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Abstract: Object detection methods have been applied in several aerial and traffic surveillance
applications. However, object detection accuracy decreases in low-resolution (LR) images owing
to feature loss. To address this problem, we propose a single network, SRODNet, that incorporates
both super-resolution (SR) and object detection (OD). First, a modified residual block (MRB) is
proposed in the SR to recover the feature information of LR images, and this network was jointly
optimized with YOLOv5 to benefit from hierarchical features for small object detection. Moreover,
the proposed model focuses on minimizing the computational cost of network optimization. We
evaluated the proposed model using standard datasets such as VEDAI-VISIBLE, VEDAI-IR, DOTA,
and Korean highway traffic (KoHT), both quantitatively and qualitatively. The experimental results
show that the proposed method improves the accuracy of vehicular detection better than other
conventional methods.

Keywords: autonomous vehicles; super-resolution; object detection network; modified residual
block; remote sensing data

1. Introduction

Object detection is a key aspect of computer vision research and has increased us-
age owing to the adoption of various machine and deep-learning techniques. Upon the
detection of objects related to particular aerial and traffic scenes, additional information
can be extracted, thus rendering the localization of the remaining objects in the scenes
possible; this simplifies the classification of instances. It also broadens the applicability of
object detection in various fields, such as security [1], medical image analysis [2,3], business
analytics, anomaly detection [4], crowd counting [5,6], video surveillance [7], transportation
(i.e., autonomous vehicles) [8], industrial applications [9], trash collection [10], machine vi-
sion used in industrial robotics [11], agriculture [12], gesture classification [13], and remote
sensing for aerial-vehicular detection [14–18].

Autonomous vehicles have attracted considerable interest in several fields. They
employ advanced driver assistance systems [19] as a core technology for the execution of
numerous tasks, such as the recognition of lanes, pedestrians, cyclists, traffic lights, and
speed signs, vehicular detection on roads, aerial imagery, and traffic surveillance. Object
detection is a necessary feature for the realization of autonomous driving. Accomplishing
the aforementioned tasks requires various sensors, such as cameras [20], light detection
and ranging [21], and radio detection and ranging [22]. Among these, cameras perform
well and are more cost-effective. Therefore, this study focused on vehicular-object detection
based on the use of a single camera.

In autonomous driving, detection [23] of vehicular objects in a lane environment is
essential for safe driving. Additionally, aerial images are acquired at high altitudes, and the
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target is expected to degrade the performance of vehicular-object detection significantly. In
these complex conditions [24] coupled with suboptimal backgrounds that prevent accurate
detection, the targeted object is not visible. Consequently, single-image, super-resolution
(SISR) [25–27] techniques are used to alleviate the poor detection performance in high-
resolution (HR) images compared with the original low-resolution (LR) images. The
interrelationship between SR and object-detection algorithms has been improved [28,29].
Ivan et al. [28] enhanced object detection with the use of SR and convolutional neural
networks (CNN). Sheng et al. [29] developed an efficient video detection method for public
safety by using SR and deep-fusion networks.

In addition to SR, object detection plays a vital role in providing current information
as input to the driving systems through the detectors. The main aim of the object detector
is to determine its classes, regardless of the scale, location, pose, and view, with respect to
the camera. Presently, the object-detection approach for detectors is based on deep-learning
methods, and is extremely important owing to its speed and accuracy characteristics
that meet real-time requirements. Object detection may involve two stages, wherein
detection and recognition are executed as two distinct processes; alternatively, it may only
involve one stage, wherein detection and recognition occur together. In general, multistage
detectors have better accuracy and lower speed characteristics than single-stage detectors.
Therefore, we focused on a single-stage detector to obtain better results in terms of both
speed and accuracy. Xinqing et al. [30] enhanced the single-shot multibox detector (SSD)
for object detection in traffic scenes. Luc et al. [31] implemented a network by using SR
with auxiliary generative adversarial networks (GAN) for small object detection, and Yun
et al. [32] optimized GAN to detect planes with SR in remote sensing images. Despite these
prior studies, we present herein a new, approach and the contributions of this study are
outlined below.

• Here, we propose an SRODNet that associates a super-resolution network and an
object detection network to detect objects. The proposed SR method enhances the
perceptual quality of small objects with a deep residual network. This network is
designed with the proposed modified residual blocks (MRB) and dense connections. In
particular, MRBs accumulate all the hierarchical features with global residual learning.

• The proposed model is a structure in which the object detection component, YOLOv5,
holds a super-resolution network. This implies that the model functions as a single
network for both super-resolution and object detection in the training step. This
ensures better feature learning, which enhances the condition of LR images to super-
resolved images.

• Finally, the proposed structure was jointly optimized to benefit from hierarchical
features that helped the network to learn more efficiently and improve its accuracy.
The structure also accumulates multi-features that help to perceive small objects and
are useful in remote sensing applications.

• We trained the model on vehicle detection in aerial imagery (VEDAI)-VISIBLE [33],
VEDAI-IR [33], the dataset for object detection in aerial images (DOTA) [33], and KoHT
datasets in order to evaluate the performance both quantitative and qualitatively.

• We evaluated the SR model in terms of the peak-signal-to-noise-ratio (PSNR), struc-
tural similarity index (SSIM), and perception-image-quality-evaluator (PIQE) metrics.
Further, we evaluated SRODNet performance by using the mean average precision
(mAP) and F1 score metrics.

The remainder of this study is organized as follows. In Section 2, the SR-related
conventional methods based on deep learning and object-detection models are described.
In Section 3, the proposed method and its implementation are presented. In Section 4,
experimental results are provided and discussed. Finally, in Section 5, the conclusions of
the study are outlined.
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2. Related Work

Contemporary research focuses on object detection, even in complex and abnormal
conditions. In this case, the input image of the model contains LR details useful for
the detection or recognition of an object in order to achieve this, we implemented SR to
reconstruct the image and used the detector. Thus, this study combined two individual
research areas: single-image SR and object-detection methods [33]. Prior studies on SR that
used deep-learning and object-detection methods are described in Sections 2.1 and 2.2.

