JVI Accepted Manuscript Posted Online 14 September 2016 J. Virol. doi:10.1128/JVI.01462-16 Copyright © 2016, American Society for Microbiology. All Rights Reserved.

1	Altered glycosylation patterns increase immunogenicity of a subunit HCV vaccine
2	inducing neutralizing antibodies which confer protection in mice
3	
4	Dapeng Li ¹ , Markus von Schaewen ² , Xuesong Wang ³ , Wanyin Tao ³ , Yunfang Zhang ¹ , Li Li ³ ,
5	Brigitte Heller ² , Gabriela Hrebikova ² , Qiang Deng ¹ , Alexander Ploss ^{2#} , Jin Zhong ^{3*#} , Zhong
6	Huang ¹ * [#]
7	
8	¹ Vaccine Research Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut
9	Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
10	² Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
11	³ Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology & Immunology, Institut
12	Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
13	
14	*To whom correspondence should be addressed: huangzhong@ips.ac.cn (Z.H.);
15	jzhong@sibs.ac.cn (J.Z.).
16	[#] Z.H., J.Z. And A.P. are co-senior authors of the paper.
17	

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

18 Running title: A subunit HCV vaccine produced in insect cells

19 Abstract:

20	Hepatitis C virus (HCV) infection is a global health problem for which no vaccine is
21	available. HCV has a highly heterogeneous RNA genome and can be classified into seven
22	genotypes. Due to the high genetic and resultant antigenic variation among genotypes,
23	inducing antibodies capable of neutralizing most of the HCV genotypes by experimental
24	vaccination has been challenging. Previous efforts focused on priming humoral immune
25	responses with recombinant HCV envelope E2 protein produced in mammalian cells. Here,
26	we report that a soluble form of HCV E2 (sE2) produced in insect cells possess different
27	glycosylation patterns and is more immunogenic as evidenced by the induction of higher titers
28	of broadly neutralizing antibodies (bNAbs) against cell culture-derived HCV (HCVcc)
29	harboring structural proteins from a diverse array of HCV genotypes. We affirm that
30	continuous and discontinuous epitopes of well-characterized bNAbs are conserved, thus
31	suggesting that sE2 produced in insect cells is properly folded. In a genetically humanized
32	mouse model, active immunization with sE2 efficiently protected against challenge with a
33	heterologous HCV genotype. These data not only demonstrate that sE2 is a promising HCV
34	vaccine candidate but also highlight the importance of glycosylation patterns in developing
35	subunit viral vaccines.

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

36

Z

37 Importance:

38	A prophylactic vaccine with high efficacy and low cost is greatly needed for global control
39	of HCV infection. Induction of broadly neutralizing antibodies against most HCV genotypes has
40	been challenging due to the antigenic diversity of the HCV genome. Herein, we refined a
41	high-yield subunit HCV vaccine that elicited broadly neutralizing antibody responses in
42	preclinical trials. We found that soluble HCV E2 protein (sE2) produced in insect cells is
43	distinctly glycosylated and is more immunogenic than sE2 produced in mammalian cells,
44	suggesting that glycosylation patterns should be taken into consideration in efforts to
45	generate antibody-based, recombinant vaccines against HCV. We further showed that sE2
46	vaccination confers protection against HCV infection in a genetically humanized mouse model.
47	Thus our work identified a promising broadly protective HCV vaccine candidate, which should
48	be considered of further pre-clinical and clinical development.

50 Introduction

51	It is estimated that over 2% of the world's population is chronically infected with hepatitis
52	C virus (HCV) (1). Although recently approved direct-acting antiviral (DAA) drugs (2) have
53	greatly improved upon the curing efficacy of the previous interferon (IFN)-based regimen,
54	these new therapies are very expensive and thus unaffordable for the majority of
55	HCV-infected individuals who live in developing countries where most new infections occur.
56	Since the approval of these highly effective DAAs, the number of chronic HCV carriers has not
57	significantly declined. Furthermore, there is little evidence that patients cured of their chronic
58	infection with DAAs retain antiviral immunity that is protective against future HCV exposures.
59	Therefore, the development of a prophylactic HCV vaccine with high efficacy and low cost
60	remains a high priority in the global control of HCV infection. Natural clearance of HCV
61	correlates with the induction of vigorous T cell responses with broad specificity, which has
62	prompted efforts to pursue T cell based vaccines. Currently, the only vaccine candidate in
63	clinical trials is based on the expression of HCV non-structural proteins with adenoviruses and
64	MVA to elicit T cell responses to infection (3, 4).
65	However, T cell based vaccines cannot prevent the first steps of a viral infection, thus
66	creating a rational for alternative/addition approaches geared towards induction of
67	neutralizing antibodies (NAbs) which could putatively block HCV uptake. NAbs have been
68	found to correlate with the protection offered by all viral vaccines licensed thus far (5).
69	However, the role of anti-HCV antibodies in humans is under debate. A strong correlation
70	between viral clearance and the induction of an early and broad NAb response following HCV
71	infection has been reported in a number of patient cohorts with HCV infection (6-8). In addition,

Z

72	in vivo challenge/protection studies have shown that the passive transfer of monoclonal and
73	polyclonal NAbs was able to prevent HCV infection in chimpanzees (9) and in mice (10-14),
74	highlighting the important role of NAbs in protecting against HCV infection. A single HCV
75	vaccine that could induce NAbs against all the known seven HCV genotypes would be ideal.
76	However, due to the extreme genetic and antigenic diversity across and within HCV
77	genotypes, this has been a particularly challenging goal (15).
78	The HCV envelope proteins E1 and E2 are responsible for mediating HCV entry into
79	target cells by direct or indirect interaction with numerous host molecules (16, 17) and are thus
80	the natural targets of NAbs (18). Consequently, all experimental HCV vaccines that aim to
81	generate NAbs contain E2 and/or E1 components in a variety of modalities or prime-boost
82	regimens (19-28). Although significant progress has been made towards the development of
83	an efficacious HCV vaccine mediating protection by inducing humoral immune responses,
84	several important issues remain: (i) the spectrum of NAbs elicited by existing vaccine
85	candidates is still insufficiently broad to cover all seven HCV genotypes; (ii) the complexity of
86	the heterologous prime-boost regimens with different antigen modalities renders vaccine
87	production and vaccination difficult; (iii) the low yield of antigen manufacture hampers the
88	application for some promising vaccine candidates, such as inactivated cell culture-derived
89	HCV (HCVcc) (23); (iv) few of these vaccines have been evaluated in an immunocompetent
90	animal model by active immunization as the utilization of chimpanzees is limited for ethical and
91	financial reasons and murine models such as human liver chimeric mice (29) are
92	immunodeficient. To address some of these challenges, we aimed to develop an improved

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

93

method for inducing bNAbs. We demonstrate that expression of a transmembrane

95	with increased immunogenicity as compared to equivalent constructs produced in mammalian
96	cells. Mice mount strong immune responses to sE2, yielding high titers of anti-HCV E2
97	antibodies capable of neutralizing a diverse panel of HCV intergenotypic chimeras in vitro.
98	Following sE2 vaccination, genetically humanized mice were protected against experimental
99	challenge with a heterologous HCV strain.
100	
101	Materials and Methods
102	Establishment of HCVcc panels covering genotypes 1-7
103	A panel of HCVcc covering genotypes 1 to 7 was used for the neutralization assay. All
104	these HCVcc were produced following a protocol previously described (30) including in vitro
105	transcription, HCV RNA electroporation, immunostaining, HCVcc titration and amplification.
106	Plasmids pUC-Con1/JFH1, pUC-H77/JFH1, and pUC-J6/JFH1 were constructed as
107	previously described (31). Plasmids pJ8/JFH1, pS52/JFH1 (I793S, K1404Q), pED43/JFH1
108	(T827A, T977S), pSA13/JFH1 (A1022G, K1119R), pHK6a/JFH1 (F350S, N417T) and
109	pQC69/JFH1 were generously provided by Dr. Jens Bukh at University of Copenhagen (32).
110	The chimeric genotype 1b HCVcc (PR52B6Mt and PR79L9) constructed from clinical isolates
111	was reported previously (33).
112	
113	Construction of expression plasmids
114	We amplified optimized sE2 (aa. 384-661) from codon-optimized HCV E2 gene (Con1
115	strain, genotype 1b, optimized and synthesized by GeneArt) with forward primer

domain-truncated, soluble version of E2 (designated sE2) in insect cells results in an antigen

sE2opti-Xbal-R (5' GCACTCTAGACTCGCTTCTGTCCCGAT 3'), then inserted the PCR
product into the vector pMT/BiP/V5-HisA (Invitrogen) to obtain pMT-sE2. To produce a sE2
without HVR1, we used the same approach (forward primer Ncol- Δ HVR1-F: 5'
GCCCCATGGCAGCTGGTGAACACCAACGGCAGC 3'; reverse primer sE2opti-Xbal-R) to
obtain pMT-sE2 Δ HVR1. To generate the mammalian sE2, the whole open reading frame
(including gene encoding the signal peptide and tags) was cloned from pMT-sE2 into
pcDNA3.1 vector (forward primer: 5' CCCGCTAGCGCCACCATGAAGTTATGCATATTACTG
GCCGTCG 3'; reverse primer: 5' CCCGAATTCTCAATGGTGATGGTGATGATGACCGGTAC
3') to obtain pcDNA3.1-sE2. To express the extracellular loop of human CD81 (hCD81LEL, aa.
112-202), we amplified the hCD81LEL gene from the construct pLEGFP-CD81(34) by PCR
(forward primer hCD81LEL-F-Ncol: 5' CAGCCATGGGCTTTGTCAACAAGGACCAG 3';
reverse primer hCD81LEL-R-Xhol: 5' GAACTCGAGCAGCTTCCCGGAGAAGAGGTC 3') and
inserted the fragment into pET26b, to yield pET26b-hCD81LEL. All plasmids constructed
were verified by DNA sequencing.
Expression and Purification of sE2 from stable Drosophila S2 cell clones
To generate stable transfectants expressing sE2, we co-transfected S2 cells with

134	pMT-sE2 and a selection vector pCoBlast, followed by blasticidin screening. S2 cells cultured
135	in complete Schneider's Drosophila Media (SDM; Gibco) supplemented with 10% fetal bovine
136	serum (FBS; Gibco), 100 U/ml of penicillin/streptomycin (Gibco), and 100 mg/L of L-glutamine
137	(Gibco) were seeded at 3×10^{6} cells/well in a 6-well plate. After 12 h, we co-transfected 19 µg

Ncol-sE2opti-F (5' CTGCCATGGCCGGCACATACGTGACAG 3') and reverse primer

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

138	pMT-sE2 and 1 μg selection vector pCoBlast by calcium phosphate transfection and changed
139	the medium after 16-24 h of incubation. Seventy-two hours post-transfection, we changed the
140	medium to complete SDM containing 25 μ g/ml blasticidin. After 1-2 weeks of selection, the
141	medium was changed again with complete SDM containing 10 μ g/ml blasticidin. To generate
142	stable, high-yield cell clones, we seeded 1.5 cells/well of the stable transfected cells into
143	96-well plates. After 2-weeks of selection with SDM containing 10 $\mu\text{g}/\text{ml}$ blasticidin, we
144	detected sE2 expression from supernatants of each well by ELISA and Western blot. Several
145	monoclonal cells with high-yields of sE2 were obtained. We chose one clone named sE2B3
146	for the following large-scale culture and expression. For large-scale expression, sE2B3 cells
147	were cultured in complete Express Five SFM medium (SFM; Gibco) supplemented with 100
148	U/ml of penicillin/streptomycin, 100 mg/L of L-glutamine and 10 μ g/ml blasticidin, in a 3L
149	Spinner Flask (Bellco). When cell concentration reached 2×10 ⁷ cells/ml, cells were induced
150	with chromic chloride at a final concentration of 5 μM . On day five post-induction, the
151	supernatant was harvested and concentrated to a volume of 50-100 ml in binding buffer (0.5
152	M NaCl, 20 mM Tris, 10 mM imidazole, pH 7.9) by ultrafiltration in a stirred cell (Amicon 8400,
153	Millipore) through a 5-kDa membrane. Then sE2 proteins were purified from the concentrated
154	supernatant using Ni-NTA resins (Novagen) according to the manufacturer's instructions. The
155	eluted sE2 proteins were analyzed by SDS-PAGE (12% acrylamide) and Western blot. To
156	obtain highly pure sE2 as a stimulus for ELISPOT assays, the Ni-NTA purified proteins were
157	subjected to size exclusion chromatography using a Superdex 200 10/300 GL column (GE
158	Healthcare). The HVR1 deleted form, sE2 Δ HVR1, was expressed and purified using the
159	same protocol.

