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Abstract

This paper investigates the maximal secrecy rate over a wiretap channel subject to reliability and secrecy
constraints at a given blocklength. New achievability and converse bounds are derived, which are shown to be
tighter than existing bounds. The bounds also lead to the tightest second-order coding rate for discrete memoryless
and Gaussian wiretap channels.

I. INTRODUCTION

We consider the problem of secure communication over a wiretap channel (X , PY Z|X ,Y × Z) with
a transmitter X (Alice), a legitimate receiver Y (Bob), and an eavesdropper Z (Eve). The transmitter
aims to communicate a message W to the receiver while keeping it secret from the eavesdropper. We are
interested in finding upper and lower bounds on the maximal secret communication rate R∗(n, ε, δ) for a
given blocklength n, error probability ε, and information leakage δ. Throughout the paper, the information
leakage to the eavesdropper is measured by the total variation distance between PWZ and PWPZ .

The wiretap channel model was originally introduced by Wyner [1] (using a different metric for the
information leakage). Wyner established that, in the asymptotic limit of δ → 0, ε→ 0, and n→∞, the
maximal secrecy rate for a degraded discrete memoryless wiretap channel (DM-WTC) converges to the
secrecy capacity

CS = max
PX

(
I(X;Y )− I(X;Z)

)
. (1)

This result was later generalized by Csiszár and Körner to general discrete memoryless channels [2] and
by Leung-Yan-Cheong and Hellman to Gaussian wiretap channels [3].

Nonasymptotically, bounds and approximations for R∗(n, ε, δ) have been developed. Hayashi [4] es-
tablished general achievability bounds using channel resolvability [5] and studied the secrecy exponent
(i.e., the exponential decreasing rate of the information leakage) for a fixed communication rate. Later,
he improved the secrecy exponent by leveraging the privacy amplification technique [6]. For the setting
of fixed ε and δ and n → ∞, Yassaee et al. [7] derived an achievability bound on the second-order
coding rate [8] (also known as dispersion [9]) by using the output statistics of random binning, which
improves an earlier result by Tan [10]. Achievability bounds for wiretap channels with other information
leakage metrics can be found in [11]–[13]. On the converse side, Tyagi and Watanabe proposed a one-shot
converse bound for the problem of secret key agreement [14], which exploits hypothesis testing. Building
upon the technique in [14], Hayashi et al. [15] established a converse bound for wiretap channels, which
leads to the strong converse for the degraded case (see also [16]).

Contributions: In this paper, we propose new achievability and converse bounds on R∗(n, ε, δ) for
general wiretap channels. Our achievability bound is based on a new privacy amplification lemma, which
refines the results in [6], [17]. Our converse bound is motivated by [14], [15], and relates secrecy
communication to binary hypothesis testing. The bounds are computed for a Gaussian wiretap channel. In
this case, both our converse and achievability bounds are uniformly tighter than the best existing bounds
(to the best of our knowledge).

The work of H. V. Poor and W. Yang was supported in part by the US National Science Foundation under Grants CCF-1420575 and
ECCS-1343210. The work of R. F. Schaefer was supported by the German Research Foundation (DFG) under Grant WY 151/2-1.
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By analyzing the behavior of our bounds in the regime of fixed ε and δ and n→∞, we obtain upper
and lower bounds on the second-order coding rate of DM-WTCs and Gaussian wiretap channels. Our
achievable second-order coding rate is tighter than the ones in [7], [10], hence showing the advantage of
privacy amplification in the finite-blocklength regime, among all constructions that are secrecy-capacity
achieving.

We also derive two converse bounds for a specific class of codes, called partition codes, which are
obtained by partitioning ordinary (nonsecret) codes for the channel from the transmitter to the legitimate
receiver. Our bounds reveal an interesting connection between secure communication and list decoding at
the eavesdropper.

Notation: The cardinality of a set A is denoted by |A|. For an input distribution PX and a random
transformation PY |X , we let PY |X◦PX denote the marginal distribution of PXPY |X on Y . We shall consider
the following metrics between two probability distributions P and Q a common space A:
• `1 distance

‖P −Q‖1 ,
∑
x∈A

|P (x)−Q(x)| (2)

• total variation distance
d(P,Q) , sup

E⊂A
|P (E)−Q(E)| = 1

2
‖P −Q‖1 (3)

• Eγ metric [18]

Eγ(P,Q) , P

[
dP

dQ
≥ γ

]
− γQ

[
dP

dQ
≥ γ

]
(4)

= sup
E⊂A

P [E ]− γQ[E ]. (5)

Furthermore, we define a randomized test between P and Q as a random transformation PT |X : A 7→ {0, 1}
where 0 indicates that the test chooses Q. We shall need the following performance metric for the test
between P and Q:

βα(P,Q) , min

∫
PT |X(1|x)Q(dx) (6)

where the minimum is over all tests PT |X satisfying∫
PT |X(1|x)P (dx) ≥ α. (7)

II. CHANNEL MODEL AND SECRECY CODES

We consider the wiretap channel model introduced by Wyner [1], which is denoted by the tuple
(X , PY Z|X ,Y × Z). A secrecy code for the wiretap channel is defined as follows.

Definition 1. An (M, ε, δ) secrecy code for the wiretap channel (X , PY Z|X ,Y × Z) consists of
• a message W which is equiprobable on the set M , {1, . . . ,M},
• a randomized encoder that generates a codeword X(m), m ∈ M according to a conditional

probability distribution PX|W=m, and
• a decoder g : Y →M that assigns an estimate Ŵ to each received signal Y ∈ Y .

Furthermore, the encoder and decoder satisfy the average error probability constraint

P[g(Y ) 6= W ] ≤ ε (8)

where Y ∼ PY |W , PY |X ◦ PX|W , and the secrecy constraint

d(PWZ , PWPZ) ≤ δ. (9)
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An (M, ε, δ) secrecy code for the channel (X n, PY nZn|Xn ,Yn×Zn) will be called an (n,M, ε, δ) secrecy
code. Furthermore, the maximal secrecy rate is defined as

R∗(n, ε, δ) , max

{
logM

n
: ∃(n,M, ε, δ) secrecy code

}
. (10)

We shall also consider a class of codes which are constructed by partitioning good channel codes for
the legitimate channel PY |X .