2.1. Single Image Super-Resolution Using Deep Learning Methods

SISR techniques have been extensively studied in the field of computer vision. Re-
cently, CNNs have been used in SR methods because they aid in the recovery of high-
frequency details in SR images. Dong et al. [34] proposed a three-layered CNN, referred
to as SR-CNN, to learn an end-to-end mapping between LR and HR images with some
additional pre/postprocessing performed post-optimization; it was subsequently modified
to a fast SRCNN [35] that rendered it 40 times faster, and yielded superior quality outcomes.
Wang et al. [36] proposed a sparse coding-based network to build a multilayer network that
mimicked the SR-CNN; it was subsequently modified by using very deep super-resolution
(VDSR) [37]. In VDSR [37], it was shown that increasing the trained network depth with
tunable gradient clipping by implementing an efficient SSIR method improved significantly
the visual quality of the SR images. Image quality was improved further following the
incorporation of a pyramidal hierarchy to provide good quality with respect to reduced pa-
rameters, commonly referred to as a deep Laplacian pyramid super-resolution network [38].
Finally, the enhanced deep super-resolution (EDSR) [39] outperforms all residual networks;
it optimizes the performance of its model by removing the batch normalization layers from
the existing residual networks, that is, the SRResNet [40].

Moreover, existing methods have focused on shallow networks with the aim of deeper
networks. This design creates a vanishing gradient problem during training that affects the
computational cost. To decrease the computational cost, Wazir et al. [41] proposed a multi-
scale inception-based SR by using the deep-learning method which replaced convolutional
layers with asymmetric convolution. Yan et al. [42,43] implemented an efficient SR network
based on aggregated residual transformations to reduce the parameters and temporal
complexity. However, all of these methods applied interpolation to the LR input; therefore,
some useful information is lost and the computational cost is increased as justified by the
poor outcomes. In this study, we have proposed the residual in modified residual blocks
(MRB) instead of the residual block in the EDSR model for SR. The proposed SRODNet
model was implemented to improve the detection performance and additionally reduce
the computational cost. In this study, our model produced high-quality images from LR
to facilitate the detection of the object in them. Thus, the implementation is described
in Section 3.

2.2. Deep Learning-Based Object-Detection Models

Prior research on object detection has focused on template-matching and part-based
models. Subsequently, research focused on statistical classifiers, such as support vector
machines [44], AdaBoost [45], Bayes’ theorem [46], decision trees [47], K-nearest neigh-
bors [48], and random forest techniques [49]. All of these are initial object detectors based
on statistical classifiers.

Additional research was based on deep-learning methods owing to their accuracy.
Ross et al. [50] proposed regions with CNN features that helped localize and segment ob-
jects. These authors investigated fast R-CNN [51] that improved the detection accuracy,
training, and testing speed. Shaoqing et al. [52] introduced a region-proposal network
that helped share convolutional features. Moreover, it was designed for real-time ob-
ject detection. Joseph et al. [53] proposed a new approach for the detection of classes
with the YOLOv1 base model which was applied to real-time object detection; this re-
sulted in an increased number of localization errors. Joseph et al. [54] improved YOLOv1
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with anchor boxes and applied and executed a multi-scaling training method at various
sizes. Joseph et al. [55] updated YOLOv2 to YOLOv3 with a new network design trained
on the COCO dataset. The YOLOv3 structure was designed by using a variant of the
Darknet-53. YOLOv3 performed well on small objects but not on medium and larger
objects. Alexey et al. [56] proposed a novel, two-stage, object-detector approach to improve
further the performance of the previous versions of YOLO. It performed a large number of
calculations and detected objects of various sizes. Chien-Yao et al. [57] designed a YOLOv4
network based on the cross-stage partial network approach, which is applicable to small
and large networks at optimal speed and accuracy. Yingfeng et al. [58] improved the
performance by using a new fusion module in the PAN++ network. This model enhanced
the detection accuracy of small objects. However, it limited the real-time performance
owing to the availability of vehicle-mounted computational resources. Lian et al. [59]
investigated small-object detection in a challenging case of an LR image that contained
limited information. Therefore, we propose a method that focuses on vehicular object
detection to increase accuracy based on the use of SR in LR aerial and traffic images, as
described in Section 3.

3. Proposed Object Detection Network Based on SR

Object detection and SR methods have been adopted in various applications. Generally,
object detection is challenging in LR images, which deteriorates the detection performance.
In this section, we propose an object detection model that performs SR and object detection
on aerial and traffic images. It also focuses on enhancing perceptual quality; hence, it
improves detection performance. The input to the SR model included the LR aerial and
traffic images, while the output was adopted to predict objects as trained classes, as
illustrated in Figure 1.

Figure 1. Proposed object detection network based on SR (SRODNet) for autonomous vehicles.

The core idea of SRODNet is as follows. First, an SR model was proposed to recover
the feature information of LR images, and this network was optimized with YOLOv5 to
detect small objects. The proposed SRODNet comprises SR for object detection. The SR
model is based on the residual network. In network design, residual networks typically
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use skip connections to avoid vanishing gradients and achieve flexibility in designing
deep-neural networks. Recently, the EDSR network boosted the SR performance [39]. The
core idea of this study pertains to the enhancement of the SR by removing the BN layers
and producing better results, even though the computational cost is poor. We proposed
the SRODNet to improve the perceptual quality of the LR image and also a computational
cost. We implemented an SR-based method, which was designed based on a single-stage
residual network [25].

The basic SR model is illustrated in Figure 1 and consists of B (=24) linearly connected
MRB blocks for perceptual features. The main difference between the residual block in
the EDSR and the proposed MRB is that the residual block has two convolutional layers
with a rectified linear unit as the activation function. The proposed MRB adopts three
residual dense blocks (RDB), each of which has five convolutional layers; among four
comprise 3 × 3 kernels and 64 feature maps, followed by a parametric rectified linear unit
(PReLU) as the activation function, as illustrated in Figure 2. The final convolution layer
is used to aggregate the features with residual learning in the RDB. The process of this
model begins with LR images as the input and as the output of the SR model. The feature
map information from the LR images is x. Mathematically, the convolutional layer can be
represented as shown in Equation (1).

Fe(x) = Wl ∗ Gl−1 (G) (1)

where l is the lth convolution layer, Wl represents the number of filters of the lth layer and
Gl−1 denotes the previous layer output feature map, Fe is the output of feature map and
“ ∗ ” represents the convolution operation. The output of the MRB layers are mathematically
expressed by Equation (2).

