
424  |  2013 ICMC idea  |  POSTERS 425  |  2013 ICMC idea  |  POSTERS

One light sensor key finished product.

4.2 Electric circuit

USB

 Computer

For the purpose of increasing input channels, I used
expansion board and breadboard with Arduino. Made it
into a parallel circuit let every key work independently.
And the series resistors avoid damage.

Arduino sent value to software from USB serial port, so
we could use data conveniently by only one A/B type
USB cable.

Open-source Arduino environment is easy to write code.
We could set up wiring plan, timing, and transmission

rate in it. Moreover, it can do simple calculation. But in
general speaking, we would control data in application
software such as Max/MSP for convenience.

These are going to put into key bed.

Luminosity monitor windows in computer. Yellow bars
are set as brightness.
(A shadow on the fourth key)

5. Application
With brightness changing parameter, we can do more
exciting performances just use a flashlight. Light sensor
piano can detect approximate location of hand, so it
could be used to make a dazzling show. And it might be
a great tool in music education.
More software for light sensor piano in the future, it will
be a powerful music instrument.

6. REFERENCES
[1] 孫俊榮, 吳明展, and 盧盧聰勇, 最簡單的互動設計
Arduino, 碁峯, 2012.
[2] 蔡朝洋, 8051/8951 原理理與應用 單晶片微電腦, 全
華, 2005.
[3] Reblitz, Arthur A. , Piano Servicing, Tuning, and
Rebuilding : For the Professional, the Student, and the
Hobbyist, Natl Book Network, 1993.
[4] Bishop, John/ Barker, Graham, Piano Manual:
Buying, Problem-Solving, Care, Repair and Tuning,
MotorbooksIntl,2009.

Light Sensor

Key

Arduino

Arduino
Software

Application

Software

TEACHING COMPUTER SCIENCE TO DIGITAL ARTISTS
THROUGH MUSIC AND SOUND

Ajay Kapur Perry Cook Michael Bryant
California Institute of the Arts

Music Technology
Princeton University

Computer Science and Music
California Institute of the Arts

Critical Studies

ABSTRACT

This paper describes the development of an introductory
curriculum in computer science modeled on a traditional
Applied Introduction to Programming and Algorithms
course sequence, but designed specifically for artists as
a means of furthering their creative work. Computer
science theory is presented in lecture/demos, with
weekly assignments that consist of making 30-second
compositions incorporating the skills gathered from
class. With this project, our goal is to improve the
quality, breadth, and effectiveness of technology and
computer learning for an entire undergraduate and
graduate art school student body. A broader objective of
the project is to develop an experimental, trans-
disciplinary model for teaching computer science
curriculum that can be replicated at other arts institutes,
and extended to students in similar non-traditional
computer science contexts.

1. INTRODUCTION

As artists of all disciplines increasingly use technology
in their creative practice, it is essential that arts
institutions provide foundational courses in STEM
(Science Technology Engineering and Mathematics)
disciplines so that students may conceive of and have the
ability to generate new ideas, new artistic approaches,
and new technologies. For contemporary artists,
adequate knowledge of technological trends and hands-
on experience with technology can be crucial for career
success. This paper describes a curriculum that addresses
this need and offers students more than basic computing
literacy—that is, they learn algorithmic techniques,
programming, and problem-solving in a student-friendly
manner and within a context that inspires engagement,
interactivity, and creativity.

The intellectual merit and broader impact of the project
lies in the innovative approach to introducing students
with little or no computing background to programming
and computational thinking. While there has been
significant work in developing CS curriculum for
non‐majors or novices, there have been fewer courses in
the area of sound and music. Additionally, the proposed
course features ChucK [1] as a primary teaching tool.
Chuck is an open source programming language for real-
time audio synthesis, composition and performance
developed at Princeton by Ge Wang and Perry Cook.
This project represents the first formal ChucK‐based
curriculum developed for undergraduate art students, and

has potential to be applicable to and replicable within an
array of contexts for teaching introductory computer
science to undergraduates and even graduate students.
Additionally, it could be appropriate for high-school
students in certain contexts.

In creating this curriculum, our team seeks both to
enrich the ability of our students to create technology-
driven art and to develop new and engaging
instructional approaches to the incorporation of STEM
learning into arts education.

