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Abstract

Model-based analysis of fMRI data is an important tool for investigating the computational
role of different brain regions. With this method, theoretical models of behavior can be lever-
aged to find the brain structures underlying variables from specific algorithms, such as pre-
diction errors in reinforcement learning. One potential weakness with this approach is that
models often have free parameters and thus the results of the analysis may depend on how
these free parameters are set. In this work we asked whether this hypothetical weakness is
a problem in practice. We first developed general closed-form expressions for the relation-
ship between results of fMRI analyses using different regressors, e.g., one corresponding
to the true process underlying the measured data and one a model-derived approximation
of the true generative regressor. Then, as a specific test case, we examined the sensitivity
of model-based fMRI to the learning rate parameter in reinforcement learning, both in theory
and in two previously-published datasets. We found that even gross errors in the learning
rate lead to only minute changes in the neural results. Our findings thus suggest that precise
model fitting is not always necessary for model-based fMRI. They also highlight the difficulty
in using fMRI data for arbitrating between different models or model parameters. While
these specific results pertain only to the effect of learning rate in simple reinforcement learn-
ing models, we provide a template for testing for effects of different parameters in

other models.

Author Summary

In recent years, model-based fMRI has emerged as a powerful technique in psychology
and neuroscience. With this method, computational models of behavior can be leveraged
to identify where, whether and how different algorithms are implemented in the brain. Yet
this approach seems to have an Achilles heel in that the models frequently have free pa-
rameters, and errors in setting these parameters could lead to errors in interpretation of
the data. Here we asked whether this potential weakness, in theory, is an actual weakness
in practice. In particular, we tested whether errors in estimating participants’ learning rate
in a trial-and-error reinforcement learning setting would have adverse effects on
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identifying the neural substrates of the learning process. Amazingly, it turns out that even
gross errors in the learning rate lead to only minute changes in the neural results. The
good news is that precise identification of free parameters is not always necessary; the cor-
ollary bad news is that it may be harder to identify the precise computational roles of dif-
ferent brain areas than we had previously appreciated. Based on our analytical results, we
offer suggestions for designing experiments that maximize or minimize sensitivity to
model parameters, as needed.

Introduction

The advent of fMRI revolutionized psychology as it allowed, for the first time, the noninvasive
mapping of human cognition. Despite this progress, traditional fMRI analyses are limited in that
they can, for the most part, only ascertain the involvement of an area in a task but not its precise
role in that task. Recently, model-based fMRI methods have been developed to overcome this
limitation by using computational models of behavior to shed light on latent variables of the
models (such as prediction errors) and their mapping to neural structures. This approach has led
to important insights into the algorithms employed by the brain and has been particularly suc-
cessful in understanding the neural basis of reinforcement learning (e.g. [1-13]).

In a typical model-based fMRI analysis, one first specifies a model that describes the hy-
pothesized cognitive processes underlying the behavior in question. Typically these models
have one or more free parameters (e.g. learning rate in a model of trial-and-error learning).
These parameters must be set to fully specify the model, which is commonly done by fitting
them to the observed behavior [14]. For instance, given the model, one can find subject-specific
learning rates that best explain the subject’s behavioral choices. The fully specified model is
then used to generate trial-by-trial measures of latent variables in the model (e.g. action values
and prediction errors) that can be regressed against neural data in order to find areas whose ac-
tivity correlates with these variables in the brain.

One potential weakness of this approach is the requirement for model fitting. In many
cases, the data are insufficient to precisely identify the parameter values. This can be due to lim-
ited number of trials, interactions between parameters that make them hard to disentangle [14]
or lack of behavior that can be used for the fitting process (e.g., in some Pavlovian conditioning
experiments). Thus a key question is: How important is the model fitting step? In other words,
to what extent is model-based fMRI sensitive to errors in parameter estimation? The answer to
this question will determine how hard we should work to obtain the best possible parameter
fits, and will affect not only how we analyze data, but also how we design experiments in the
first place.

Here we show how this question can be addressed, by analyzing the sensitivity of model-
based fMRI to the learning rate parameter in simple reinforcement learning tasks. We provide
analytical bounds on the sensitivity of the model-based analysis to errors in estimating the
learning rate, and show through simulation how value and prediction error signals generated
with one learning rate would be interpreted by a model-based analysis that used the wrong
learning rate. Amazingly, we find that the results of model-based fMRI are remarkably robust
to settings of the learning rate to the extent that, in some situations, setting the parameters of
the model as far as possible from their true value barely affects the results. This theoretical pre-
diction of robustness is borne out by analysis of fMRI data from two recent experiments.

Our findings are both good and bad news for model-based fMRI. The good news is that it is
robust, thus errors in the learning rate will not dramatically change the results of studies

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004237 June 18,2015 2/21



@' PLOS | SoMputaTioNAL
NZJ : BIOLOGY Is Model Fitting Necessary for Model-Based fMRI?

seeking to localize a particular signal. The bad news, however, is that model-based fMRI is in-
sensitive to differences in parameters, which means that one should use extreme caution when
attempting to determine the computational role of a neural area (e.g., when asking whether a
brain area corresponds to an outcome signal or a prediction error signal). In the Discussion we
consider the extent to which this result generalizes to other parameters and other models and
offer suggestions to diagnose parameter sensitivity in other models.

