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Abstract

In this paper, the problem of securely computing a function over the binary modulo-2 adder multiple-access
wiretap channel is considered. The problem involves a legitimate receiver that wishes to reliably and efficiently
compute a function of distributed binary sources while an eavesdropper has to be kept ignorant of them. In order
to characterize the corresponding fundamental limit, the notion of secrecy computation-capacityis introduced.
Although determining the secrecy computation-capacity ischallenging for arbitrary functions, it surprisingly turns
out that if the function perfectly matches the algebraic structure of the channel and the joint source distribution
fulfills certain conditions, the secrecy computation-capacity equals the computation capacity, which is the supremum
of all achievable computation rates without secrecy constraints. Unlike the case of securely transmitting messages,
no additional randomness is needed at the encoders nor does the legitimate receiver need any advantage over the
eavesdropper. The results therefore show that the problem of securely computing a function over a multiple-access
wiretap channel may significantly differ from the one of securely communicating messages.

Index Terms

Secure distributed computation, computation coding, multiple-access wiretap channel, physical-layer security

I. INTRODUCTION

In their seminal work [1], Nazer and Gastpar lay the information-theoretic foundation of distributed
computation over unreliable channels. The big difference between this approach and the standard theory
dealing with reliable message transfer is that, in [1], the intended receiver decodes function values
immediately from the channel output. In other words, the receiver does not care about individual messages
and penalizes itself only when the function is incorrectly decoded.

In this regard, Nazer and Gastpar show that in many cases, theperformance gain over separation-based
computation strategies is proportional to the number of source terminals. In a separation-based strategy,
the receiver first reliably decodes all individual messagesand subsequently computes the sought function
value. It is remarkable that the gains over separation-based strategies stem from a match between the
desired function and the algebraic structure of the channel. Since the publication of [1], the results and
ideas have been extended in many different ways [2]–[6].

Due to the trend towards large-scale decentralized networks consisting of many mutually distrusting
terminals,security and integrityof computation results are of high priority in order to guarantee trustworthy
operation. In this work, we therefore make a first attempt to extend the concept of computation coding [1]
by taking information theoretic security aspects into account. In particular, we consider the problem of
computing a function over the binary modulo-2 adder multiple-access wiretap channel (MAWC). The prob-
lem involves a legitimate receiver that wishes to reliably compute a function of distributed binary sources
in the presence of an eavesdropper. To characterize the corresponding fundamental limit, we introduce
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the notion ofsecrecy computation-capacity. Although determining the secrecy computation-capacity for
arbitrary functions is challenging, it turns out that if thefunction perfectly matches the algebraic structure
of the modulo-2 adder MAWC and the joint source distributionfulfills certain conditions, the secrecy
computation-capacityequalsthe computation capacity. Thus, the algebraic structure ofthe channel not
only helps to efficiently compute the desired function but also to protect the transmitted source sequences
against eavesdropping. It is noteworthy that, to achieve this, the source terminalsdo not needany additional
source of randomness nor does the legitimate receiver need any advantage over the eavesdropper. This is
in contrast to standard physical-layer security results.

A. Related Work

Considering secure distributed computation, also known assecure multi-party computation, from an
information theoretic (i.e., Shannon) perspective is still in its infancy. To the best of the authors’ knowledge
there exist only some very recent results. For instance, Tyagi et al. introduce a new Shannon theoretic
multiuser source model in [7] and [8] and characterize when afunction is securely computable. In this
context, they provide necessary and sufficient conditions for the existence of protocols that achieve this.

Within the standard secure multi-party computation model of [9], Lee and Abbe determine in [10]
the least amount of randomness needed for securely computing a given function. This provides a novel
notion of the complexity of a function for its secure computation. In the second part of that paper, the
considerations are extended to a probabilistic source model for which the decoding error probability is
required to vanish asymptotically in the block length.

