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ABSTRACT: Carbon capture and storage (CCS) is likely to be a critical technology to achieve 18 

large reductions in global carbon emissions over the next century. Research on the subsurface 19 

storage of CO2 is aimed at reducing uncertainties in the efficacy of CO2 storage in sedimentary 20 

rock formations. Three key parameters that have a nanoscale basis and that contribute 21 

uncertainty to predictions of CO2 trapping are the vertical permeability kv of seals, the residual 22 

CO2 saturation Sg,r in reservoir rocks, and the reactive surface area ar of silicate minerals. This 23 

review summarizes recent progress and identifies outstanding research needs in these areas. 24 

Available data suggest that the permeability of shale and mudstone seals is heavily dependent on 25 

clay fraction and can be extremely low even in the presence of fractures. Investigations of 26 

residual CO2 trapping indicate that CO2-induced alteration in the wettability of mineral surfaces 27 

may significantly influence Sg,r. Ultimately, the rate and extent of CO2 conversion to mineral 28 

phases are uncertain due to a poor understanding of the kinetics of slow reactions between 29 

minerals and fluids. Rapidly improving characterization techniques using X-rays and neutrons, 30 

and computing capability for simulating chemical interactions, provide promise for important 31 

advances. 32 

 33 

INTRODUCTION 34 

Carbon capture and storage (CCS)—the capture of CO2 from stationary industrial sources, 35 

such as power plants, and its long-term storage in geologic reservoirs—is an emerging 36 

technology that could contribute up to 55% of global CO2 abatement efforts over the coming 37 

century.1–7 The overall cost of CCS derives primarily from the cost of separating CO2 from other 38 

gases and is expected to decrease substantially within a decade through new CO2 capture 39 

technologies that already exist at the bench scale.6,8,9 The storage component of CCS, known as 40 
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geologic carbon sequestration (GCS), is conceptually straightforward (Fig. 1), relatively 41 

inexpensive (< $12 per ton of CO2 emissions avoided);3,4,8–10 and already implemented at a 42 

worldwide level of ~16 Mt CO2 yr-1 at industrial and pilot sites in North America, Europe, Asia, 43 

Algeria, and Australia.7,11–17 Technologies for CO2 transport and geologic injection have been 44 

routinely used since the 1970s for CO2-enhanced oil recovery (CO2 EOR), a technology 45 

currently applied on a scale of ~50 Mt CO2 yr-1 worldwide,2–4,6,17 and are analogous to the 46 

mature technologies applied at hundreds of sites in North America and Europe for natural gas 47 

storage and for acid gas and hazardous liquid waste disposal.1,4 Large CO2 storage capacities 48 

exist worldwide in saline aquifers (1,000 to 10,000 Gt CO2) and depleted oil and gas reservoirs 49 

(675 to 900 Gt CO2),
3 the storage formations that are the focus of this paper. Additional storage 50 

capacity (potentially large, but less well characterized) exists in coal beds,18 basalt flows,19 51 

ultramafic aquifers,20 ocean sediments,21 and methane clathrate formations.22 52 

Implementation of CCS as a CO2 mitigation technology relies heavily on geophysical models 53 

to predict the fate of large CO2 plumes in the subsurface on time scales of weeks to thousands of 54 

years.1,6,11,16,18,23–36 Among the many properties that must be accurately predicted, of foremost 55 

importance are predictions of the efficacy of CO2 trapping mechanisms (Fig. 1). At present, 56 

sensitivity analyses and comparisons to data from GCS sites indicate that existing field scale 57 

models, while yielding useful qualitative insights, have relatively limited quantitative predictive 58 

accuracy in this regard.11,14–16,18,25,33,37,38 An important limitation to this accuracy, in addition to 59 

the well-established challenges associated with upscaling flow and reactivity in heterogeneous 60 

porous media, is incomplete knowledge of the parameters and constitutive relations that describe 61 

the properties of porous rock-brine-CO2 systems at the nanoscale, pore-network scale, and core 62 

scale. 63 
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 64 

Figure 1. Schematic figure illustrating the distribution of CO2 near an injection well roughly one 65 

decade after the end of injection and the four trapping mechanisms that enable GCS.1,3–66 

5,7,12,24,26,28,33,39,40 Supercritical CO2 is injected in previously brine-filled, micrometer scale pore 67 

spaces of a highly permeable geologic formation (typically a sandstone) at depths > 800 m, 68 

where it is ~30 % less dense than the resident brine. The storage formation is overlain by a thick 69 

fine-grained geologic formation, the top seal or caprock, typically a shale or mudstone. The 70 

storage formation may contain layers or lenses of fine-grained rock (secondary seals). The 71 

vertical migration of the CO2 plume is retarded or stopped by the seals (stratigraphic trapping). 72 