Heavily inspired by the curriculum designs of PLorK[2]
and SlorK[3] the goal of this project is to bring ChucK
beyond the laptop orchestra and into a classroom for all
digital artists who can use the strengths of the language
to make art, and learn key computer science concepts. In
this paper, Section 2 discusses related work on computer
science education through the arts. Section 3 discusses
syllabus and learning outcomes for our new course.
Section 4 presents evaluation of the first implementation
of our course in Fall 2012 at California Institute of the
Arts. Section 5 presents discussions and future work.

2. RELATED WORK

There have been several successful curriculum designs
at the intersection of computing and the arts for
undergraduate students. The University of
Massachusetts’ CPATH CP Performamatics is an
interdisciplinary project that developed a series of CS
courses. bringing together faculty and students from
computer science, arts, and humanities departments to
build connections and community between computing
and the arts at the school.

Bryn Mawr College, in partnership with Southern
Methodist University, developed a new visual Portfolio
based CS1 course based on the programming
environment Processing, with the goal of creating an
inspiring and engaging CS course for novices and non-
traditional programmers such as artists.

Both of these projects are related to and serve as
inspiration for our project, with a primary distinction:
the aforementioned projects use the Processing language
to teach visual graphics integrated with computer
science education, while our project is primarily based
in audio and music. We endeavor to focus on sound and
music teaching ChucK; student learning and
assignments are sonically oriented.

426  |  2013 ICMC idea  |  POSTERS 427  |  2013 ICMC idea  |  POSTERS

There have been many projects and offerings at almost
all universities possessing sizable CS/EE departments,
where the faculty have worked to create courses that
endeavor to teach computer science concepts to non-
majors. These often use Java [4], so called "toy"
languages [5], or specialized languages such as logo
[6], RAPTOR [7], and others. Some have even proposed
teaching a scripting language such as PYTHON as the
first computing language [8].

By far the most systematic efforts to teach CS to non-
majors using media as a focus are the Contextualized
Computing Education projects and studies started at
Georgia Tech, and since transferred to many other
institutions [9]. The curriculum is based on using media
to acquire and retain the interest of students in CS
courses (Media-centered CS curriculum). These studies
showed positive results, attracting students to CS in a
large technical university, and then it was shown how
that curriculum ports to a small 2-year college.

Other studies by Dorn and Guzdial [10], also looked at
specific populations, such as graphics designers who
program. Conducting a series of interviews and
assessment activities, the researchers found that these
subjects want more computer science, but don't find
courses (and most other resources) adequate. It was also
shown that the designers used cases (case library with
code, concepts, AND context) more than a simple
library/repository of available code, and that the cases
actually "colored" the way the graphics designers wrote
their own programs.

The studies of Dorn and Guzdial are the closest to our
proposed curriculum, in that they take a specific
dedicated population and expose them to concepts,
algorithms, and programming via their disciplines and
practices of interest. Our curriculum aims exactly at
that, teaching DSP and computer science in the strong
context of arts projects, via best practices code examples
that actually do highly useful things, AND in real time
as the students and instructors code (thanks to ChucK).

Our target student audience, digital artists, need the
tools and technology to do their projects, in their work
lives, and in further education if they pursue it. They
want to be able to make better art. We feel they also
need knowledge of the underlying science, algorithms,
and techniques. The course we designed also gives
them this via tools they can afford (open source),
modify (open source), and actually use (designed for
real-time digital art).

Other courses that involve media programming are
taught at various music and digital arts programs and
schools. Languages used here range from Max/MSP
(audio/DSP) and Jitter (graphics) by Cycling 741, to
standard graphics software packages by Adobe2 and
AutoCad3, and animation/modeling software such as

1 http://cycling74.com/ (Available Feb 2013)
2 http://www.adobe.com/ (Available Feb 2013)
3 http://usa.autodesk.com/autocad/ (Available Feb 2013)

MAYA4. These are generally geared toward teaching
artists and about the production tools they might use in
their future professions, but there is little notion of
teaching any real foundations of computer science,
math, physics (acoustics), and/or engineering.