In [11], Data et al. take a distributed source coding approach to the problem of securely computing
the modulo-2 sum of two distributed binary sources. Similarly to [10], they assume the data to be drawn
from some joint memoryless source and derive bounds on the amount of randomness and communication
needed to asymptotically achieve secrecy. In [12], the results are extended to arbitrary functions.

All these works are through the lens of source coding, which means that the communication between
terminals is assumed to take place over noiseless channels.In this paper, we therefore choose ajoint
source-channel codingperspective.

B. Paper Organization

This paper is organized as follows. Section II introduces the binary modulo-2 adder MAWC and provides
the problem statement. In order to obtain some insight, in Section III we focus first on the noiseless case.
The noisy case is then considered in Section IV, which also contains a comparison with separation-based
schemes. Section V concludes the paper.

C. Notational Remarks

If multiplied by a matrix, a random length-n sequenceXn := (X1, . . . , Xn) is considered as a column
vector. Forp ∈ [0, 1], H(p) = −p log2 p − (1 − p) log2(1 − p) denotes the binary entropy function with
the convention0 log2 0 = 0. The Bernoulli distribution with parameterp ∈ [0, 1] is denoted asBern(p),
which means thatX ∼ Bern(p) takes on value1 with probability p. Addition modulo-2 is denoted as⊕
andδij represents the Kronecker delta, which is1 for i = j and0 otherwise.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let S1, . . . , SM beM binary memoryless sources drawn from a joint probability mass functionPS1···SM
.

In the presence of an eavesdropper, the sources are communicated to a legitimate receiver over a noisy
channel. Unlike the usual setup in which the legitimate receiver wishes to reliably reconstruct each
individual source while keeping the eavesdropper ignorantof them [13]–[15], in this paper the legitimate
receiver is interested in reliably and securely computing aBoolean function

f : {0, 1}M → {0, 1} , U = f(S1, . . . , SM)
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Fig. 1. Secure computation over the binary modulo-2 adder multiple-access wiretap channel: a legitimate receiver wishes to reliably compute
a functionU = f(S1, . . . , SM ) of the sources while an eavesdropper has to be kept ignorant of them.

of the sources, to which we refer as thedesired function.
In particular, as illustrated in Fig. 1, we consider the toy scenario in which the channel between the

sources and the destinations can be modeled as a memorylessbinary modulo-2 adder multiple-access
wiretap channel, which is characterized by the input-output relations

Y = X1 ⊕ · · · ⊕XM ⊕NY , (1a)

Z = X1 ⊕ · · · ⊕XM ⊕NZ . (1b)

Here and hereafter,Xm ∈ {0, 1} is the channel input of source terminalm, Y is the channel output
seen by the legitimate receiver andZ the output observed by the eavesdropper, respectively. Thenoise
variablesNY ∼ Bern(p) andNZ ∼ Bern(q), for somep, q ∈ [0, 1/2], are assumed to be independent of
the channel inputs.

Remark 1.Note that each of the two multiple-access channels (MACs) in(1) is a modulo-2 adder followed
by a binary symmetric channel (BSC).

For somek ∈ N, Sk
m denotes a length-k sequence of independent and identically distributed samples

of sourcem, m = 1, . . . ,M . In order to reliably compute at the legitimate receiver thesequence of
corresponding function values,Uk, the source terminals employ a length-n computation code defined as
follows [1].

Definition 1. Given a fixed desired function, a(k, n) computation codefor the binary modulo-2 adder
MAWC consists of the following:

• Encoding functions
φm : {0, 1}k → {0, 1}n , m = 1, . . . ,M ,

each of which mapsk source symbols to a length-n codeword (i.e.,φm(s
k
m) = xnm);

• A decoding function at the legitimate receiver

ψ : {0, 1}n → {0, 1}k ,

which maps each channel output sequence to a length-k sequence of function values (i.e.,ψ(yn) = ûk).