FMRB = HRDB, rd((HRDB, rd−1(Frd−1))(. . .)(HRDB, rd2(Frd2))) + Frrl (2)

where rd is the rdth residual layer in RDB, HRDB, rd represents the combined operations of
the convolution and PReLU of rdth layer of RDB, and FMRB is obtained all combined RDB’s
and residual in residual learning Frrl . The output of the RDB in Equation (3).

FRDB = HDB,d (Fd−1) + Fd,l f (3)

where FRDB is obtained using all the convolutional layers with PReLU, F l f is a local feature
of the dense block (DB), and the inner layers of the DB are formulated using Equation (4).

Fd,c = σ((Wd,c [ Fd−1, Fd,1, . . . , Fd,c−1 ]) (4)

where, σ denotes PReLU activation function. Wd,c denotes the weights of the cth convo-
lutional layer, and Fd−1, Fd,1, . . . , Fd,c−1 denotes the concatenation of the feature-maps
yielded by the (d − 1)th DB, convolutional layers 1, . . . , (c − 1) in the dth DB. The fusion of
the network Ff usion is represented in (5).

Ff usion = Fe + FMRB + FGRL (5)

Here Ff e is the feature map output, FMRB is the output of MRB, and FGRL is the global
residual learning. Finally, the SR image that is drawn from the SR model is expressed by
Equation (6).

ysr = HSR (xlr ) (6)

where HSR denotes the convolutional operation of SR model, ysr is the output image after
super-resolved of model, and xlr is the LR input image.



Remote Sens. 2022, 14, 6270 6 of 19

Figure 2. Structure of modified residual block for SR model.

The super-resolved images are fed to the ODNet, which is YOLOv5, and trained on an
optimized single network. The detector network consists of three stages with an upsampled
block: the backbone, neck, and head. The first stage is a backbone network, which typically
consists of a cross-stage spatial network and a Darknet (CDN). The second stage is the neck
network, which typically consists of a path aggregation network (PANet). The final stage
is the head network, also called the YOLO layer. The data are first input to the CDN for
feature extraction and then fed to the PANet for feature fusion. Finally, the YOLO layer
detects the classified results, such as cars, trucks, traffic, and speed-limit signs, as expressed
by Equation (7).

PD = H f e (CDN(ysr)) + H f f (CDN(ysr) + PAN (ysr)) + HYOLO (ycls) (7)

Herein H f e is the convolution operation for feature extraction of the ysr through the
CSP Net and Darknet, H f f is the feature fusion of the CDN and PAN, and HYOLO is the
convolution operation of the head network used to classify the objects in the SR image. The
final output of the SRODNet is expressed by Equation (8).

yp = PDcls (ysr) (8)

Herein,PDcls is the prediction of the class used to classify the objects ysr on SR image
and yp are the predicted vehicular-objects in SR images. Additionally, the network will
not learn perfectly; thus, there should be some loss during the training. An extensively
used method to optimize the network based on the content loss during the training, which
is also called a pixel-wise loss or mean-square error (MSE), is formulated mathematically
according to Equation (9).

Lcont =
1
N

N

∑
n=1

1
WH

W

∑
x=1

H

∑
y=1

((
IHR
n

)
x,y
− SR

(
ILR
n

)
x,y

)2
(9)

Here W and H are width and height of the image and SR
(

ILR
n
)

is the super-resolved
image through the SR network for N training samples. The total loss of the network is
defined as the summation of MSEs and the detector losses for the optimization of the
network to retrieve the high-frequency details for better object detection in the LR aerial
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and traffic images. Particularly, the SRODNet performance was verified based on actual
road data in Korea, DOTA, and VEDAI-VISIBLE, VEDAI-IR, and as described in Section 4.

4. Experimental Results

This section presents the experimental procedures and the results of the proposed
model. All the models were tested and trained on a single deep-learning computer
equipped with an NVIDIA GeForce RTX A6000 graphics card in conjunction with the use
of CUDA (version 11.6). The experiments were performed on VEDAI-VISIBLE, VEDAI-IR,
DOTA, and on a manually annotated dataset denoted by the Korean highway traffic dataset
(KoHT) in conjunction with COCO pre-trained weights. Both the VEDAI-VISIBLE and
VEDAI-IR datasets are related to aerial applications, and KoHT is used for traffic surveil-
lance applications. The configuration details of the experimental system for the hardware
and software are listed in Table 1.

Table 1. Experimental hardware and software configurations.

S. No Component Specification

1 CPU Intel Xenon Silver 4214R
2 RAM 512 GB
3 GPU NVIDIA 2x RTX A6000
4 Operating System Windows 10 Pro.10.0.19042, 64 bit
5 CUDA CUDA 11.2 with Cudnn 8.1.0
6 Data Processing Python 3.9, OpenCV 4.0
7 Deep Learning Framework Pytorch 1.7.0

We focused on object detection in aerial and K-road applications. First, for these
types of applications, publicly available datasets, such as VEDAI-VISIBLE and VEDAI-IR,
were used and split into LR and HR datasets for training. Both datasets consisted of
688 images (sizes = 512 × 512). The LR dataset was down-sampled 4× times (and com-
prised 128 × 128 images) by using the bicubic interpolation method. For testing, the training
and validation sets were created by randomly splitting the training set in half. DOTA is a
large-scale, multi-sensor, and multi-resolution aerial dataset. Data were collected from Google
Earth, GF-2, and JL-1 satellites, while aerial images were collected using Cyclo Media. The
DOTA dataset was from 800 × 800 to 20,000 × 20,000 pixels, and DOTA 1.0 was adopted
in this study. DOTA v1.0 comprises 2806 images and 188 282 instances, and we created
512 × 512 patches from the original images. The dataset contains 15 categories with a wide
variety of scales, orientations, and shapes: plane, ship, storage tank, baseball diamond,
tennis court, basketball court, ground track field, harbor, bridge, swimming pool, large
vehicle, small vehicle, helicopter, roundabout, and soccer ball field. We omitted all classes
except for large and small vehicles.