Σ

Journal of Virology

160

161 Expression and Purification of sE2 from HEK293T cells

To generate sE2 from mammalian cells, HEK293T cells cultured in complete Dulbecco's 162 modified Eagle medium (DMEM; HyClone) supplemented with 10% FBS, 10 mM HEPES 163 buffer (Gibco), 100 mg/L of L-glutamine, 1% non-essential amino acids (NEAA; Gibco) and 164 100 U/ml penicillin/streptomycin were transfected with pcDNA3.1-sE2 using branched 165 Polyethylenimine (PEI; Sigma-Aldrich). Medium containing PEI was changed with complete 166 DMED with 10µM sodium butyrate at 4h post-transfection, and then changed with FreeStyle 167 168 293 Medium (FS293, Gibco) 12h later. Mammalian sE2 were harvested, concentrated and purified from the medium harvested 72h post transfection following the same protocol 169 170 described above. 171 172 Deglycosylation of sE2 Under a reducing condition, 10 µg of sE2 protein was denatured at 100°C for 10 min in 173 1X Glycoprotein Denaturing Buffer, and then digested by PNGase F (200U) or Endo H (200U) 174 at 37°C for 1 h according to the manufacturer's instructions (New England Biolabs). The 175 deglycosylated protein was analyzed by Western blotting. Under a non-reducing condition, 176 sE2 dissolved in PBS was digested by PNGase F at 4°C overnight. The resulting 177 N-deglycosylated sE2 was purified by Ni-NTA resin and applied to ELISA, receptor-binding 178 179 assay and immunization experiments. 180 **SDS-PAGE and Western Blot Assay** 181

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

Induced cell supernatants or purified sE2 proteins were separated on a 12% SDS-PAGE
and stained with Coomassie brilliant blue G-250 or transferred onto polyvinylidene
oride membranes (PVDF; Pall). The membrane was probed with an anti-His tag mAb
,000 dilution; M30111; Abmart) or anti-E2 mAb AP33 (35) (1:1,000 dilution; kindly
vided by Dr. Arvind Patel at MRC - University of Glasgow), followed by a corresponding
ondary antibody.
SA
To determine the antigenicity of sE2, 96-well EIA/RIA flat-bottom plates (Costar, Corning,
USA) were coated overnight with serially diluted sE2. The plates were blocked with PBST
taining 5% nonfat dry milk for 1 h at 37°C. E2 mAbs AR3A (kindly provided by Drs.
sun Law and Denis Burton at the Scripps Research Institute) or AP33 (35) were then
ed, followed by incubation for 2 h at 37°C. Then, horseradish peroxidase
P)-conjugated anti-human IgG antibody (1:5,000 dilution; ab6858; Abcam) or
P-conjugated anti-mouse IgG antibody (1:5,000 dilution; 31432; Invitrogen) was added
incubated for 1 h. After color development, colorimetric analysis was performed at 450
in a 96-well plate reader.

183	gel and stained with Coomassie brilliant blue G-250 or transferred onto polyvinylidene
184	difluoride membranes (PVDF; Pall). The membrane was probed with an anti-His tag mAb
185	(1:1,000 dilution; M30111; Abmart) or anti-E2 mAb AP33 (35) (1:1,000 dilution; kindly
186	provided by Dr. Arvind Patel at MRC - University of Glasgow), followed by a corresponding
187	secondary antibody.
188	
189	ELISA
190	To determine the antigenicity of sE2, 96-well EIA/RIA flat-bottom plates (Costar, Corning,
191	NY, USA) were coated overnight with serially diluted sE2. The plates were blocked with PBST
192	containing 5% nonfat dry milk for 1 h at 37°C. E2 mAbs AR3A (kindly provided by Drs.
193	Mansun Law and Denis Burton at the Scripps Research Institute) or AP33 (35) were then
194	added, followed by incubation for 2 h at 37°C. Then, horseradish peroxidase
195	(HRP)-conjugated anti-human IgG antibody (1:5,000 dilution; ab6858; Abcam) or
196	HRP-conjugated anti-mouse IgG antibody (1:5,000 dilution; 31432; Invitrogen) was added
197	and incubated for 1 h. After color development, colorimetric analysis was performed at 450
198	nm in a 96-well plate reader.
199	
200	Receptor-binding assay
201	The receptor-binding assay to analyze the capacity of sE2 binding to HCV entry factors
202	has been previously described (34). Briefly, 100 μ g of purified sE2 protein was incubated with
203	parental CHO cells or with CHO cells expressing SR-BI or CD81 at 37°C for 1 h. After

Σ

204	washing with PBS, the cells were incubated with anti-His mouse monoclonal antibody on ice
205	for 1 h, and then with Alexa Fluor 555-conjugated donkey anti-mouse IgG (1:200; A31570;
206	Molecular Probes), followed by flow cytometry analysis on a BD LSRII flow cytometer (BD
207	Biosciences, San Diego, CA). The results were analyzed with FlowJo software.
208	Human CD81LEL protein was expressed and purified to compete the binding of sE2.
209	Briefly, pET26b-hCD81LEL was transformed into BL21 competent cells. Soluble hCD81LEL
210	was obtained by a low temperature induction and purified using Ni-NTA resins according to
211	the manufacturer's instructions. In the CD81LEL competitive inhibition assay, sE2 was
212	incubated with different doses (200 $\mu g,$ 20 μg and 2 $\mu g)$ of CD81LEL at 37°C for 1 h, following
213	by the receptor-binding assay described above.
214	
215	HCV infection-blocking assay
215 216	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM
215 216 217	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml
215216217218	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein
215216217218219	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein or bovine serum albumin (BSA; New England Biolabs), and added to the Huh-7.5.1 cells.
 215 216 217 218 219 220 	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein or bovine serum albumin (BSA; New England Biolabs), and added to the Huh-7.5.1 cells. After 4 h, the protein-virus mixture was changed to complete DMEM. After 72 h of culture,
 215 216 217 218 219 220 221 	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein or bovine serum albumin (BSA; New England Biolabs), and added to the Huh-7.5.1 cells. After 4 h, the protein-virus mixture was changed to complete DMEM. After 72 h of culture, immunostaining was performed as previously described (36) with some modifications. Briefly,
 215 216 217 218 219 220 221 222 	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein or bovine serum albumin (BSA; New England Biolabs), and added to the Huh-7.5.1 cells. After 4 h, the protein-virus mixture was changed to complete DMEM. After 72 h of culture, immunostaining was performed as previously described (36) with some modifications. Briefly, cells were fixed with fixation buffer (4% paraformaldehyde in PBS) and blocked with blocking
 215 216 217 218 219 220 221 222 223 	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein or bovine serum albumin (BSA; New England Biolabs), and added to the Huh-7.5.1 cells. After 4 h, the protein-virus mixture was changed to complete DMEM. After 72 h of culture, immunostaining was performed as previously described (36) with some modifications. Briefly, cells were fixed with fixation buffer (4% paraformaldehyde in PBS) and blocked with blocking buffer (3% BSA, 0.3% Triton X-100 and 10% FBS in PBS), followed by incubation with
 215 216 217 218 219 220 221 222 223 224 	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein or bovine serum albumin (BSA; New England Biolabs), and added to the Huh-7.5.1 cells. After 4 h, the protein-virus mixture was changed to complete DMEM. After 72 h of culture, immunostaining was performed as previously described (36) with some modifications. Briefly, cells were fixed with fixation buffer (4% paraformaldehyde in PBS) and blocked with blocking buffer (3% BSA, 0.3% Triton X-100 and 10% FBS in PBS), followed by incubation with anti-HCV NS5A mAb (1:1,000 dilution; Abmart, Shanghai), with Alexa Fluor 488-conjugated
 215 216 217 218 219 220 221 222 223 224 225 	HCV infection-blocking assay To perform an HCV infection-blocking assay, Huh-7.5.1 cells cultured in complete DMEM were seeded at 1×10 ⁴ cells/well in a 96-well plate for 12 h. Then, approximately 4×10 ³ FFU/ml of Con1/JFH1 chimeric HCVcc was mixed with serially diluted sE2 protein, CD81LEL protein or bovine serum albumin (BSA; New England Biolabs), and added to the Huh-7.5.1 cells. After 4 h, the protein-virus mixture was changed to complete DMEM. After 72 h of culture, immunostaining was performed as previously described (36) with some modifications. Briefly, cells were fixed with fixation buffer (4% paraformaldehyde in PBS) and blocked with blocking buffer (3% BSA, 0.3% Triton X-100 and 10% FBS in PBS), followed by incubation with anti-HCV NS5A mAb (1:1,000 dilution; Abmart, Shanghai), with Alexa Fluor 488-conjugated donkey anti-mouse IgG (1:1,000 dilution; A21202; Molecular Probes) and Hoechst dye

226 (1:10,000 dilution; Molecular Probes). The fluorescent foci were observed and enumerated on

227 a standard fluorescent microscope (Leica).

228

229 Animal immunization

230 Balb/c mice were purchased from Shanghai SLAC Laboratory Animal Inc. Prior to

231 immunization, 50 μg sE2 antigens were formulated with 1 mg Inject Alum (Pierce), 1 mg Inject

- 232 Alum plus 25 µg CpG 7909 (also known as CpG2006 or PF-3512676; 5'
- 233 TCGTCGTTTTGTCGTTTTGTCGTT 3', synthesized from Sangon Biotech, Shanghai), or FA

234 (Complete FA for prime, and Incomplete FA for boost; Sigma-Aldrich) at a volumetric ratio of

- 1:1 according to the manufacturer's instructions. To test the capacity of sE2-inducing NAbs,
- 236 groups of ten female Balb/c mice (6-week old) were injected intraperitoneally (i.p.) at weeks 0,
- 237 2 and 4. Blood samples were collected at weeks 0, 2, 4, 6, 13, 17, 22 and 25. To test
- 238 sE2-induced immune memory, we boosted mice at week 25 when serum titers significantly
- 239 decreased and performed blood sampling at weeks 27 and 28, when mice were terminated.
- 240 Sera were kept at -80°C until use. To compare insect cell-derived sE2 and mammalian
- 241 cell-derived sE2, and to compare sE2 and sE2∆HVR1, groups of six female Balb/c mice

242 (6-week old) were i.p. injected at weeks 0, 2, 4 and 6. Blood samples were collected every two

- 243 weeks. In a separate experiment, each of the three sE2 samples representing different
- 244 oligomeric states were formulated with alum and used for mouse immunization (6 mice/group)
- 245 with the same dosage and immunization schedule as described above, and mouse antisera
- 246 were collected at week 12 for measurement of neutralization activities against HCVcc. All the
- 247 animal immunization studies were approved by the Institutional Animal Care and Use

248 Committee at the Institut Pasteur of Shanghai (protocol number: A2013006). The animals

249 were cared for in accordance with institutional guidelines.