During the migration of the plume, a portion of the CO2 remains trapped as disconnected 73 

droplets at the trailing edge of the plume (residual trapping). On time scales of thousands of 74 

years, CO2 dissolves in the formation water (solubility trapping), reacts with silicate minerals, 75 

and precipitates as solid carbonate (mineral trapping). Plume dimensions may reach ~10 km in 76 
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width and ~100 m in height. The vertical scale is expanded roughly 50 times relative to the 77 

horizontal scale. 78 

 79 

In the present paper, we examine three parameters used in field scale GCS models that have a 80 

clear nanoscale basis and that contribute significantly to the uncertainty of field scale predictions 81 

of CO2 trapping: the vertical permeability kv of seals,18,24,26,30,33,41 the residual CO2 saturation Sg,r 82 

in reservoir rocks,14,15,23,24,41 and the reactive surface area ar of silicate solids.42–46 For the sake of 83 

brevity, we do not address the equally interesting nanoscale basis of geothermal effects,47 84 

solubility trapping,48 or the impact of impurities such as SO2 or H2S.49 We also do not discuss 85 

processes that are not directly related to CO2 trapping, such as CO2 invasion in reservoir 86 

rocks,50,51 CO2 molecular diffusion in natural gas reservoirs,52 monitoring,17 injectivity,53 87 

colloidal transport,54 induced seismicity,39 CO2-brine-rock equations of state,55 CO2 plume shape 88 

and velocity,37 or the potential consequences of CO2 leakage56,57 or that do not have a clear 89 

nanoscale basis, such as reservoir topography12,58 and heterogeneity.59,60 We focus on examining 90 

how nanoscale phenomena influence core scale properties associated with CO2 trapping in rock-91 

brine-CO2 systems. 92 

 93 

KEY PARAMETERS IN CO2 TRAPPING PREDICTIONS 94 

Stratigraphic trapping: vertical permeability (kv) of fine-grained rock formations. The 95 

fluid transport properties of seals (vertical permeability kv, capillary breakthrough pressure Pc,b) 96 

strongly influence the rate of dissipation of reservoir overpressure, plume shape (hence sweep 97 

efficiency), upward plume migration velocity, the rate of CO2 dissolution in brine and, 98 

eventually, the rate of CO2 entry into the caprock.12,24,26,29,30,33,39,41,59,61–63 Here, we focus 99 
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primarily on the kv values of seals. Existing data indicate that Pc,b tends to increase by roughly 100 

one order of magnitude for every three orders of magnitude decrease in kv.
64,65 101 

At the regional scale, the effective kv values of seals are determined by fluid flow through 102 

preferential flow paths such as faults, fractures, micro-fractures, and poorly cemented 103 

wells.26,32,45,56,62,66–77 These preferential flow paths, though ubiquitous, do not preclude 104 

stratigraphic trapping as shown by the existence of natural CO2 and hydrocarbon accumulations 105 

in the subsurface.78,79 Evidence of fluid flow through fractures and faults in shales and 106 

mudstones—the fine-grained lithologies that constitute the vast majority of aquitards and 107 

caprocks to GCS sites and natural gas reservoirs13,80,81—is provided by observations of thermal, 108 

salinity, and isotopic anomalies near faults,82–84 of fault and fracture mineralization by 109 

carbonates, sulfates, or other solids,67,76,85,86 and by studies showing that the regional 110 

permeability of these formations is sometimes several orders of magnitude higher than k values 111 

measured in unfractured core samples.26,67,87 Conversely, concentration profiles of conservative 112 

tracers (halides, noble gases, water isotopes) in shales and mudstones on length scales of tens to 113 

hundreds of meters, the persistence of hydraulic pressure differences across these formations, 114 

and the scale-independence of permeability in some shales are consistent with molecular 115 

diffusion being the dominant mass transport process in these formations on time scales of 116 

millions of years.73,82,84,87,88 Furthermore, while fault damage zones in crystalline rocks tend to 117 

have k values orders of magnitude higher than the undamaged rock,89,90 the mass transport 118 

properties of fault damage zones in shale and mudstone are, at least in some cases, 119 

indistinguishable from those of the rock matrix.82,84,91 120 

The presence of faults and fractures in seals, even if they cause only a minor enhancement of 121 

seal permeability prior to CO2 injection, implies that models that describe the seals as 122 
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homogeneous may underestimate the sensitivity of kv and Pc,b to geochemical and geomechanical 123 

alteration.31,39,63,71,74,75,92–96 Three lines of evidence indicate that clays and clay minerals play an 124 

important role in this sensitivity. Firstly, conventional hydrocarbon exploration studies have 125 

found that, despite the structural and petrophysical complexity of faults,66,90,97,98 the barrier 126 

properties of faults are primarily determined by the clay content of the fault-filling material as 127 

quantified by proxies such as the shale gouge ratio (SGR).62,98–101 With increasing clay content or 128 

SGR, fault permeability decreases from ~10-15 to 10-19 m2 and Pc,b increases from ~0.1 to 10 129 