Definition 2 (Partition codes). An (M, ε, δ) partition code for the wiretap channel (X , PY Z|X ,Y ×Z) is
a tuple (C, π, PX|W ), where
• C = {x1, . . . , xN} with decoder gle : Y → C is a channel code for the legitimate channel PY |X;
• π : C 7→ M is a function that partitions C into M ≤ N disjoint subsets C = ∪Mm=1π

−1(m);
• and PX|W is a stochastic encoder with PX|W=m, m ∈M, supported on π−1(m).

Furthermore, the encoder and decoder satisfy the secrecy constraint (9) and the average error probability
constraint

P[gle(Y ) 6= X] ≤ ε (11)

where X ∼ PX|W ◦ PW with W equiprobable over M, and Y ∼ PY |X .

Note that the class of partition codes includes most of the existing coding schemes for wiretap channels
(e.g., [19]–[21]).

Definition 3 (Uniform-partition codes). An (M, ε, δ) partition code (C, π, PX|W ) is called a uniform-
partition code if |π−1(m)| does not depend on m and if PX|W=m is the uniform distribution on π−1(m)
for every m ∈M.

The partition codes and uniform-partition codes introduced above are practically appealing, because
they can reuse the decoder of the original channel code. Furthermore, the encoder of a uniform-partition
code can be obtained by concatenating the encoder of the original channel code with a uniform random
number generator.

III. MAIN RESULTS

A. Achievability Bound
The following lemma builds upon the leftover hash lemma (see, e.g., [22, Lemma 5.4.3]) and refines

the result in [17, Cor. 2].

Lemma 1. Let C = {x1, . . . , xKM} be an arbitrary codebook of cardinality KM with K,M ∈ N. Let
PX be the uniform distribution over C, and let PZ , PZ|X ◦PX . There exists a function π : C →M such
that π(X) is equiprobable over M, and that for every γ > 0 and every QZ

d(Pπ(X)Z , Pπ(X)PZ) ≤ Eγ(PXZ , PXQZ)

+
1

2

√
γ

K
E
[
exp
(
−
∣∣ı(X;Z)− log γ

∣∣)] (12)

where

ı(x; z) , log
dPZ|X=x

dQZ

(z) (13)

and the expectation is taken with respect to (X,Z) ∼ PXZ .

Proof: See Appendix A.
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Remark 1. The bound [17, Cor. 2] can be obtained from (12) by upper-bounding the expectation term
on the right-hand side (RHS) of (12) by 1 and by using [23, Lem. 19]. This implies that (12) is stronger
than [17, Cor. 2].

Lemma 1 implies that we can convert an arbitrary (nonsecret) channel code for the legitimate channel
PY |X into a secrecy code with bounded information leakage. This step is commonly referred to as privacy
amplification (see, e.g., [24, p. 413]). By combining the channel coding achievability bounds in [9] with
Lemma 1, we obtain the following achievability bound for a wiretap channel.

Theorem 2. Let PX be a probability distribution supported on A ⊂ X . For every K ∈ N, every γ > 0,
and every QZ , there exists an (M, ε, δ) uniform-partition code for the wiretap channel (X , PY Z|X ,Y×Z)
that satisfies

δ ≤ sup
x∈A

Eγ(PZ|X=x, QZ)

+ sup
x∈A

1

2

√
γ

K
EPZ|X=x

[
exp
(
−
∣∣ı(x;Z)− log γ

∣∣)] (14)

and that

ε ≤ min
{
εRCU(MK), εDT

(MK − 1

2

)}
. (15)

Here, ı(x; z) is defined in (13),

εRCU(a) , E
[
min{1, (a− 1)P[i(X̄;Y ) ≥ i(X;Y )|X, Y ]}

]
(16)

where i(x; y) , log
dPY |X(y|x)

dPY (y)
, (X, Y, X̄) ∼ PXY PX , and

εDT(a) , 1− Ea(PXY , PXPY ). (17)

Proof: See Appendix B.

B. Converse Bounds for General Secrecy Codes
We first present a general converse bound.

Theorem 3. Every (M, ε, δ) secrecy code satisfies

M ≤ sup
PX|W

inf
0<τ<1−δ

inf
QY

βδ+τ (PWZ , PWPZ)

τβ1−ε(PWY , PWQY )
(18)

where W is equiprobable over M, and PY , PZ are the marginal distributions of the Markov chains
W → X → Y and W → X → Z, respectively.

Proof: By the meta-converse bound [9] for channel coding, every (M, ε, δ) secrecy code satisfies

M ≤ inf
QY

1

β1−ε(PWY , PWQY )
. (19)

Furthermore, by the secrecy constraint,

δ ≥ d(PWZ , PWPZ) ≥ δ + τ − βδ+τ (PWZ , PWPZ) (20)

where the last step follows from (3). Rearranging the terms in (20), we conclude that

βδ+τ (PWZ , PWPZ) ≥ τ. (21)

Combining (21) with (19), and optimizing the resulting bound over all stochastic encoders PX|W , we
obtain (18).
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The bound (18) is in general difficult to compute or analyze. Next, we prove a converse bound, which is
motivated by the converse in [14] for secret key generation. This bound is both numerically and analytically
tractable.

Theorem 4. Let QY |Z : Y → Z be an arbitrary random transformation. Then, every (M, ε, δ) secrecy
code for the wiretap channel (X , PY Z|X ,Y × Z) satisfies

M ≤ inf
τ∈(0,1−ε−δ)

τ + δ

τβ1−ε−δ−τ (PXY Z , PXZQY |Z)
(22)

where PXY Z denotes the distribution induced by the code.

Proof: See Appendix C.

Remark 2. Using the result in [14], Hayashi, Tyagi, and Watanabe recently derived the following converse
bound [15]

M ≤ inf
τ∈(0,1−ε−δ)

1

τ 2β1−ε−δ−τ (PXY Z , PXZQY |Z)
. (23)

Our bound is stronger than (23) since (τ + δ)/τ < 1/τ 2.