There are also other projects that combine music and
programming, in order to create breadth in music
students by teaching them some engineering, and
breadth in engineers by teaching them some about
music. For example, the “Music, Signals, and Systems”
project [11] at Rowan University is a good example of a
general education course with no pre-requisites that
combines music/ DSP and programming in order to get
and keep the interest of students, while teaching them
something about engineering and music. The emphasis
of that course is on making a laptop orchestra from non-
majors. This course is quite similar to Princeton's cross-
listed CS/Music course created by Ken Steiglitz and
Paul Lansky [12] in the early 1990s. The theme there
was to teach music to engineers while teaching
engineering to musicians. Another related recent project
is that of [13] (U. Mass. Lowell), which proposes a
course that uses programming assignments that are
music-related; composition, web pages with music, etc.
to attract and retain students.

3. LEARNING OUTCOMES AND SYLLABUS

Our courses covers material typical to an introductory
computer science course, but our additional goal is to
teach computational thinking and programming skills to
students new to programming and to extend these skills
to all interested undergraduates. Thus, an important
component of our project has been to develop new ways
to meet this objective, enabling undergraduate art
students to engage with the course material and to
successfully apply their learning to their creative work.

We developed a sequential course within the context of
multimedia arts and with a focus on audio applications,
covering the basics of programming. In the first
semester we introduce students to ChucK, allowing
them to master programming basics in a manner
relevant to their artistic fields. Assignments revolve
around 30-second compositions written in ChucK where
each student demonstrates their understanding of the
programming skills they are learning (e.g. loops,
functions, arrays, classes, multithreading). This leads to
an end of semester concert where students present 2-
minute compositions, projecting their computer code in
the concert hall. Figure 1 describes the syllabus of the
class in detail.

4 http://usa.autodesk.com/maya/ (Available Feb 2013)

Week Syllabus
1 Basics: Sound, Waves, and ChucK

 Programming (if/else, while, for)
2 Libraries and Arrays
3 WaveTable Synthesis &

Sound File Manipulation
4 Functions
5 Unit Generators
6 Mid Term Test
7 Multi-Threading and Concurrency
8 Objects and Classes
9 Polling vs. Events
10 Final Project Development
11 Final Project Development
12 Final Concert
13 Final Test

Figure 1 – Intro. to Programming for Digital Artists, Syllabus

4. EVALUATION

This section describes evaluation of our course using
data captured from student work and responses from
Fall 2012 at California Institute of the Arts. There were
26 students who took the class. There were 4 main ways
in which we evaluated the course: (1) Student surveys
(voluntary and anonymous) at the beginning and end of
the course, (2) breaking down each weekly assignment
into grades for each learning goal, (3) a Midterm and
Final Exam, (4) a final project combining all learning
goals from the course.

Figure 2 shows data from the surveys taken at the
beginning and end of the course. The pre-course survey
revealed that most students had never taken a formal
computer science course, although some had studied
programming on their own. Figure 2 reveals that on
average students had a causal familiarity with the
concepts, mostly on the level of vocabulary. Few had
ever tried to implement the concepts into an actual
program. The students who had programmed before,
claimed to know topics such as variables, if/else, loops,
arrays, functions, random numbers, objects and classes.
However, they did not seem to know the advanced
topics like recursion, overloading, and multi-threading.
At the end of the course, concepts that students reported
having only a limited familiarity with were now seen as
practically mastered. Similarly, for the more advanced
concepts, students reported a positive shift from largely
unknown to a level beyond simply basic understanding.

Though the course is offered at the undergraduate level,
we did allow graduate students who were interested in
the subject matter to take the class. In Figure 3 we see
the total scores for all the assignments, midterm, final
exam and final projects. We can see that the 85% of the
time, the graduate students performed stronger than the
undergraduate students. This is to be expected and has
the potential positive effect of the undergraduate
students getting influenced by work of their older peers.

Figure 2 - Results of the pre-course (N = 26) survey
compared to post-course (N = 22) surveys. Solid bars
show pre-course (white) and post-course (black) self-
reported understanding of various computer science
concepts. To make the pre-course survey comparable
to the post-course survey (the average of a numerical
scale from 0 = no understanding at all, 0.5 = a basic
understanding, to 1 = I have mastered the concept), the
pre-course responses “No familiarity at all”, and “I
have heard of it, but to not know what it is” were
pooled and valued at 0, “I know the concept, but have
never used it in a program” was coded as 0.5 and “I
have implemented the concept in a program” was
coded as 1. The stripped bars show the average
achievement as assessed by projects and exams. Note:
assessment of “Variable” was embedded throughout
the course but never formally assessed in an isolated
manner that would provide an average score to plot.