MPa.98,100 Secondly, the fault friction coefficient µs of the Mohr-Coulomb failure model, an 130 

important parameter in the brittle failure of rocks and the mechanics of slip along faults and 131 

fractures,10,35,68,102–104 depends strongly on clay content: µs values range from 0.6 to 0.85 for most 132 

rocks,27,104,105 but clay-rich rocks can have µs values as low as 0.2.31,39,97,99,106–109 Clay-rich rocks 133 

also tend to deform in a more ductile, self-sealing manner than other rocks, a desirable seal 134 

property.81,85,99,107,110 Finally, the stress-porosity-permeability relations of porous media (or 135 

stress-aperture-permeability, in the case of unfilled fractures), of key importance in predicting 136 

the permeability of preferential flow paths in seals,27,78,85,111 are highly sensitive to clay 137 

content.80,112,113 For example, the permeability k of sedimentary rocks is routinely modeled as 138 

having a power-law dependence on porosity φ, 139 

k ∝ φn, (1) 140 

where n ~ 3 in homogeneous, non-clayey media and larger n values are associated with emergent 141 

phenomena such as wormhole-like or bedding-oriented dissolution paterns34,56,111,114–116 or 142 

localized salt precipitation.53,117 The presence of clay minerals, however, can decrease k by up to 143 

five orders of magnitude at fixed porosity80,87,99,113,118 in a manner that depends strongly on the 144 

type of clay mineral (k decreases from kaolinite to illite to smectite).99,106,119,120 145 
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Knowledge of the properties of shales and mudstones lags behind that of other sedimentary 146 

rocks despite their importance in a range of areas including basin modeling,68,77,121–123 147 

radioactive waste management,73,88,124 wellbore stability,125–127 soil science,128 fault rupture,97 the 148 

behavior of subduction zones,108,129 and the subsurface retention of hydrocarbons.78,112 The 149 

relative scarcity of experimental data on these rocks derives in part from the significant 150 

challenges associated with their fine-grained nature. Sample alteration during core retrieval and 151 

storage (in particular, the formation of micro-cracks associated with unloading and drying) may 152 

not be entirely avoidable.78,102,118,130–135 Porosity and pore structure are challenging to 153 

characterize, because most of the pore space is located in pores with widths between 2 and 10 154 

nm, beyond the range of standard microscopy tools, and a significant fraction is located in pores 155 

narrower than 2 nm that are not probed by N2 adsorption or mercury intrusion porosimetry 156 

(MIP).69,77,78,118,131,133,134,136–142 Examination of the microstructure of shales and mudtones 157 

increasingly relies on nanoscience tools such as small angle neutron scattering (SANS).143–145 158 

Studies of mudstone and shale routinely report the clay content of the solid (mass fraction of 159 

particles < 2 µm in diameter) but less frequently its clay mineralogy (mass fraction of clay 160 

minerals).77,118,122,146,147 Experimental challenges associated with sample preservation, 161 

geomechanics, and the characterization of clay mineralogy are particularly crucial, because the 162 

porosity, permeability, and geomechanical properties of clayey media are highly sensitive to clay 163 

mineralogy, the stress history of the rock, and the solution with which the rock is in 164 

contact.87,99,102,106,109,112,118,120–122,128,130,133,140,147–150 Finally, measurements of kv and Pc,b are 165 

challenging because of their sensitivity to minute leaks and to the compressibility of the testing 166 

equipment83,87,88,151 and because they require durations on the order of weeks to months.64,65,78,151 167 
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Despite the challenges outlined above, a significant database now exists on the core scale 168 

relations between φ, kv, and other properties in well-characterized shales and mudstones. Our 169 

compilation of existing data on these relations is shown in Figure 2. 170 

 171 

 172 

 173 
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Figure 2.  Compilation of experimental data (blue) and model predictions (orange) on the core 174 

scale properties of shales and mudstones: (a) porosity φ as a function of maximum effective 175 

stress σe,max; (b) logarithm of the permeability kv as a function of porosity; (c) log kV as a 176 

function of phyllosilicate mass fraction Xclay in the solid phase. Blue squares represent well-177 

characterized shales and mudstones (Keuper claystone, Kirtland formation, Nordland shale, 178 

Draupne shale, Fjerritslev formation, Norwegian shelf Jurassic mudrocks, Chimney Rock and 179 

Gothic shale, ZeroGen shale, Tuscaloosa mudstone and marine shale, Boom clay, Toarcian-180 

Domerian shale, Opalinus clay, Callovo-Oxfordian clay, Couche Silteuse, Muderong shale, 181 

North German Basin claystones, Wilcox shale, Kimmeridge shale, Floyd shale, Chattanooga 182 

shale, Conasauga shale, Duvernay shale, Wakkanai mudstone).64,67,73,82,84–86,91,102,110,130–132,135–183 

137,139–142,148,149,152–183 Thick blue lines show a representative selection of normally-consolidated 184 

clay-rich sediments either retrieved from a range of depths or compacted to a range of φ values 185 

using a standard oedometric test.109,123,146,150,184,185 Permeability values were measured by water 186 

advection at the core scale in the direction normal to the bedding or in an unspecified direction. 187 

In the case of hydrocarbon-bearing shales, very few hydraulic permeability data are available; 188 

helium permeability values were included if they had been obtained on samples pre-treated to 189 

remove all other fluids.183 Porosity values were obtained using techniques that measure the total 190 