The average probability or errorof a (k, n) computation code is defined as

P (n)
e := P

[
Ûk 6= Uk

]
,

whereas the information about the source sequencesleakedto the eavesdropper is measured by

I(Sk
m;Z

n) , m = 1, . . . ,M ,
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which we combine to the single constraint

L(n) := I(Sk
1 ;Z

n) + · · ·+ I(Sk
M ;Zn) . (2)

Definition 2. For some given desired function, a rateR := k/n is said to be anachievable secrecy
computation-rateif there exists a sequence of(nR, n) computation codes such that

lim
n→∞

P (n)
e = 0 and lim

n→∞
L(n) = 0 .

Definition 3. For some given desired function, thesecrecy computation-capacityis defined as

Csc
:= sup{R : R is an achievable secrecy computation-rate}.

Since the problem is challenging for arbitraryf , in this paper we focus on securely computing the
modulo-2 sum of the source symbols:f(s1, . . . , sM) = s1 ⊕ · · · ⊕ sM .

III. T HE NOISELESSCASE

First, in order to fix ideas and obtain insight, in this section we consider the noiseless case (i.e.,
p = q = 0), which results in the channel outputs

Y = Z = X1 ⊕X2 ⊕ · · · ⊕XM .

For a certain class of joint source distributions, we have the following result.

Theorem 1. Let the desired function be the modulo-2 sum and the joint source distribution such that
PSmU = PSm

PU for all m = 1, . . . ,M . Then, thesecrecy computation-capacityis Csc = 1 function values
per channel use.

Proof: (Achievability).Transmitting the source samplesuncodedresults in the channel output se-
quences

Zk = Y k = Sk
1 ⊕ · · · ⊕ Sk

M = Uk

and thus inP (n)
e ≡ 0. On the other hand, we have

I(Sk
m;Z

k) = kI(Sm;Z) = kI(Sm;U) .

But if PSmU = PSm
PU , thenSm andU are statistically independent and thereforeI(Sm;U) = 0. As this

applies to allm = 1, . . . ,M , it follows for the leakageL(n) ≡ 0. That is, we are able to reliably compute
one function value per channel use while the eavesdropper isnot able to obtain any information about
the source sequences.

(Converse).If we allow the encoders to fully cooperate, then the sum rateof the MAC in (1a) cannot
exceedmaxPX1...XM

I(X1, . . . , XM ; Y ), wherePX1...XM
denotes the joint distribution of the channel inputs.

With or without secrecy constraint, we have

I(U ; Û)
(a)
≤ I(X1, . . . , XM ; Y )

= H(Y )−H(Y |X1, . . . , XM)

= H(U)−H(U |S1, . . . , SM)
(b)
= H(U)

≤ 1 ,

which is a tight upper bound in our case. Note that (a) followsfrom the data processing inequality and
(b) from the fact thatU is a function ofS1, . . . , SM .
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Due to the modulo-2 additivity of the channel along with the fact that the desired function perfectly
matches this algebraic structure, the source sequences behave like one-time padsprotecting each other.
Thus, the algebraic structure of the channel not only helps to efficiently compute the desired function at
the legitimate receiver but also to protect the source sequences against eavesdropping. A remarkable fact is
that the source terminalsdo not needany additional source of randomness nor does the legitimatereceiver
need any advantage over the eavesdropper. This is in stark contrast to standard physical layer security
problems in which a legitimate receiver typically wishes tosecurely decode messages. For instance, when
the objective is to securely communicate messages over a MAWC, without local randomness the achievable
secrecy rate region would be an empty set [13]–[15].

Remark 2.Note that the coding strategy used in the proof of Theorem 1 achievesperfect secrecy. Fur-
thermore, the converse part of the proof implies that for theconsidered scenario, the secrecy computation-
capacity equals the computation capacityCc. The latter is defined as the supremum over all achievable
computation rates (i.e., without secrecy constraints) [1].

It is obvious that independentBern(1/2) sources fulfill the condition of Theorem 1 (i.e.,PSmU = PSm
PU

for all m = 1, . . . ,M). Characterizing the set of all joint source distributionsthat fulfill this condition,
however, is a nontrivial problem and beyond the scope of thispaper. For the special caseM = 2, we
have the following result.