Figure 3 - Graph showing total scores on all
assignments, midterm, final exam and final project.
Solid Black is Undergraduate, White is Graduate and
Grey is everyone combined.

Each week, the assignment was to create a 30-second
composition using the key computer science skills
learned from the lecture. The aesthetics of each
assignment were assessed by outside music TA’s who
gave numbers from 0-3 (3 being most innovative and
musically explorative). There is a general trend that if
the students were having trouble with the computer
science topics, the music also suffered.

426  |  2013 ICMC idea  |  POSTERS 427  |  2013 ICMC idea  |  POSTERS

There have been many projects and offerings at almost
all universities possessing sizable CS/EE departments,
where the faculty have worked to create courses that
endeavor to teach computer science concepts to non-
majors. These often use Java [4], so called "toy"
languages [5], or specialized languages such as logo
[6], RAPTOR [7], and others. Some have even proposed
teaching a scripting language such as PYTHON as the
first computing language [8].

By far the most systematic efforts to teach CS to non-
majors using media as a focus are the Contextualized
Computing Education projects and studies started at
Georgia Tech, and since transferred to many other
institutions [9]. The curriculum is based on using media
to acquire and retain the interest of students in CS
courses (Media-centered CS curriculum). These studies
showed positive results, attracting students to CS in a
large technical university, and then it was shown how
that curriculum ports to a small 2-year college.

Other studies by Dorn and Guzdial [10], also looked at
specific populations, such as graphics designers who
program. Conducting a series of interviews and
assessment activities, the researchers found that these
subjects want more computer science, but don't find
courses (and most other resources) adequate. It was also
shown that the designers used cases (case library with
code, concepts, AND context) more than a simple
library/repository of available code, and that the cases
actually "colored" the way the graphics designers wrote
their own programs.

The studies of Dorn and Guzdial are the closest to our
proposed curriculum, in that they take a specific
dedicated population and expose them to concepts,
algorithms, and programming via their disciplines and
practices of interest. Our curriculum aims exactly at
that, teaching DSP and computer science in the strong
context of arts projects, via best practices code examples
that actually do highly useful things, AND in real time
as the students and instructors code (thanks to ChucK).

Our target student audience, digital artists, need the
tools and technology to do their projects, in their work
lives, and in further education if they pursue it. They
want to be able to make better art. We feel they also
need knowledge of the underlying science, algorithms,
and techniques. The course we designed also gives
them this via tools they can afford (open source),
modify (open source), and actually use (designed for
real-time digital art).

Other courses that involve media programming are
taught at various music and digital arts programs and
schools. Languages used here range from Max/MSP
(audio/DSP) and Jitter (graphics) by Cycling 741, to
standard graphics software packages by Adobe2 and
AutoCad3, and animation/modeling software such as

1 http://cycling74.com/ (Available Feb 2013)
2 http://www.adobe.com/ (Available Feb 2013)
3 http://usa.autodesk.com/autocad/ (Available Feb 2013)

MAYA4. These are generally geared toward teaching
artists and about the production tools they might use in
their future professions, but there is little notion of
teaching any real foundations of computer science,
math, physics (acoustics), and/or engineering.

There are also other projects that combine music and
programming, in order to create breadth in music
students by teaching them some engineering, and
breadth in engineers by teaching them some about
music. For example, the “Music, Signals, and Systems”
project [11] at Rowan University is a good example of a
general education course with no pre-requisites that
combines music/ DSP and programming in order to get
and keep the interest of students, while teaching them
something about engineering and music. The emphasis
of that course is on making a laptop orchestra from non-
majors. This course is quite similar to Princeton's cross-
listed CS/Music course created by Ken Steiglitz and
Paul Lansky [12] in the early 1990s. The theme there
was to teach music to engineers while teaching
engineering to musicians. Another related recent project
is that of [13] (U. Mass. Lowell), which proposes a
course that uses programming assignments that are
music-related; composition, web pages with music, etc.
to attract and retain students.

