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Abstract
Children who generate and update verbal predictions have larger vocabularies, suggesting that 
prediction may be a mechanism that supports language learning. We hypothesize that this relation 
is not confined to the domain of language, but instead signals a broader individual difference in 
information processing. To investigate this possibility, we tested infants (n=50) in the early stages 
of vocabulary development (12-24 months) on their ability to generate and update nonverbal, 
visual predictions. In an eye-tracking task, a central fixation reliably preceded a peripheral target. 
Then, halfway through the experiment, the peripheral target began appearing on the opposite side. 
We assessed infants’ proficiency in initiating anticipatory eye movements before and after the 
switch, and found that infants with larger vocabularies did not generate more predictions overall, 
but were more efficient in updating predictions to the new target side. These findings establish a 
link between nonverbal prediction and vocabulary in infancy, and suggest a promising means of 
addressing whether or not prediction abilities are causally related to language learning.
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1. Introduction
Human processing of complex information is facilitated by prediction (Bar, 2007; 
Summerfield & de Lange, 2014). Humans make predictions in many domains, such as vision 
(Rao & Ballard, 1999; den Ouden et al, 2009; Summerfield & de Lange, 2014), locomotion 
(Wolpert, Miall & Kawato, 1998; Wolpert, Ghahramani & Flanagan, 2001), and language 
(Rabagliati, Gambi & Pickering, 2016). In language, prediction enables efficient processing 
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among both adults and children, allowing listeners to keep pace with the rapid information 
flow of speech (DeLong, Urbach & Kutas, 2005; Kutas, DeLong & Smith, 2011; Borovsky, 
Elman, & Fernald, 2012; Pickering & Garrod, 2013).

In addition to its role in language processing, prediction may also be a mechanism that 
facilitates language learning. In error-based models of language learning, learners compare 
predicted input with actual input to gain information about the structure of their language 
(Elman, 1990; Chang, Dell & Bock, 2006; Pickering & Garrod, 2013). For example, a child 
might expect to hear the word ‘mouses’ but instead hear ‘mice,’ and update future 
predictions accordingly (Ramscar, Dye & McCauley, 2013). There are two types of evidence 
that these models may be valid descriptions of learning. First, it is well-established that 
children generate predictions during language processing. They are capable of drawing upon 
many types of linguistic information to anticipate what a speaker is likely to say next, such 
as phonology (Swingley, Pinto & Fernald, 1999), semantics (Fernald, Zangl, Portillo & 
Marchman, 2008; Fernald, Thorpe & Marchman, 2010; Mani & Huettig, 2012), 
morphosyntax (Lew-Williams & Fernald, 2007; Borovsky, Elman & Fernald, 2012; 
Lukyanenko & Fisher, 2016), and speakers’ intentions (Kidd, White & Aslin, 2011). Second, 
there are individual differences in the extent to which children generate verbal predictions, 
and these differences are related to children’s language proficiency. Compared to children 
with smaller vocabularies, children with larger vocabularies are more likely to generate 
predictions in light of new linguistic information (Nation, Marshall & Altman, 2003; 
Borovsky et al., 2012; Mani & Huettig, 2012). Thus, in line with error-based models of 
learning, children who generate more verbal predictions and update those predictions 
efficiently have more advanced language abilities.

This research suggests that children can use multiple sources of information to anticipate 
downstream words and revise predictions as new linguistic information arrives. Although 
findings of this nature establish a link between prediction and language learning, they 
present an interpretational problem. There are a number of plausible explanations: One 
possibility is that verbal prediction is a capacity that supports vocabulary growth (see Elman, 
1990). As reviewed above, prediction errors can be used to modify the learner’s 
representations of their language, making future predictions increasingly accurate. In 
contrast, a second possibility is that verbal prediction is strictly an outcome, rather than a 
cause, of vocabulary growth (Rabagliati et al., 2016). That is, language users may only begin 
to generate predictions once they have a fair amount of linguistic knowledge. Evaluating 
these two possibilities, as well as intermediate views, will aid in understanding the role of 
prediction in language processing and learning.