250

251 Antibody measurement

To measure E2-specific antibody responses in serum samples by ELISA, 96-well 252 EIA/RIA flat-bottom plates were coated overnight with 100 ng/well of sE2. After blocking, 253 serially diluted sera from mice were added as primary antibodies, followed by 1:5,000 diluted 254 HRP-conjugated anti-mouse IgG antibody. After color development, colorimetric analysis was 255 256 performed at 450 nm in a 96-well plate reader. For a given serum sample, endpoint titer was defined as the the reciprocal of the highest serum dilution that had an absorbance >0.1 OD 257 258 unit above that of the pre-immune samples. For computation of geometric mean titers (GMTs), serum samples that did not yield positive readings at the lowest dilution tested (1:100) were 259 260 assigned an endpoint titer of 50.

For measurement of sE2-specific IgG1 and IgG2a responses, sera from each mouse were 1:10,000 diluted, and then subjected to ELISA analysis using the above described protocol with some modifications: HRP-conjugated goat anti-mouse IgG1 and goat anti-mouse IgG2a (SouthernBiotech) were used as the secondary antibody, respectively. The ratio of IgG1 and IgG2a isotypes was calculated by dividing OD values for IgG1 with OD values for IgG2a.

267

268 Competitive ELISA

269	HRP-conjugated AP33 and AR3A antibodies were generated, respectively, by using
270	EZ-Link Plus Activated Peroxidase Kit (Thermo Fisher Scientific). For the competitive ELISA,
271	96-well EIA/RIA flat-bottom plates were coated overnight with 100 ng/well of sE2. After
272	blocking, serially diluted mouse antisera were added to the wells and incubated at 37°C for 1
273	h, followed by three washes with PBS. Then, HRP-conjugated AP33 (2 μ g/mL) or
274	HRP-conjugated AR3A (2 $\mu\text{g/mL})$ was added to the wells and incubated at 37°C for 1 h. After
275	color development, colorimetric analysis was performed at 450 nm in a 96-well plate reader.
276	
277	Measurement of neutralization activity of the antisera
278	A panel of HCVcc covering genotypes 1 to 7 was established. All these HCVcc were
279	used in neutralization assays to assess the neutralization breadth of the antisera. Briefly,
280	serum samples were heat-inactivated at 56°C for 1 h, and diluted to their appropriate dilutions
281	in complete DMEM. HCVcc were diluted in complete DMEM to approximately 4×10 ³ foci
282	forming units (FFU)/ml, mixed with equal volume (50 $\mu l)$ of diluted serum samples, and
283	incubated at 37°C for 2 h. The virus-serum mixture was transferred to Huh-7.5.1 cells seeded
284	12 h previously in 96-well plates (1 \times 10 ⁴ cells/well) and replaced with complete DMEM after
285	4-6 h of incubation at 37°C. The cells were incubated at 37°C for 72 h, followed by fixing and
286	NS5A-immunostaining. Percent neutralization was calculated by comparing the focus
287	numbers of immune serum to that of a pre-immune serum control at the same dilutions.
288	
289	Measurement of cellular immune responses by ELISPOT assay

290	To determine the IFN- γ - and Interleukin-4- (IL-4) secreting cells in splenocytes, 96-well
291	PVDF plates (Millipore) were pre-coated with anti-mouse IFN-γ capture antibody (an-18;
292	eBiosciences) or anti-mouse IL-4 capture antibody (11B11; eBiosciences) at 4°C overnight.
293	Plates were blocked with complete RPMI-1640 medium (Gibco) for 1h at 37°C and freshly
294	isolated splenocytes were added to the plates. sE2, medium (negative control) or
295	concanavalin A (positive control) was diluted in complete RPMI-1640 medium and added to
296	each well at a final concentration of 10 $\mu\text{g/ml}$ and incubated for 48h at 37°C and 5% CO_2.
297	Subsequently, the plates were incubated with biotinylated anti-mouse IFN- γ detection
298	antibody (R4-6A2; eBiosciences) or biotinylated anti-mouse IL-4 detection antibody
299	(BVD6-24G2; eBiosciences) diluted in PBST for 2 h, and then with AP-conjugated streptavidin
300	(Mabtech) diluted in PBS for 1 h. After washing, NBT/BCIP substrate (Promega) was added
301	for color development. The cytokine-secreting cell spots were imaged and counted on a CTL
302	Immunospot reader (Cellular Technology Ltd.).
303	
304	Determination of Oligomeric state
305	Ni-NTA-purified sE2 was subjected to size exclusion chromatography (SEC) using the
306	AKTA Fast Protein Liquid Chromatography (FPLC) system. Briefly, sE2 was loaded on a
307	Superdex 200 10/300 GL column, and SEC was performed in PBS buffer at flow rate of 0.5
308	ml/min. The eluent was analyzed by SDS-PAGE under reducing or non-reducing conditions.
309	For the non-reducing SDS-PAGE, protein samples were mixed with sample buffer without
310	β -mercaptoethanol and loaded into the gel without boiling.

312 Generation of recombinant HCV

313	Construction of BiCre-Jc1 encoding recombinase Cre is described elsewhere(12). Briefly,
314	the plasmid encoding BiCre-Jc1 was linearized with Xba I and transcribed using MEGAscript
315	T7 (Ambion). RNA was electroporated into Huh-7.5 cells using an ECM 830 electroporator
316	(BTX Genetronics). The transfected Huh-7.5 cells were cultured in complete DMEM until 72
317	hours after electroporation, when the medium was replaced with serum-free DMEM and
318	supernatants were harvested every 6 hours for 3 days. Supernatants were pooled, filtered
319	through a 0.45 μ m bottle top filter (Millipore), and concentrated using a stirred cell (Millipore).
320	Viral titers (TCID ₅₀) were determined using Huh-7.5 cells as previously described (37).
321	
322	Generation and production of recombinant adenovirus
323	Adenovirus encoding human homologs of the two species-specific HCV entry factors
324	CD81 and OCLN (AdV-hCD81-2A-hOCLN) was constructed via overlapping PCR of hCD81
325	and hOCLN templates and cloned into pShuttle. The pSh-hCD81-2A-hOCLN was then
326	electroporated into BJ5183 AD-1 cells (Agilent), which were pre-transformed with pAdEasy-1
327	to facilitate recombination with the pShuttle vector. Colonies were selected, prepped, and
328	screened for a 3-kb band following Pacl digestion.
329	Adenovirus constructs were then transfected into HEK293 cells (American Type Culture
330	Collection) cultured in complete DMEM using the calcium phosphate method. Transfected
331	cultures were maintained until cells exhibited complete cytopathic effect (CPE), then
332	harvested, and freeze-thawed. Supernatants were serially passaged two more times with
333	harvest at complete CPE and freeze-thaw. For virus purification, cell pellets were

Journal of Virology

Z

Journal of Virology

 \sum

335	deoxycholate, followed by DNase I digestion. Lysates were centrifuged, and the supernatant
336	was layered onto a CsCl gradient (1.2 to 1.46 g/ml) and spun at 23,000 rpm in a Beckman
337	Optima 100K Ultracentrifuge using an SW28 spinning bucket rotor (Beckman Coulter).
338	Adenovirus bands were isolated and further purified on a second CsCl gradient using an
339	SW41 spinning bucket rotor. Resulting purified adenoviral bands were isolated using an
340	18.5-gauge needle and twice-dialyzed against 4% sucrose. Adenovirus concentrations were
341	measured at 10 ¹² times the dilution factor times the OD260 reading on a Nanodrop 2000
342	(Thermo Fisher Scientific). Adenovirus stocks were aliquoted and stored at -80° C.
343	
344	Active immunization and bioluminescence imaging
345	Gt(ROSA)26Sor ^{tm1(Luc)Kaelin} mice (Rosa26-Fluc) were obtained from The Jackson
346	Laboratory. Mice were bred and maintained at the Laboratory Animal Resources of Princeton
347	University according to guidelines established by the Institutional Animal Committee (Protocol
348	number 1930). After sE2 immunization, Rosa26-Fluc mice were injected with 10 ¹¹ adenovirus
349	particles 24 hours before intravenous injection with $2x10^7$ TCID ₅₀ HCV-BiCre-Jc1. At 72 hours
350	post-infection, mice were anesthetized using an isoflurane inhalation anesthesia and injected
351	intraperitoneally with 1.5 mg of D-luciferin (Caliper Life Sciences). Bioluminescence was
352	measured using an IVIS Lumina II platform (Caliper Life Sciences).

resuspended in 0.01 M sodium phosphate buffer (pH 7.2) and lysed in 5% sodium

353

354 Statistics

355	Significance comparisons were calculated with two-tailed student <i>t</i> test or Kruskal-Wallis
356	One-Way ANOVA analysis. For correlations, a nonparametric Spearman's test was used.
357	Significance values are shown as: not significant (ns) <i>P</i> ≥0.05, * <i>P</i> <0.05, ** <i>P</i> <0.01, ***
358	<i>P</i> <0.001 and **** <i>P</i> <0.0001. All statistical analyses were performed on GraphPad Prism 5.0c
359	(GraphPad Software, CA).
360	
361	
362	Results
363	High-yield production of soluble E2 glycoprotein in Drosophila S2 Cells
364	Previous efforts to develop a recombinant HCV vaccine relied on expression of E2 or
365	E1/E2 heterodimer in mammalian cells (27, 28, 38-40). It was reported that N-glycans
366	associated with HCV E2 could modulate receptor-binding affinity as well as neutralizing
367	epitope recognition (41). Thus, we hypothesized that glycosylation might influence the
368	antigenicity and immunogenicity of sE2. To directly determine the contribution of glycosylation
369	on the induction of bNAbs by sE2, we produced sE2 in mammalian and insect cell lines
370	known to yield altered glycan structures on proteins (42). To produce E2 protein of the HCV
371	strain Con1 (genotype 1b) in insect cells, we used an established Drosophila S2 cell
372	expression system (43). Transgenic cell lines expressing sE2 comprised of residues 384-661
373	were recovered following transfection of <i>Drosophila</i> S2 cells with pMT-sE2 and subsequent
374	antibiotic selection (Fig. 1A). The sE2 protein was secreted into cell culture supernatant and
375	remained stable for at least nine days (Fig. 1B). sE2 was readily purified from cell culture
376	supernatant to near homogeneity (Fig. 1C) at high levels of up to 100 mg/L of supernatant.