C. Converse Bounds for Partition Codes
In this section, we develop two converse bounds for partition codes. The first bound is based on the

following converse result for privacy amplification.

Lemma 5. Consider an (M, ε, δ) partition code (C, π, PX|W ). Let PWXZ be the distribution defined by
the Markov chain W → X → Z where W is equiprobable over M. Then, for every QZ we have

d(PWZ , PWQZ) ≥ EN/M(PXZ , P
unif
X QZ) (24)

where N , |C| and P unif
X is the uniform distribution over C.

Proof: See Appendix D.
As a corollary of Lemma 5, we obtain the following converse bound for channel resolvability.

Corollary 6. For every C = {x1, ..., xN}, every PY |X , and every QY , we have

d(PY |C, QY ) ≥ EN(P unif
X PY |X , P

unif
X QY ) (25)

where P unif
X denotes the uniform distribution over C, and PY |C , PY |X ◦ P unif

X .

By combining (24) with the meta-converse bound on channel coding [9, Th. 26], we obtain the following
converse bound for partition codes.

Theorem 7. Consider an (M, ε, δ) partition code (C, π, PX|W ). Let PXY and PXZ be the distributions
defined by the Markov chain W → X → (Y, Z) where W is equiprobable over M. Then,

M ≤ inf
QY

inf
τ∈(0,1−δ)

βδ+τ (PXZ , P
unif
X PZ)

τβ1−ε(PXY , P unif
X QY )

(26)

where P unif
X denotes the uniform distribution over C. Furthermore, if the code is an uniform-partition

code, then

M ≤ sup
PX

inf
QY

inf
τ∈(0,1−δ)

βδ+τ (PXZ , PXPZ)

τβ1−ε(PXY , PXQY )
. (27)
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Proof: By Lemma 5, every (M, ε, δ) partition code satisfies

δ ≥ EN/M(PXZ , P
unif
X PZ) (28)

≥ δ + τ − N

M
βδ+τ (PXZ , P

unif
X PZ). (29)

Since the error probability of the code C is upper-bounded by ε, by the meta-converse theorem [9, Th. 26]
and [25],

1

N
≥ sup

QY

β1−ε(PXY , P
unif
X QY ). (30)

Substituting (30) into (29) and optimizing over τ we conclude (26). The bound (27) follows from (26)
by observing that, for uniform-partition codes, PX = P unif

X .
The next bound relates the secrecy δ of a partition code to the error probability of the list decoding

at the eavesdropper. To state our result, we first give some definitions. Consider an arbitrary partition
code (C, π, PX|W ). Suppose that the eavesdropper attempts to perform list decoding for the transmitted
codeword X . More specifically, upon reception of a signal Z, the eavesdropper outputs a list L(Z) ⊂ C
of codewords. The performance of the eavesdropper’s list decoding is measured by the maximum list size

L , max
z∈Z
|L(z)| (31)

and the error probability

εld , PXZ [X /∈ L(Z)]. (32)

Theorem 8. Consider an (M, ε, δ) partition code (C, π, PX|W ). Let PWZ be the distribution defined by
the Markov chain W → X → Z where W is equiprobable over M. Then, for every QZ , we have

d(PWZ , PWQZ) ≥ 1− εld −
L

M
(33)

where L and εld are defined in (31) and (32), respectively.

Proof: See Appendix E.
By Theorem 8, every achievability bound for the list decoding at the eavesdropper yields a converse

bound on the secrecy rate of the wiretap channel.

D. Asymptotic Analysis
1) DM-WTC: We shall use the following notation

I(PX , PY |X) , I(X;Y ) (34)

V (PX , PY |X) ,
∑
x∈X

PX(x)

(∑
y∈Y

PY |X(y|x) log2PY |X(y|x)

PY (y)

−D(PY |X=x‖PY )2

)
(35)

Ĩ(PX , PY Z|X) , I(X;Y |Z) (36)

and

Ṽ (PX , PY Z|X)

,
∑
x∈X

PX(x)

(∑
y,z

PZY |X(y, z|x) log2 PY Z|X(y, z|x)

PZ|X(z|x)PY |Z(y|z)

−D(PY Z|X=x‖PY |ZPZ|X=x)
2

)
. (37)
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The secrecy capacity of a general DM-WTC is given by [2]

CS = max
PVX

(
I(V ;Y )− I(V ;Z)

)
(38)

where the maximization is over all probability distributions PV X for which V → X → Y Z form a Markov
chain. For simplicity, we shall assume that there exists a unique probability distribution P ∗V X = P ∗V P

∗
X|V

that achieves the maximum in (38). Note that if the eavesdropper’s channel PZ|X is less capable than the
legitimate channel PY |X , then the secrecy capacity reduces to (1) [26, Sec. 3.5.1].

The auxiliary random variable V makes the evaluation of (38) difficult. An upper bound on (38) is
given by [15]

CS ≤ Cu
S , max

PX
I(X;Y |Z). (39)

For simplicity, we shall also assume that there exists a unique probability distribution P̃ ∗X that attains the
maximum in (39), and that Ṽ (P̃ ∗X , PY Z|X) > 0. Note that, the bound (39) is tight (i.e., CS = Cu

S ) if the
wiretap channel is physically degraded [26, Def. 3.8].

Theorem 9. For a DM-WTC PY Z|X , we have

R∗(n, ε, δ) ≥ CS −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log n

n

)
(40)

and

R∗(n, ε, δ) ≤ Cu
S −

√
Vc
n
Q−1(ε+ δ) +O

(
log n

n

)
. (41)

Here, Q−1(·) is the inverse of the Gaussian Q-function Q(x) ,
∫∞
x

1√
2π
e−t

2/2dt and

V1 , V (P ∗V , PY |X ◦ P ∗X|V ) (42)

V2 , V (P ∗V , PZ|X ◦ P ∗X|V ) (43)

Vc , Ṽ (P̃ ∗X , PY Z|X). (44)

Proof: See Appendix F.