To further examine the relation between prediction and language learning, we used two new 
approaches. First, we focused on infants between 1 and 2 years of age. Previous studies 
showing links between prediction and vocabulary have tested children between 2 and 7 years 
who already comprehend and produce multiword sentences. If prediction plays a role in 
supporting the initial stages of language learning, then infants’ prediction abilities should 
already be linked to their budding linguistic knowledge. Second, in the current study we 
evaluated whether prediction as a domain-general capacity may be related to language 
learning. That is, we did not aim to replicate previously established relations between verbal 
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prediction and vocabulary. Instead, based on views of prediction as a general capacity that is 
present in multiple domains and possibly interacts across domains (Bar, 2007; Lupyan & 
Clark, 2015), we examined relations between nonverbal (i.e., visual) prediction and 
vocabulary size. We reasoned that differences in nonverbal prediction, as compared to verbal 
prediction, are less likely to be the direct result of vocabulary differences. This cross-domain 
approach represents a new direction for understanding the relation between prediction 
abilities and language proficiency.

Our investigation of how infants make and update nonverbal predictions included two main 
hypotheses. First, we hypothesized that the quantity of predictions that infants generate in a 
nonverbal task would be linked to vocabulary. Among older children, those with larger 
vocabularies, as compared to those with smaller vocabularies, are more likely to make verbal 
predictions (Nation et al., 2003; Borovsky et al., 2012; Mani & Huettig, 2012). We expected 
that this relation would hold earlier in development and apply to the domain of nonverbal 
prediction. Second, we hypothesized that the quality of infants’ nonverbal predictions would 
be linked to vocabulary. In error-based models, learners update predictions when they 
encounter incongruent information (Chang et al., 2006). Assuming these models are relevant 
for explaining learning toward the beginning of life, we expected that infants with larger 
vocabularies would be more successful in updating nonverbal predictions after observing 
unexpected information.

To evaluate these hypotheses, we tested 12- to 24-month-old infants in a visual prediction 
task, using anticipatory eye movements (AEMs) as a measure of prediction. In a second eye-
tracking task, we controlled for differences in infants’ speed of visual processing. We 
compared performance on these tasks to infants’ vocabulary size (MCDI). Together, we used 
these measures to evaluate whether and how nonverbal prediction abilities relate to infants’ 
early language development.

2. Method
2.1 Participants

Participants were 50 infants (26 female) from monolingual English-speaking families who 
ranged in age from 12 to 24 months (M=18, SD=3.5). Infants were full-term and had no 
known vision or hearing impairments. We excluded an additional 14 infants from all 
analyses due to parental report of developmental delay (1), bilingual language exposure (2), 
fussiness such that less than 50% of trials were code-able (8),1 or computer error (3). We 
excluded 6 of the 50 infants from visual processing task analyses due to computer error (4) 
or experimenter error (2). The Princeton University Institutional Review Board approved all 
research protocols, and a legal guardian provided informed consent for each infant.

1We compared age and vocabulary measures for excluded and included infants, and found no differences in age [t(8.58) = 0.06, p = 
0.95], MCDI comprehensive vocabulary size [t(11.26) = −0.63, p = 0.54], or MCDI productive vocabulary size [t(11.71) = −0.40, p = 
0.695].
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2.2 Stimuli – Prediction Task

On each trial, infants saw a central, looming fixation paired with a slide-whistle sound for 
1500 ms. After an 800-ms delay, infants saw a peripheral, spinning target paired with 
another slide-whistle sound for 1000 ms (Figure 1). Importantly, infants saw two blocks of 
trials. In the first block (trials 1-8), the target always appeared on one side, and in the second 
block (trials 9-16) its location switched sides. Block 1 target location was counterbalanced 
across infants.

On each trial, we measured infants’ anticipatory eye movements (AEMs). As shown in 
Figure 1, we conservatively defined AEMs as looks to either peripheral location during a 
time window from 200 ms before center fixation offset until 200 ms after target onset. This 
temporal window accounts for time needed to generate a saccade (Canfield, Smith, 
Brezsnyak, & Snow, 1997; Hallett, 1986; Matin, Shao & Boff, 1993). AEMs were included 
in analyses regardless of infants’ initial looking location.