377	The purified sE2 migrated at ~45kDa (Fig. 1C), which is much higher than the predicted mass
378	(~34kDa) based on its amino acid sequence, suggesting possible glycosylation. To examine
379	the extent and pattern of glycosylation, sE2 was digested with endoglycosidases Endo H and
380	PNGase F. As shown in Fig. 1D, PNGase F treatment of sE2 generated a band at the
381	calculated molecular mass of ~34 kDa, suggesting that sE2 is fully deglycosylated by
382	PNGase F. Endo H digestion resulted in a band only slightly below untreated sE2, suggesting
383	that sE2 contains Endo H-resistant glycan types, such as paucimannose N-glycans, as
384	previously reported for other S2 cell-produced glycoproteins (42).
385	
386	Functional and conformational characterization of sE2
387	Proper folding of recombinant sE2 is critical for inducing antibodies capable of binding to
388	the envelope of HCV particles. Thus, we performed a variety of tests to insure that sE2 retains
389	its native conformation. CD81 and SRB1 are two critical HCV entry factors and directly
390	interact with E2 (44, 45), but only when the E2 protein is properly folded. To determine
391	whether S2 cell-produced sE2 can bind CD81 and SRB1, CHO cells stably expressing human
392	CD81 (designated CHO-CD81) or SRB1 (CHO-SRB1) were incubated with sE2, and the
393	binding of sE2 to CHO-CD81 or CHO-SRB1 cells assessed by flow cytometry (34). As shown
394	in Fig. 1E, sE2 bound to both CHO-CD81 and CHO-SRB1, and binding to CHO-CD81 was
395	inhibited by recombinant soluble large extracellular loop of CD81 (CD81LEL) in a
396	dose-dependent manner (Fig. 1F) in agreement with the previous finding that CD81LEL is the
397	binding domain of E2 (45). Next, we tested sE2 for its ability to block HCVcc infection. As
398	shown in Fig. 1G, HCVcc infection of Huh-7.5.1 cells was inhibited by sE2 in a

Σ

399

400

401

sites.

402 E2-specific, broadly neutralizing monoclonal antibodies (mAbs) AR3A (10) and AP33 (35), which target conformational and linear epitopes, respectively. ELISA analysis revealed that 403 sE2 efficiently reacted with both AR3A and AP33 in a dose-dependent manner (Fig. 1H). 404 Because AR3A recognizes a conformational epitope that overlaps with the CD81 binding site 405 (10, 46), our results demonstrate that sE2 acquires a conformation critical for binding both key 406 407 receptors and bNAbs, and therefore has a high potential to elicit bNAbs. Thus, collectively, our data strongly suggest that our sE2 antigen is properly folded. 408 409 Immunization of mice with sE2 induces HCV E2-specific antibodies that can neutralize 410 411 a diverse panel of HCV genotypes 412 The immunogenicity of our recombinant sE2 vaccine was first evaluated in BALB/c mice 413 in combination with aluminum hydroxide (Alum), Alum plus CpG7909, or Freund's adjuvant 414 (FA). As shown in Fig. 2A, the sE2-specific antibody titers of all mice from the three vaccine groups peaked at week 6 and gradually decreased, but remained above 1,000, until week 22. 415 Following a homologous boost at week 25, a drastic increase in sE2-specific antibody titers 416 was observed at week 27 for the three vaccine groups but not the control group (Fig. 2A), 417 418 indicating the presence of sE2-specific B cell memory. Among the three experimental vaccines, sE2 adjuvanted with FA, which is not approved for human use, elicited the highest 419 antibody titers at week 6 (Fig. 2B). The sE2-specific antibody titers of the sE2/Alum/CpG7909 420

dose-dependent manner, demonstrating that sE2 competes with HCVcc for receptor binding

The conformation of sE2 was further assessed by using two well-characterized,

421	group were significantly higher than those of the sE2/Alum group (Fig. 2B). Moreover, the
422	sE2/Alum group predominantly produced the IgG1 subclass of antibodies (Fig. 2C),
423	confirming that Alum is a T helper (Th) 2-biased adjuvant. The addition of CpG7909 resulted
424	in a low IgG1/IgG2a ratio (Fig. 2C), indicating that CpG re-directs the Th cell bias from Th2 to
425	Th1.
426	Antigen-specific T cell responses induced by the immunizations were assessed by
427	ELISPOT in splenocytes. The three vaccine groups, but not the control, showed significantly
428	higher numbers of IFN- γ - and interleukin (IL)-4-secreting cells (Fig. 2D). Therefore,
429	immunization of mice with sE2 can elicit antigen-specific IFN- γ - and IL-4-T cell memory, which
430	can be rapidly recalled to respond to subsequent viral antigen exposure.
431	The ability of the mouse antisera to inhibit HCV infection in vitro was assessed by a
432	micro-neutralization assay using a panel of chimeric HCVcc containing envelope proteins of
433	12 different strains, which cover nine sub-genotypes in all the seven genotypes (30-33). As
434	shown in Fig. 3A, anti-sE2 sera at a 1:40 dilution were able to efficiently neutralize
435	(neutralization ≥50%) almost all of the HCVcc in the panel. Antisera from a minority of the
436	mice had relatively poor neutralization (neutralization \leq 50%) against only J6 and QC69.
437	Notably, PR52B6mt and PR79L9, containing envelope proteins constructed directly from two
438	clinical isolates (33), were effectively neutralized. As shown in Table 1, for the three sE2
439	vaccine groups, the pooled sera titers that yielded \geq 50% neutralization (NT ₅₀) were no less
440	than 40 against all the HCVcc tested. Among them, the sE2/Alum/CpG antisera appeared to
441	be the most effective in terms of overall neutralization potency and breadth, with $NT_{50} \ge 160$ for
442	all the HCVcc strains.

The above data demonstrate that sE2 can elicit the production of bNAbs. To determine	
ther the induced bNAbs target different neutralizing epitopes, we developed a competitive	
SA, in which HRP-conjugated AP33 and AR3A were used as the detection antibodies. The	
Its from competitive ELISAs showed that sE2 binding to both AP33 and AP3A was	
pited by pre-incubation with the antisera from the three sE2 vaccine groups in a	
e-dependent manner, whereas the control sera from the PBS group did not exhibit	
ificant inhibitory effects (Fig. 3B). These data indicate the presence of both AP33-like and	
A-like broadly neutralizing antibodies in the anti-sE2 sera, which may contribute to the	
erved broad neutralization by the anti-sE2 sera.	
jomeric state of sE2 does not affect bNAb induction	
omeric state of sE2 does not affect bNAb induction A previous study showed that a similar version of sE2 produced in mammalian cells	
gomeric state of sE2 does not affect bNAb induction A previous study showed that a similar version of sE2 produced in mammalian cells ted primarily in monomeric and dimeric forms (40). To define the oligomeric state of our	
pomeric state of sE2 does not affect bNAb induction A previous study showed that a similar version of sE2 produced in mammalian cells ted primarily in monomeric and dimeric forms (40). To define the oligomeric state of our act cell-produced sE2, we subjected the Ni-NTA-purified sE2 to SEC analysis. Three major	
pomeric state of sE2 does not affect bNAb induction A previous study showed that a similar version of sE2 produced in mammalian cells ted primarily in monomeric and dimeric forms (40). To define the oligomeric state of our ect cell-produced sE2, we subjected the Ni-NTA-purified sE2 to SEC analysis. Three major ks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed	
A previous study showed that a similar version of sE2 produced in mammalian cells ted primarily in monomeric and dimeric forms (40). To define the oligomeric state of our ect cell-produced sE2, we subjected the Ni-NTA-purified sE2 to SEC analysis. Three major ks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3	
A previous study showed that a similar version of sE2 produced in mammalian cells ted primarily in monomeric and dimeric forms (40). To define the oligomeric state of our ect cell-produced sE2, we subjected the Ni-NTA-purified sE2 to SEC analysis. Three major ks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein	
A previous study showed that a similar version of sE2 produced in mammalian cells ted primarily in monomeric and dimeric forms (40). To define the oligomeric state of our act cell-produced sE2, we subjected the Ni-NTA-purified sE2 to SEC analysis. Three major ks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein pably representing sE2 megamers (Fig. 4B). To investigate the impact of sE2 oligomeric	
A previous study showed that a similar version of sE2 produced in mammalian cells ted primarily in monomeric and dimeric forms (40). To define the oligomeric state of our ect cell-produced sE2, we subjected the Ni-NTA-purified sE2 to SEC analysis. Three major ks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein pably representing sE2 megamers (Fig. 4B). To investigate the impact of sE2 oligomeric e on bNAb induction, we immunized three groups of BALB/c mice with equal amount (50	

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

444	whether the induced bNAbs target different neutralizing epitopes, we developed a competitive
445	ELISA, in which HRP-conjugated AP33 and AR3A were used as the detection antibodies. The
446	results from competitive ELISAs showed that sE2 binding to both AP33 and AP3A was
447	inhibited by pre-incubation with the antisera from the three sE2 vaccine groups in a
448	dose-dependent manner, whereas the control sera from the PBS group did not exhibit
449	significant inhibitory effects (Fig. 3B). These data indicate the presence of both AP33-like and
450	AR3A-like broadly neutralizing antibodies in the anti-sE2 sera, which may contribute to the
451	observed broad neutralization by the anti-sE2 sera.
452	
453	Oligomeric state of sE2 does not affect bNAb induction
454	A previous study showed that a similar version of sE2 produced in mammalian cells
455	existed primarily in monomeric and dimeric forms (40). To define the oligomeric state of our
456	insect cell-produced sF2 we subjected the Ni-NTA-purified sF2 to SFC analysis. Three major
457	peaks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed
457 458	peaks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed that monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3
457 458 459	peaks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed that monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 and the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein
457 458 459 460	peaks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed that monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 and the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein probably representing sE2 megamers (Fig. 4B). To investigate the impact of sE2 oligomeric
457 458 459 460 461	peaks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed that monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 and the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein probably representing sE2 megamers (Fig. 4B). To investigate the impact of sE2 oligomeric state on bNAb induction, we immunized three groups of BALB/c mice with equal amount (50
457 458 459 460 461 462	peaks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed that monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 and the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein probably representing sE2 megamers (Fig. 4B). To investigate the impact of sE2 oligomeric state on bNAb induction, we immunized three groups of BALB/c mice with equal amount (50 ug) of sE2 antigens concentrated from the three peaks, respectively, and compared the
457 458 459 460 461 462 463	peaks were identified in the SEC chromatogram (Fig. 4A). Non-reducing SDS-PAGE showed that monomers (~45kDa) and dimers (~90kDa) were predominantly detected in the peak 3 and the peak 2, respectively, whereas the peak 1 contained large-molecular-mass protein probably representing sE2 megamers (Fig. 4B). To investigate the impact of sE2 oligomeric state on bNAb induction, we immunized three groups of BALB/c mice with equal amount (50 ug) of sE2 antigens concentrated from the three peaks, respectively, and compared the resulting mouse antisera for neutralization against different HCVcc genotypes. As shown in

 \sum

465

466	antisera from the other two groups (peak 1 and peak 2), no significant difference in
467	neutralization against all of the heterologous strains tested was observed for the three sE2
468	vaccine groups. These results indicate that oligomeric state of sE2 does not affect its ability to
469	induce bNAbs
470	
471	The unique glycosylation of insect cell-derived sE2 is critical for its ability to induce
472	broadly neutralizing antibodies
473	Next, we analyzed the contribution of glycosylation on the induction of bNAbs by directly
474	comparing the immunogenicity of sE2 produced in human HEK293T cells (Figs. 5A-B) with
475	sE2 produced in Drosophila S2. Upon PNGase F treatment, both proteins yielded the same
476	~34kDa band (Figs. 5A and 5C); however, Endo H-treated mammalian sE2 showed a
477	smeared (from 70kDa to 35kDa) banding pattern (Fig. 5A), which differs from that of Endo
478	H-treated insect sE2 (Fig. 1D). These results demonstrate that the glycosylation patterns of
479	insect and mammalian HCV sE2 are different, which is in line with previous studies comparing
480	the envelope proteins of other viruses, e.g. influenza A virus, expressed in cells of
481	heterologous species (42). Then, insect sE2 and mammalian sE2 were compared for mAb
482	recognition. Both sE2 versions reacted with the AP33 mAb in an identical fashion, whereas
483	mammalian sE2 was poorly recognized by the mAb AR3A as compared to insect sE2 (Fig.
484	5D); however, after PNGase F digestion to remove N-linked glycans (Fig. 5C), both
485	deglycosylated sE2 proteins reacted equally with AR3A and AP33 antibodies (Fig. 5E). These
486	antibody binding data indicate that glycosylation can affect epitope exposure on sE2.