3. LEARNING OUTCOMES AND SYLLABUS

Our courses covers material typical to an introductory
computer science course, but our additional goal is to
teach computational thinking and programming skills to
students new to programming and to extend these skills
to all interested undergraduates. Thus, an important
component of our project has been to develop new ways
to meet this objective, enabling undergraduate art
students to engage with the course material and to
successfully apply their learning to their creative work.

We developed a sequential course within the context of
multimedia arts and with a focus on audio applications,
covering the basics of programming. In the first
semester we introduce students to ChucK, allowing
them to master programming basics in a manner
relevant to their artistic fields. Assignments revolve
around 30-second compositions written in ChucK where
each student demonstrates their understanding of the
programming skills they are learning (e.g. loops,
functions, arrays, classes, multithreading). This leads to
an end of semester concert where students present 2-
minute compositions, projecting their computer code in
the concert hall. Figure 1 describes the syllabus of the
class in detail.

4 http://usa.autodesk.com/maya/ (Available Feb 2013)

Week Syllabus
1 Basics: Sound, Waves, and ChucK

 Programming (if/else, while, for)
2 Libraries and Arrays
3 WaveTable Synthesis &

Sound File Manipulation
4 Functions
5 Unit Generators
6 Mid Term Test
7 Multi-Threading and Concurrency
8 Objects and Classes
9 Polling vs. Events
10 Final Project Development
11 Final Project Development
12 Final Concert
13 Final Test

Figure 1 – Intro. to Programming for Digital Artists, Syllabus

4. EVALUATION

This section describes evaluation of our course using
data captured from student work and responses from
Fall 2012 at California Institute of the Arts. There were
26 students who took the class. There were 4 main ways
in which we evaluated the course: (1) Student surveys
(voluntary and anonymous) at the beginning and end of
the course, (2) breaking down each weekly assignment
into grades for each learning goal, (3) a Midterm and
Final Exam, (4) a final project combining all learning
goals from the course.

Figure 2 shows data from the surveys taken at the
beginning and end of the course. The pre-course survey
revealed that most students had never taken a formal
computer science course, although some had studied
programming on their own. Figure 2 reveals that on
average students had a causal familiarity with the
concepts, mostly on the level of vocabulary. Few had
ever tried to implement the concepts into an actual
program. The students who had programmed before,
claimed to know topics such as variables, if/else, loops,
arrays, functions, random numbers, objects and classes.
However, they did not seem to know the advanced
topics like recursion, overloading, and multi-threading.
At the end of the course, concepts that students reported
having only a limited familiarity with were now seen as
practically mastered. Similarly, for the more advanced
concepts, students reported a positive shift from largely
unknown to a level beyond simply basic understanding.

Though the course is offered at the undergraduate level,
we did allow graduate students who were interested in
the subject matter to take the class. In Figure 3 we see
the total scores for all the assignments, midterm, final
exam and final projects. We can see that the 85% of the
time, the graduate students performed stronger than the
undergraduate students. This is to be expected and has
the potential positive effect of the undergraduate
students getting influenced by work of their older peers.

Figure 2 - Results of the pre-course (N = 26) survey
compared to post-course (N = 22) surveys. Solid bars
show pre-course (white) and post-course (black) self-
reported understanding of various computer science
concepts. To make the pre-course survey comparable
to the post-course survey (the average of a numerical
scale from 0 = no understanding at all, 0.5 = a basic
understanding, to 1 = I have mastered the concept), the
pre-course responses “No familiarity at all”, and “I
have heard of it, but to not know what it is” were
pooled and valued at 0, “I know the concept, but have
never used it in a program” was coded as 0.5 and “I
have implemented the concept in a program” was
coded as 1. The stripped bars show the average
achievement as assessed by projects and exams. Note:
assessment of “Variable” was embedded throughout
the course but never formally assessed in an isolated
manner that would provide an average score to plot.

Figure 3 - Graph showing total scores on all
assignments, midterm, final exam and final project.
Solid Black is Undergraduate, White is Graduate and
Grey is everyone combined.

Each week, the assignment was to create a 30-second
composition using the key computer science skills
learned from the lecture. The aesthetics of each
assignment were assessed by outside music TA’s who
gave numbers from 0-3 (3 being most innovative and
musically explorative). There is a general trend that if
the students were having trouble with the computer
science topics, the music also suffered.