(water accessible) porosity of nanoporous rocks (HTO diffusion, pycnometry, SANS). Maximum 191 

effective stress values were approximated from the maximum burial depth of each formation, 192 

dmax, using the relation σe,max ≈ 10.9 × dmax (with dmax in km and σe,max in MPa, based on a solid 193 

density of 2.64 kg dm-3 and a sediment porosity of 0.2). Orange lines are models of the properties 194 

of generic shales and mudstones used in GCS or basin models.80,86,186–192 The model of 195 

Dzevanshir et al.189 is plotted for clay contents of 40 to 60 % and a sediment age of 170 Ma 196 
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(lower shaded area in Fig. 2a). The models of Yang and Aplin80,122 are plotted for clay contents 197 

of 40 to 60 % (upper shaded area in Fig. 2a, shaded area in Fig. 2b) and for φ = 0.05 to 0.2 198 

(shaded area in Fig. 2c). The dashed green lines in Fig. 2b are models of the permeability of 199 

generic sandstones.34,56 The green symbol in Fig. 2c shows the range of sandstone permeabilities 200 

predicted by the same models if φ = 0.1. The solid purple lines in Fig. 2c describe a model of the 201 

relationship between fault permeability and SGR, plotted under the assumption that SGR is a 202 

reasonable proxy for Xclay (the purple shaded area shows the range of values predicted for fault 203 

displacements of 1 mm to 1 km).98,100
 204 

 205 

Figure 2 reveals that shales and mudstones follow a complex set of relationships between 206 

σe,max, φ, Xclay, and kv. The scatter in the experimental database may reflect the experimental 207 

challenges noted above, as well as differences in mineralogy and in the extent of cementation 208 

and clay mineral recrystallization.77,170,172,193 In the case of Fig. 2a, additional scatter may arise 209 

because pore water in clay formations can be significantly over- or under-pressured and, also, 210 

because φ depends not only on σe,max but also, to a smaller extent, on σe.
88,129,172,184,189,192 The 211 

offset between the properties of weakly consolidated sediments (blue lines) and rocks (blue 212 

squares) in Figure 2a suggests that the relation between φ and σe,max is sensitive to the rate of 213 

compaction, perhaps because slower compaction allows more extensive cementation or because 214 

the rate at which pore water can be expelled from compacting fine-grained sediments is limited 215 

by the very low permeability of these sediments. 216 

The database on kv vs. φ reveals that weakly consolidated sediments roughly follow Eq. 1 with 217 

m ~ 10 (thick dashed orange line at φ > 0.2 in Fig. 2b). This large φ-dependence of kV is 218 

consistent with observations that the pore size distribution of shales and mudstones is bimodal or 219 
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more complex and that compaction tends to compress large, hydrodynamically active pores 220 

before nanopores.77,194,195 At φ < 0.2, the φ-dependence of kv becomes essentially nil (in fact, kV 221 

may have an inverse φ-dependence at φ < 0.1 in Fig. 2b), suggesting the disappearance of 222 

hydrodynamically active pores. In contrast, almost every model in Fig. 2b, including the well 223 

known Kozeny-Carman relation (plotted as a thick orange line in the case of an idealized shale 224 

consisting of 20-nm-thick illite particles),195 predicts a near-linear relation between log kv and log 225 

φ. The only exception is the model of Yang and Aplin,80 a parametric relation fitted to 226 

experimental results and describing kv as a function of φ and Xclay, which correctly predicts the 227 

near invariance of kV with φ at φ < 0.2. This near invariance is consistent with the concept of 228 

critical depth of burial (CDB) used in hydrocarbon exploration, according to which the 229 

permeability of clayey rocks rapidly decreases with depth until ~2.5 to 3.2 km, then become 230 

almost invariant with depth.78 The near invariance of kV with porosity at φ < 0.2 may be partly 231 

explained by the thick dashed orange line at φ < 0.2 in Fig. 2b, which represents the water flux 232 

that would occur by pressure-driven molecular diffusion, i.e., diffusion driven by the P-233 

dependence of the chemical potential of water, calculated here with the equation kv,app = 234 

(µvm/RT) × De, where De is the effective diffusion coefficient of water in the porous medium, 235 

modeled with the expression De = (φ/G) × D0 (µ = 8.935 10-4 Pa s is the viscosity of water at 298 236 

K, vm = 18.07 10-6 m3 mol-1 is the partial molar volume of water at 298 K, R = 8.314 J mol-1 K-1 237 

is the ideal gas constant, T = 298 K is absolute temperature, D0 = 2.30 10-9 m2 s-1 is the self-238 

diffusion coefficient of pure liquid water at 298 K,196 and G ~ 4 is the average geometric factor 239 

of smectite-rich porous media).197 This pressure-driven molecular diffusion model imposes a 240 

lower boundary on the range of measureable kv values, in agreement with Fig. 2b. 241 
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The plot of log kv vs. Xclay (Fig. 2c) demonstrates that Xclay plays an important role in the 242 

permeability of shale and mudstone. The data compiled in Figure 2c indicate that kv decreases by 243 

six orders of magnitude as Xclay increases from 0 to 0.35 and by one more order of magnitude as 244 