Remark 3. The result (40) is tighter than the achievable second-order coding rate in [7] obtained by using
output statistics of random binning, and tighter than the one in [10] obtained via channel resolvability.
The latter two approaches use a random coding argument and bound the average error probability and
average information leakage averaged over all random codebooks separately. They then invoke Markov’s
inequality to show the existence of a code that satisfies simultaneously the reliability and secrecy constraint.
The use of Markov’s inequality introduces a penalty to the second-order coding rate, which corresponds
to the gap between (40) and [7, Eq. (23)]. In contrast, our result shows that every code that satisfies
the reliability constraint can be modified to satisfy the secrecy constraint, thereby avoiding the use of
Markov’s inequality. This demonstrates the advantage of the privacy amplification technique for wiretap
channels in the finite blocklength regime.

2) Gaussian wiretap channel: Consider the Gaussian wiretap channel

Yi = Xi + Ui, Zi = Xi + Ũi, i = 1, . . . , n (45)

where {Ui} are independent and identically distributed (i.i.d.) N (0, N1) distributed, and {Ũi} are i.i.d.
N (0, N2) distributed. Without loss of generality, we assume that N2 > N1 (otherwise the secrecy capacity
is zero). Furthermore, we assume that each codeword xn satisfies the power constraint

‖xn‖2 ≤ nP. (46)
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Figure 1. Secrecy rate for Gaussian wiretap channel with P/N1 = 3 dB, P/N2 = −3 dB, ε = δ = 10−3.

Theorem 10. For the Gaussian wiretap channel (45), we have

R∗(n, ε, δ) ≥ CS −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log n

n

)
(47)

and

R∗(n, ε, δ) ≤ CS −
√
Vc
n
Q−1(ε+ δ) +O

(
log n

n

)
(48)

where

CS =
1

2
log

(
1 +

P

N1

)
− 1

2
log

(
1 +

P

N2

)
(49)

Vi =
log2 e

2

P 2 + 2PNi

(P +Ni)2
, i ∈ {1, 2} (50)

Vc = V1 + V2 −
PN1

P +N1

(
1

N2

+
1

P +N2

)
log2 e. (51)

Proof: See Appendix G.

E. Numerical Results and Discussions
In this section, we compare the bounds proposed in this paper with existing bounds in [15], [17] and with

the approximations provided in Theorem 10 for a Gaussian wiretap channel (with the O(·) terms omitted).
The results are shown in Fig. 1. The bound labeled by “Hayashi et al.” is [15, Th. 6] (see also (23)), and
the one labeled by “Watanabe-Hayashi” is obtained by combining the privacy amplification bound [17,
Cor. 2] with Shannon’s channel coding bound [27] (which is the tightest channel coding achievability
bound for Gaussian channels [9, Sec. III.J-4]).1

1The numerical routine used to compute Shannon’s channel coding bound is available at https://github.com/yp-mit/spectre
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Several observations are in order. First of all, both our achievability and converse bounds are uniformly
better than the ones in [17], [15]. Secondly, the expansions (47) and (48) provide reasonable approximations
for the bounds in Theorems 2 and 4. Last but not least, there is a nontrivial gap between our achievability
and converse bounds (which can also be inferred from the approximations (47) and (48)). Narrowing
down this gap seems to require more sophisticated tools than the one used in this paper, and are left
for future investigations. On a related note, it is also interesting to study whether the converse bounds in
Theorems 7 and 8 for partition codes and uniform-partition codes lead to a tighter second-order coding
rate characterization than the ones in (41) and (48).

APPENDIX

A. Proof of Lemma 1
Let π0 : C → {1, . . . ,M} be an arbitrary function that satisfies

∣∣π−1
0 (m)

∣∣ = K for every m ∈
{1, . . . ,M}. Let S denote the permutation group of C. Furthermore, let F , {π0 ◦ σ : σ ∈ S}. It
is not difficult to check that for every xj 6= xk ∈ C∑

π∈F

1{π(xj) = π(xk)} ≤
|F|
M

. (52)

Furthermore, for every function π ∈ F and every m ∈ {1, . . . ,M}, |π−1(m)| = K, which implies that
π(X) is uniformly distributed over {1, . . . ,M}. Let Π be uniformly distributed over F . Then, Π is a
universal2 function [28].

Using the triangular inequality and the left-over hash lemma [22, Lemma 5.4.3] (see also [17, Sec.
II.B]), we obtain that for every nonnegative measure RXZ (not necessary a probability measure) and
every probability distribution QZ

EΠ

[
d(PΠ(X)Z , PΠ(X)PZ)

]
≤ ‖PXZ −RXZ‖1 +

1

2

√
M exp(−H2(RXZ |QZ)) (53)

where H2(RXZ |QZ) , − log
∑

x,z RXZ(x, z)2/QZ(z) denotes the conditional Rényi entropy of order 2
relative to QZ .

We next minimize the RHS of (53) over all RXZ . Consider the following optimization problem

min
RXZ :‖PXZ−RXZ‖1≤ε̃

∑
x,z

RXZ(x, z)2

QZ(z)
(54)

where ε̃ ∈ [0, 2]. It is not difficult to see that the optimal R∗XZ must satisfy R∗XZ(x, z) ≤ PXZ(x, z) for
every pair (x, z), i.e., (54) is equivalent to

min
RXZ :‖PXZ−RXZ‖1≤ε̃, RXZ≤PXZ

∑
x,z

RXZ(x, z)2

QZ(z)
. (55)

Indeed, suppose on the contrary that there exists (x0, z0) which satisfy R∗XZ(x0, z0) > PXZ(x0, z0). Since
the objective function in (54) is monotonically increasing with RXZ(x0, z0), we can further decrease it
by setting R∗XZ(x0, z0) = PXZ(x0, z0) without violating the constraint in (54). But this contradicts the
assumption that R∗X,Z is the optimizer of (54). Therefore, we must have R∗X,Z ≤ PXZ . Observe that the
problem (55) is a convex optimization problem. Hence, by the Karush-Kuhn-Tucker (KKT) condition [29,
Sec. 5.5.3], the optimizer of (55) must take the form