428  |  2013 ICMC idea  |  POSTERS 429  |  2013 ICMC idea  |  POSTERS

Another observation from the data and graphs is that test
scores show lower achievement than projects in general.
This is somewhat obvious because when a student writes
a program, the system tells them pretty quickly when it
is wrong. Consider Loops: this was assessed early and
was generally low but then again on the low on the final
exam. Obviously students used loops throughout the
semester but in a programming context students may
have shifted being able to do it right the first time or
spending a little more time debugging. On the exam
where they could not let the lack of a functioning
program tell them they made a mistake they may have
been at a disadvantage from an objective evaluation
standpoint. But, students who really "got it" did well on
the tests as well.

5. DISCUSSION

The unique strength of our course is that we teach and
provide digital arts students with tools they can use for
serious projects and future work, but we also provide
them knowledge and example code that demonstrates
particular computer science and DSP concepts. The
example code is parsimonious (due to the nature of
ChucK), and is heavily commented so the students feel
free to re-use and modify it. Each exercise and example
the students learn, program, and modify demonstrates an
important concept, algorithm, mechanism, etc.

Finally, teaching our courses in ChucK, which is free
and open-source, gives art students the promise that they
can use these in the future without prohibitive personal
cost. Unlike engineering students, art students cannot be
assured they will have employers that can afford
expensive professional versions of software such as
MATLAB, Max/MSP/Jitter, MAYA, etc. ChucK has a
growing base of users, academic and also in production
coding (a number of popular iPhone/iPad Apps are
written at least in part in ChucK).

We have learned much, and plan to modify and assess
our curriculum as we continue to offer the course(s) in
the future. The course will be offered in the future, and
to a wider population within the art school. The goal is
to have all art majors take this course sequence, to offer
the course to other institutions for adoption and/or
modification, and to potentially offer a version of it
online. All course materials and other supplemental
materials are available at http://www.chucku.org.

6. ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant No. 1140336.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation. The authors also wish
to thank Ge Wang and Spencer Salazar for their help
and advise, and continuing to hack ChucK to make it
more useful for all. We also thank Dan Trueman, Ge
Wang, Scott Smallwood, and Rebecca Fiebrink for their
PLOrk/SLOrk curriculum materials. We would also like

to thanks Sarah Nelson for her administrative support.
We would also like to thank the Teaching Assistants
Colin Honigman, Raphael Arar, Jon He, & Kameron
Christopher

7. REFERENCES

[1] G. Wang and P. R. Cook, “ChucK: A concurrent,
on-the-fly audio programming language,” in
Proceedings of the International Computer Music
Conference, 2003, pp. 219–226.

[2] D. Trueman, P. Cook, S. Smallwood, and G. Wang,
“Plork: The princeton laptop orchestra, year 1,” in
Proceedings of the international computer music
conference, 2006, pp. 443–450.

[3] G. Wang, D. Trueman, S. Smallwood, and P. R.
Cook, “The laptop orchestra as classroom,”
Computer Music Journal, vol. 32, no. 1, pp. 26–37,
2008.

[4] S. Dexter, “Teaching applet programming to non-
majors-virtually,” in Frontiers in Education
Conference, 2000. FIE 2000. 30th Annual, 2000,
vol. 2, p. S2D–6.

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman,
and E. Eastmond, “The scratch programming
language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, p. 16,
2010.

[6] W. Feurzeig, “An Introductory LOGO Teaching
Sequence: LOGO Teaching Sequence on Logic -
LOGO Reference Manual.” ERIC Clearinghouse,
1970.

[7] S. Hambrusch, C. Hoffmann, J. T. Korb, M.
Haugan, and A. L. Hosking, “A multidisciplinary
approach towards computational thinking for
science majors,” in ACM SIGCSE Bulletin, 2009,
vol. 41, pp. 183–187.

[8] J. M. Zelle, “Python as a First Language,”
presented at the Proceedings of the 13th Annual
Midwest Computer Conference, 1999.

[9] A. Forte and Guzdial, M., “, A. M. . Motivation and
non-majors in computer science: Indentifying
discrete audiences for introductory courses,” IEEE
Transactions on Education, vol. 48, no. 2, pp. 248–
253, 2005.