Xclay increases from 0.35 to 0.7. The database on kv vs. Xclay is roughly consistent with the model 245 

of Yang and Aplin80 but different from the relation between fault permeability and SGR 246 

observed at the reservoir scale (thick purple lines).98,100 This difference may reflect a scale 247 

dependence of permeability resulting from the heterogeneous distribution of clays in faults.97 248 

The much greater sensitivity of kv to Xclay at Xclay < ~0.35 (Fig. 2c) is consistent with several lines 249 

of evidence, including data on kv vs. Xclay in clay-sand mixtures,86 on the mechanics of fracture 250 

slip,198 and on the Pc,b values of hydrocarbon fluids in faults,62,98,101 indicating the existence of a 251 

threshold in rock properties at Xclay ≈ 0.3 to 0.4. The location of this threshold is consistent with 252 

the predictions of a simple conceptual model of sedimentary rocks as mixtures of large grains 253 

(quartz, feldspar, carbonates) and a fine-grained clay matrix, on which an optimal packing of the 254 

clay matrix in the space between the larger grains occurs at Xclay ~0.35.99 255 

Several notable implications of Fig. 2 are, firstly, that models of the stress-porosity-256 

permeability relationships of seals and seal fault zones used in reservoir scale GCS 257 

models27,103,186–188 bear little resemblance to the experimental database. The model of mudstone 258 

permeability as a function of φ and clay content proposed by Yang and Aplin,80 which has not 259 

been used in GCS models to our knowledge, is the most closely consistent with the experimental 260 

database. Field scale simulations that use fixed values of seal porosity and permeability almost 261 

invariably assume φ values near the lower end of the experimental range (φ = 0.01,27,47,103,188 262 

0.05,61,187 0.05 to 0.07,35 0.1,199 or 0.338)200 and kv values near the upper end of the experimental 263 

range (kv  = 10-19,27,187,188 10-18,29,35,47,61,200 1.6 10-18,94 2.0 10-18,199 or 10-17 m2).40,201 Clearly, the 264 

Page 13 of 76

ACS Paragon Plus Environment

Environmental Science & Technology



 14

values of φ and kv used in field scale GCS models should be reexamined in the light of the 265 

experimental database. Secondly, fractures and faults may not strongly impact seal permeability 266 

if they are filled by a material with φ ≤ 0.2 and Xclay > 0.35. Thirdly, CO2-induced dissolution of 267 

carbonate minerals in fractures and faults, which is predicted by reactive transport modeling 268 

studies and observed in core scale experiments,94,202,203 may have positive or negative impacts on 269 

permeability depending on the values of φ and Xclay in the fracture- or fault-filling material. In 270 

some conditions, carbonate dissolution may even result in a permeability decrease, if the increase 271 

in φ is more than offset by the associated increase in Xclay. 272 

Much of the existing core scale research on the evolution of preferential flow paths in seals 273 

exposed to CO2-brine mixtures has focused on open fractures in seal rocks93,96,203–205 and well 274 

cements.70,206–213 The stress-aperture-permeability relations that determine fluid flow in fractured 275 

rocks are analogous to the stress-porosity-permeability relations that describe flow in filled 276 

fractures.86,135,214 The few existing data on these stress-aperture-permeability relations in the case 277 

of shales and mudstones suggest that fractures can self-seal on time scales of days to months if 278 

σe is sufficiently high.85,86 The precise stress-dependence of kv and Pc,b in seal fractures, 279 

however, is not well known, because of insufficient understanding of the mechanics of asperities 280 

on fracture surfaces and of the feedbacks between the mechanics of the fracture and of the rock 281 

matrix.81,85,86,135,155,174,215,216 282 

In the case of CO2 invasion in fractured caprocks, two important complications are the 283 

importance of crack dilation mechanics on two phase flow in argillaceous rocks171,214,216 and the 284 

geochemical alteration of fracture surfaces by CO2. Existing studies show that CO2-brine 285 

mixtures can rapidly dissolve calcite (and, in the case of cement, portlandite) on fracture surfaces 286 

if the invading brine is undersaturated with respect to calcite, rapidly increasing fracture 287 
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aperture, generating a higher-porosity altered zone on fracture surfaces and also, at least in some 288 

cases, increasing fracture surface roughness.70,93,96,203–205,210,211 If the invading fluid is 289 

equilibrated with respect to calcite, the reactivity of fracture surfaces is much slower and 290 

dissolution of MII-bearing silicates followed by precipitation of carbonates and amorphous silica 291 

can result in fracture sealing in certain conditions, particularly at low fluid flow 292 

rates.70,74,207,209,212,213,217–222 Important unknowns in models of geochemical fracture alteration 293 

include the impact of adsorption162,223 and porosity changes208,224 on molecular diffusion 294 

coefficients in the rock matrix. In some cases, calcite dissolution on fracture surfaces has been 295 

found to lead to the release of colloidal particles (clays, dolomite) and a decrease in fracture 296 

permeability,93,96,204,205 a behavior analogous to that hypothesized for filled fractures in the 297 

previous paragraph based on the data in Figs. 2b,c. Finally, geochemical alteration has been 298 

found, at least in some cases, to weaken fracture surfaces and asperities by dissolving carbonate 299 

and silicate cements, modifying the stress-aperture relationship of the fracture in a manner that 300 

facilitates fracture sealing by normal stresses. 39,71,205,213,219 301 

The sensitivity of seals to geochemical and geomechanical alteration elicits several important 302 

fundamental questions. One of these questions is the manner in which carbonates precipitate in 303 

fractured nanoporous rocks. Nanoscale studies of this phenomenon reveal that the kinetics of 304 

carbonate precipitation are strongly influenced by the substrate on which they precipitate,225,226 305 

the roughness of the substrate,227 the presence of adsorbed water films,228 and pore size.229–232 306 