R∗XZ(x, z) ,

{
PXZ(x, z) ı(x; z) ≤ log γ

γPX(x)QZ(z) otherwise
(56)
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where γ is chosen such that ‖PXZ −R∗XZ‖1 = ε̃.
Evaluating the RHS of (53) using (56), we obtain

‖PXZ −R∗XZ‖1 = Eγ(PXZ , PXQZ). (57)

The second term on the RHS of (53) can be evaluated as follows:

exp(−H2(R∗XZ |QZ))

=
∑
x,z

R∗XZ(x, z)2

QZ(z)
(58)

=
1

KM

∑
x,z

PXZ(x, z) exp(ı(x; z))1{ı(x; z) ≤ log γ}

+
γ2

KM
PXQZ [ı(X;Z) ≥ log γ] (59)

=
γ

KM
EPXZ [exp(−|ı(X;Z)− log γ|)]

− γ

KM
EPXZ [exp(−|ı(X;Z)− log γ|)1{ı(X;Z) ≥ log γ}]

+
γ2

KM
PXQZ [ı(X;Z) ≥ log γ] (60)

=
γ

KM
E
[
exp
(
−|ı(X;Z)− log γ|

)]
. (61)

Substituting (57) and (61) into (53), we conclude that for every γ > 0

EΠ

[
d(PΠ(X)Z , PΠ(X)PZ)

]
≤ Eγ(PXZ , PXQZ)

+
1

2

√
γ

K
E
[
exp
(
−|ı(X;Z)− log γ|

)]
. (62)

The inequality (62) implies that there exists a π ∈ F for which (12) holds.

B. Proof of Theorem 2
We first generate a random codebook {X1, . . . , XKM} of size KM , where the codewords Xi are

independent and identically distributed (i.i.d.) according to PX . By the random coding union (RCU)
bound [9, Th. 16] and the dependence testing (DT) bound [9, Th. 17, Eq. (79)] the average error probability
averaged over all codebooks are upper-bounded by the RHS of (15). Hence, there exists at least one code
C = {x1, . . . , xKM} whose error probability on the channel PY |X satisfies (15).

Next, we construct a secrecy code for the wiretap channel PY Z|X from this code C using Lemma 1. Let
P CX denote the uniform distribution over C, and let X ∼ P CX . Then, by Lemma 1, there exists a function
π : C →M such that π(X) is uniformly distributed over M, and that for every γ > 0 and every QZ

d(Pπ(X)Z , Pπ(X)PZ)

≤ Eγ(P
C
XZ , P

C
XQZ)

+
1

2

√
γ

K
EPCXZ

[
exp
(
−|ı(X;Z)− log γ|

)]
(63)

≤ sup
x∈A

Eγ(PZ|X=x, QZ)

+ sup
x∈A

1

2

√
γ

K
E
[
exp
(
−
∣∣ı(x;Z)− log γ

∣∣)]. (64)

Here, the last step follows because the map PX 7→ Eγ(PXZ , PXQZ) is linear.
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P : W → X → (Y, Z)

Ŵ
↘

Q : W → X → Z → Y → Ŵ

Figure 2. A graphical illustration of the probability distributions PWXYZŴ and QWXYZŴ .

Consider now a random encoder PX|W , where for each message m ∈M it picks a codeword X from the
set π−1(m) uniformly at random. The decoder first decodes the codeword X̂ and then set Ŵ = π(X̂). By
construction, the resulting is a uniform-partition code whose error probability is upper-bounded by (15).
Furthermore, we have

PW,Z(m, z) =
1

M
· 1

|π−1(m)|
∑

x∈π−1(m)

PZ|X(z|x) (65)

=
1

MK

∑
x∈π−1(m)

PZ|X(z|x) (66)

= Pπ(X)Z(m, z). (67)

From (64) and (67), we conclude that the resulting code also satisfies the secrecy condition (14).

C. Proof of Theorem 4
Fix an arbitrary (M, ε, δ) secrecy code and let PWXY ZŴ , PWPX|WPY Z|XPŴ |Y be the joint distribution

induced by the code. And let QWXY ZŴ , PWPX|WPZ|XQY |ZPŴ |Y (see Fig. 2 for a graphical illustration).
Furthermore, let PT |WŴZ :M2 ×Z 7→ {0, 1} be defined as

T (m, m̂, z) = 1
{
m = m̂, PW |Z(m|z) ≤ 1/(ηM)

}
(68)

where η ∈ (0, 1).
As in the meta-converse bound [9, Th. 26] and in [14], the idea is to use T as a suboptimal test between

PWŴZ and QWŴZ . We have

QWŴZ [T = 1]

=
∑
m,m̂,z

QZŴ (z, m̂)PW |Z(m|z)

·1
{
m = m̂, PW |Z(m|z) ≤ 1/(Mη)

}
(69)

≤ 1

Mη

∑
m,z

QZŴ (z,m)1
{
PW |Z(m|z) ≤ 1/(Mη)

}
(70)

≤ 1

Mη
. (71)

The probability PWŴZ [T = 1] can be lower-bounded as

PWŴZ [T = 1] ≥ 1− ε− PWZ [PW |Z(W |Z) ≥ 1/(Mη)] (72)

which follows from (8). To further lower-bound the RHS of (72), we observe that

δ ≥ d(PWZ , PWPZ) (73)
≥ PWZ [PW |Z(W |Z) ≥ 1/(Mη)]

−PWPZ [PW |Z(W |Z) ≥ 1/(Mη)] (74)
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and that

PWZ [PW |Z(W |Z) ≥ 1/(Mη)]

≥ 1

η
PWPZ [PW |Z(W |Z) ≥ 1/(Mη)]. (75)

Combining (74) and (75), we obtain

PWZ [PW |Z(W |Z) ≥ 1/(Mη)] ≤ δ

1− η . (76)

Substituting (76) into (72), and using (71), we conclude that

β1−ε−δ/(1−η)(PWŴZ , QWŴZ) ≤ 1

Mη
. (77)

The final bound (22) follows by rearranging the terms in (77), by the change of variable τ = δ/(1−η)−δ,
and by

βα(PWŴZ , QWŴZ) ≥ βα(PXY Z , PXZQY |Z) (78)

which follows from the data-processing inequality for βα.