Theorem 2. LetU := S1⊕S2. Then,PSmU = PSm
PU , m = 1, 2, if and only ifPS1S2

is doubly symmetric.
That is, if and only ifPS1S2

is of the form

PS1S2
(s1, s2) =

1

2
(1− θ)δs1s2 +

1

2
θ(1− δs1s2) , (3)

for θ ∈ [0, 1].

Proof: The proof is deferred to the Appendix.

IV. THE NOISY CASE

Now, we extend our considerations to the noisy case in which parametersp and q can be chosen
arbitrarily (see (1)).

A. Computation Capacity vs. Secrecy Computation-Capacity

Before presenting the main result of this paper, we recap a result that provides the computation capacity
of the binary modulo-2 adder MAC given in (1a).

Theorem 3 (Nazer - Gastpar [1]). Letf be the modulo-2 sum. Then, thecomputation capacityof the
binary modulo-2 adder MAC (1a) is given by

Cc =
C

H(U)
=

1−H(p)

H(U)
,

whereC denotes the capacity of a BSC with crossover probabilityp.

For the achievability part of the proof, Nazer and Gastpar employ random linear code ensembles for
source compression and channel coding. By following their approach, we are able to extend Theorem 1
to the following.

Theorem 4. Letf be the modulo-2 sum and the joint source distribution such that PSmU = PSm
PU for

all m = 1, . . . ,M . Then, thesecrecy computation-capacityof the binary modulo-2 adder MAWC is

Csc = Cc =
1−H(p)

H(U)
.
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Proof: (Achievability).Let C = 1 − H(p) denote the capacity of a BSC with crossover probability
p ∈ [0, 1/2].

• Code construction:Generate two matricesA ∈ {0, 1}n×ℓ and B ∈ {0, 1}ℓ×k, each entry drawn
uniformly and independently at random, with

kH(U) < ℓ < nC . (4)

RevealA andB to the source terminals, the legitimate receiver, and the eavesdropper.
• Encoding:Given skm at source terminalm, transmit

xnm = φm(s
k
m) = ABskm , (5)

where all operations are carried out modulo-2.
With this encoding rule, the legitimate receiver observes the sequence of channel output symbols

Y n = Xn
1 ⊕ · · · ⊕Xn

M ⊕Nn
Y

= ABSk
1 ⊕ · · · ⊕ ABSk

M ⊕Nn
Y

= AB(Sk
1 ⊕ · · · ⊕ Sk

M
︸ ︷︷ ︸

=Uk

)⊕Nn
Y . (6)

Effectively, (6) is a BSC with crossover probabilityp. The random linear code induced by generator matrix
A therefore has the objective of protectingBUk against the noiseNn

Y , whereas the linear code induced
by B is used to compressUk to its entropy. As long as condition (4) is fulfilled, there exist decoding
functionsψ′ : {0, 1}n → {0, 1}ℓ andψ′′ : {0, 1}ℓ → {0, 1}k such that for arbitraryε > 0 and n large
enough, the average probabilities of error (averaged overA andB) fulfill P(ψ′(Y n) 6= BUk) < ε

2
and

P(ψ′′(BUk) 6= Uk) < ε
2
. This was shown in [1] based on results from [16] and [17]. Thus, defining the

decoding function of Definition 1 as

ψ(yn) := (ψ′′ ◦ ψ′)(yn) ,

by means of the union of events bound we haveP
(n)
e < ε as long asR = k

n
< C

H(U)
andn sufficiently

large.
Now, we analyze the leakage. As in the proof of Theorem 1, we consider each term ofL(n) separately.