Second, for K-roads, most of the available datasets were non-Korean datasets used
for object detection in LR images pertaining to autonomous driving in outdoor settings
irrespective of the time; additionally, a dataset was constructed to train and verify our model.
This dataset comprised 15 video sequences from Korean highway traffic scenes. These
sequences were converted into a series of 3168 images. Subsequently, the dataset was split
into the LR and HR datasets, which were denoted as KoHT_LR and KoHT_HR, respectively.
KoHT_LR is a synthetic dataset used to train our SR model to evaluate its performance.
The dataset consisted of 241 images for training and 40 images for validation, which were
down-sampled HR images obtained by using the bicubic model (down-sampling by a factor
of four); the remaining images were used for testing. The KoHT_HR dataset consisted of
281 images and included four classes: cars, trucks, traffic, and speed-limit signs. Because
of the lack of GT, the KoHT_HR dataset was considered as the GT. A software program
was used to annotate the labels manually; they were then converted into the YOLO format
for training. This constituted the highway dataset, and no other classes were available.



Remote Sens. 2022, 14, 6270 8 of 19

Therefore, other classes, such as buses, lights, signs, persons, bikes, motors, trains, and
riders, as mentioned in the BDD dataset, could not be labeled.

For training, the VEDAI-VISIBLE, VEDAI-IR, and KoHT datasets were used; these
were evaluated by using the tested images of all the models. The training parameters were
as follows: the optimizer was the stochastic gradient descent algorithm used to minimize
the loss function, momentum = 0.937, weight decay function = 0.0005, initial learning
rate = 0.01, batch size = 16, the intersection of union (IoU) threshold = 0.25, epochs = 300,
and the input image size = 512 × 512. The warmup momentum was set to 0.8, and some
of the image augmentation methods, such as random hue, saturation, value, image rota-
tion (horizontal and vertical), image flipping in the upward and downward directions,
and image flipping on the left and right directions, were employed. For testing, the
batch size = 1, the input size of the image was the same as that used in training, the confi-
dence threshold for the prediction box = 0.001, and the IoU threshold for non-maximum
suppression = 0.65. During the implementation, the input image sizes ranged from
512 × 512–1280 × 672 pixels. Note that during training and validation, the network calcu-
lates the coordinate, bounding box regression, objectness, and classification losses for each
detection layer based on Equation (10).

Ldetection = λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij (xi − x̂i)
2 + (yi − ŷi)

2+λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij
(√

wi −
√

ŵi
)2

+

(√
hi −

√
ĥi

)2

+
S2

∑
i=0

B
∑

j=0
1obj

ij l
(
Ci, Ĉi

)
+ λnoobj

S2

∑
i=0

B
∑

j=0
1obj

ij l
(
Ci, Ĉi

)
+

S2

∑
i=0

1obj
i ∑

c∈classes
l(pi(c)− p̂i(c))

(10)

Herein 1obj
ij is the object detected by the jth boundary box of grid cell i. xi, yi, wi, hi

are the actual bounding box coordinates and predicted bounding box coordinates are
x̂i, ŷi, ŵi, ĥi. Ci is the confidence score of actual box in cell i, Ĉi is the confidence score of
the predicted box.

4.1. Quantitative Results of Proposed Model for Generic SR Application

For generic evaluation, we adopted the Diverse2k resolution (Div2K) [60] training
dataset, and quantitative evaluation was performed using a public benchmark dataset
as set 5 [61], set 14 [62], BSD 100 [63], and urban 100 [64]. The primary objective of these
datasets is to test and predict the proposed model, which can be easily compared with
existing SR models.

4.1.1. Div2k Training Dataset

This dataset comprises 800 trainings, 100 validations, and 100 testing 2k-resolution
high-quality images. In addition, it contains LR bicubic images for various scale factors
(×2, ×3, ×4, and ×8) to be utilized during training and evaluation.

4.1.2. Public Benchmark Datasets

Set 5 [61]: It is a 5-image standard dataset. Set 14 [62]: This is a 14-image dataset
including set 5. BSD 100 [63]: This is a 100-image dataset comprising plants, people, food,
animals, devices, etc. Urban 100 [64]: The dataset composed of 100 images with artificial
structures which are made by humans. This dataset contains 100 images with artificial
structures made by humans. The quantitative evaluation of the proposed model on the
public benchmark test results is presented in Table 2.

We trained the model using the parameters given by Bee et al. [39]. The comparison of
the predicted SR begins with the bicubic method and continues with deep-learning models,
i.e., from SRCNN [35] to EDSR [39]. Each model has been designed with its own purpose
to improve the SR performance, faster, and network complexity. We designed our network
to improve the visual quality using a simple network. If we analyze the data presented
in Table 2, the proposed model exhibits better quality in all datasets except the urban 100
in PSNR and SSIM. Hence, the proposed SR model improves performance. Subsequently,
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we observed that the addition of MRB layers helped in generating better quality images
in Table 2.

Table 2. Quantitative evaluation of the public benchmark test results of the PSNR/SSIM of Scale 4.

Datasets Set 5 [61] Set 14 [62] BSD 100 [63] Urban 100 [64]

S. No Architecture PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 Bicubic [35] 28.43 0.8109 26.00 0.7023 25.96 0.6678 23.14 0.6574

2 SRCNN [35] 30.48 0.8628 27.50 0.7513 26.90 0.7103 24.52 0.7226

3 FSRCNN [25] 30.70 0.8657 27.59 0.7535 26.96 0.7128 24.60 0.7258

4 SCN [25] 30.39 0.8620 27.48 0.7510 26.87 0.710 24.52 0.725

5 VDSR [37] 31.35 0.8838 28.02 0.7678 27.29 0.7252 25.18 0.7525

6 DRCN [25] 31.53 0.8854 28.03 0.7673 27.24 0.7233 25.14 0.7511

7 LapSRN [25] 31.54 0.8866 28.09 0.7694 27.32 0.7264 25.21 0.7553

8 SRGAN [25] 32.05 0.8910 28.53 0.7804 27.57 0.7354 26.07 0.7839

9 EDSR [39] (simulated) 32.31 0.8829 28.80 0.7693 28.60 0.7480 26.40 0.7805

10 Proposed model 32.35 0.8835 28.83 0.7704 28.59 0.7482 26.34 0.7796

4.2. Super-Resolution Results for Remotesensing Application

A visual comparison of the SR models for different datasets is shown in Figures 3–5. The
selected part of the target in the GT was compared with the super-resolved images of VDSR,
EDSR, and the SRODNet shown in Figure 3 for VEDAI-VISIBLE, Figure 4 for VEDAI-IR,
and Figure 5 for DOTA. To evaluate the performance, the PSNR [65], SSIM [65], and
PIQE [66] metrics were utilized. Table 3 presents a comparative analysis of our approach
with other conventional methods on the aerial and KoHT datasets.
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Table 3. Comparison of SR architectures based on up-sampled (4×) aerial datasets.