D. Proof of Lemma 5
Let

ı̃(x; z) , log
PXZ
QXQZ

(x, z). (79)

By definition, for every m ∈M and every γ > 0, we have

d(PZ|W=m, QZ) ≥ PZ|W=m

[
max

x̄∈π−1(m)
ı̃(x̄;Z) ≥ γ

]
−QZ

[
max

x̄∈π−1(m)
ı̃(x̄;Z) ≥ γ

]
. (80)

The first term on the RHS of (80) can be bounded as

PZ|W=m

[
max

x̄∈π−1(m)
ı̃(x̄;Z) ≥ γ

]
=

∑
x∈π−1(m)

PX|W=m(x)PZ|X=x

[
max

x̄∈π−1(m)
ı̃(x̄;Z) ≥ γ

]
(81)

≥
∑

x∈π−1(m)

PX|W=m(x)PZ|X=x [̃ı(x;Z) ≥ γ] (82)

= PXZ|W=m [̃ı(X;Z) ≥ γ] . (83)

The second term on the RHS of (80) can be bounded using the union bound as follows:

QZ

[
max

x∈π−1(m)
ı̃(x;Z) ≥ γ

]
≤

∑
x∈π−1(m)

QZ [̃ı(x;Z) ≥ γ]. (84)
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Substituting (83) and (84) into (80), and averaging both sides of (80) over W ∼ PW , we obtain

d(PWZ , PWQZ)

=
∑

m∈{1,...,M}

1

M
d(PZ|W=m, QZ) (85)

≥
∑

m∈{1,...,M}

1

M

(
PXZ|W=m [̃ı(X;Z) ≥ γ]

−
∑

x∈π−1(m)

QZ [̃ı(x;Z) ≥ γ]

)
(86)

= PXZ [̃ı(X;Z) ≥ γ]− N

M
QXQZ [̃ı(X;Z) ≥ γ]. (87)

The proof is concluded by maximizing the RHS of (87) over γ, and by the following identity (see, e.g., [18,
Eqs. (16) and (18)])

sup
γ

{
PXZ [̃ı(X;Z) ≥ γ]− N

M
QXQZ [̃ı(X;Z) ≥ γ]

}
= EN/M(PXZ , QXQZ). (88)

E. Proof of Theorem 8
For every m ∈M, we have

d(PZ|W=m, QZ) ≥ PZ|W=m

[
π−1(m) ∩ L(Z) 6= ∅

]
−QZ

[
π−1(m) ∩ L(Z) 6= ∅

]
. (89)

The first term on the RHS of (89) can be bounded as

PZ|W=m

[
π−1(m) ∩ L(Z) 6= ∅

]
=

∑
x∈π−1(m)

PX|W=m(x)PZ|X=x

[
π−1(m) ∩ L(Z) 6= ∅

]
(90)

≥
∑

x∈π−1(m)

PX|W=m(x)PZ|X=x[x ∈ L(Z)] (91)

= PXZ|W=m[X ∈ LZ ] . (92)

For the second term on the RHS of (89), we have

PWQZ

[
π−1(W ) ∩ L(Z) 6= ∅

]
≤ 1

M

∑
m∈M

∑
z∈Z

QZ(z)
∑
x∈L(z)

1
{
x ∈ π−1(m)

}
(93)

=
1

M

∑
z∈Z

QZ(z)
∑
x∈L(z)

∑
m∈M

1
{
x ∈ π−1(m)

}
(94)

=
1

M
EQZ [|L(Z)|] (95)

≤ L

M
. (96)
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Here, the last step follows from (31). Combining (92) and (96) with (89), we obtain

d(PWZ , PWQZ)

≥
∑
m∈M

1

M
PXZ|W=m[X ∈ L(Z)]− L

M
(97)

= 1− εld −
L

M
(98)

where the last step follows from (32).

F. Proof of Theorem 9
To prove (40), we shall use Theorem 2 with a constant-composition code. The reason for using constant-

composition codes instead of i.i.d. codes is two-fold. First, for a fixed composition PX and a properly
chosen QZn , all codewords xn of a constant-composition code have the same Eγ(PZn|Xn=xn , QZn).
Secondly, constant-composition codes achieve the conditional variances V1 and V2, whereas i.i.d. codes
achieve (the slightly bigger) unconditional variances.

Let Pn be the set of types of length-n vectors in X n, and let Pn ∈ Pn be the type that is closest in total
variation distance to P ∗X . Furthermore, let PXn denote the uniform distribution over the set of codewords
of type Pn, and let PY n , PY n|Xn ◦ PXn . We evaluate Ea(PXnPY n|Xn , PXnPY n) for a given a > 0 as
follows:

1− Ea(PXnPY n|Xn , PXnPY n)

= inf
γ1>0

{
PXnPY n|Xn

[
PY n|Xn

PY n
(Xn, Y n) ≤ γ1

]
+ aPXnPY n

[
PY n|Xn

PY n
(Xn, Y n) > γ1

]}
(99)

≤ PXnPY n|Xn

[
PY n|Xn

PY n
(Xn, Y n) ≤ √na

]
+

1√
n
. (100)

Here, (99) follows from (5), and (100) follows by relaxing the infimum on the RHS of (99) with γ1 =
√
na

and by applying the standard change of measure technique to the second term on the RHS of (99). Suppose
that V1 = V (P ∗X , PY |X) > 0. Proceeding as in the proof of [30, Th. 4.2], we can further upper-bound the
RHS of (100) by

Q

(
nI(P ∗X , PY |X)− log a+O(log n)√

nV1

)
+O

(
1√
n

)
. (101)

This implies that there exists an

an = exp
(
nI(X;Y )−

√
nV1Q

−1
(
ε−O(1/

√
n)
)
−O(log n)

