as the simple hydrogen
model would indicate for the n = 1 state,

reff = r0n
2
eff = 1.87 · r0. (30)

We also determine the ratio of the screening length (D) to the Bohr radius (r0). We model this with a hydrogen
atom in the simple cubic supercell with lattice constants (L). Since this system contains a single electron we apply
the exact Hartree-Fock method in the calculation with a soft PAW potential with a plane wave cutoff of 200 eV.
The results are shown in Fig. S19(d). One can clearly see that the Coulombic scaling (−1/L) deviates at sufficiently
large supercells. We note that this scaling behavior is independent of the choice of the ionic potential of the proton
(not shown) and the calculated total energies have a constant shift in each supercell. From a sufficiently far vantage
point, the hydrogen atom is a neutral object, thus at large supercells (L > 4 Å), the energy of the system converges
exponentially to a constant energy. We fit the total energies by

EH(L) =
A

L
exp

(
−DH

L

)
+ C, (31)

where the Coulomb interaction (A/L) is screened by exp
(
−DH

L

)
. We note that the repulsive 1/L3 term is missing

because only a single proton appears in the system. Using this fitting procedure, we find DH = 1.90 Å = 3.56 · a0.
The screening radius for the periodic array of hydrogen atoms is 3.56 times larger than the Bohr radius (a0 = 0.53Å
n = 1) of the isolated free hydrogen atom.

Combining these results gives

D =
DH

a0
reff =

DH

a0
r0n

2
eff =

DH

a0

me

m?

ε

ε0
a0n

2
eff =

me

m?

ε

ε0
n2

effDH. (32)

As a consequence, the effective screening lengths based on theoretical considerations and the hydrogen atom model
for heavy hole, split-off hole, light hole, respectively, are the following:

Dheavy hole = 9.6 Å (33a)

Dsplit−off hole = 19.2 Å (33b)

Dlight hole = 29.0 Å, (33c)

which approaches D = 37.4 Å as obtained from the fit to ab initio data. Therefore, we can rationalize and explain
the existence and magnitude of the screening length. This highlights again that the hydrogen-model for the n = 1
bound exciton excited state is a poor approximation. The accuracy of this model is greatly improved for n > 1 excited
states.

4. n = 1 Bound Exciton Transition

We determine the excitation energy to the lowest n = 1 bound exciton state with the following formula,

∆E
HSE06/PBE
n=1 (L) = Etot[SiVBE

n=1](L)− Etot[SiV0
ground](L), (34)

which is very similar to Eq. (25) except that we have replaced the excited state with Etot[SiVBE
n=1](L). Upon inspection

of the n = 1 and n = +∞ results, both cases exhibits the long range Coulomb A
L + B

L3 + C scaling. However, the
analysis in the previous section shows that the Coulomb interaction is screened for the n = 1 state. From a sufficiently
large distance, the SiV− center plus a bound hole is a neutral object. Therefore at L→ +∞ the 1/L scaling should



29

be overtaken by a fast converging function such as screening damped by an exponential function. Thus we used the
following fit function for the bound exciton resonances,

∆E
HSE06/PBE
n=1 (L) =

A

L
exp

(
− L
D

)
+
B

L3
+ C ∆E

HSE06/PBE
n→1 (L→∞) = C. (35)

We determine the screening length from PBE results (D−1 = 37.4±5.1Å), where A,B,C,D are fit parameters. Next,
we use the fitted D to constrain HSE06 results, thus we assume that the D is fixed, and allowed the remaining A,B,C
parameters to fit our data. Additionally we need to take into account that the n = 1 state is optically not allowed by
itself since it can be only observed by coupling to the A2u localized vibration mode of the Si atom. Therefore one has
to add the frequency (energy) of this oscillatory motion h̄ωA2u

= 43.4 meV (see Table I in Ref. [50]) to the excitation
energy which results in

∆Ecorrected
n→1 (L) = ∆EHSE06

n=1 (L) + h̄ωA2u . (36)

G. Central Cell Correction and n = 2 Transitions

We could also tentatively converge some of the n = 2 resonances in the DFT calculations. We are unable to
calculate these states by means of the accurate, but computationally-demanding, ∆SCF calculations. Nevertheless,
Kohn-Sham orbitals and levels of SiV− provide additional information beyond the “1s” states. We plot energies (not
shown in Table VI) below the eu localized orbital in Fig. S20. The “2s” excitation splits into A1g ⊕ Eg in a similar
manner as the “1s”. The energy separation between them is approximately E(1s) − E(2s) ≈ 57 meV, much larger
than the separation between the “2p” and “1s” series, E(1s) − E(2p) ≈ 40 meV. We note that the “2s” orbitals do
not mix with the 3Eu state because of the different parity of the wavefunctions but the “2p” orbitals can in principle
mix with the 3Eu state, making an accurate calculation demanding.