These studies suggest that in fractured seals, carbonate solids may sometimes preferentially 307 

precipitate in the fractures rather than in the nanoporous rock matrix, a phenomenon that may be 308 

driven by the surface energy of carbonate minerals229,233 and that would enhance the resilience of 309 

seals to geochemical alteration. 310 
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A second key nanoscale question is the impact of geochemical alterations on the mechanics 311 

(swelling, aggregation) and permeability of seals. The mechanics of clayey media are well 312 

known to be sensitive to ionic strength, pH, and the valence of the exchangeable 313 

cation120,121,124,126,234–236 in a manner that reflects the role of pore fluids in hydrating clay surfaces 314 

and in mediating electrostatic interactions between clay particles.120,125,234,235 This sensitivity 315 

strongly impacts the permeability and mechanics of weakly consolidated clays,124,195 but the 316 

effect on shale and mudstone is variable and has not been systematically examined at GCS-317 

relevant conditions of high salinity, effective stress, and, pCO2.
77,127,142,149,237 In this context, 318 

recent observations that smectite-water pastes can adsorb significant quantities of CO2 (up to 319 

~0.07 gCO2 gclay
-1 at high pCO2 levels) by intercalation of CO2 in water-filled clay interlayer 320 

nanopores, and that this intercalation modifies the swelling free energy of the clay minerals, may 321 

be highly relevant (it also implies that clay-rich seals can be viewed, to some extent, as storage 322 

formations).173,238–243 This CO2-induced alteration of clay mechanics may impact fracture 323 

apertures and the frictional strength of clay-rich fault gouge,239 but a detailed understanding of 324 

the relationships and their relevance to seal permeability remain to be established. 325 

Residual trapping: residual CO2 saturation (Sg,r) in reservoir rocks. Residual CO2 326 

saturation (Sg,r) is a key parameter of GCS models that determines the extent of residual trapping 327 

and strongly influences plume migration velocity, storage capacity, and storage 328 

security.4,14,23,24,41,244,245 Despite its importance, Sg,r remains poorly constrained and a large range 329 

of values have been used in field scale models (solid and dashed lines in Fig. 3). The 330 

experimental database on Sg,r in GCS-relevant conditions includes only a handful of field scale246 331 

and core scale measurements,244,247–257 some of which may be highly uncertain.16,258 Current 332 
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understanding of Sg,r, therefore, remains strongly influenced by studies of non-aqueous fluids 333 

other than CO2.
259–267 334 

Investigations of residual trapping of CO2 and hydrocarbons indicate that Sg,r is highly 335 

sensitive to the initial CO2 saturation Sg,i and the mineral-water-CO2 wetting angle θ (defined 336 

such that θ = 0° for a perfectly hydrophilic medium).252,254 The capillary number Ca = νwµw/γgw 337 

(where νw and µw are the Darcy velocity and viscosity of the aqueous phase and γgw is the CO2-338 

water interfacial tension) also influences Sg,r, but only at high fluid velocities (Ca > 10-6) that are 339 

not relevant to CO2 trapping in GCS.33,252,268 Details of multiphase flow at the pore network to 340 

core scale have a less well-characterized influence on Sg,r that may result in a dependence of Sg,r 341 

on φ.253,254,260,262,269 The yellow and blue diamonds in Fig. 3 are consistent with Sg,r,max/Sg,i,max = 342 

0.166/φ0.63, where Sg,i,max and Sg,r,max are the maximum achievable initial and residual CO2 343 

saturation.253 Residual CO2 saturation Sg,r also depends on pore to core scale heterogeneity253,270 344 

and on the topology of the CO2 phase.269,271 Other properties that influence Sg,r, such as CO2-345 

brine interfacial tension γgw,248 are thought to do so primarily through their impact on Sg,i or θ. 346 

 347 
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 348 

Figure 3. Plot of Sg,r vs. Sg,i measured in core samples or reservoir rocks at Ca ≤ 10-6 (symbols) 349 

or used in field scale GCS models (lines). Experimental results obtained at unspecified Sg,i or Ca 350 

conditions or with brine that was not initially saturated with respect to CO2 are not 351 

shown.244,247,248,272 Small red and orange triangles were obtained in sandstone at the scale of an 352 