Infants also saw a filler trial every 4 trials to maintain their attention. Fillers consisted of 5-
second movies of a kaleidoscope paired with soft chimes. There was a 500-ms blank inter-
trial interval.

2.3 Stimuli – Visual Processing Task

On each trial, infants saw a central fixation for 1000 ms, followed by a peripheral target for 
1000 or 1250 ms (Figure 2). Infants saw two types of trials. On gap trials, there was a 250-
ms temporal gap between fixation offset and target onset. On overlap trials, there was a 250-
ms temporal overlap between the fixation and the target. Unlike the prediction task, the 
target location did not follow a consistent pattern. Thus, infants were unable to accurately 
predict the target location. Trials appeared in one of two quasi-randomized orders, such that 
neither trial type (gap or overlap) nor target side (right or left) repeated for more than 3 trials 
sequentially. Fixation and target were stationary, and there were no auditory stimuli.

On each trial, we measured infants’ reaction time (RT), defined as the time of the first target 
look occurring 200 ms or later after target onset (Figure 2, “RT measure”). On overlap trials, 
the central stimulus competed for visual attention at target onset, so we expected infants’ RT 
to be slower in overlap trials than in gap trials (Hood & Atkinson, 1993). We measured 
infants’ visual processing speed as a difference score: overlap trials RT minus gap trials RT.

Infants also saw a filler trial every 8 trials to maintain their attention. Fillers consisted of 5-
second movies of bubbles paired with child laughter. There was a 500-ms blank inter-trial 
interval. All stimuli are available in supplementary materials.

2.4 Procedure

Before testing, caregivers completed the MacArthur-Bates Communicative Developmental 
Inventory (MCDI). We administered the MCDI Words and Gestures for infants 12-15 
months old, and MCDI Words and Sentences for infants 16-24 months old, and standardized 
infants’ scores in accordance with the MCDI technical manual (Fenson et al., 2007). During 
testing, each infant completed the prediction task, and then immediately completed the 
visual processing speed task. Infants sat on their caregiver’s lap, and caregivers wore 
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occluded glasses to avoid influencing the infants’ behavior. Infants were approximately 70 
cm from a large, flat-screen television monitor (68×122 cm). The experimenter recorded 
infants’ eye movements via a video camera below the screen. After testing, a research 
assistant coded videos of infants’ eye movements, indicating the direction of looks as: left, 
center, right, away, or shifting. Another research assistant also coded 25% of the videos. 
Inter-coder reliability was 98%.

3. Results
We hypothesized that infants with larger vocabularies would make more predictions and 
would update predictions more readily than infants with smaller vocabularies. To evaluate 
these hypotheses, we correlated infants’ productive vocabulary percentile (MCDI) and 
anticipatory eye movements (AEMs) during the prediction task. We excluded trial 1 from all 
analyses, as there was no basis for infants to generate predictions therein. We also compared 
high-vocabulary and low-vocabulary groups, based on a median split in MCDI scaled scores. 
Finally, we analyzed visual processing speed to evaluate alternative explanations for 
individual variability in infants’ performance on the prediction task.

3.1 Prediction Task

To evaluate whether infants with larger vocabularies generated more predictions overall 
(regardless of accuracy), we first correlated infants’ vocabulary size with their proportion of 
total trials with an AEM to either location. There was striking variation in both vocabulary 
size (MCDI percentile range=5-99, M=42, SD=28) and proportion of trials with an AEM 
(range=0-100, M=55, SD=29). Including all infants, regardless of how many AEMs they 
generated, we found no correlation between infants’ vocabulary size and overall proportion 
of trials with an AEM [r(48)=−0.12, p=0.39]. Examining each Block separately, there was 
no correlation in Block 1 [r(48)= −0.03, p=0.82] nor in Block 2 [r(47)= −0.17, p=0.23]. 
Thus, contrary to our first hypothesis, infants with relatively larger vocabularies were not 
more likely to anticipate the target’s appearance.