Architecture EDSR [39] Proposed Model

S. No Datasets PSNR SSIM PIQE PSNR SSIM PIQE

1 VEDAI-VISIBLE 29.543 0.6857 77.687 29.520 0.6853 76.573
2 VEDAI-IR 32.040 0.7442 78.230 32.040 0.7443 78.160
3 DOTA 26.983 0.7338 72.469 26.954 0.7316 67.444
4 KoHT 27.507 0.8209 93.879 27.438 0.8201 93.631

For comparison, first, results from VDSR, which is a basic residual network, were
included. Subsequently, the EDSR architecture, one of the pioneering outcomes of residual-
network-based SR introduced by Lim et al. [39], was included. As expected, the perfor-
mance of this network [39] was superior to those of the previous approaches because of the
removal of BN layers which enabled the network to achieve better visual quality.

We observed that the inclusion of MRB layers enhanced the perceptual quality of
generated images as shown in Table 3. The MRB was designed using the residual and
dense connections that accumulated all hierarchical features with global residual learning
in the residual architecture. These features are transferred to the next stage of fusion, which
helped the network in enhancing the perceptual quality of the object. The block ensures
better feature learning, resulting in a qualitative improvement of LR images. We also
compared the results obtained experimentally for MRB, which is part of the SR shown in
Figures 3–5.

A higher score indicates better image quality for both PSNR and SSIM, and a smaller
score indicates better perceptual quality for PIQE. Comparatively, we recognize the image
in LR and VDSR is blurred and deteriorated; while the proposed SR model produced
similar results as EDSR with better perceptual quality.

4.3. Detection Results and Performance Analysis

The accuracy results of the existing and proposed models are presented in Table 4 for
all the datasets. To evaluate the performance, we used quantitative metrics for vehicular
detection on aerial and K-road applications, such as mean average precision (mAP) @ 0.5
and F1 scores. The mAP values and F1 scores were reported on the VEDAI-VISIBLE,
VEDAI-IR, KoHT, and DOTA datasets for most of the models based on their availability.
We calculated the mAP as the average of maximum precisions at different recall values in
the range of 0.0–1.0. The mAP was calculated based on the use of the AP for each class and
was divided by the total number of classes.

Table 4. Comparative detection performance in terms of mean average precision (mAP) and F1-score
of the proposed model and existing state-of-the-art approaches.

Dataset VEDAI-VISIBLE VEDAI-IR DOTA KoHT

Architecture mAP @ 0.5 F1 Score mAP @ 0.5 F1 Score mAP @ 0.5 F1 Score mAP @ 0.5 F1 Score

Ren, et al. (Z and F) [46] 32.00 0.212 - - - - - -
Girishik, et al. (VGG-16) [51] 37.30 0.224 - - - - - -

Ren, et al. (VGG-16) [46] 40.90 0.225 - - - - - -
Zhong, et al. [67] 50.20 0.305 - - - - - -
Chen, et al. [18] 59.50 0.451 - - - - - -

YOLOv3_SRGAN_512 [33] 62.45 0.591 70.10 0.687 86.18 0.837 - -
YOLOv3_MsSRGAN_512 [33] 66.74 0.643 74.61 0.723 87.02 0.859 - -

YOLOv3_EDSR [39] 74.32 0.754 70.62 0.727 91.47 0.889 91.46 0.926
SRODNet (ours) 81.38 0.819 79.82 0.800 92.08 0.892 93.02 0.928

The precision curves (P-curves) of the four datasets are shown in Figures 6a,b and 7a,b.
The probabilistic events of precision, recall, and F1 were true positives, false positives, and
false negatives, respectively. True positive predicts the existence of an object when there
is an object, false positive predicts the existence of an object when there is no object, and
false negative predicts the lack of an object when there is an object. Precision is the number
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of true positives divided by the sum of the true and false positives. Thus, the APs of the
SRODNet for the four datasets were equal to 0.7989, 0.7839, 0.9496, and 0.9147 respectively.

Figure 6. Precision, recall, and mAP @ 0.5 curves on various datasets, such as VEDAI-VISIBLE and
VEDAI-IR: (a,b) P-curves, (c,d) R-curves, and (e,f) mAP @ 0.5.

Figure 7. Precision, recall, and mAP @ 0.5 curves on various datasets, such as KoHT and DOTA:
(a,b) P-curves, (c,d) R-curves, and (e,f) mAP @ 0.5.
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The recall (R) curves of the four datasets are shown in Figures 6c,d and 7c,d. Re-
call measures the extent to which a true box is predicted correctly and can be defined
as the number of true positives divided by the sum of the true positives and false nega-
tives. Thus, the average recall values of the SRODNet for the three datasets were equal
to 0.8409, 0.8172, 0.9080, and 0.8699 respectively. The mAP curves of all four datasets
are shown in Figures 6e,f and 7e,f. The mAP was evaluated with the use of various IoU
thresholds, whereby each IoU provided different predictions. We calculated the mAP at
a threshold of 0.5, whereby the mAPs of all the datasets of the SRODNet were equal to
81.38, 79.82, 93.02, and 92.08 respectively.

The F1 score was evaluated by using precision and recall in the range of 0.0–1.0. We
show the precision, recall, and mAP graphs for each dataset at various IoU thresholds
0.3–0.7 for the YOLOv5 performed on super-resolved images from the GT. The proposed
model is shown in Figures 6 and 7. The same testing data were used to evaluate all the
methods. Findings confirmed that our proposed model was stable for vehicular detection
on the aerial and K-road datasets. In addition, we compared the detection results of recent
CNN-based object detectors, namely Faster R-CNN [46] with the use of the Z and F model,
Faster R-CNN [46] with the use of the VGG-16 model, and Fast R-CNN [51] with the use of
the VGG-model for the VEDAI dataset.