There are three times as many “2p” than “2s” states,

VBM︷ ︸︸ ︷
(A1g ⊕ Eg) ⊗

2p︷ ︸︸ ︷
(A2u ⊕ Eu) = 3Eu ⊕ 2A2u ⊕ 2A1u, because

there are three 2p orbitals (px, py, pz), in addition to three orbitals split from the VBM states. According to ab initio
calculations, we can assign a set of eu and a1u orbitals for the n = 2 series in Fig. S20(b) but cannot find the two a2u

orbitals. We suspect that the 8000-atom supercell is still too small to accommodate these states, thus our predictions
about “2p” states can only be tentatively compared to the experimental data.

Nevertheless, our results clearly indicate that the “1s” is followed by the “2p” and not by the “2s”. This is not a
surprising result in the light of the fact that the “1s”, “2s” orbitals are totally symmetric and have maximum density
of their wavefunctions at the core of the SiV− defect, making them subject to a more significant central-cell correction.

If we compare this result against the experimental spin polarization and optical absorption spectra then one can
tentatively assign the spin-polarization peaks, which are not optically active at ∼837 nm [see Fig. 3(a)], to the “2s”
bound exciton resonance. Finally, we note that we cannot fully exclude the possibility that “3d” orbitals can also
play a role in the optical spin polarization with photo-excitation near 830-840 nm wavelength region in the spin
polarization spectra.
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n=1 bound exciton excitation
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FIG. S19. Excitation processes of SiV0. (a) Charge transition level of SiV between neutral and negative charge states
by means of HSE06 and PBE functionals. We conclude that in the L → +∞ limit, our HSE06 results (1.55 eV) agree with
the experimental data from Fig. 1 in the main text (1.53 eV). (b) n = 1 bound exciton excitation by means of HSE06 and
PBE functionals. Here we can see that the HSE06 limit at L → +∞ with screening included can explain the experimentally
observed values at 1.39 eV. We note that the exponential part exp(−D/L) in the fit function relies on minor deviation in the
meV regime, thus our result of D−1 = 0.027 ± 0.004Å−1 is unambiguous. (c) Scaling of the eg ↔ eu excitation process by
means of HSE06 functional. (d) Hydrogen atom model in a Γ-point only calculation in a cubic supercell. (e) Schematic of the
hydrogen atom in vacuum. The electron is effectively closed into a L3 box. However, it is effectively not a box, as its warps
around its edges. Thus the H atom bonds with itself. From a sufficiently large L >∼ 4Å distance, the H-atom in the supercell can
be interpreted as a free non-interacting H-atom. We note that all calculations shown here are calculated only at the Γ-point.
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n=2 series, comparison of "1s" and "2p"
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FIG. S20. Kohn-Sham levels of n = 2 bound exciton states. We note the fitting of n = 1 orbitals crystal-field splitting
parameter δKS(1s) are not as good as in Fig. S17(a) because we fit the 1s(A1g) and 1s(Eg) single particle energies individually
(and not their difference) with a slightly different fit function. (a) “2s” bound exciton resonances are below the “1s” orbitals by
≈ 57 meV. (b) “2p” bound exciton resonances are below the “1s” orbitals by ∼ 40 meV. We note that the fit on the data of “2p”
levels is very tentative. However, the sign of “2s” crystal-field splitting is seemingly the opposite to that of the 1s (δKS(2s)).
We note that the energy difference of 2s and 2p can not directly compared with experiments (E(2p) − E(2s) = 17 meV). We
have seen in Section VII that the “s” orbitals are only active with an assisting ungerade phonon, thus we need to add (see
Eq. (36)) the energy of that phonon (see Table I in Ref. 50) to the “2s” orbital. Thus the calculated transition energy for the
2s state is 60 meV (17 + 43.4 = 60.4 meV.) higher than the 2p state by means of our DFT results.
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