Towards this end,

I(Sk
m;Z

n|A,B)

= I(Sk
m;ABU

k ⊕Nn
Z |A,B)

≤ I(Sk
m;ABU

k ⊕Nn
Z , U

k|A,B)

= I(Sk
m;U

k|A,B) + I(Sk
m;ABU

k ⊕Nn
Z |A,B, U

k)

= I(Sk
m;U

k) + I(Sk
m;N

n
Z |U

k)

= 0 ,

where the last equality follows from the assumptionPSmU = PSm
PU , the memorylessness of the sources,

and the independence ofSm andNZ . As this applies to allm = 1, . . . ,M , we haveL(n) ≡ 0.
(Converse).For the average probability of error,P (n)

e , to vanish with increasing block length, with or
without a secrecy constraint every computation code has to fulfill

kH(U) ≤ I(Uk; Ûk) (7)
(a)
≤ I(Xn

1 , . . . , X
n
M ; Y n)

≤ max
PX1,...,XM

I(Xn
1 , . . . , X

n
M ; Y n)

= n
(
1−H(p)

)
, (8)
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where (a) is due to the data processing inequality. Combining the left hand side of (7) with (8) results in
the upper boundR = k

n
≤ 1−H(p)

H(U)
, which is tight in our case.

Remark 3.It has to be emphasized that the secrecy computation-capacity of Theorem 4 is independent
of the MAC between the source terminals and the eavesdropper(i.e., independent ofq). Note also that
perfect secrecyis achieved.

Surprisingly, the sequence of linear random codes that achieves the computation capacity also achieves
the secrecy computation-capacity. No additional source ofrandomness is needed at the encoders as in the
noisy case the source sequences act as one-time pads as well.

B. Comparison with Separation-Based Computation

Consider the caseM = 2 and let(S1, S2) be a doubly symmetric source with joint probability mass
function given by (3). By means of this explicit example, in this subsection we compare Theorem 4 with
the secrecy computation-rate that is achievable with a separation-based coding scheme. A separation-
based scheme first distributively compresses the source sequences into messages and then uses a capacity
achieving MAC code in order to reliably reconstruct the messages at the legitimate receiver. OnceŜk

1

and Ŝk
2 are known to the legitimate receiver it computesÛk = Ŝk

1 ⊕ Ŝk
2 , resulting in an estimate of the

sequence of function values.
For this scenario, in [1] it is shown that the best possible computation rate (i.e., without secrecy

constraint) achievable with separation is

R =
1

2

(
1−H(p)

H(θ)

)

. (9)

The rate can be achieved with Körner-Marton compression forU [18] in combination with time-sharing.1

Compared with Theorem 3, this rate is only half the computation capacity. Because of time-sharing,
however, when adding secrecy constraints the other source sequences may not act as one-time pads any
longer so that local randomness has to be used at the encodersin order to confuse the eavesdropper.

Theorem 5. LetM = 2, f be the modulo-2 sum, and the joint source distribution as given in (3).
Furthermore, letp ∈ [0, 1/2) andq = q′(1−2p)+p for someq′ ∈ (0, 1/2]. Then, for the binary modulo-2
adder MAWC, the best secrecy computation-rate achievable with separation is

R =
1

2

(
H(q)−H(p)

H(θ)

)

. (10)

Proof: (Achievability).As in the achievability part of the proof of Theorem 4, the source terminals
use the same linear random code for compressingU to its entropyH(U) = H(θ). In [18], Körner and
Marton show that this is optimal for the joint source distribution given in (3). Now, using time-sharing,
the legitimate receiver alternately observes the channel outputs

Y ′ = X1 ⊕NY and Y ′′ = X2 ⊕NY (11)

while the eavesdropper sees

Z ′ = X1 ⊕NZ and Z ′′ = X2 ⊕NZ . (12)

Thus, for each channel use we effectively have a binary symmetric wiretap channel of secrecy capacity

C(p)− C(q) = 1−H(p)−
(
1−H(q)

)

= H(q)−H(p) ,

1Note that for the two MACs given in (1), time-sharing is optimal.
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where C(q) denotes the capacity of the BSCs in (11) andC(p) the capacity of the BSCs in (12),
respectively.2 Thus, using standard wiretap coding allowsP (n)

e and L(n) to be driven to zero as long
as the sum rate fulfills

k2H(θ) < n
(
H(q)−H(p)