Furthermore, we compared our findings with those of Zhong et al. [18], Chen et al. [67],
and the most recently proposed algorithm, YOLOv3 [55]. It is evident from the results
presented in Table 4 that our proposed model yielded the best performance compared with
other detection methods, and yielded the best mAP (81.38%, 79.82%, 92.08%, and 93.02%)
and F1 score (0.819, 0.800, 0.892, and 0.928) values respectively. Thus, the comparative
analysis demonstrated that the detection performance of the SRODNet outperformed
conventional methods, such as YOLOv3_SRGAN [33], YOLOv3-_MsSR-GAN_512 [33],
and YOLOv3_EDSR [39]. As indicated by the results in Table 4, the performance of the
proposed method is better than those of the VEDAI-VISIBLE, VEDAI-IR and DOTA datasets
in [39]. During testing, we tested the original images of the DOTA dataset, irrespective
of the trained images. Accordingly, we observed that our model improved the detection
performance for DOTA. Additionally, we quantified the performance of our model on the
KoHT dataset. During the experiments, we observed a significant improvement in the
detection performance for this dataset on K-roads, as shown in Figure 7; presented in the
fourth column in Table 4. The aforementioned experiments have verified that the presence
of MRB in the SR model helped the proposed structure to enhance the accuracy for small
object detection as shown in Table 4.

The speed performance outcomes of the existing and proposed models are listed in
Table 5. We experimented and compared data from other models, such as YOLOv3_GT [55],
YOLOv3_EDSR [39], and SRODNet (our model). To show that our model achieved a
low-computational cost, we compared the hardware, such as the number of graphics pro-
cessing units (GPUs) utilized, and the number of giga floating point operations (G-FLOPs)
which were performed. Generally, the metric FLOPS is used to measure the computing
performance of the system. We also compared the speed, which is related to the time
required to train and test the model, such as inference. Third, we compared the total
number of model parameters. The data presented in Table 5 reveals that the proposed
model required 15.8 G-FLOPs for the DOTA, VEDAI-VISIBLE, and VEDAI-IR datasets
along with 16.4 FLOPs for the KoHT dataset to train the model compared with the existing
models. In contrast, the existing model required 154.8 G-FLOPs for the VEDAI-VISIBLE,
VEDAI-IR, and KoHT datasets; and 154.6 G-FLOPs for the DOTA dataset.

A comparison of the training speeds showed that the proposed model was completed
in 0.143 h, 0.140 h, 0.382 h, and 0.140 h compared with that proposed by Bee lim et al. [39]
which required 0.403 h, 0.396 h, 1.150 h, and 0.394 h respectively. Finally, the total number
of parameters of the proposed model was smaller than that of Bee lim. et al. [39]. Based
on the listings in Table 5, we can conclude that the performance of the proposed model
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outperforms the rest in terms of hardware and speed, hence the proposed MRB in the SR of
SRODNet proving that it yields improved visual results with a low-computational cost.

Table 5. Comparison of speed performance of the proposed and existing models.

Architecture Hardware Speed Model
ParametersS. No Model GFLOP’s Inference Training (hours)

VEDAI-VS IR KoHT DOTA (s) VISIBLE IR KoHT DOTA (million)

1 YOLOv3_GT [55] 154.8 154.8 154.8 154.6 0.014 0.402 0.400 1.151 0.396 ~61.51
2 YOLOv3_ EDSR [39] 154.8 154.8 154.8 154.6 0.013 0.403 0.396 1.150 0.396 ~104.6
3 SRODNet (ours) 15.8 15.8 16.4 15.8 0.010 0.143 0.140 0.382 0.140 ~24.62

Additionally, the vehicular detection performances on DOTA, VEDAI-VISIBLE, and
VEDAI-IR are shown visually in Figures 8 and 9a,b. The vehicles are detected properly
while the labels are trained, i.e., cars and trucks. Furthermore, object detection of various
scenarios on KoHT, such as sunny, gloomy, and rainy, is shown in Figure 10. Figures 8–10
show the performance of our model as predicted according to trained labels as cars, trucks,
traffic_sign, and speed_limit_sign, respectively.
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5. Conclusions

Here, we proposed an SRODNet model that incorporates SR and object-detection
modules to detect small objects in LR images. First, the SR model was designed to generate
high-quality images from LR images to enlarge the target with minimal degradation.
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Subsequently, the super-resolved data generated by the SR model were fed to a single
optimized network to improve the performance. Moreover, in addition to focusing on the
increase in the detection performance of aerial and traffic images, the proposed model also
minimized the computational cost of the model. To evaluate our model’s performance,
we conducted experiments on publicly available DOTA, VEDAI-VISIBLE, VEDAI-IR, and
KoHT datasets. Accordingly, the obtained results demonstrated that the proposed model
produced better results than other conventional approaches in terms of mAP @ 0.5 and F1
score. Furthermore, we will test our model in the future using actual video data captured
on K-roads.

Author Contributions: Conceptualization, Y.R.M. and O.-S.K.; methodology, Y.R.M., O.-S.K. and
S.-Y.K.; software, Y.R.M.; investigation, Y.R.M., O.-S.K. and S.-Y.K.; writing—original draft prepara-
tion, Y.R.M.; writing—review and editing, Y.R.M., O.-S.K. and S.-Y.K.; supervision, O.-S.K.; project
administration, O.-S.K.; funding acquisition, O.-S.K. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
No.2019R1F1A1058489.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akcay, S.; Kundegorski, M.; Willcocks, C.; Breckon, T. Using Deep Convolutional Neural Network Architectures for Object

Classification and Detection within X-ray Baggage Security Imagery. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2203–2215.
[CrossRef]

2. Bastan, M. Multi-view object detection in dual-energy X-ray images. Mach. Vis. Appl. 2015, 26, 1045–1060. [CrossRef]
3. Mery, D.; Svec, E.; Arias, M.; Riffo, V.; Saavedra, J.; Banerjee, S. Modern Computer Vision Techniques for X-ray Testing in Baggage

Inspection. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 682–692. [CrossRef]
4. Choi, K.; Yi, J.; Park, C.; Yoon, S. Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines.

IEEE Access 2021, 9, 120043–120065. [CrossRef]
5. Shi, X.; Li, X.; Wu, C.; Kong, S.; Yang, J.; He, L. A Real-Time Deep Network for Crowd Counting. In Proceedings of the 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020.
6. Zhao, P.; Adnan, K.; Lyu, X.; Wei, S.; Sinnott, R. Estimating the Size of Crowds through Deep Learning. In Proceedings of the 2020

IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, 16–18 December 2020.
7. Xu, J. A deep learning approach to building an intelligent video surveillance system. Multimed. Tools Appl. 2021, 80, 5495–5515.