X-ray CT voxel (red: Berea, Paaratte, Tuscaloosa; orange: Mount Simon).252 Small pink circles 353 

were obtained in Berea sandstone (at Ca ≤ 2.5 10-6) at the scale of an X-ray CT slice.273 Yellow 354 

symbols were obtained in sandstone at the core scale (cross (x): Doddington;249 crosses (+): 355 

Berea;256 asterisks (�): Berea;269; squares: Berea;250 circle: Tako;251 diamonds: Berea, 356 

Doddington, Stainton, Springwell;253 triangles: Bentheimer, Doddington).255 Blue symbols were 357 

obtained in limestone at the core scale (diamonds: Ketton, Estaillades, Indiana;253 squares: 358 

Indiana;257 triangles: Estaillades, Ketton, Mount Gambier).255  Solid lines describe models based 359 

on Land’s formulation {Sg,r = Sg,i/(1+CSg,i), where C is Land’s constant}259 with C = 2.45,24 360 

2.25,59 1.61,274 or 1.0523 or based on the model of Spiteri and coworkers267 {Sg,r = αSg,i – βSg,i
2} 361 

with α = 1 and β = 0.5.275 Dashed lines describe models according to which Sg,r equals Sg,i up to a 362 
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certain value and is invariant with Sg,i above this threshold value, with Sg,r,max = 0.05,28,36,103,186–363 

188,202 0.10,60 0.18,276 0.25,26,35,41,61,200 or 0.30.40 For clarity, the dashed lines are drawn with 364 

Sg,i,max = 0.8. Models of Sg,r that used almost identical values of Sg,r,max are shown as a single line. 365 

Well-based measurements at the Otway GCS pilot site yielded Sg,r = 0.11 to 0.2, but the 366 

corresponding Sg,i value was not reported.246 367 

 368 

The dependence of Sg,r on Sg,i and θ has been extensively examined at the core and pore-369 

network scales in the case of hydrocarbon-water systems.259–261,263–267 In strongly hydrophilic 370 

media, Sg,r increases monotonically with Sg,i to a maximum value Sg,r,max.
259,267 In mixed-371 

wettability systems, Sg,r is smaller than in water-wet systems and may have a non-monotone 372 

dependence on Sg,i.
263,265,267 The influence of θ on Sg,r derives from the mechanisms of brine 373 

imbibition at the pore network scale: small θ values favor imbibition by a link snap-off 374 

mechanism (i.e., by filling of pore throats in order of increasing size, which traps the non-wetting 375 

phase in the pore bodies), whereas larger θ values favor imbibition by piston-type displacement, 376 

which causes less trapping.260,264,266,267 377 

Models of Sg,r in GCS-relevant conditions evidently require accurate predictions of Sg,i and θ in 378 

mineral-brine-CO2 systems. Capillary invasion in porous media, which determines Sg,i, is a 379 

complex, multi-scale phenomenon that is largely beyond the scope of this review.50,277,278 Here, 380 

we focus on the mineral-brine-CO2 wetting angle θ, and in particular on the θ values obtained as 381 

the water phase recedes or advances, θr and θa, a fundamental property that remains incompletely 382 

understood in the context of GCS. Core scale measurements of capillary pressure vs. CO2 383 

saturation (Pc vs. Sg) and X-ray CT images of fluid distribution during CO2-brine multiphase 384 

flow yield indirect estimates of θ when interpreted with the Young-Laplace equation, 385 
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Pc = C γgw/rt × cosθ, (2) 386 

where Pc is the capillary pressure at which CO2 can invade pore throats of radius rt, γgw is the 387 

CO2-water interfacial tension, and C is a shape factor equal to 1 for slit-shaped pore throats and 2 388 

for circular pore throats. Capillary invasion studies show that GCS relevant rocks and minerals 389 

are water-wet during CO2 invasion (θr ~ 0 to 50°).51,250,268,278–281 During brine imbibition, most 390 

measurements yield high Sg,r values and a monotone dependence on Sg,i indicative of water-wet 391 

systems (Fig. 3). However, three types of data suggest that GCS-relevant rocks may be 392 

intermediate-wet during brine imbibition (θa ~ 90°), at least in some cases: firstly, data on Sg,r in 393 

Mount Simon sandstone, where many sandstone grains are coated with fibrous illite, show less 394 

trapping and a non-monotone dependence on Sg,i suggestive of intermediate-wet conditions 395 

(orange triangles in Fig. 3).252 Secondly, several studies of brine imbibition in quartz and 396 

carbonate sand packs report low Pc values suggestive of intermediate-wet properties.247,272,281 397 

Thirdly, pore-network scale examinations of the distribution of CO2-brine fluid mixtures in sand 398 

packs and glass micromodels suggest that silica surfaces sometimes become intermediate-wet 399 

upon exposure to CO2.
249,254,282 These observations highlight the need for predictive models of 400 

wettability and contact angle hysteresis in CO2-brine-mineral systems such as those that already 401 

exist for oil-water systems.283 402 

Direct measurements of θ using micromodels,282 goniometric contact angle 403 

experiments49,245,284–300 and molecular dynamics (MD) simulations301–305  provide little clarity on 404 

the wetting properties of rocks exposed to CO2. As expected, carbon-rich solids such as 405 

anthracite, limestone from the Weyburn oilfield, and oil-coated quartz, and partly 406 

dehydroxylated silica surfaces have intermediate-wet properties (θ = 44 to 140°).284–407 