To test our second hypothesis, that infants with larger vocabularies would update predictions 
more readily, we classified AEMs in Block 2 as directed toward the novel location (i.e., the 
Block 2 target location) or the familiar location (i.e., the Block 1 target location). Trial 9 was 
excluded from this analysis, because this was the first trial in which the target appeared in 
the novel location. Thus, infants had no basis for directing an AEM to the novel target 
location on this trial. Infants who did not make any AEMs in Block 2 (n=8) or who did not 
have any code-able trials (n=1) were not included in this analysis. For each infant, we 
calculated the proportion of their AEMs that were to the novel location (i.e., novel AEMs 
divided by total AEMs).

We found a significant correlation between infants’ vocabulary size and the proportion of 
their AEMs to the novel location [r(39)=0.34, p=0.028]. Consistent with our second 
hypothesis, when making an AEM in Block 2, infants with larger vocabularies were more 
likely to make an AEM to the novel target location than infants with smaller vocabularies 
(Figure 3). By comparison, in Block 1, 98% of infants’ AEMs were directed to the correct 
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peripheral target location, and there was no correlation between correct AEMs in Block 1 
and vocabulary size [r(42)=0.24, p=0.12].

To examine the time-course of prediction updating, we analyzed AEMs trial by trial in 
Block 2. We divided infants into high-vocabulary and low-vocabulary groups based on a 
median split in MCDI percentile scores (high vocabulary: n=22, M=64, SD=19; low 
vocabulary: n=19, M=17, SD=9). Then, on each trial we calculated the proportion of AEMs 
to the novel location as the number of infants who made an AEM to the novel location 
divided by the number of infants who made AEMS to either location (Figure 4). A binomial 
test was used to test this proportion against a chance value of 0.5. The low-vocabulary group 
only performed above chance on trial 16 (p=0.039), making significantly more AEMs to the 
novel than the familiar location. The high-vocabulary group was marginally above chance in 
trial 13 (p=0.092), above chance in trial 14 (p=0.006), and above chance in trial 16 
(p=0.039).

To assess whether nonverbal prediction varied as a function of age, we repeated the above 
correlations with infants’ age in months as a factor. We found no correlation between 
infants’ age and overall proportion of trials with an AEM [r(48)= −0.25, p=0.08]. There was 
no correlation in Block 1 [r(48)= −0.23, p=0.11] or in Block 2 [r(47)= −0.22, p=0.13]. 
Finally, there was no correlation between infants’ age and the proportion of their AEMs to 
the novel location in Block 2 [r(39)=0.10, p=0.52].

3.2 Visual Processing Task

The gap-overlap task allowed us to examine whether individual differences in AEMs were 
due to differences in visual processing speed. First, we confirmed that infants were slower to 
shift their eyes to the target on overlap trials when there was a competing stimulus than on 
gap trials when there was no competing stimulus [gap trials: M=408 ms, SD=31; overlap 
trials: M=509 ms, SD=74; two-tailed t(42)= −10.4, p<.001]. Next, we computed RT 
difference scores for each infant (i.e., overlap trials minus gap trials) and used this difference 
score as the measure of visual processing speed independent of prediction. We found no 
correlation between infants’ RT difference scores and their proportion of AEMs overall 
[r(40)= −0.09, p=0.56] and no correlation between infants’ RT difference scores and their 
proportion of AEMs to the novel target location in Block 2 of the prediction task 
[r(33)=0.18, p=0.29]. Together, these findings suggest that infants’ performance on the 
prediction task was not related to variation in orienting to the dynamics of visual events.