decreased neutralization activity against the homologous strain Con1 as compared to the

487	Moreover, mammalian sE2 bound CD81 and SRB1 less efficiently than insect sE2 did,
488	whereas their deglycosylated forms performed equally (Fig. 5F), although both sE2 versions
489	compete with CD81LEL (Fig. 5G-H) and HCVcc (Fig. 5I). These results suggest that the
490	better receptor recognition by insect sE2 is due to its unique glycosylation pattern.
491	To assess the impact of glycosylation on sE2's immunogenicity and NAb-inducing ability,
492	we immunized four groups of BALB/c mice with insect sE2, mammalian sE2, or their N-linked
493	deglycosylated counterparts. Among the four groups, the one immunized with insect sE2
494	produced the highest binding antibody titers (Fig. 5J) as well as the highest neutralization
495	antibody titers against all HCVcc tested (Fig. 5K). Specifically, antisera induced by insect sE2
496	showed $NT_{50} \ge 160$ against all the tested HCVcc strains, whereas antisera of the mammalian
497	sE2 group exhibited NT ₅₀ ≥160 for only two strains (Con1 and JFH1) (Fig. 5K). In addition,
498	removal of N-glycans from insect sE2 resulted in reduced sE2-binding and neutralization
499	antibody titers (Fig. 5K). These data suggest that the unique glycosylation in insect
500	cell-derived sE2 is critical for its ability to induce pan-genotypic neutralizing antibodies.
501	
502	HVR1-deleted mutant is equivalent to the intact sE2 in eliciting bNAbs
503	Hypervariable region 1 (HVR1) is a highly variant region in the N-terminus of E2 and is a
504	predominant neutralizing epitope in the context of natural infection. However, anti-HVR1 NAbs
505	are mostly isolate-specific (18, 46), and HVR1 has been shown to play a detrimental role in
506	virus neutralization (47-49). We therefore evaluated whether the deletion of HVR1 from sE2
507	(sE2ΔHVR1, Fig. 6A) would affect its conformation and ability to induce cross-reactive NAbs.

sE2∆HVR1 retained the ability to bind CD81, but poorly bound SRB1 (Fig. 6B), indicating that

510

511	full-length sE2 (Fig. 6C), likely due to the failure of sE2 Δ HVR1 to block the interaction
512	between HCVcc and SRB1. Both sE2 Δ HVR1 and full-length sE2 were examined for their
513	ability to react with mAbs AR3A and AP33. As shown in Fig. 6D, the reactivity of sE2 Δ HVR1 to
514	AR3A was nearly identical to that of full-length sE2, whereas binding of sE2 Δ HVR1 to AP33
515	was much greater than full-length sE2, suggesting that HVR1 (aa. 384-410), present on
516	full-length sE2, somewhat masks the adjacent AP33 epitope (aa. 412-423).
517	Next, we immunized BALB/c mice with sE2 and sE2 Δ HVR1. The sE2- and sE2 Δ HVR1-
518	binding activities of antisera from both groups were similar (Fig. 6E). Although the neutralizing
519	ability of the anti-sE2 Δ HVR1 sera against the homologous Con1 strain was significantly
520	impaired as compared to that of full-length sE2, no significant difference in neutralization of
521	the 11 heterologous strains was observed between the two antisera (Fig. 6F). These results
522	demonstrate that sE2 Δ HVR1 is equivalent to the full-length sE2 in inducing broadly
523	neutralizing antibodies.
524	
525	Prophylactic efficacy of sE2 vaccine in a genetically humanized mouse model of HCV
526	infection
527	The in vivo protective efficacy of the sE2 vaccine was evaluated using a genetically
528	humanized mouse model (12). Rosa26-Fluc mice immunized with sE2/Alum generated
529	high-titer sE2-specific antibodies whereas those injected with PBS/Alum did not (Fig. 7A-B,
530	<i>n</i> =6 per group). Following injection of adenoviruses expressing HCV entry factors (EF) CD81

HVR1 is involved in interacting with SRB1, in agreement with previous findings (50). The

ability of sE2∆HVR1 to inhibit HCVcc infection was significantly impaired compared to

532	bicistronic HCV encoding Cre recombinase (BiCre-Jc1, genotype 2a) (12). As shown in Fig.
533	7C-D, the bioluminescence signals were drastically reduced in the sE2/Alum immunized mice
534	as compared to the PBS/Alum and the "no EF" groups. These results indicate that active
535	immunization with sE2 can efficiently protect against HCV infection in vivo.
536	
537	Discussion
538	Glycosylated envelope proteins of viruses are often the targets for vaccine development.
539	Thus far, the role of glycosylation in vaccine immunogenicity remains controversial (51-54).
540	Structural analysis suggested that N-linked glycans in HCV E2 mask the exposed face on the
541	E2 surface from NAbs (55, 56). In the present study, we aimed to analyze the impact of
542	glycosylation on the immunogenicity of a HCV E2 protein-based recombinant vaccine
543	candidate. We demonstrate that the glycosylation pattern associated with S2 cell-derived sE2
544	may be more favorable to eliciting bNAbs than mammalian cell-produced sE2 (40). In our
545	study, we show that the removal of N-glycans in sE2 markedly reduced the antibody titers
546	(Fig. 5J). In addition, S2 cell-produced sE2, which is decorated with less complex glycans, not
547	only was more immunogenic (Fig. 5J) but also had more exposed neutralizing epitopes (Fig.
548	5B-E) and receptor-binding domains (Fig. 5F) as compared to its mammalian cell-derived
549	counterpart. This suggests that the unique glycosylation of S2 cell-produced sE2 is important
550	for its bNAbs-inducing ability.
551	In addition to the altered glycosylation of insect cell derived sE2, we reason that
552	increased conformational flexibility contributes to the greater immunogenicity we observed.

and OCLN, the immunized Rosa26-Fluc mice were subsequently challenged with Jc1-derived

553	sE2 expressed in S2 cells appears to have acquired a critical conformation suitable for
554	inducing bNAbs, and such a conformation may not readily occur when E2 is presented in a
555	more complex structure, such as a virion or E1/E2 heterodimer. For example, HVR1 present
556	on HCV particles has been shown to obstruct the CD81 binding site, thereby masking
557	conserved neutralizing epitopes (50), and an initial contact with SRB1 may be needed to
558	unmask the binding site for E2 to interact with CD81. In addition, it has also been reported that
559	deletion of HVR1 enhances the CD81 binding activity of E1/E2 heterodimers in HCV
560	pseudo-particles (57). In contrast, we found that the deletion of HVR1 did not significantly
561	affect the CD81-binding activity of sE2 (Fig. 6B), indicating that the HVR1 domain in the
562	context of insect cell-produced sE2 does not functionally mask the CD81 binding site and
563	therefore may facilitate the elicitation of CD81 binding site-specific antibodies. In support of
564	this notion, structural studies suggest that in sE2, the region from HVR1 (residue 384-410) to
565	a conserved epitope (residue 412-423) is conformationally flexible (58, 59), which may aid in
566	exposure of the conserved epitope. Conceivably, this flexibility enables sE2 to represent
567	critical E2 intermediate form(s) in a transition-phase of HCV entry and may therefore be key to
568	the ability of sE2 to induce pan-genotypic NAbs.
569	Another important consideration for prioritizing HCV vaccine candidates is scalabilty for
570	potential mass production. Although the yields of insect and mammalian sE2s may differ for
571	other HCV strains, in this study, correctly folded sE2 of Con1 strain can be produced at high
572	levels in the S2 expression system (100 mg/L), which is considerably higher than the yields

573 (1-2 mg/L) of mammalian sE2 or a similar version termed eE2 (40). The yield could potentially

575	identification of such a production system will be important for practical scaling up.
576	Thus far, only a few NAb-based vaccines have been evaluated in vivo due to the scarcity
577	of small animal models for HCV infection (12, 19, 20, 23). For example, an inactivated HCV
578	vaccine was found to induce NAbs capable of protecting chimeric uPA/SCID mice from lower
579	doses (10 ³ RNA copies of HCVcc) of HCV challenge, but not higher doses (10 ⁴ and 10 ⁵) (23).
580	In this study, we used immunocompetent mice to assess the immunogenicity as well as
581	prophylactic efficacy of the vaccine candidate. Proof-of-concept for the utility of this
582	genetically humanized mouse model to test antibody-based vaccine candidates was
583	previously established with a recombinant vaccinia-virus vector expressing the structural
584	proteins of a genotype 1a HCV vaccine strain. Here, we employed this model to assess the
585	efficacy of our recombinant vaccine candidate. We found that genetically humanized mice
586	immunized with Con1 (genotype 1b)-derived sE2 were protected from heterologous challenge
587	with 2×10^7 TCID ₅₀ of BiCre-Jc1 (genotype 2a) HCVcc. As BiCre-Jc1 HCVcc is a relatively
588	difficult-to-neutralize strain (Fig. 3A, and references(10-13)), the observed cross-protection
589	highlights the potential of sE2 as a broadly protective HCV vaccine. While evaluation of the
590	efficacy of this vaccine in chimpanzees – the only other known species to be readily
591	susceptible to HCV infection – would be desirable, experimentation in great apes is banned in
592	most countries and/or is no longer supported by federal funding due to ethical concerns. Thus,
593	the genetically humanized mouse model remains to date the only immunocompetent animal
594	model available to test preclinically the efficacy of vaccine candidates. We should point out
595	that this mouse model is not without caveats. For example, since not all of the identified

be further improved by using a perfusion culture technology as described previously (60). The

574

596

597

598

599

600

recombinant HCV vaccine.

601 In conclusion, a sE2 vaccine based on expression of viral envelope proteins in insect 602 cells has multiple benefits. Firstly, the simple glycosylation and high flexibility of insect 603 604 cell-derived sE2 may aid its ability to induce bNAbs, as demonstrated by the highly broad NAbs observed in mice. Secondly, industrial production-related advantages, such as simple 605 606 composition, high yield, and ease in purification, will greatly reduce production costs and also make it possible to develop a multivalent vaccine formulation for broader coverage if needed. 607 608 Thirdly, the *in vivo* protective efficacy of sE2 was confirmed by an active immunization, 609 instead of a passive immunization, in a humanized mouse model, which is the only 610 immunocompetent animal model (except chimpanzee) of HCV infection currently available. 611 These results should encourage further pre-clinical and clinical development of a sE2-based, broadly protective HCV vaccine. 612 613 614 615

human receptors/co-factors for HCV (17) are present in this model, it may be easier to prevent

infection in this model than with natural infection. Nevertheless, we have previously shown

that levels of protection correlate well with the immunogenicity of vectored vaccines in this

model (12) and thus such humanized mice seem adequate for evaluating the efficacy of our

616 References

- 617 1. El-Serag, H. B. 2012. Epidemiology of viral hepatitis and hepatocellular carcinoma.
- 618 Gastroenterology **142:**1264-1273 e1261.
- 619 2. Gonzalez-Grande, R., M. Jimenez-Perez, C. Gonzalez Arjona, and J. Mostazo
- 620 Torres. 2016. New approaches in the treatment of hepatitis C. World journal of
- 621 gastroenterology 22:1421-1432.
- 3. Barnes, E., A. Folgori, S. Capone, L. Swadling, S. Aston, A. Kurioka, J. Meyer, R.
- 623 Huddart, K. Smith, R. Townsend, A. Brown, R. Antrobus, V. Ammendola, M. Naddeo, G.
- 624 O'Hara, C. Willberg, A. Harrison, F. Grazioli, M. L. Esposito, L. Siani, C. Traboni, Y. Oo,
- 625 D. Adams, A. Hill, S. Colloca, A. Nicosia, R. Cortese, and P. Klenerman. 2012. Novel
- 626 adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man.
- 627 Science translational medicine **4**:115ra111.
- 4. Swadling, L., S. Capone, R. D. Antrobus, A. Brown, R. Richardson, E. W. Newell, J.