)
(102)

that satisfies
ε ≥ 1− Ean(PXnPY n|Xn , PXnPY n). (103)

For the case V1 = 0, we have that
V (Pn, PY |X) = O(1/n) (104)

which follows because |Pn − P ∗X | = O(1/n) and because P 7→ V (P, PY |X) are smooth maps on the
interior of the probability simplex on X . Proceeding step by step as in the proof of [30, Th. 4.2], and
using Chebyshev’s inequality and (104) in place of [30, Eq. (4.53)], we conclude that (101) and (103)
remain to hold if V1 = 0.
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We next evaluate Eγ(PZn|Xn=xn , QZn) for an arbitrary xn of type Pn and for QZn = (PZ|X ◦ Pn)n.
In the analysis below, we shall assume that V2 = V (P ∗X , PY |X) > 0. The case V2 = 0 can be handled
similarly as in (104). Consider the following chain of (in)equalities:

Eγ(PZn|Xn=xn , QZn) ≤ PZn|Xn=xn

[
log

PZn|Xn=xn

QZn
(Zn) ≥ log γ

]
(105)

= PZn|Xn=xn

[
n∑
i=1

log
PZ|X=xi

(PZ|X ◦ Pn)
(Zi) ≥ log γ

]
(106)

≤ Q

(
log γ − nI(Pn, PZ|X)√

nV (Pn, PZ|X)

)
+O

(
1√
n

)
(107)

= Q

(
log γ − nI(P ∗X , PZ|X)√

nV (P ∗X , PZ|X)

)
+O

(
1√
n

)
. (108)

Here, (107) follows from the Berry-Esseen theorem [31, Sec. XVI.5] and [9, Lemma 46], and (108) follows
from because |Pn−P ∗X | = O(1/n) and because P 7→ I(P, PZ|X) and P 7→ V (P, PZ|X) are smooth maps
on the interior of the probability simplex on X . Setting log γn , nI(P ∗X , PZ|X)+

√
nV (P ∗X , PZ|X)Q−1

(
δ−

O(1/
√
n)
)

and K = nγn, and using that E[exp(−|i(xn;Zn)− log γ|)] ≤ 1, we obtain

Eγn(PZn|Xn=xn , QZn) +
1

2

√
γn
K

E[exp(−|i(xn;Zn)− log γ|)] ≤ δ. (109)

Setting Mn , (2an + 1)/K, and combining (103), (109), and Theorem 2, we conclude that

R∗(n, ε, δ) ≥ 1

n
logMn (110)

≥ CS −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log n

n

)
. (111)

We next prove the converse bound (41) using (22). In order to apply (22), we need to select a QY n|Zn .
Before doing so, we remark that in the point-to-point channel coding setting (i.e., without the secrecy
constraint), a converse bound is usually proved by reducing a code to a constant-composition subcode
(see, e.g., [32], [9]). The rationale behind this reduction is that removing all codewords except those
of a dominant type reduces the coding rate by at most O((log n)/n), but at the same time it decreases
the error probability. The QY n can be then chosen as the output distribution induced by the type. This
reduction argument, however, does not work for the wiretap channel, because it is not clear how removing
codewords will affect the secrecy level d(PWZ , PWPZ). Instead, we shall choose QY n|Zn to be a mixture
of conditional distributions PY n|Zn induced by all types in Pn. We now proceed with the proof.

For each type P (t)
X ∈ Pn, t = 1, . . . , |Pn|, let P (t)

Y Z , PY Z|X◦P (t)
X and let P (t)

Y |Z be the induced conditional
distribution. Furthermore, let

QY n|Zn(yn|zn) =
1

|Pn|

|Pn|∑
t=1

n∏
i=1

P
(t)
Y |Z(yi|zi). (112)

Using this conditional distribution in the bound (22), we obtain that, for every τ ∈ (0, 1 − ε − δ) and
every γ > 0,

R∗(n, ε, δ) ≤ − inf
PXn

log β1−ε−δ−τ (PXnY nZn , PXnZnQY n|Zn) + log
τ + δ

τ
(113)

≤ γ − log

(
1− ε− δ − τ − sup

PXn
PXnY nZn

[
log

PXnY nZn

PXnZnQY n|Zn
≥ γ

])
+ log

τ + δ

τ
(114)



16

where the second step follows from [9, Eq. (102)]. The probability term on the RHS of (114) can be
evaluated as follows:

PXnY nZn

[
log

PXnY nZn

PXnZnQY n|Zn
≥ γ

]
= PXnY nZn

[
log

PY nZn|Xn

PZn|XnQY n|Zn
≥ γ

]
(115)

≤ sup
xn∈Xn

PY nZn|Xn=xn

[
log

PY nZn|Xn=xn

PZn|Xn=xnQY n|Zn
≥ γ

]
. (116)

For an arbitrary xn ∈ X n, let t0 ∈ {1, . . . , |Pn|} denote the index for which P (t0)
X coincides with the type

of xn. Using (112) and using that log |Pn| ≤ |X | log(n+ 1), we obtain

PY nZn|Xn=xn

[
log

PY nZn|Xn=xn

PZn|Xn=xnQY n|Zn
≥ γ

]
≤ PY nZn|Xn=xn

[
log

PY nZn|Xn=xn

PZn|Xn=xn(P
(t0)
Z|Y )n

≥ γ − |X | log(n+ 1)

]
(117)

= PY nZn|Xn=xn

[
n∑
i=1

log
PY Z|X(Yi, Zi|xi)

PZ|X(Zi|xi)P (t0)
Z|Y (Yi|Zi)

≥ γ − |X | log(n+ 1)

]
. (118)

Let now

γ′(α) , inf ,

ξ : sup
P

(t0)
X

PY nZn|Xn=xn

[
n∑
i=1

log
PZY |X(Yi, Zi|xi)

PZ|X(Zi|xi)P (t0)
Z|Y (Yi|Zi)

≥ ξ

]
≥ α

 . (119)

Following similar steps as in the proof of [9, Th. 48], and using that P̃ ∗X is the unique maximizer of (39)
and that Ṽ (P̃ ∗X , PY Z|X) > 0, we obtain

γ′(α) = nCu
S −

√
nVcQ

−1(1− α) +O(log n). (120)

Finally, setting γ = ‖X‖ log(n+ 1) + γ′(1− ε− δ− τ) and τ = 1/
√
n, and using (120), (118), and (116),

we conclude the proof of (41).