Methods
Ethics statement

Both experiments were approved by their respective institutions. The experiment in [10] was
approved by the Institutional Review Board of the California Institute of Technology. The ex-
periment in [3] was approved by Ethics Committee at University College London. In both
cases participants gave informed consent in writing.

Theoretical analysis

We begin by laying out a formal analysis of the sensitivity of model-based fMRI to model pa-
rameters. The rationale behind the mathematical derivations below is as follows. Assume that
there is some signal in the brain (corresponding to some ‘ground truth’ regressor x,) that we
have a noisy measurement of (e.g., via fMRI). We first derive the somewhat intuitive result that
if we analyze the brain data with a different, incorrect regressor x; (where the subscript, £, de-
notes that the regressor is derived from our model with fit parameter values), the quality of our
results depends on the correlation between the ground truth regressor and the incorrect regres-
sor, p(X,, Xp).

To assess the sensitivity of model-based fMRI to errors in parameter estimation, we then
focus on trial-and-error learning tasks. We assume a ground truth regressor derived from a re-
inforcement learning model with the learning rate parameter set to its true (though unknown)
value, and analyze the correlation between this regressor and one that is derived from the same
model but with a different setting of the learning rate, for some of the most commonly used
task designs. Finally, we illustrate and flesh out the implications of these analytical results using
both simulated and empirical data in the Results.

The effect of an incorrect regressor on fMRI analysis. Assume a ‘ground truth’ regressor

Xy = (Xg15 X2, - - -» Xg7) (Where x, is the size of the variable of interest at time point ¢) that under-
lies the activity in a brain region, such that the measured signal in this region takes the form
Y = fx, +e (1)

with 3 being a coefficient that controls the size of the effect and € being zero-mean noise. What

would be the magnitude of the estimated regression coefficient B if we analyzed the brain data
using an incorrect regressor, xf(for example one that is derived from an incorrect model, or
from the correct model with the wrong setting of the free parameters)? Using ordinary least
squares regression, we have
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XTX .
where g (x) = /%% is the standard deviation of regressor x, p(x,,X;) gifx/) is the corre-

= To(xg)a(
lation coefficient between x, and x5 and T is the number of data points in the regression. Thus,
if we normalize the regressors to have unit variance, i.e. o(x,) = o(xy) = 1, then ﬁ is related to
the ground truth regression coefficient through the correlation between the two regressors:

B = Bp(x, %) (3)
Thus, the more correlated the fit regressor is to the true regressor, the larger the regression co-
efficient for the fit regressor, . How does this affect the statistical significance of 8, that is, the
results of a statistical analysis that asks whether f; is reliably different from zero? To answer
this question, we must compute 7, the Student ¢ statistic of § relative to the null hypothesis

f = 0. Making the further simplifying assumption that the fMRI noise, €, is Gaussian with var-

iance 07, we have

>

2:

® @

where s(f8) is standard error of 3. For simple regression, s(8) can be written in terms of the
standard deviation of the regression residuals, €, as

1 a(e) (5)
VT —20(x)

To compute the standard deviation of the residuals we first note that, by definition,

s(B) =

e = Y- px
= Px, +e— Bp(x,, %)%

Thus, because the residuals have zero mean

T

0(%)2 = T

1, . . . .
= ?(/)’zx;xg +ele+ [)’zp(xg7 xf)zxfof - 2[32p(xg, X)X/ X, +gﬂx;/ —28

= OjQMRI + /))2(1 - p(xg7 Xf)Q)

m>
m>

where we have used the fact that x;e ~ O and xfTe ~ 0 to cancel out the terms in the second

line, and the definition of the correlation coefficient to make the simplification in the third line.
Combining this expression with Eqs 4 and 5 and keeping in mind that o(x) = 1 allows us to
write down the f statistic as

Po= Bpx,%) r-2
= X,,X 5 -
e O-fZMRl + ﬂ{)(l - p(xg7xf)2)
(x,,%,)CNR r=2
X ,X ‘
P % 1+ ONR (1 — p(x,,%,)")

g)

where CNR = B/0p,r; denotes the ‘contrast-to-noise’ ratio [15]—the ratio between the strength
of the fMRI signal, f, and the standard deviation of the fMRI noise, o7z;. Note that this # statis-

tic, like the regression coefficient, f3, is a function of the correlation between the ground truth
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and incorrect regressors, p(X,, Xy), as well as the contrast-to-noise ratio, CNR, and the number
of data points in the regression, T.

Correlations between regressors for different parameter settings in a Pavlovian task.
We now turn to analyzing the effects of incorrectly specifying free parameters on model-based
fMRI. For this, we concentrate on the particular case of reinforcement learning models. These
models, which have formed the bulk of model-based fMRI, attempt to predict how values of
different options, as computed by the subject, change through experience. One important free
parameter in such learning scenarios is the learning rate by which values are updated as a result
of prediction errors [16]. We assume that there is some ground truth setting of this parameter
that corresponds to the true learning rate of the subject, however, this setting is unknown and
our fMRI analysis might utilize an incorrect learning rate. Thus to assess the quality of the re-
sults we may hope to obtain from the fMRI analysis, we analyze the properties of p(x,, Xy as-
suming two regressors that are generated from the same model using different learning rates.