[CrossRef]
8. Wu, X.; Sahoo, D.; Hoi, S. Recent Advances in Deep Learning for Object Detection. Neurocomputing 2020, 396, 39–64. [CrossRef]
9. Mingyu, G.; Qinyu, C.; Bowen, Z.; Jie, S.; Zhihao, N.; Junfan, W.; Huipin, L. A Hybrid YOLOv4 and Particle Filter Based Robotic

Arm Grabbing System in Nonlinear and Non-Gaussian Environment. Electronics 2021, 10, 1140.
10. Kulshreshtha, M.; Chandra, S.S.; Randhawa, P.; Tsaramirsis, G.; Khadidos, A.; Khadidos, A. OATCR: Outdoor Autonomous

Trash-Collecting Robot Design Using YOLOv4-Tiny. Electronics 2021, 10, 2292. [CrossRef]
11. Nelson, R.; Corby, J.R. Machine vision for robotics. IEEE Trans. Ind. Electron. 1983, 30, 282–291.
12. Loukatos, D.; Petrongonas, E.; Manes, K.; Kyrtopoulos, I.-V.; Dimou, V.; Arvanitis, K.G. A Synergy of Innovative Technologies

towards Implementing an Autonomous DIY Electric Vehicle for Harvester-Assisting Purposes. Machines 2021, 9, 82. [CrossRef]
13. Schulte, J.; Kocherovsky, M.; Paul, N.; Pleune, M.; Chung, C.-J. Autonomous Human-Vehicle Leader-Follower Control Using

Deep-Learning-Driven Gesture Recognition. Vehicles 2022, 4, 243–258. [CrossRef]
14. Thomas, M.; Farid, M. Automatic Car Counting Method for Unmanned Aerial Vehicle Image. IEEE Trans. Geosci. Remote Sens.

2014, 3, 1635–1647.
15. Liu, K.; Mattyus, G. Fast multi-class vehicle detection on aerial images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1938–1942.
16. Shengjie, Z.; Jinghong, L.; Yang, T.; Yujia, Z.; Chenglong, L. Rapid Vehicle Detection in Aerial Images under the Complex

Background of Dense Urban Areas. Remote Sens. 2022, 14, 2088.
17. Xungen, L.; Feifei, M.; Shuaishuai, L.; Xiao, J.; Mian, P.; Qi, M.; Haibin, Y. Vehicle Detection in Very-High-Resolution Remote

Sensing Images Based on an Anchor-Free Detection Model with a More Precise Foveal Area. Int. J. Geo-Inf. 2021, 10, 549.
18. Jiandan, Z.; Tao, L.; Guangle, Y. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

Sensors 2017, 17, 2720.
19. Jaswanth, N.; Chinmayi, N.; Rolf, A.; Hrishikesh, V. A Progressive Review—Emerging Technologies for ADAS Driven Solutions.

IEEE Trans. Intell. Veh. 2021, 1, 326–341.

http://doi.org/10.1109/TIFS.2018.2812196
http://doi.org/10.1007/s00138-015-0706-x
http://doi.org/10.1109/TSMC.2016.2628381
http://doi.org/10.1109/ACCESS.2021.3107975
http://doi.org/10.1007/s11042-020-09964-6
http://doi.org/10.1016/j.neucom.2020.01.085
http://doi.org/10.3390/electronics10182292
http://doi.org/10.3390/machines9040082
http://doi.org/10.3390/vehicles4010016


Remote Sens. 2022, 14, 6270 18 of 19

20. Kim, J.; Hong, S.; Kim, E. Novel On-Road Vehicle Detection System Using Multi-Stage Convolutional Neural Network.
IEEE Access 2021, 9, 94371–94385.

21. Kiho, L.; Kastuv, T. LIDAR: Lidar Information based Dynamic V2V Authentication for Roadside Infrastructure-less Vehicular
Networks. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC),
Las Vegas, NV, USA, 11–14 January 2019.

22. Aldrich, R.; Wickramarathne, T. Low-Cost Radar for Object Tracking in Autonomous Driving: A Data-Fusion Approach.
In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018.

23. Kwang-ju, K.; Pyong-kun, K.; Yun-su, C.; Doo-hyun, C. Multi-Scale Detector for Accurate Vehicle Detection in Traffic Surveillance
Data. IEEE Access 2019, 7, 78311–78319.

24. Khatab, E.; Onsy, A.; Varley, M.; Abouelfarag, A. Vulnerable objects detection for autonomous driving: A review. Integration 2021,
78, 36–48. [CrossRef]

25. Saeed, A.; Salman, K.; Nick, B. A Deep Journey into Super-resolution: A Survey. ACM Comput. Surv. 2020, 53, 1–34.
26. Yogendra Rao, M.; Arvind, M.; Oh-Seol, K. Single Image Super-Resolution Using Deep Residual Network with Spectral

Normalization. In Proceedings of the 17th International Conference on Multimedia Technology and Applications (MITA), Jeju,
Republic of Korea, 6–7 June 2021.

27. Yogendra Rao, M.; Oh-Seol, K. Deep residual dense network for single image super-resolution. Electronics 2021, 10, 555.
28. Ivan, G.A.; Rafael Marcos, L.B.; Ezequiel, L.R. Improved detection of small objects in road network sequences using CNN and

super resolution. Expert Syst. 2021, 39, e12930.
29. Sheng, R.; Jianqi, L.; Tianyi, T.; Yibo, P.; Jian, J. Towards Efficient Video Detection Object Super-Resolution with Deep Fusion

Network for Public Safety. Wiley 2021, 1, 9999398.
30. Xinqing, W.; Xia, H.; Feng, X.; Yuyang, L.; Xiaodong, H.; Pengyu, S. Multi-Object Detection in Traffic Scenes Based on Improved

SSD. Electronics 2018, 7, 302.
31. Luc, C.; Minh-Tan, P.; Sebastien, L. Small Object Detection in Remote Sensing Images Based on Super-Resolution with Auxiliary

Generative Adversarial Networks. Remote Sens. 2020, 12, 3152.
32. Yunyan, W.; Huaxuan, W.; Luo, S.; Chen, P.; Zhiwei, Y. Detection of plane in remote sensing images using super-resolution.