G. Proof of Theorem 10
To prove (47), we shall choose PXn to be the uniform distribution over the power sphere Sn , {xn ∈

Rn : ‖xn‖2 = nP} and set QZn ∼ N (0, (P + N2)In). For such a PXn it was shown in [33] that there
exists an

an = exp
(n

2
log(1 + P/N1)−

√
nV1Q

−1(ε) +O(log n)
)

(121)

that satisfies

εRCU(an) ≤ ε. (122)

We next evaluate (14). Due to the spherical symmetry of Sn and QZn , we have that for every xn ∈ Sn
Eγ(PZn|Xn=xn , QZn) = Eγ(PZn|Xn=x̄n , QZn) (123)

where
x̄n , [

√
P , . . . ,

√
P ]. (124)
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The RHS of (123) can be evaluated

Eγ(PZn|Xn=x̄n , QZn)

≤ PZn|Xn=x̄n

[
log

dPZn|Xn=x̄n

dQZn
(Zn) ≥ γ

]
(125)

= Q

(
γ − n log(1 + P/N2)√

nV2

)
+O

(
1√
n

)
(126)

where the last step follows from [9, p. 2357]. The proof of (47) follows by repeating the steps (109)–(111).
To prove the converse bound (48), we assume that the channel PY Z|X is physically degraded. This

assumption comes without loss of generality since the maximal coding rate R∗(n, ε, δ) depends on
the channel law PY nZn|Xn only through the marginal transition probabilities PY n|Xn and PZn|Xn [26,
Lemma 3.4]. We shall use Theorem 4 with

QY n|Zn = N
(
P +N1

P +N2

zn,
(P +N1)(N2 −N1)

P +N2

In

)
(127)

which coincides with the marginal conditional distribution PY n|Zn of PXnY nZn for the case Xn ∼
N (0, P In). Observe that, by data-processing inequality for βα(·, ·), we have

βα(PXnY nZn , PXnZnQY n|Zn) ≥ βα(PXn+1Y n+1Zn+1 , PXn+1Zn+1QY n+1|Zn+1). (128)

By (128), it suffices to consider the case where PXn is supported on the power sphere Sn. Furthermore,
by the spherical symmetry of PY nZn|Xn , QY n|Xn , and Sn, and by using [9, Lemma 29], we obtain that,
for every PXn supported on Sn,

βα(PXnY nZn , PXnZnQY n|Zn) = βα(PY nZn|Xn=x̄n , PZn|Xn=x̄nQY n|Zn) (129)

where x̄n is defined in (124).
To evaluate the asymptotic behavior of the RHS of (129) we observe that, under PY nZn|Xn=x̄n , the

random variable log
dPY nZn|Xn=x̄n

d(PZn|Xn=x̄nQY n|Zn )
(Y n, Zn) has the same distribution as

nCS +
log e

2

n∑
i=1

(
(Ui + Ūi)

2

N2

− U2
i

N1

+
(
√
P + Ui)

2

P +N1

− (
√
P + Ui + Ūi)

2

P +N2

)
(130)

where {Ūi} are i.i.d. N (0, N2−N1)-distributed, and are independent of all other random variables in (130).
As in [9, Sec. IV.B], a central limit theorem analysis of (130) shows that

− log βα(PY nZn|Xn=x̄n , PZn|Xn=x̄nQY n|Zn) = nCS −
√
nVcQ

−1(ε+ δ + τ) +O(log n) (131)

where Vc is given in (51). Setting τ = 1/
√
n, substituting (131) and (129) into (22), we conclude the

proof of (48).
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Verdú-Han bounds are tight,” Oct. 2015. [Online]. Available: http://arxiv.org/pdf/1411.3292.pdf
[26] M. Bloch and J. Barros, Physical-Layer Security: from Information Theorey to Security Engineering. Cambridge, UK: Cambridge

University Press, 2011.
[27] C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” Bell Syst. Tech. J., vol. 38, no. 3, pp. 611–656, May

1959.
[28] L. Carter and M. Wegman, “Universal classes of hash functions,” J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, 1979.
[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[30] V. Y. F. Tan, “Asymptotic estimates in information theory with non-vanishing error probabilities,” in Foundations and Trends in

Communications and Information Theory. Delft, The Netherlands: now Publishers, 2014, vol. 11, no. 1–2, pp. 1–184.
[31] W. Feller, An Introduction to Probability Theory and Its Applications. New York, NY, USA: John Wiley & Sons, 1970, vol. 1.
[32] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to error probability for coding on discrete memoryless channels i,”

Inf. Contr., vol. 10, pp. 65–103, 1967.
[33] V. Y. F. Tan and M. Tomamichel, “The third-order term in the normal approximation for the AWGN channel,” IEEE Trans. Inf. Theory,

vol. 61, no. 5, pp. 2430–2438, May 2015.

http://arxiv.org/abs/1404.5715
http://arxiv.org/pdf/1511.07829v1.pdf
arxiv:1309.1596v4
http://arxiv.org/pdf/1411.3292.pdf

	I Introduction
	II Channel Model and Secrecy Codes
	III Main Results
	III-A Achievability Bound
	III-B Converse Bounds for General Secrecy Codes
	III-C Converse Bounds for Partition Codes
	III-D Asymptotic Analysis
	III-D1 DM-WTC
	III-D2 Gaussian wiretap channel

	III-E Numerical Results and Discussions

	Appendix
	A Proof of Lemma ??
	B Proof of Theorem ??
	C Proof of Theorem ??
	D Proof of Lemma ??
	E Proof of Theorem ??
	F Proof of Theorem ??
	G Proof of Theorem ??

	References