)
,

which provides the rate in (10).
(Converse).It can easily be checked that forp ∈ [0, 1/2) and q′ ∈ (0, 1/2], the conditionq = q′(1 −

2p)+p implies an eavesdropper channel that is physically degraded with respect to the legitimate receiver’s
channel. In this case, the secrecy capacity region of the two-user binary modulo-2 adder MAWC is given
by all rate pairs

{
(R1, R2) ∈ R

2
+ |R1 +R2 < H(q)−H(p)

}
,

which follows from [19, Th. 1]. Thus, time-sharing in combination with single-user wiretap coding is
optimal.

After comparing (10) with (9), we conclude that separation-based computation schemes generally suffer
from imposing a secrecy constraint. In order to keep the source sequences secret from the eavesdropper,
wiretap coding is needed and therefore local randomness at the encoders. This generally further reduces
the achievable computation rate.

V. CONCLUSION

We have considered the problem of securely computing a function of distributed sources over the
binary modulo-2 adder MAWC. Instead of individual source samples, the legitimate receiver is interested
in reliably decoding from the channel output a function of the sources. To characterize the corresponding
fundamental limit, we have introduced the notion of secrecycomputation-capacity and determined it for
a function that perfectly matches the structure of the channel. Unlike standard results in physical-layer
security, no additional randomness is needed in order to confuse the eavesdropper.

Future work includes extensions to more general functions and MAWCs as well as to the case in which
the joint source distribution does not fulfill the conditionPSmU = PSm

PU , m = 1, . . . ,M . On the other
hand, the leakage in (2) might be replaced by another secrecycriterion such asL(n) = I(Uk;Zn). This
criterion is less restrictive as it prohibits the eavesdropper only from knowing anything about the function
to be computed at the legitimate receiver.

APPENDIX

PROOF OFTHEOREM 2

Let U := S1 ⊕ S2. We have to show thatPSmU = PSm
PU , for m = 1, 2, if and only if the joint source

distribution,PS1S2
, is doubly symmetric. That is, if and only if both of the equalities

PS1S2
(0, 0) = PS1S2

(1, 1) , (13a)

PS1S2
(0, 1) = PS1S2

(1, 0) (13b)

hold. As the “⇐” part is trivial, we treat the “⇒” part only.
Note that forPSmU = PSm

PU to be true, the following set of equations has to be fulfilled:

PU |Sm
(0|0) = PU |Sm

(0|1) , (14a)

PU |Sm
(1|0) = PU |Sm

(1|1) , (14b)

2For p ∈ [0, 1/2) andq′ ∈ (0, 1/2], q = q′(1− 2p) + p > p and thereforeH(q) > H(p).
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for m = 1, 2. As u = 0 if and only if (s1, s2) = (0, 0) or (s1, s2) = (1, 1) and u = 1 if and only if
(s1, s2) = (0, 1) or (s1, s2) = (1, 0), the conditions in (14) can equivalently be expressed as

PS1S2
(0, 0)

PS1
(0)

=
PS1S2

(1, 1)

1− PS1
(0)

, (15a)

PS1S2
(0, 1)

PS1
(0)

=
PS1S2

(1, 0)

1− PS1
(0)

, (15b)

PS1S2
(0, 0)

PS2
(0)

=
PS1S2

(1, 1)

1− PS2
(0)

, (15c)

PS1S2
(0, 1)

1− PS2
(0)

=
PS1S2

(1, 0)

PS2
(0)

. (15d)

Solving this system of equations subject to the constraints

PS1
(s1) = PS1S2

(s1, 0) + PS1S2
(s1, 1) ,

PS2
(s2) = PS1S2

(0, s2) + PS1S2
(1, s2)

results in
PS1

(0) = PS2
(1) = PS2

(0) = PS2
(1) = 1/2

and thus inBern(1/2) marginals. Inserting this into (15) provides (13), which concludes the proof.
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