For simplicity, we concentrate on Pavlovian tasks in which subjects experience the rewards
associated with different options passively, and use the Rescorla-Wagner learning rule [17].
On each trial, £, subjects are presented with a reward r; and learn to estimate a value V,,, that
represents the reward predicted on the next trial. These values are updated on every trial
according to

Vt+1 = Vt + (xét (9)

where o is the learning rate and
o=r—-V, (10)

is the prediction error quantifying the difference between the actual and predicted reward on
the current trial. We denote the ground truth learning rate as g, and the fit learning rate as ay.
Accordingly, we denote the vector of values learned with learning rate o; as V; = (Viy, Vi, . . .,
Vi) and the corresponding vector of prediction errors as 9.

Model-based fMRI studies of reinforcement learning typically use values and prediction er-
rors as regressors for neural activity [18]. Thus, in order to determine the sensitivity of the re-
sults to the accuracy of the parameter fits, we need to compute the correlation coefficients p
(Vg Vg and p(8,, ). To do this, we first note that in the general case, the values and prediction
errors computed according to Eqs 9 and 10 will not have zero mean or unit variance. This does
not invalidate the previously derived results but does require us to work with the more general
form of the correlation coefficient

cov(a, b)

P@P) = C)e(b) )

where cov(a, b) is the covariance between vectors a and b defined by

cov(a,b) = aTTb — p(a)u(b). (12)

Here p(a) is the mean of vector a, and o(a), the standard deviation of an uncentered regressor,
is given by

o(a) = aa_ u(a)’. (13)

Thus to compute the correlation coefficients p(V,, Vy) and p(8,, 87 we must compute the
mean, variance and covariance of the value and prediction error regressors. These statistics
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turn out to be completely determined by the learning rates and the statistics of the reward vec-

tor, r.
In particular, for the value regressors it can be shown that
u(vVy) ~ u(r)
o)t~ () + 2SN - A= ) R ) | — )
' 2-u T co (14)
~ ;% N — A A _ _ 2
(V. V) x oo (u(r P (=a)t+ (1) )T = AR | — ule)

where the approximations hold in the limit of many trials and R(r) is the (uncentered) auto-
correlation of r at delay A defined as

1 T—A
RA(P) = T — Azrura+A' (15)
a=1

Equivalently, for the prediction errors we have

(5,) 0

2 = AL A
— <u(r‘) D UER( T)Rm) o

cov(s,,5) ~ M((“i+°‘j)ﬂ(r2)Z(a?(l%)A1+aﬁf(1aJ)A1><1?,)RA(r)>

i j i A=1

Q

Q
PN
)
Ny
©
R

2

See the Supplementary Information for detailed derivation of these equations. It is important
to note that the approximations in Eqs 14 and 16 only hold when the number of trials, T, is
large relative to the reciprocal of the run lengths (1/a, and 1/ay). This approximation simplifies
the expressions greatly, by removing the dependence on initial values, but we urge caution in
interpreting the results when both T and the learning rates are small. In particular, this implies
that that our analysis holds for non-zero learning rates only.

Eqgs 14 and 16 imply that to compute the required correlations we only need the statistics of
the rewards: y(r), y(rz) and Ru(r). The exact form of these averages depends on the dynamics
of the reward-generating process in the experiment. In the Results section we consider two
commonly used experimental designs.

fMRI experiments

To test our theoretical predictions we used data from two different experiments corresponding
to two different reward dynamics: fixed and drifting. In the following sections we briefly de-
scribe the two experiments along with details of our analyses. More precise descriptions of each
experiment can be found in the original papers, also available as part of the supplementary in-
formation (S1 Dataset).

Fixed reward distribution. We used data from Niv, Edlund, Dayan & O’Doherty [10].
Preprocessing of the fMRI data were performed by the original authors, as described in [10]. In
this experiment, 16 subjects made a series of choices between stimuli that paid out different
amounts of monetary reward. There were five possible stimuli: two options paid out 0¢ with
100% probability, one paid out 20¢, one paid out 40¢, and one paid out either 0¢ or 40¢ with
50% probability (henceforth the risky 0/40 stimulus). The experiment involved two types of tri-
als, intermingled: on ‘choice trials’ subjects were required to choose between two stimuli, while
on ‘forced trials’ subjects were presented with only one of the five stimuli and had to choose it.
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These forced trials ensured that subjects continued to experience all of the stimuli regardless of
their subjective value (for example, the 0¢ stimuli were very rarely chosen on choice trials).
Choices were made immediately after the stimuli appeared on screen and reward feedback was
given 5s after the choice.

Reinforcement learning theory predicts that there would be two prediction errors on each
trial: one at the time of stimulus onset/choice, equal to the value of the to-be-chosen stimulus
V, and one at the time of reward, given by the difference between reward outcome and the
value of the chosen option, r — V. Because subjects were trained on the task prior to the scan,
we assumed that they knew the values for the constantly rewarding stimuli, and therefore con-
centrated on learning estimated values for the 0/40 stimulus, for which rewards were probabi-
listic. Note that the simple reinforcement-learning model we use is slightly different from the
best-fitting model used in [10], which involved two different learning rates for positive and
negative prediction errors. We used the simpler model to maintain consistency with our theo-
retical analysis. However, in any case our results show that such a difference in the model
would not affect the regressors and the neural results to a large extent.