[10] B. Dorn, A. E. Tew, and M. Guzdial, “Introductory
computing construct use in an end-user
programming community,” in Visual Languages
and Human-Centric Computing, 2007. VL/HCC
2007. IEEE Symposium on, 2007, pp. 27–32.

[11] Head, L., “NSF 1044734, Music, Signals &
Systems: Non-disciplined Education in a Multi-
Campus Setting.” National Science Foundation,
Oct-2011.

[12] Steiglitz, K. and Lansky, P., “EIN: A Signal
Processing Scratchpad,” Computer Music Journal,
vol. 19, no. 3, pp. 18–25, 1995.

[13] Heines, J., “NSF 1118435, Computational Thinking
through Computing and Music.” National Science
Foundation, Aug-2011.

PROBABILISTIC PREDICTION OF RHYTHMIC
CHARACTERISTICS IN MARKOV CHAIN-BASED

MELODIC SEQUENCES

Bongjun Kim and Woon Seung Yeo
Audio & Interactive Media (AIM) Lab

Graduate School of Culture Technology, KAIST
Deajeon, 305-701, Korea Republic

iambongjun@gmail.com, woony@kaist.edu

ABSTRACT

Markov chain models have been widely used for
algorithmic composition and machine improvisation. In
this paper, we introduce a probabilistic prediction model
of rhythmic characteristics of Markov chain-based note
sequences. For this purpose, we propose an algorithm to
generate a revised Markov chain model and calculate the
onset probabilities of notes at each onset position in one
measure. As an application of this algorithm, we present
an interactive improvisation system which uses a
customized syncopation index as an input parameter and
allows the user to control the level of syncopation and
rhythmic tension in real-time.

1. INTRODUCTION

Auto-generation of music with mathematical algorithms
such as neural networks, genetic algorithms, generative
grammars and cellular automata, has been researched for
several decades. Markov chains are also widely used in
algorithmic composition and machine improvisation
system because it is computationally cheap to learn the
style of existing music and imitate the music with simple
probabilistic calculation [5, 7]. Markov chains imitate a
style of sequence of musical events such as notes and
chords with transition probabilities between events. This
probability-based learning and creation enable us to
generate more creative musical outcomes [1, 10].

Despite of the advantages of Markov chains, they are
not suited for interactive control. Overcoming this
drawback, Pachet et al. suggested methods to control the
generation of event sequences from Markov chain
models for interactive applications considering
constraints for user inputs. But they focused on only
pitch, not rhythmic factors [8, 9].

This paper addresses the issue of controlling rhythm
of note sequences generated from a first-order Markov
chain which is the simplest type. Our approach is to
predict the onset probabilities of musical notes and to
select the initial state of the Markov chains depending
on the probabilities. As an application of the algorithm,
we present an interactive improvisation system built in
Max/MSP where users can control the amount of
syncopation of the rhythm in real-time.

2. RHYTHM GENERATION AND
ANALYSIS WITH MARKOV MODELS

Figure 1 illustrates an example of a simple first-order
Markov chain for rhythm generation, which can be
derived from the user’s input melodies or sample pieces.
Each node represents the duration of a note, and
transition probabilities between nodes show their mutual
dependencies. For example, a quarter note is followed
by an eighth note with the probability 0.5 and, in turn, an
eighth note is followed by an eighth rest with the
probability 0.3. The outgoing probabilities from each
state must sum to 1.

0.2 0.3

0.3

0.5

0.50.20.2

0.3
0.3 0.7

0.3

0.2

Figure 1. An example of a first-order Markov
chain for rhythm generation

The Markov chain model is used not only to imitate a
style of existing pieces and generate melodies, but also
to calculate probabilities of future events using transition
matrices, which means that we can predict the possibility
of occurrence of the n th note from the initial note [4].
For example, if each state (or node) of a Markov chain
denote pitch, we can calculate the probability that the
pitch of the third note will be E or C. However, if it is a
rhythm model involving the duration of notes shown in
Figure 1, it is hard to predict the rhythmic characteristics
per bar. This is because the onset position of each note
is affected by the durations of their preceding notes.
Figure 2 illustrates the problem. Depending on the
combination of the first two events (either notes or rests)
the third event is in a different position. With the simple
Markov chain model in Figure 1, we can only calculate