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

- 629 Halliday, C. Kelly, D. Bowen, J. Fergusson, A. Kurioka, V. Ammendola, M. Del Sorbo, F.
- 630 Grazioli, M. L. Esposito, L. Siani, C. Traboni, A. Hill, S. Colloca, M. Davis, A. Nicosia, R.
- 631 Cortese, A. Folgori, P. Klenerman, and E. Barnes. 2014. A human vaccine strategy based
- 632 on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional
- 633 HCV-specific T cell memory. Science translational medicine **6**:261ra153.
- 634 5. Burton, D. R., P. Poignard, R. L. Stanfield, and I. A. Wilson. 2012. Broadly neutralizing
- 635 antibodies present new prospects to counter highly antigenically diverse viruses. Science
- 636 **337:**183-186.
- 6. Pestka, J. M., M. B. Zeisel, E. Bläser, P. Schürmann, B. Bartosch, F.-L. L. Cosset, A.
- 638 H. Patel, H. Meisel, J. Baumert, S. Viazov, K. Rispeter, H. E. Blum, M. Roggendorf, and

639 T. F. Baumert. 2007. Rapid induction of virus-neutralizing antibodies and viral clearance in a

640 single-source outbreak of hepatitis C. Proceedings of the National Academy of Sciences of

- 641 the United States of America **104**:6025-6030.
- 642 7. Lavillette, D., Y. Morice, G. Germanidis, P. Donot, A. Soulier, E. Pagkalos, G.
- 643 Sakellariou, L. Intrator, B. Bartosch, J. M. Pawlotsky, and F. L. Cosset. 2005. Human
- 644 serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate
- 645 with viral replication kinetics at the acute phase of hepatitis C virus infection. J Virol
- 646 **79:**6023-6034.
- 647 8. Dowd, K. A., D. M. Netski, X. H. Wang, A. L. Cox, and S. C. Ray. 2009. Selection
- 648 pressure from neutralizing antibodies drives sequence evolution during acute infection with
- 649 hepatitis C virus. Gastroenterology **136:**2377-2386.
- 650 9. Morin, T. J., T. J. Broering, B. A. Leav, B. M. Blair, K. J. Rowley, E. N. Boucher, Y.
- 651 Wang, P. S. Cheslock, M. Knauber, D. B. Olsen, S. W. Ludmerer, G. Szabo, R. W.
- 652 Finberg, R. H. Purcell, R. E. Lanford, D. M. Ambrosino, D. C. Molrine, and G. J. Babcock.
- 653 2012. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in
- 654 chimpanzees. PLoS pathogens 8:e1002895.
- 655 10. Law, M., T. Maruyama, J. Lewis, E. Giang, A. Tarr, Z. Stamataki, P. Gastaminza, F.
- 656 Chisari, I. Jones, R. Fox, J. Ball, J. McKeating, N. Kneteman, and D. Burton. 2008.
- 657 Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge.
- 658 Nature medicine **14:25-27**.
- 659 11. Giang, E., M. Dorner, J. C. Prentoe, M. Dreux, M. J. Evans, J. Bukh, C. M. Rice, A.
- 660 Ploss, D. R. Burton, and M. Law. 2012. Human broadly neutralizing antibodies to the

- 662 Sciences of the United States of America **109**:6205-6210.
- 12. Dorner, M., J. A. Horwitz, J. B. Robbins, W. T. Barry, Q. Feng, K. Mu, C. T. Jones, J.
- 664 W. Schoggins, M. T. Catanese, D. R. Burton, M. Law, C. M. Rice, and A. Ploss. 2011. A
- 665 genetically humanized mouse model for hepatitis C virus infection. Nature 474:208-211.
- 13. de Jong, Y. P., M. Dorner, M. C. Mommersteeg, J. W. Xiao, A. B. Balazs, J. B.
- 667 Robbins, B. Y. Winer, S. Gerges, K. Vega, R. N. Labitt, B. M. Donovan, E. Giang, A.
- 668 Krishnan, L. Chiriboga, M. R. Charlton, D. R. Burton, D. Baltimore, M. Law, C. M. Rice,
- 669 and A. Ploss. 2014. Broadly neutralizing antibodies abrogate established hepatitis C virus
- 670 infection. Science translational medicine **6**:254ra129.
- 14. Desombere, I., S. Fafi-Kremer, F. Van Houtte, P. Pessaux, A. Farhoudi, L.
- 672 Heydmann, L. Verhoye, S. Cole, J. A. McKeating, G. Leroux-Roels, T. F. Baumert, A. H.
- 673 Patel, and P. Meuleman. 2016. Monoclonal anti-envelope antibody AP33 protects
- 674 humanized mice against a patient-derived hepatitis C virus challenge. Hepatology
- 675 **63:**1120-1134.
- 676 15. Prince, A. M., B. Brotman, D. H. Lee, W. Pfahler, N. Tricoche, L. Andrus, and M. T.
- 677 Shata. 2005. Protection against chronic hepatitis C virus infection after rechallenge with
- 678 homologous, but not heterologous, genotypes in a chimpanzee model. The Journal of
- 679 infectious diseases **192**:1701-1709.
- 680 16. Lindenbach, B., and C. Rice. 2013. The ins and outs of hepatitis C virus entry and
- assembly. Nature reviews. Microbiology **11:688-700**.

- 17. Ding, Q., M. von Schaewen, and A. Ploss. 2014. The impact of hepatitis C virus entry 682
- on viral tropism. Cell host & microbe 16:562-568. 683
- 18. Wang, Y., Z.-Y. Keck, and S. Foung. 2011. Neutralizing antibody response to hepatitis 684
- C virus. Viruses 3:2127-2145. 685
- 19. Choo, Q. L., G. Kuo, R. Ralston, A. Weiner, D. Chien, G. Van Nest, J. Han, K. Berger, 686
- 687 K. Thudium, C. Kuo, J. Kansopon, J. McFarland, A. Tabrizi, K. Ching, B. Moss, L. B.
- Cummins, M. Houghton, and E. Muchmore. 1994. Vaccination of chimpanzees against 688
- infection by the hepatitis C virus. Proceedings of the National Academy of Sciences of the 689
- 690 United States of America 91:1294-1298.
- 20. Elmowalid, G. A., M. Qiao, S. H. Jeong, B. B. Borg, T. F. Baumert, R. K. Sapp, Z. Hu, 691
- K. Murthy, and T. J. Liang. 2007. Immunization with hepatitis C virus-like particles results in 692
- control of hepatitis C virus infection in chimpanzees. Proceedings of the National Academy of 693
- 694 Sciences of the United States of America 104:8427-8432.
- 21. Garrone, P., A.-C. Fluckiger, P. Mangeot, E. Gauthier, P. Dupeyrot-Lacas, J. Mancip, 695
- A. Cangialosi, I. Du Chéné, R. LeGrand, I. Mangeot, D. Lavillette, B. Bellier, F.-L. Cosset, 696
- 697 F. Tangy, D. Klatzmann, and C. Dalba. 2011. A prime-boost strategy using virus-like
- particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. 698
- 699 Science translational medicine 3.
- 22. Reyes-del Valle, J., C. de la Fuente, M. Turner, C. Springfeld, S. Apte-Sengupta, M. 700
- 701 Frenzke, A. Forest, J. Whidby, J. Marcotrigiano, C. Rice, and R. Cattaneo. 2012. Broadly
- neutralizing immune responses against hepatitis C virus induced by vectored measles viruses 702
- and a recombinant envelope protein booster. Journal of virology 86:11558-11566. 703

704	23. Akazawa, D., M. Moriyama, H. Yokokawa, N. Omi, N. Watanabe, T. Date, K.
705	Morikawa, H. Aizaki, K. Ishii, T. Kato, H. Mochizuki, N. Nakamura, and T. Wakita. 2013.
706	Neutralizing antibodies induced by cell culture-derived hepatitis C virus protect against
707	infection in mice. Gastroenterology 145: 447-455 e441-444.
708	24. Beaumont, E., R. Patient, C. Hourioux, I. Dimier-Poisson, and P. Roingeard. 2013.
709	Chimeric hepatitis B virus/hepatitis C virus envelope proteins elicit broadly neutralizing
710	antibodies and constitute a potential bivalent prophylactic vaccine. Hepatology (Baltimore,
711	Md.) 57: 1303-1313.
712	25. Law, J., C. Chen, J. Wong, D. Hockman, D. Santer, S. Frey, R. Belshe, T. Wakita, J.
713	Bukh, C. Jones, C. Rice, S. Abrignani, D. Tyrrell, and M. Houghton. 2013. A hepatitis C
714	virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single
715	isolate elicits broad cross-genotype neutralizing antibodies in humans. PloS one 8.
716	26. Chmielewska, A. M., M. Naddeo, S. Capone, V. Ammendola, K. Hu, L. Meredith, L.
717	Verhoye, M. Rychlowska, R. Rappuoli, J. B. Ulmer, S. Colloca, A. Nicosia, R. Cortese, G.
718	Leroux-Roels, P. Balfe, K. Bienkowska-Szewczyk, P. Meuleman, J. A. McKeating, and A.
719	Folgori. 2014. Combined adenovirus vector and hepatitis C virus envelope protein
720	prime-boost regimen elicits T cell and neutralizing antibody immune responses. Journal of
721	virology 88: 5502-5510.
722	27. Stamataki, Z., S. Coates, M. J. Evans, M. Wininger, K. Crawford, C. Dong, Y. L.
723	Fong, D. Chien, S. Abrignani, P. Balfe, C. M. Rice, J. A. McKeating, and M. Houghton.
724	2007. Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive
725	neutralizing antibodies. Vaccine 25: 7773-7784.
	 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

- 726 28. Frey, S. E., M. Houghton, S. Coates, S. Abrignani, D. Chien, D. Rosa, P. Pileri, R.
- 727 Ray, A. M. Di Bisceglie, P. Rinella, H. Hill, M. C. Wolff, V. Schultze, J. H. Han, B.
- 728 Scharschmidt, and R. B. Belshe. 2010. Safety and immunogenicity of HCV E1E2 vaccine
- adjuvanted with MF59 administered to healthy adults. Vaccine 28:6367-6373.
- 29. Lindenbach, B. D., P. Meuleman, A. Ploss, T. Vanwolleghem, A. J. Syder, J. A.
- 731 McKeating, R. E. Lanford, S. M. Feinstone, M. E. Major, G. Leroux-Roels, and C. M. Rice.
- 732 2006. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro.
- 733 Proceedings of the National Academy of Sciences of the United States of America
- 734 **103:**3805-3809.
- 30. Zhong, J., P. Gastaminza, G. Cheng, S. Kapadia, T. Kato, D. R. Burton, S. F.
- 736 Wieland, S. L. Uprichard, T. Wakita, and F. V. Chisari. 2005. Robust hepatitis C virus
- 737 infection in vitro. Proceedings of the National Academy of Sciences of the United States of

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

- 738 America **102**:9294-9299.
- 739 31. Pietschmann, T., A. Kaul, G. Koutsoudakis, A. Shavinskaya, S. Kallis, E.
- 740 Steinmann, K. Abid, F. Negro, M. Dreux, F. L. Cosset, and R. Bartenschlager. 2006.
- 741 Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C
- 742 virus chimeras. Proceedings of the National Academy of Sciences of the United States of
- 743 America **103:**7408-7413.
- 32. Gottwein, J., T. Scheel, T. Jensen, J. Lademann, J. Prentoe, M. Knudsen, A. Hoegh,
- 745 and J. Bukh. 2009. Development and characterization of hepatitis C virus genotype 1-7 cell
- 746 culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral
- 747 drugs. Hepatology (Baltimore, Md.) 49:364-377.