We focused our analysis on fMRI activations in the nucleus accumbens (NAc), an area
whose BOLD activity has been repeatedly shown to correlate with prediction errors for both
primary [2, 18-24] and monetary rewards [3, 10, 25-29], putatively due to the strong dopami-
nergic afferents to that area. We used average BOLD signals extracted by the original authors
from anatomically defined regions of interest (ROIs) in the left and right NAc, and regressed
this signal vector, Y, against parametric regressors for value and prediction error of the risky 0/
40 stimulus as well as regressors for variables of less interest such as event onsets, value of the
certain options and nuisance variables such as head motion and scanner drift. In keeping with
our theoretical analysis, we mean-centered all model-based regressors and normalized them to
have a standard deviation of 1. We repeated this analysis using different settings of the learning
rate between 0.01 and 1, in steps of 0.01.

Drifting reward distribution. For the drifting reward distribution, we analyzed data from
Daw, O’Doherty, Dayan, Seymour & Dolan [3]. Preprocessing of the fMRI data was done by
the original authors, as described in [3]. In this experiment, 16 subjects performed two blocks
of 150 choices between four options. Each option paid out probabilistic rewards sampled from
a Gaussian distribution with a drifting mean and a noise standard deviation o,, = 4. The drifting
mean m, on trial t was updated according to

m,, =ym,+50(1—y)+n, (17)

where 1, was Gaussian random noise with drift standard deviation, 0, = 2.8 and y = 0.9836 was
the decay rate that ensured that the mean decayed towards 50.

As in the experiment with fixed reward distributions [10], presentation of the stimulus and
outcome were separated in time, and as before, we expected the signal at the stimulus to reflect
the value of the to-be-chosen stimulus, V, and the signal at the outcome to reflect the predic-
tion error r — V. We thus used a GLM with 5 regressors: two stick regressors, one at the onset
of stimuli and one at the onset of the outcomes, a V parametric modulation on stimulus onset,
a prediction error parametric modulation on outcome onset, and a parametric modulation on
outcome onset by the magnitude of outcome itself, r. Because we were primarily interested in
the value signal, we focused on data from an ROI in the ventromedial prefrontal cortex
(vmPFC). Specifically, we used an ROI centered at (-3, 33, -6), a location that was reported in
[3] to correlate strongly with choice probability, which is closely related to chosen value. As be-
fore, we analyzed this ROI with GLMs created using a variety of different learning rates be-
tween 0.01 and 1, in steps of 0.01.
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Results

In the Methods, we developed general expressions that describe how changes in the learning
rate affect model-based fMRI in simple reinforcement learning tasks. In particular, we showed
that regression coefficients when using a model-based regressor, and their corresponding Stu-
dent t values, depend on three factors: the contrast-to-noise ratio (CNR) in the signal, the num-
ber of data points in the regression, and p(x,, x)—the correlation between the regressor
generated with the fit parameter values, x; and a regressor generated with the ground truth pa-
rameter values, X,.

We now investigate how these factors play out in two cases with qualitatively different re-
ward dynamics: a reward distribution that is fixed throughout the experiment, or one that
changes over time. In both cases we show that model-based fMRI analysis of value and predic-
tion error signals is relatively insensitive to the setting of the learning rate parameter and that
this insensitivity can be, to a certain extent, manipulated by altering the design of the task.

Fixed reward distribution

We first consider a situation in which the reward distribution is fixed throughout the experi-
ment. An example of such a distribution with mean m and variance ¢2 is shown in Fig 1A. In
panels B and C of the same figure we show rewards from Gaussian and Bernoulli distributions,
but it is important to note that the following theoretical results apply to any fixed reward distri-
bution with finite variance.
Analytic results. Based on the methods developed above, the sensitivity of a model-based

analysis looking for a value signal in the brain depends on the correlation, p(V,, V), between
the value computed using the ground truth learning rate, V,, and the value computed using the

A

—_
1

Reward
distribution
o
(6)]
<
Q

>

o

Gaussian
reward
o
()]

T

[ ]

0 1 @ 1 [ M oL 1 ool 1 PY X ) 1
& ® &

0 5 10 15 20 25 30 35 40 45 50

1~
O 1 1
0 5 10 15 20 30 35 40 45 50

25
trial number

Binary
reward

Fig 1. lllustration of a fixed reward distribution. (A) Schematic of a general reward distribution that is fixed
over time, showing the relevant parameters: the mean m and standard deviation g,,. (B) Example of
continuous rewards sampled from a Gaussian distribution with mean m = 0.3 and standard deviation g,, = 0.2.
(C) Bar plot showing an example of binary reward data sampled from a Bernoulli distribution with the same
mean m = 0.3 and standard deviation g, = \/m(1 —m) ~ 0.46.

doi:10.1371/journal.pchi.1004237.9001
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Fig 2. Correlations and t statistics for experiments with a fixed reward distribution, computed by
evaluating Eq (18) at learning rates between 0.001 and 1, in steps of 0.001. (A) Correlation, p(Vg, V),
between regressors for value as a function of the true, ag, and fitted, ay, learning rates. (B) Correlation
between the regressors for prediction error, p(8, 8y). (C,D) Single-subject t statistics (assuming 49 degrees
of freedom) as a function of the two learning rates for value (C) and prediction error (D). Black, gray and white
contours denote significance atp = 0.01, p = 10~* and p = 107%, respectively. Dashed black line in C: values
that will be analyzed in more detail in Fig 3.