PLoS ONE 2022, 17, 0265503.
33. Mostofa, M.; Ferdous, S.; Riggan, B.; Nasrabadi, N. Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network.

IEEE Access 2020, 8, 82306–82319. [CrossRef]
34. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.

Intell. 2015, 38, 295–307. [CrossRef]
35. Chao, D.; Chen, C.L.; Xiaoou, T. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the 14th

European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016.
36. Zhaowen, W.; Ding, L.; Jianchao, Y.; Wei, H.; Thomas, H. Deep Networks for Image Super-Resolution with Sparse Prior.

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.
37. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the CVPR

2015, Boston, MA, USA, 7–12 June 2015.
38. Wei-Sheng, L.; Jia-Bin, H.; Narendra, A.; Ming-Hsuan, Y. Deep Laplacian Pyramid Networks for Fast and Accurate Super-

Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017.

39. Bee, L.; Sanghyun, S.; Heewon, K.; Seungjun, N.; Kyoung Mu, L. Enhanced Deep Residual Networks for Single Image Super-
Resolution. In Proceedings of the IEEE Conference on computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 June 2017.

40. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

41. Wazir, M.; Supavadee, A. Multi-Scale Inception Based Super-Resolution Using Deep Learning Approach. Electronics 2019, 8, 892.
42. Yan, L.; Guangrui, Z.; Hai, W.; Wei, Z.; Min, Z.; Hongbo, Q. An efficient super-resolution network based on aggregated residual

transformations. Electronics 2019, 8, 339.
43. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017.
44. Zhiqian, C.; Kai, C.; James, C. Vehicle and Pedestrian Detection Using Support Vector Machine and Histogram of Oriented

Gradients Features. In Proceedings of the 2013 International Conference on Computer Sciences and Applications, Wuhan, China,
14–15 December 2013.

45. Zahid, M.; Nazeer, M.; Arif, M.; Imran, S.; Fahad, K.; Mazhar, A.; Uzair, K.; Samee, K. Boosting the Accuracy of AdaBoost for
Object Detection and Recognition. In Proceedings of the 2016 International Conference on Frontiers of Information Technology
(FIT), Islamabad, Pakistan, 19–21 December 2016.

46. Silva, R.; Rodrigues, P.; Giraldi, G.; Cunha, G. Object recognition and tracking using Bayesian networks for augmented reality
systems. In Proceedings of the Ninth International Conference on Information Visualization (IV’05), London, UK, 6–8 July 2005.

http://doi.org/10.1016/j.vlsi.2021.01.002
http://doi.org/10.1109/ACCESS.2020.2990870
http://doi.org/10.1109/TPAMI.2015.2439281
http://doi.org/10.1145/3065386


Remote Sens. 2022, 14, 6270 19 of 19

47. Qi, Z.; Wang, L.; Xu, Y.; Zhong, P. Robust Object Detection Based on Decision Trees and a New Cascade Architecture.
In Proceedings of the 2008 International Conference on Computational Intelligence for Modelling Control & Automation, Vienna,
Austria, 10–12 December 2008.

48. Fica Aida, N.; Purwalaksana, A.; Manalu, I. Object Detection of Surgical Instruments for Assistant Robot Surgeon using
KNN. In Proceedings of the 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial
Automation (ICAMIMIA), Batu, Indonesia, 9–10 October 2019.

49. Liu, Z.; Xiong, H. Object Detection and Localization Using Random Forest. In Proceedings of the 2012 Second International
Conference on Intelligent System Design and Engineering Application, Sanya, China, 6–7 January 2012.

50. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June
2014.

51. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
18 February 2016.

52. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

53. Redmon, J.; Divvala, S.; Girishick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

54. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

55. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
56. Bochkovskiy, A.; Wang, C.-Y.; Mark Liao, H.-Y. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
57. Wang, C.-Y.; Bochkovskiy, A.; Mark Liao, H.-Y. Scaled-YOLOv4: Scaling Cross Stage Partial Network. arXiv 2020, arXiv:2011.08036.
58. Yingfeng, C.; Tianyu, L.; Hongbo, G.; Hai, W.; Long, C.; Yicheng, L.; Miguel, S.; Zhixiong, L. YOLOv4-5D: An Effective and

Efficient Object Detector for Autonomous Driving. IEEE Trans. Instrum. Meas. 2021, 70, 4503613.
59. Lian, J.; Yin, Y.; Li, L.; Wang, Z.; Zhou, Y. Small Object Detection in Traffic Scenes based on Attention Feature Fusion. Sensors 2021,

21, 3031. [CrossRef] [PubMed]
60. Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.-H.; Zhang, L.; Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Ntire 2017 challenge

on single image super-resolution: Methods and results. In Proceedings of the Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 June 2017.

61. Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnega-
tive neighbor embedding. In Proceedings of the 23rd British Machine Vision Conference Location (BMVC), Guildford, UK, 3–7
September 2012.

62. Timofte, R.; De Smet, V.; Van Gool, L. A+: Adjusted anchored neighborhood regression for fast super-resolution. In Proceedings
of the Asian Conference on Computer Vision (ACCV), Singapore, 1–2 November 2014.

63. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics. In Proceedings of the 8th international Conference of Computer
Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001.

64. Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 8–10 June 2015.

65. Horé, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern
Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010.

66. Venkatanath, N.; Praneeth, D.; Chandrasekhar, B.M.; Channappayya, S.S.; Medasani, S.S. Blind Image Quality Evaluation
Using Perception Based Features. In Proceedings of the 21st National Conference on Communications (NCC), Mumbai, India,
27 February–1 March 2015.

67. Chen, C.; Zhong, J.; Tan, Y. Multiple-oriented and small object detection with convolutional neural networks for aerial image.
Remote Sens. 2019, 11, 2176. [CrossRef]

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.3390/s21093031
http://www.ncbi.nlm.nih.gov/pubmed/33925864
http://doi.org/10.3390/rs11182176

	Introduction 
	Related Work 
	Single Image Super-Resolution Using Deep Learning Methods 
	Deep Learning-Based Object-Detection Models 

	Proposed Object Detection Network Based on SR 
	Experimental Results 
	Quantitative Results of Proposed Model for Generic SR Application 
	Div2k Training Dataset 
	Public Benchmark Datasets 

	Super-Resolution Results for Remotesensing Application 
	Detection Results and Performance Analysis 

	Conclusions 
	References