- 33. Lu, J., W. Tao, R. Li, Y. Xiang, N. Zhang, X. Xiang, Q. Xie, and J. Zhong. 2013.
- 749 Construction and characterization of infectious hepatitis C virus chimera containing structural
- proteins directly from genotype 1b clinical isolates. Virology **443:**80-88.
- 34. Tao, W., C. Xu, Q. Ding, R. Li, Y. Xiang, J. Chung, and J. Zhong. 2009. A single point
- 752 mutation in E2 enhances hepatitis C virus infectivity and alters lipoprotein association of viral
- 753 particles. Virology **395:**67-76.
- 754 35. Owsianka, A., A. W. Tarr, V. S. Juttla, D. Lavillette, B. Bartosch, F. L. Cosset, J. K.
- 755 Ball, and A. H. Patel. 2005. Monoclonal antibody AP33 defines a broadly neutralizing epitope
- on the hepatitis C virus E2 envelope glycoprotein. Journal of virology **79:**11095-11104.
- 757 36. Li, R., Y. Qin, Y. He, W. Tao, N. Zhang, C. Tsai, P. Zhou, and J. Zhong. 2011.
- 758 Production of hepatitis C virus lacking the envelope-encoding genes for single-cycle infection

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

- 759 by providing homologous envelope proteins or vesicular stomatitis virus glycoproteins in
- 760 trans. Journal of virology **85**:2138-2147.
- 761 37. Lindenbach, B. D., M. J. Evans, A. J. Syder, B. Wolk, T. L. Tellinghuisen, C. C. Liu,
- 762 T. Maruyama, R. O. Hynes, D. R. Burton, J. A. McKeating, and C. M. Rice. 2005.
- 763 Complete replication of hepatitis C virus in cell culture. Science **309**:623-626.

38. Naarding, M. A., E. Falkowska, H. Xiao, and T. Dragic. 2011. Hepatitis C virus soluble

- E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine
 29:2910-2917.
- 767 39. Ruwona, T. B., E. Giang, T. Nieusma, and M. Law. 2014. Fine mapping of murine
- 768 antibody responses to immunization with a novel soluble form of hepatitis C virus envelope
- 769 glycoprotein complex. J Virol 88:10459-10471.

- 40. Whidby, J., G. Mateu, H. Scarborough, B. Demeler, A. Grakoui, and J.
- 771 Marcotrigiano. 2009. Blocking hepatitis C virus infection with recombinant form of envelope
- protein 2 ectodomain. Journal of virology **83:**11078-11089.
- 41. Helle, F., G. Duverlie, and J. Dubuisson. 2011. The hepatitis C virus glycan shield and
- evasion of the humoral immune response. Viruses **3:**1909-1932.
- 42. de Vries, R. P., C. H. Smit, E. de Bruin, A. Rigter, E. de Vries, L. A. Cornelissen, D.
- 776 Eggink, N. P. Chung, J. P. Moore, R. W. Sanders, C. H. Hokke, M. Koopmans, P. J.
- 777 Rottier, and C. A. de Haan. 2012. Glycan-dependent immunogenicity of recombinant soluble
- trimeric hemagglutinin. Journal of virology **86:**11735-11744.
- 43. Yang, L., Y. Song, X. Li, X. Huang, J. Liu, H. Ding, P. Zhu, and P. Zhou. 2012. HIV-1
- virus-like particles produced by stably transfected Drosophila S2 cells: a desirable vaccine
- component. Journal of virology **86:**7662-7676.
- 44. Scarselli, E., H. Ansuini, R. Cerino, R. M. Roccasecca, S. Acali, G. Filocamo, C.
- 783 Traboni, A. Nicosia, R. Cortese, and A. Vitelli. 2002. The human scavenger receptor class
- B type I is a novel candidate receptor for the hepatitis C virus. EMBO J **21**:5017-5025.
- 45. Pileri, P., Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi, R. Petracca, A. J. Weiner,
- 786 M. Houghton, D. Rosa, G. Grandi, and S. Abrignani. 1998. Binding of hepatitis C virus to
- 787 CD81. Science 282:938-941.
- 46. Edwards, V. C., A. W. Tarr, R. A. Urbanowicz, and J. K. Ball. 2012. The role of
- 789 neutralizing antibodies in hepatitis C virus infection. The Journal of general virology **93:1-19**.

790	47. Prentoe, J., L. Verhoye, R. Velazquez Moctezuma, C. Buysschaert, A. Farhoudi, R.
791	Wang, H. Alter, P. Meuleman, and J. Bukh. 2015. HVR1-mediated antibody evasion of
792	highly infectious in vivo adapted HCV in humanised mice. Gut.
793	48. Prentoe, J., T. B. Jensen, P. Meuleman, S. B. Serre, T. K. Scheel, G. Leroux-Roels,
794	J. M. Gottwein, and J. Bukh. 2011. Hypervariable region 1 differentially impacts viability of
795	hepatitis C virus strains of genotypes 1 to 6 and impairs virus neutralization. Journal of
796	virology 85: 2224-2234.
797	49. Bankwitz, D., E. Steinmann, J. Bitzegeio, S. Ciesek, M. Friesland, E. Herrmann, M.
798	B. Zeisel, T. F. Baumert, Z. Y. Keck, S. K. Foung, E. I. Pecheur, and T. Pietschmann.
799	2010. Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the
800	CD81 binding site, and protects conserved neutralizing epitopes. Journal of virology
801	84: 5751-5763.
802	50. Bankwitz, D., E. Steinmann, J. Bitzegeio, S. Ciesek, M. Friesland, E. Herrmann, M.
803	Zeisel, T. Baumert, Zy. Keck, S. Foung, EI. Pécheur, and T. Pietschmann. 2010.
804	Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81
805	binding site, and protects conserved neutralizing epitopes. Journal of virology 84:5751-5763.
806	51. Ma, B. J., S. M. Alam, E. P. Go, X. Lu, H. Desaire, G. D. Tomaras, C. Bowman, L. L.
807	Sutherland, R. M. Scearce, S. Santra, N. L. Letvin, T. B. Kepler, H. X. Liao, and B. F.
808	Haynes. 2011. Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for
809	both broad neutralizing antibodies and their unmutated ancestor antibodies. PLoS pathogens
810	7 :e1002200.

Σ

811	52. Banerjee, K., S. Andjelic, P. J. Klasse, Y. Kang, R. W. Sanders, E. Michael, R. J.
812	Durso, T. J. Ketas, W. C. Olson, and J. P. Moore. 2009. Enzymatic removal of mannose
813	moieties can increase the immune response to HIV-1 gp120 in vivo. Virology 389: 108-121.
814	53. Gavrilov, B. K., K. Rogers, I. J. Fernandez-Sainz, L. G. Holinka, M. V. Borca, and G.
815	R. Risatti. 2011. Effects of glycosylation on antigenicity and immunogenicity of classical
816	swine fever virus envelope proteins. Virology 420: 135-145.
817	54. Hutter, J., J. V. Rodig, D. Hoper, P. H. Seeberger, U. Reichl, E. Rapp, and B.
818	Lepenies. 2013. Toward animal cell culture-based influenza vaccine design: viral
819	hemagglutinin N-glycosylation markedly impacts immunogenicity. Journal of immunology
820	190: 220-230.
821	55. Khan, A. G., J. Whidby, M. T. Miller, H. Scarborough, A. V. Zatorski, A. Cygan, A. A.
822	Price, S. A. Yost, C. D. Bohannon, J. Jacob, A. Grakoui, and J. Marcotrigiano. 2014.
823	Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature
824	509: 381-384.
825	56. Kong, L., E. Giang, T. Nieusma, R. U. Kadam, K. E. Cogburn, Y. Hua, X. Dai, R. L.
826	Stanfield, D. R. Burton, A. B. Ward, I. A. Wilson, and M. Law. 2013. Hepatitis C virus E2
827	envelope glycoprotein core structure. Science 342: 1090-1094.
828	57. Guan, M., W. Wang, X. Liu, Y. Tong, Y. Liu, H. Ren, S. Zhu, J. Dubuisson, T. F.
829	Baumert, Y. Zhu, H. Peng, L. Aurelian, P. Zhao, and Z. Qi. 2012. Three different functional
830	microdomains in the hepatitis C virus hypervariable region 1 (HVR1) mediate entry and
831	immune evasion. The Journal of biological chemistry 287: 35631-35645.

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

832	58	Monla	ΔΔ	w	Tarr	P Fna	land I	w	Morodith	CP	McClure	SK	(Found	Δ Ι.

- 833 McKeating, J. K. Ball, F. A. Rey, and T. Krey. 2015. Structural flexibility of a conserved
- antigenic region in hepatitis C virus glycoprotein E2 recognized by broadly neutralizing
- 835 antibodies. Journal of virology 89:2170-2181.
- 59. Taniguchi, S., H. Okamoto, M. Sakamoto, M. Kojima, F. Tsuda, T. Tanaka, E.
- 837 Munekata, E. E. Muchmore, D. A. Peterson, and S. Mishiro. 1993. A structurally flexible
- and antigenically variable N-terminal domain of the hepatitis C virus E2/NS1 protein:
- 839 implication for an escape from antibody. Virology **195**:297-301.
- 60. Wang, L., H. Hu, J. Yang, F. Wang, C. Kaisermayer, and P. Zhou. 2012. High yield of
- 841 human monoclonal antibody produced by stably transfected Drosophila schneider 2 cells in

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

- 842 perfusion culture using wave bioreactor. Mol Biotechnol **52**:170-179.
- 843
- 844 Acknowledgments: We thank Dr. Jens Bukh (University of Copenhagen) for providing
- 845 chimeric HCVcc plasmids, Drs. Mansun Law and Dennis Burton (The Scripps Research
- 846 Institute) for providing mAb AR3A, Dr. Arvind Patel (University of Glasgow) for providing mAb
- 847 AP33 and Jenna Gaska for edits of the manuscript.
- 848
- 849 **Funding:** This work was supported in part by grants from the Chinese National Science and
- 850 Technology Major Project (2012ZX10002007-003) (to J.Z. and Z.H.), the CAS/SAFEA
- 851 International Partnership Program for Creative Research Teams (to J.Z.) and the National
- 852 Institutes of Health (R01 Al079031-05, to A.P.) and a Research Scholar Grant,
- 853 RSG-15-048-01 MPC from the American Cancer Society (to A.P.). A.P. is further supported

- 854 by the Investigators in the Pathogenesis of Infectious Disease (PATH) Award from the
- 855 Burroughs Wellcome Fund. M.v.S. is a recipient of a postdoctoral fellowship from the German
- 856 Research Foundation.