doi:10.1371/journal.pcbi.1004237.9002

fit learning rate, V. Likewise prediction error signals depend on p(8,, 8,). Moreover, expres-
sions for these correlations rely only on a few statistics of the reward distribution: its mean p(r)
= m, the mean of the squared rewards u(r*>) = m® + ¢2, and the reward autocorrelation R(r)
= m’. Given these expressions for the reward statistics, we can compute the sums in Eqs 14 and
16 exactly (as sums of geometric series), leading to the following expressions for the value and
prediction error correlations using different learning rates o, and oy

\/ocgocf(2 — ) (2 — o)

Oty + O — 0L, 0L

p(Vg7Vf) =

(18)
(o, + o)y /(2 =2, )(2 — o)

2(acg +o — ocgozf)

p((sg?éf) =

In Fig 2A and 2B we plot these correlations as functions of the two learning rates. Strikingly,
the correlations for both value and prediction error are relatively insensitive to mismatch in
learning rates. Indeed, for prediction errors, the minimum possible value of the correlation (at

ag — 0 and oy — 1 or vice versa) is 1/ v/2 = 0.7. This implies that even in the worst case
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scenario, when the true learning rate had an extreme value of 0 or 1 and the fit learning rate
was as far as possible from the true learning rate, the resulting prediction error regressor would
still be highly correlated with the true signal. This result has important implications for the
qualitative interpretation of prediction error signals, since with a true learning rate of 0, the
‘prediction error’ is simply the reward signal. Therefore, when the reward distribution is fixed
throughout the experiment, prediction errors will always be strongly correlated with the reward
signal, making it difficult to tease apart these two neural signals using linear regression.

In Fig 2C and 2D we show the corresponding ¢ statistics assuming 49 degrees of freedom (or
a very conservative total number of trials, T = 50) and a contrast-to-noise ratio, CNR of 1 (a
fairly typical value in fMRI experiments [15] and also consistent with the range of CNR values
seen in the data sets analyzed here, where CNR was 0.4 in one case and 11 in the other). As can
be seen, the dependence of the ¢ statistic for the regressor on the true and fit learning rates
closely matches that of the regressor correlations. This is because at low CNR the ¢ statistic in
Eq 8 is approximately proportional to p(x,, X;). For reward prediction error in particular, all
possible values of o, and o result in a significant ¢ statistic at p < 0.001 (a commonly used un-
corrected threshold for significance of prediction error signals in the brain). This result further
exemplifies both the strength and the limitation of such an analysis: a neural signal will likely
be identified even if model fitting produced especially poor learning rate parameter settings,
however, from this regression alone we cannot know for sure that the identified signal is indeed
a prediction error signal rather than a reward signal.

In Fig 3 we investigate the effect of CNR and T on the ¢ statistic more explicitly. For exposi-
tion, we focus on the diagonal &, + o= 1 (i.e. along the dashed line in Fig 2C) and plot the re-
sults as a function of the difference in learning rates, o, — @ with the constraint that a, + o=

prediction error, §

B 10°
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Fig 3. Effect of contrast-to-noise ratio, CNR, (A,B) and number of trials, T, (C,D) on the t values as a function of the difference between a, — a; when
ag + ar =1, for experiments with a fixed reward distribution. The range of differences is from -0.999 to +0.999 in steps of 0.001. Dashed line: significance
at p < 0.05 at the single subject level.

doi:10.1371/journal.pcbi.1004237.9g003
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1. Panels A and B show the effect of changing the contrast-to-noise ratio from 1 to 100 at fixed
T = 50 for the value and prediction error regressors, respectively. In both cases, as the contrast-
to-noise ratio increases, the curves become increasingly peaked at 0 (i.e. at &, = @) indicating
greater sensitivity of the resulting t statistics to accuracy of the fit learning rate. This shows
that, when the underlying signal is strong, model-based fMRI will be much more sensitive to
parameter settings than when the signal is weak. Of course, for a given statistical threshold, a
higher CNR also results in a wider range of fit learning rates achieving statistical significance.
Thus, not surprisingly, high CNR is always better than low CNR in that it makes the result
more robust to model-fitting errors in addition to making it easier to use the fMRI signal to in-
form the parameter search.

In panels C and D we illustrate the effect of changing the number of trials, T, from 10 to 200
assuming a fixed CNR = 1. Again, as T increases, the ¢ statistic becomes increasingly peaked
around a, = a; (note the logarithmic scale on the y-axis). These results show that the sensitivity
of a model-based analysis can also be increased by increasing the number of trials in
the experiment.

fMRI data. To test these theoretical predictions, we used data from from Niv, Edlund,
Dayan & O’Doherty [10]. As Fig 4 shows, consistent with the theory, for both value and predic-
tion error regressors, the regression coefficient depended relatively weakly on the learning rate
used to generate the regressor. This was true both for single subjects (Fig 4A and 4B) and at the
group level (Fig 4C and 4D).