4. Discussion
A growing body of research demonstrates a link between verbal prediction and language 
learning (Nation et al., 2003; Borovsky et al., 2012; Mani & Huettig, 2012), but the nature of 
this relation remains uncertain (Rabagliati et al., 2016). Specifically, is prediction a cause or 
a consequence of language learning? While the present study does not license causal 
inferences, our approach represents one step toward addressing this directionality puzzle by 
investigating nonverbal, visual prediction in infancy.
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In particular, the present findings make two novel contributions to the current understanding 
of prediction and language learning. First, we demonstrate a link between infants’ nonverbal 
prediction and vocabulary. Nonverbal prediction, as compared to verbal prediction, is less 
likely to be the direct result of language learning. Thus, our findings suggest that language 
learning may be supported in part by domain-general prediction abilities (see Bar, 2007; 
Summerfield & de Lange, 2014). Second, we show that the ability to update predictions in 
infancy – and to not perseverate with previously learned predictions – may be particularly 
important for learning. Infants with larger vocabularies did not generate more predictions 
overall, but they updated predictions quickly in light of new information. Together, these 
findings suggest that prediction capacities beyond the domain of language are relevant for 
understanding early vocabulary growth, and that the quality of predictions (i.e., updating) 
rather than quantity of predictions (i.e., overall tendency to predict) might support 
vocabulary growth.

How might infants’ abilities to flexibly update predictions support language learning? 
Updating predictions to adapt to changes in the environment is a central feature of error-
based learning models (e.g., Rescorla & Wagner, 1972). In such models, predictions are not 
static. Rather, predictions are continuously updated in light of new information, so that the 
learner can generate more accurate predictions in the future. Updating predictions may 
enable infants to better represent the shifting statistics of the input, incrementally generating 
more precise predictions as they gain more information. In contrast, maintaining the same 
predictions throughout learning may block infants from processing and encoding novel 
information. Individual differences in infants’ abilities to update predictions may operate 
from early in infancy and contribute to gains in a variety of domains, including language.

However, it is not clear what causes early differences in prediction abilities. One possibility 
is that learning from more variable input encourages infants to update predictions more 
frequently. Dynamic, rich experience with objects, people, and language could reinforce the 
benefits of attending to and learning from new information. Supporting this view in a 
laboratory context, Romberg and Saffran (2013) found that infants who received variable 
input in an audio-visual learning task updated predictions more readily than those who 
received deterministic input. Similarly, Kovács and Mehler (2009) found that bilingual 
infants, as compared to monolinguals, rapidly updated predictions in a nonverbal task. In 
both experiments, there was variation in prediction updating, much like the present findings; 
some infants never updated predictions despite the fact that their predictions were 
consistently incorrect. Thus, learning from more variable input may encourage prediction 
updating. Another possibility is that the relation between prediction and language learning is 
mediated by related cognitive capacities, such as executive function (Kovács & Mehler, 
2009) or working memory (Mani & Huettig, 2013; Huettig & Janse, 2016). Further 
experiments are needed to fully characterize the connections between prediction and 
language learning, by taking into account both linguistic and nonlinguistic factors and by 
considering plausible third variables. Here, we suggest that a more general framework of 
predictive information processing, especially one that captures how learners update 
predictions, will be fruitful in understanding how infants begin learning patterns in the 
world, including language.
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Figure 1. 
Schematic of the prediction task. Infants saw two blocks of trials. In Block 1, the target 
always appeared on one side (e.g., right). In Block 2, the target always appeared on the 
opposite side (e.g., left). On each trial, we measured infants’ anticipatory eye movements 
(AEMs), defined as looks to either target location during a time window from 200 ms before 
center fixation offset until 200 ms after target onset (AEM Measure).
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Figure 2. 
Schematic of the visual processing task. Infants saw two types of trials. In gap trials, there 
was a 250-ms temporal gap between the fixation and the target. In overlap trials, there was a 
250-ms temporal overlap between the fixation and the target. On each trial, we assessed 
infants’ reaction time (RT), defined as the first target look during a time window from 200 
ms after target onset (RT Measure).
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Figure 3. 
Proportion of AEMs to the novel target location in Block 2. Line indicates linear regression 
and points represent individual subjects (n=41).
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Figure 4. 
Proportion of AEMs to the novel target location, by trial in Block 2, for high vocabulary 
infants (n=22) and low vocabulary infants (n=19). Lines indicate linear regression and bars 
represent standard error of the mean.
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