Accepted Manuscript Posted Online

<u>Journal of Virology</u>

857 Figure legends

858 FIG 1 Expression and characterization of sE2 derived from stably transfected

859 Drosophila S2 Cells.

(A) The schematic diagrams of sE2 expression construct. Truncated E2 (aa. 384-661) gene

⁸⁶¹ from the Con1 strain was inserted between the BiP signal peptide and the His-tag. (B)

862 Western blot analysis of sE2 accumulation in the supernatant of the stably transfected S2 cell

863 culture after different periods of induction. (C) SDS-PAGE analysis of purified sE2. (D)

864 Analysis of sE2 glycosylation by PNGase F or Endo H digestion. Glycosidase treated and

865 untreated samples were then subjected to Western blotting with anti-E2 (AP33) or anti-His

866 mAb as the detection antibody. (E) Receptor binding assay. sE2 protein was incubated with

- 867 wild-type CHO (CHO-WT), CHO-CD81, or CHO-SRB1 cells, stained with anti-His mAb
- ⁸⁶⁸ followed by Alexa Fluor-555 conjugated anti-mouse IgG, and detected by flow cytometry. (F)

869 Dose-dependently competitive inhibition of sE2 binding to CHO-CD81 cells by CD81LEL. sE2

was incubated with different doses of CD81LEL before performing the receptor-binding assay.

(G) Blockade of HCVcc infection by sE2. Serially diluted sE2 was mixed with HCVcc, and the
mixtures were added to Huh7.5.1 cells to allow infection for 4 h. CD81LEL and BSA were set

as controls. NS5A-immunostaining was performed at 72 h post-infection. Means ± SEM of the

triplicates are shown. (H) Recognition of sE2 by neutralizing mAbs AR3A (1 μg/mL) or AP33

875 (1 μg/mL). Means ± SEM of the OD450 readings from triplicate wells are shown.

876

878	FIG 2 Induction of antibody and cellular-mediated immune responses in mice.
879	(A) Kinetics of sE2-specific antibody titers. BALB/c (<i>n</i> =10 per group) mice were immunized
880	intraperitoneally at weeks 0, 2, 4, and 25 (arrowed), and the serum titers were measured by
881	ELISA. Data are expressed as the mean \pm SEM of the endpoint titers for each group. (B)
882	Anti-sE2 IgG titers at week 6. (C) IgG1/IgG2a ratios of sE2 specific antibodies at week 6.
883	Horizontal lines indicate the geometric means for each group. Asterisks represent significant
884	differences between groups. Statistical significance was calculated by Kruskal-Wallis
885	One-Way ANOVA analysis. (D) Cellular immune responses as measured by IFN- $\!\gamma$ and IL-4
886	ELISPOT assays. Splenocytes were isolated from mice spleens at week 27, pooled and
887	stimulated with sE2 protein. Results are expressed as spot-forming cells (SFCs) per 10 ⁶
888	splenocytes. Means ± SEM of triplicate wells were shown. Asterisks represent significant
889	differences (two-tailed student <i>t</i> test) between medium (white bars) and sE2 stimulation (blue
890	bars) in each group. Ns (no significance), <i>P</i> ≥0.05; *, <i>P</i> <0.05; **, <i>P</i> <0.01; ***, <i>P</i> <0.001.
891	

FIG 3 Induction of bNAbs against HCVcc of genotypes 1-7 in mice. 892

(A) Neutralization assay. Mouse antisera collected at week 27 were diluted 1:40 and then 893 894 tested for neutralization of a panel of HCVcc consisting of 12 strains from 7 genotypes. The names of the indicated HCVcc were shown as "strain(genotype)" in each graph. Each symbol 895 represents one animal and the horizontal lines indicate the geometric means for each group. 896 897 The data are representative of three independent experiments. (B) Competitive ELISA.

Accepted Manuscript Posted Online

898 Mouse antisera were serially diluted and tested for inhibition of AR3A and AP33 binding sE2.

899 Means ± SEM of the OD450 readings for all animals in each group are shown.

900

901	FIG 4 Analysis of oligometric states of sE2 and their bNAb-inducing ability.
201	

902 (A) Size exclusion chromatography of insect sE2 revealed three major peaks representing

- 903 different oligomeric states. (B) Analysis of the samples from the three peaks by SDS-PAGE
- 904 under non-reducing and reducing conditions. Megamers, tetramers (~170kDa), trimers

905 (~130kDa), dimers (~90kDa), and monomers (~45kDa) were indicated by arrows. (C)

- 906 Neutralization activities of the antisera. Four groups of mice were immunized with PBS, or one
- 907 of the antigens from the three peaks, respectively, and the resulting antisera were tested at

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

- 908 1:40 dilution for neutralization of a panel of HCVcc as indicated. Asterisks represent
- 909 significant differences (Kruskal-Wallis One-Way ANOVA) between groups: ns (no
- 910 significance); *, *P*<0.05; **, *P*<0.01.

- 912 FIG 5 Comparative analyses of mammalian cell- and insect cell-derived sE2 proteins.
- 913 (A) Western blot analysis of mammalian cell-derived sE2 without or with PNGase F or Endo H
- 914 digestion. (B) SDS-PAGE analysis of insect sE2 and mammalian sE2. (C) SDS-PAGE
- 915 analysis of PNGase F-treated insect sE2 and mammalian sE2. (D-E) Reactivity of different
- 916 sE2 forms with neutralizing mAbs AR3A (1 µg/mL) or AP33 (5 µg/mL) in ELISAs. Error bars
- 917 indicate Means ± SEM. Statistical significance was calculated by two-tailed student *t* test: ns
- 918 (no significance), P≥0.05; ***, P<0.001. Representative results of three independent

919	experiments are shown. (F) Binding of the glycosylated or N-deglycosylated mammalian and
920	insect sE2 to CHO-WT, CHO-CD81, or CHO-SRB1 cells measured by flow cytometry.
921	Representative results of three independent experiments are shown. (G-H) Competitive
922	inhibition of insect sE2 (G) or mammalian sE2 (H) binding to CHO-CD81 cells by CD81LEL.
923	(I) Comparison of HCVcc infection blocking by insect sE2 and mammalian sE2. Means \pm SEM
924	of the triplicates are shown. (J) sE2-specific antibody endpoint titers. Groups of mice (<i>n</i> =6 per
925	group) were immunized with $40\mu g$ of mammalian sE2, insect sE2, N-deglycosylated
926	mammalian sE2, or N-deglycosylated insect sE2, respectively, in the presence of 500 μ g Alum
927	adjuvant. Another group was injected with PBS plus Alum, serving as the control. sE2-specific
928	antibody endpoint titers were determined by ELISA. Each symbol represents one animal and
929	the line indicates the geometric mean value of the group. Statistical significance was
930	calculated by Kruskal-Wallis One-Way ANOVA analysis: *, P <0.05; ***, P <0.001. (K) NT ₅₀ s of
931	the pooled antisera against a panel of HCVcc.
932	
933	FIG 6 Effect of HVR1 in induction of broadly NAbs.

- 933 **FIG 6 Effect of HVR1 in induction of broadly NAbs.**
- 934 (A) SDS-PAGE analysis of purified sE2ΔHVR1 and full-length sE2. (B) Receptor binding
- 935 functions of sE2ΔHVR1 and sE2 analyzed by flow cytometry. The deletion of HVR1
- 936 diminished sE2 binding to SRB1, while not affecting sE2 binding to CD81. Results shown are
- 937 representative of three independent experiments. (C) Significantly weaker blockage of HCVcc
- 938 infection by sE2 Δ HVR1 comparing to sE2. Mean values ± SEM from three independent
- 939 experiments performed in duplicate were shown. Asterisks represent significant differences
- 940 (two-tailed student *t* test) between sE2 and sE2 Δ HVR1 groups: ns (no significance), *P*≥0.05;

942

943

944

945

946

947

948

949

950

951

952

Accepted Manuscript Posted Online

Journal of Virology

*, <i>P</i> <0.05; **, <i>P</i> <0.01; ***, <i>P</i> <0.001. (D) Reactivity of sE2 and sE2∆HVR1 to AR3A or AP33
mAbs. Serial diluted sE2, sE2 Δ HVR1 or BSA samples were coated in ELISA plates and
detected by AR3A or AP33 mAb. Data are mean values \pm SEM of triplicate wells. (E-F)
Comparison of neutralization activities of antisera induced by sE2 and that by sE2 Δ HVR1.
BALB/c mice ($n=6$ per group) were injected intraperitoneally using sE2, sE2 Δ HVR1 or PBS
(all adjuvanted by Alum) for four times. sE2-specific or sE2∆HVR1-specific antibody titers of
mouse sera in each group were measured by ELISA. Mean values \pm SEM of all animals in
each group were shown (E). Neutralization of the sE2- and the sE2 Δ HVR1-immunized mouse
sera (1:40 diluted) against HCVcc of genotypes 1-7 were compared (F). Horizontal lines
indicate geometric means for each group. The results are representative of three independent
experiments.
FIG 7 Prophylactic efficacy of active vaccination with sE2.

FIG 7 Proph tic efficacy of active vaccination with sE2. 953

954	ROSA26-Fluc mice were injected intraperitoneally at week 0, 1, 3 and 6 (green arrow) with 50
955	μ g sE2 plus 1 ug Alum per mouse (<i>n</i> =6) or with PBS plus Alum (<i>n</i> =6). (A) Anti-sE2 endpoint
956	titers were measured by ELISA and plotted for the indicated time points. (B) Anti-sE2 IgG
957	titers for the day of challenge with HCVcc (red arrow, day 72 post first injection). Mean values
958	± SD of all animals in each group were shown. (C) In vivo imaging for the HCVcc challenged
959	ROSA26-Fluc mice. At week 11, human HCV entry factors (EF) were adenovirally delivered to
960	the liver and mice were challenged with HCVcc expressing Cre recombinase
961	(HCV-BiCre-Jc1, genotype 2a). An untreated cohort (<i>n</i> =6) was only challenged with HCVcc
962	without adenoviral delivery of human EF. (D) Bioluminescence was quantified 72 hours

 \leq

following HCV-BiCre-Jc1 infection. Error bars represent SD. Statistical significance was 963

calculated by Kruskal-Wallis One-Way ANOVA analysis: ****, P<0.0001. 964

965

966

967

968

TABLE 1 NT $_{\rm 50}$ of the mouse antisera against HCVcc of genotypes 1-7. The mouse

antisera collected at week 27 were pooled for each group and then used for neutralization 969

tests. NT_{50} was defined as the highest dilution of sera able to neutralize 50% of HCVcc 970

971 infectivity. Data are representative results from three independent experiments.

972

Antisera	1a		1b			2a		3a	4a	5a	6a	7a
	H77	Con1	PR52 B6mt	PR79 L9	JFH1	J6	J8	S52	ED43	SA13	HK6a	QC69
PBS	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
sE2+Alum	160	320	160	640	1280	160	80	80	80	160	80	160
sE2+Alum+CpG	320	320	160	640	1280	160	160	160	320	160	160	160
sE2+FA	80	640	160	1280	640	80	80	40	160	80	80	40

Downloaded from http://jvi.asm.org/ on June 7, 2020 at Princeton University Library

103

10

10110

10²

10³

PE-A: sE2

104

10

10¹10

4 10¹

104

10³ 10²

> 10 10

10 104 10 10

В

CHO-CD81

10 10

10

104

10³

102

8.78%

10³

104

10

10¹10²

PE-A:sE2

10 10

100 µg

20 µg

10³

10

101102

10⁵

10

10²

10

10

kDa

55

40

Anti-His

+

Anti-E2

+

Α

• PBS = sE2/Alum 🔺 sE2/Alum/CpG 🔻 sE2/FA

Z

sE2/Alum group

С

Radiance (p,losc;lcm=ytr) Color Scale Mix = 1.020e4 Mix = 2.07e4

Z