Although the plots in Fig 4A and 4B are relatively insensitive to parameter value, many of
the curves for individual subjects do appear to have a maximum, suggesting that there is a
learning rate that best describes the neural data. To evaluate the extent to which these best-fit-
ting learning rates could be estimated, we computed the log likelihood of the fMRI data for a
linear model assuming that the data are generated by the a combination of the model-based re-
gressors for value and prediction error plus additive Gaussian noise, for each value of the learn-
ing rate parameter. For a linear regression model, the log likelihood has a closed form as
follows:

LL(x) = T(log( 2m0, () +;) (19)

where o,(a) denotes the standard deviation of the residuals of the linear model with model-
based regressors generated using learning rate o

Fig 5 shows LL(a) relative to its maximum value, for each subject, ALL(e) = LL(@) — max,,
LL(). This analysis further highlights the insensitivity of these results to learning rate—for
most subjects the range of log likelihood between best and worst fits being less than 2, a differ-
ence in fit usually considered ‘barely worth mentioning’ [30].

Drifting reward distribution

Our approach can also be applied to scenarios in which the reward distribution is not fixed. To
illustrate, we analyze experiments with rewards that are drawn from a Gaussian distribution
whose mean, m,, is generated by a discretized Ornstein-Uhlenbeck process (Fig 6) [31]. Specifi-
cally, m;, undergoes a random walk defined by

m[+1 = ymt + nt (20)

where 7, is zero mean noise with drift variance 63, and y (< 1) is a decay parameter. Because y
is smaller than one, the mean tends to decay to zero over time (illustrated by the arrows in

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004237 June 18,2015 11/21
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Fig 4. The effect of learning rate on the fMRI signal in the NAc in [10], an experiment with a fixed
reward distribution (binary rewards with p = 0.5, see Methods). (A) Regression coefficients for value of
the chosen option at the time of stimulus onset, as a function of learning rate. Each curve represents a single
subject. (B) Single subject regression coefficients for prediction error at the time of reward. Note the relative
lack of modulation of the regression coefficient by the value of the learning rate parameter. (C) Group
analysis at the time of stimulus showing the group t statistic as a function of (group-wise) learning rate (blue).
Red lines denote the best and worst case scenarios obtained by taking the value of the learning rate that
either maximizes or minimizes the t statistic for each subject. Dashed black line: p = 0.05 threshold. (D)

Group analysis at the time of reward. In all cases, as predicted, the effect of the learning rate parameter
is small.

doi:10.1371/journal.pcbi.1004237.9g004

Fig 6A). This helps to keep the means of different options from diverging too far as the
experiment progresses.

Analytic results. Again, to compute the correlations we require the statistics of the reward
distribution. For simplicity, we focus on situations in which T is large, where the reward statis-
tics are asymptotically

u(r) = 0 1)
o) =+ (22)
Ry(r) = 7% (23)

These reward statistics allow us to compute the sums in Eqs 14 and 16 exactly, leading to the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004237 June 18,2015
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Fig 5. Fit of a linear model comprised of a single model-based regressor generated with different
learning rates a, to fMRI data in the fixed reward probability experiment [10] as a function of learning
rate. Each grey curve corresponds to a different subject and in blue is the mean across subjects. All curves
are shifted to have a maximum value of 0. For most subjects the quality of the fit depends only weakly on the
learning rate. Note that the y-axis is the same as in Fig 10, to highlight the differences between the
sensitivities of the two experiments to the setting of the learning rate parameter.

doi:10.1371/journal.pcbi.1004237.9005
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Fig 6. An example drifting reward distribution. (A) Evolution of the mean m; over time, t, diffusing with a
drift standard deviation o,. The decay, y, is indicated by the gray arrows and the shaded region indicates the
standard deviation of the Gaussian noise distribution, o,,. (B) A set of rewards sampled from the distribution in

panel A.
doi:10.1371/journal.pcbi.1004237.9006
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following (slightly messy, but nonetheless fully tractable) expressions for p(V,, V) and p(8,,

Sf)
1 1 2
1+ + -1 G
V.V L—y+ay 1-y+oy (1—9*)a? o0, (2 — ) (2 — )
p(V,, =
o &y + o — o 14 2 a; 1+ 2 ol
(1=y+oy) (1 =90} L—y+oy(l -9
(24)
o o 2
(ot + o) + T a—— i
l=y+ay 1=y+oy)(1+7)0; (2—a,)(2— o)
PO 9) = 2(at, + o — ot 0t,) > 2 :
g f ¢ 14 1 0, 1+ 1 04
L—y+oy(l+y)s; L—y+oy(l+y)o;

Note that these are functions of only two parameters of the reward distribution: the decay,
7, and the ratio of drift variance to noise variance, 7 /¢>. When using a drifting reward proba-
bility, these experimentally determined parameters exert much greater control over the form of
the correlations than can be achieved when reward probability is fixed. This control is demon-
strated in Fig 7 where we tuned these two parameters to achieve sensitivity to prediction errors
(panels A,B), value (panels E,F), or both (panels C,D). The parameters in panels A and B, y =
0.98 and 0,/0,, = 0.7, closely match those in the experiment of Daw et al. [3], whose neural re-
sults we discuss below.

To explore the parameter space more thoroughly, we quantified the ‘insensitivity to learning
rate’ as the fraction of (a,, ay)-space in which the correlations are greater than 0.7. This metric
is 1 when the correlations are only weakly dependent on learning rate (as for the prediction
error in the case of fixed rewards) and 0 when they are exquisitely sensitive. Fig 8 shows this
metric as a function of the two parameters, y and 0,/0,, for the value and prediction error re-
gressors. The plot demonstrates the somewhat reciprocal relationship between p(V,, Vy) and p
(84, 8): when prediction errors have higher sensitivity to learning rate, the values tend to have
lower sensitivity, and vice versa. Thus, while the sensitivity to learning rate can be tuned, there
is a tradeoff between sensitivity to model-based regressors for prediction errors and value.

fMRI results. To test the theoretical predictions, we analyzed BOLD data from Daw et al.
[3], performing a GLM analysis with a variety of different learning rates and examining value
and prediction error regressors. The resulting regression coefficients and group ¢ statistics are
shown in Fig 9. Here we see much less sensitivity to the learning rate of the chosen value signal
than the prediction error signal at both the single subject and group levels. This is in line with
our predictions, as the reward parameters in the experiment (y ~ 0.98 and o,/0,, = 0.7) place it
in the upper left of Fig 8, where values are more sensitive to the fit learning rate than are
prediction errors.

A notable feature of these results is that the different regressors are significantly correlated
with the neural signal in different regions of reward-parameter space, with prediction errors
significantly correlated with BOLD signals when using low learning rates and values significant
at higher learning rate. This reflects the fact that with low learning rates value changes slowly,
and so prediction errors are more correlated with the (surprising and drifting) outcomes,
whereas for high learning rates it is the value that closely tracks the drifting outcomes. It may
not be surprising that the correlation between the different regressors and trial outcomes drives
the significance of the regression result in vmPFC, as this area has been repeatedly associated
with encoding of outcome magnitude [32, 33]. However, this result highlights again an impor-
tant (and worrying) point: while the overall regression coefficients can be remarkably robust to

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004237 June 18,2015 14/21
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Fig 7. Correlations between model based regressors derived using different learning rates, in an experiment with drifting rewards, for three
different settings of the decay of the reward mean to 0, y, and the drift-to-noise ratio of the reward mean, o4/0,,. Plots were generated by evaluating
Eq (24) for learning rates between 0.001 and 1 in steps of 0.001. (A,B) When y is high (0.98) and a,/g,, is low (0.7), values are not sensitive to fit learning rate,
but prediction errors are sensitive. (C,D) Intermediate y and o,/0,, lead to intermediate sensitivity of both value and prediction error to learning rate. (E, F)
When yis low (0.1) and o/, is high (4.5), the results mimic those obtained with a fixed reward distribution (values are more sensitive to fit learning rate than
are prediction errors, compare Fig 2A and 2B).

doi:10.1371/journal.pcbi.1004237.9007

the fit learning rate, interpretation of what function a neural area fulfills can change significant-
ly as the fit parameter values change.

To further investigate the sensitivity of our results to settings of the learning rate, we again
computed the log likelihood of the neural data for linear regression models using model-based
regressors with different learning rates. These results are shown in Fig 10. Unlike the case of
constant reward probability (Fig 5), in this experiment we found much stronger dependence of
the log likelihood on learning rate, likely due to the increased contrast-to-noise ratio for the
larger vimPFC ROI (11 here, compared to 0.4 for the NAc ROI). This increased sensitivity also
allows us to extract a potentially meaningful fit of the learning rate to the fMRI data—on aver-
age 0.36 (+ 0.08 [s.e.m.]). Of course, this analysis is only suggestive and one should be carefully
interpreting group-averaged statistics.
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Fig 8. Insensitivity of value (A) and prediction error (B) regressors to the fit learning rate as a function
of decay of the reward mean to zero, y, and the drift variance to noise variance ratio of the reward

mean, g4/0,, in experiments with drifting rewards. The three black crosses indicate the parameter values
in the examples in Fig 7.
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Fig 9. The effect of learning rate on the BOLD signal in vmPFC in [3], an experiment with drifting
rewards. (A) Regression coefficients for value of the chosen option at the time of stimulus onset, as a
function of learning rate. Each curve represents a single subject. (B) Single subject regression coefficients for
prediction error at the time of reward. (C) Group analysis of value signals at the time of stimulus showing the
group t statistic as a function of (group-wise) learning rate (blue). Red lines denote the best and worst case
scenarios obtained by taking the value of the learning rate that either maximizes or minimizes the t statistic for

each subject. Dashed black line: p = 0.05 threshold. (D) Group analysis of prediction error signals at the time
of reward.

doi:10.1371/journal.pcbi.1004237.9009
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Fig 10. Fit of a linear model comprised of a single model-based regressor generated with different
learning rates a, to fMRI data in the drifting reward experiment [3] as a function of learning rate. Each
grey curve corresponds to a different subject and in blue is the mean across subjects. All curves are shifted to
have a maximum value of 0. The y-axis is the same as that for Fig 5, to highlight the differences between the
two experiments.

doi:10.1371/journal.pcbi.1004237.9010

To decide between different accounts of vmPFC activity—value, prediction error, or both—
one could use a similar method to compare the goodness of fit of different models and assess,
at the group level, which model fits the data best. In particular, one could compare three dis-
tinct linear models: one with a regressor for value but not prediction error, one with a regressor
for prediction error but not value and one with both (for instance, generated using the best-fit
learning rate). The log-likelihood measure (corrected for the different number of parameters,
in this case, the number of regressors) could then be compared to determine the best model.
We note that while such model comparison is closely related to the questions of parameter fit-
ting and parameter estimation we consider here, it comes with none of the guarantees that we
have established for parameter fitting.

Discussion

In this paper, we considered the extent to which errors in the estimation of model parameters
impact model-based fMRI. We showed that, in general, the answer to this question depends
crucially on the correlation between regressors derived from different parameterizations of the
model, p(x,, Xg), and is further affected by the contrast-to-noise ratio in the data, CNR, and the
number of trials, T, in the experiment. In the specific case where the fit parameter is the learn-
ing rate in a reinforcement learning model, we found that regressors for both value and predic-
tion error signals were fairly insensitive to the fit learning rate, such that for realistic values of
CNR and T, the results of the model-based analysis were predicted to be robust to different pa-
rameterizations. Indeed for an experiment with a fixed reward distribution, the estimated
learning rate had close to no effect on the detection of prediction error signals in the NAc either
in theory or in the experimental data. Similar results also held when rewards were drawn from
a Gaussian distribution with a randomly drifting mean.

These findings are consistent with the report from one of the earliest model-based fMRI pa-
pers [18], in which changing the learning rate from 0.2 to 0.7 was found to have relatively little
effect on the results. However, when either the contrast-to-noise ratio or number of trials is
high, sensitivity of the model-based analysis to learning rate can increase. This might explain
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the anecdotal finding (personal communication, J.P. O’ Doherty) that the results reported in
Bray & O’Doherty [34] were relatively sensitive to learning rate. In particular, this study had
more trials (T = 288) than in either [18] or [10] and also used ‘natural’ rewards (in the form of
good- and bad-looking faces) instead of monetary rewards, which might lead to a larger effect
and hence greater CNR.

Our results hold important consequences for the interpretation of model-based fMRI exper-
iments. As regards learning rate, the relative insensitivity to this parameter is both good news
and bad news. For studies investigating what areas in the brain are involved in reinforcement
learning, these results are good news as the robustness to the fit parameters will make errors in
the fitting procedure inconsequential. In this sense, our philosophy diverges slightly from that
of Forstmann and colleagues [35] who suggest redesigning either the model or the experiment
if parameters cannot be estimated with sufficient accuracy. In contrast, we espouse the position
that imperfect parameter recovery can be tolerated if the scientific question of interest can be
answered without it, as it can, for example, when we wish to know where reinforcement learn-
ing signals are located in the brain.

For studies that ask more nuanced questions, such as whether a particular signal is a reward
signal, a value signal or a prediction error signal, or whether different areas use different learn-
ing rates, the insensitivity of the neural analysis to learning rate means that a simple analysis is
not sufficient. In these cases, there is special premium for clever task design [29], and a more
detailed analysis, for instance requiring that a putative neural prediction error signal correlate
significantly with all its theoretical subcomponents [10]. Our analysis also suggests a way to
minimize this problem: changing the experiment, either by optimizing the dynamics of the re-
ward distribution or increasing the number of trials, can substantially change the sensitivity to
learning rate.

The analysis we are suggesting bears resemblance to calculations of statistical power. Statis-
tical power refers to the probability that a specific experiment will be successful in detecting an
effect that truly exists—it is obvious why this is an important quantity to optimize in experi-
ment design. Indeed many of the manipulations that we suggest—such as increasing the num-
ber of trials—will also improve statistical power. For cases in which the effect one is looking for
involves differences in model parameters, we suggest a formula for testing in advance whether
these differences are likely to be detectable neurally.

Of course, the fact that parameter values may be difficult to infer from brain data does not
mean that they are not inferable at all. In many (if not all) cases, suitable behavioral data can
provide strong constraints on model selection and parameter fitting. The ‘power’ of this type of
analysis can also be tested, for example by recovering parameters from simulated data [36] and
using data simulated by different models to test for confusion between these models [37]. Nev-
ertheless, it is not obvious that parameters that provide a good description of behavior will nec-
essarily correspond to processes in any brain area. For example, behavior could be driven by a
combination of several distinct processes each with different parameter values [38-40].

More generally, for parameters other than the learning rate (for example, the discount factor
in inter-temporal choice, or the softmax parameter in bandits tasks) our results highlight the
importance of testing parameter sensitivity before running the experiment. This need not be
done analytically (as was the case here) but can be approximated easily using simulations. As
our results show, it is often possible to increase or decrease sensitivity to a particular variable
by changing the parameters of the task and, with a clear focus on the goal of the model-based
analysis, one could use such simulations to optimize experiment design.

Finally, while in this paper we have focused on the sensitivity of model-based fMRI to the
parameters of a single model, an important question for future work is the extent to which
fMRI can be used to adjudicate between different models. Such model comparison would
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involve computing goodness-of-fit measures (such as the log likelihoods we computed above)
for each model and asking which model fit the fMRI data best. The extent to which models can
be distinguished based on neural data is related to the degree of divergence of the predictions
of the two models (i.e., the correlation between the regressors of the different models). Howev-
er, it is also likely related to how close the compared models are to the ground-truth generative
process that underlies the fMRI data, for which we unfortunately have no a priori guarantees.
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