286,288,301,303,305 Other solids (calcite, silica, clays, mica), however, have θ values ranging from 408 
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water-wet to intermediate-wet (θ = 0 to 100°) depending on the study.49,245,282,288–291,293–409 

300,302,303,306 410 

Figure 4 shows a compilation of all available data on the θr and θa values of mineral-brine-CO2 411 

systems obtained in goniometric contact angle experiments, excluding results that were obtained 412 

with dehydroxylated silica surfaces. Studies that did not impose an advancing or receding water 413 

phase, not shown in Fig. 4, yielded θ values that were mostly intermediate between the θr and θa 414 

values compiled in Fig. 4, as expected.288,291,293,302,305 The data compiled in Fig. 4 yield average 415 

θr values of 21 ± 11°, 25 ± 16°, and 30 ± 8° for quartz, calcite, and mica, i.e., the mineral 416 

surfaces are water-wet during CO2 invasion. The uncertainty derives primarily from systematic 417 

differences between the results of different groups. Possible causes of these systematic 418 

differences (and also of the differences between measurements of θ and Sg,r obtained from pore-419 

network and core scale experiments) include the sensitivity of θ to trace levels of impurities and 420 

differences in surface roughness.300,307 The difference between the θr values of silica in air (0°)308 421 

and in CO2 (21 ± 11°) is consistent with  the smaller negative surface proton charge of silica at 422 

lower pH values.51,245,282,297,306 Other silicate minerals (feldspars, clay minerals) have similar 423 

wettability to quartz, calcite, and mica.292,297 Reported θr have little or no P- or T-dependence. 424 

The salinity-dependence may be either positive,49,295 negative,297 or essential nil.294 425 

For all three surfaces, θa is significantly larger than θr, and the range of θa values reported by 426 

individual research groups is much larger than the range of reported θr values (Fig. 4).49,294,296,300 427 

Existing data reveal that θa increases significantly with salinity (by ~ 5° per M NaCl) with no 428 

clear P or T dependence.49,294,296,300 429 

 430 
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 431 

Figure 4. Compilation of the best available measurements of θ in mineral-brine-CO2 systems 432 

measured during water retreat (θr) and advance (θa) on quartz, calcite, and mica by groups that 433 

used a captive CO2 drop positioned beneath the solid substrate in an otherwise brine-filled 434 

reservoir. Results that were obtained with partially or fully dehydroxylated silica 435 

surfaces,284,301,303 with the sessile drop technique,288,291,293,302 or that did not fully describe their 436 

experimental techniques are not shown.292 Results reported by Broseta et al.294 include 437 

previously published data by the same group.289,290 Symbols show the average reported values. 438 

Vertical lines show the range of measured θ values (not the uncertainty of individual 439 

measurements) over the examined pressure, temperature, and salinity range (Saraji et al.296: 3.4-440 

11.7 MPa, 308-333 K, 0 M; Saraji et al.49: 13.8-27.6 MPa, 323-373 K, 0.2-5.0 M; Farokhpoor et 441 

al.295: 0.3-40 MPa, 309-339 K, 0-0.8 M NaCl; Wang et al.297: 7-20 MPa, 303-323 K, 0-1.15 M 442 

Na-Cl-Ca-SO4-Mg brine; Broseta et al.294: 0.5-14.0 MPa, 282-393 K, 0-7 M NaCl; Wan et al.300: 443 

7.5-15 MPa, 318 K, 0.1 M NaCl). 444 

 445 

Page 22 of 76

ACS Paragon Plus Environment

Environmental Science & Technology



 23

At the nanoscale, the θ values of mineral surfaces derive from the interfacial energies of the 446 

mineral-brine (γsw), mineral-CO2 (γsg), and brine-CO2 interfaces through Young’s equation: 447 

cosθ = (γsg - γsw)/γgw. (3) 448 

The brine-CO2 interfacial energy γgw has been extensively studied using 449 

experiments,287,288,296,299,309–314 MD simulations,303,315–317 and lattice-gas simulations.318 The 450 

experimental database indicates that γgw decreases with P and increases with T and 451 

salinity.309,310,312,313,315,319 In most GCS-relevant conditions, γgw ~ 25 to 30 mN m-1 with little P or 452 

T dependence and with a linear salinity dependence of about 1.5 mN m-1 per unit of anionic or 453 

cationic charge molality.287,288,296,303,311,314,316 Theoretical studies have shown that the P- and 454 

salinity-dependence of γgw results from CO2 adsorption and salt exclusion at the brine-CO2 455 

interface in accordance with the Gibbs adsorption equation:303,315,317–319 456 

dγgw = -Γi
(w)
dµi, (4) 457 

where µi is the chemical potential of species i and Γi
(w) is the surface excess of i relative to water 458 

at the interface. The absolute values of γsg and γsw are not directly measurable,320 but Eq. 4 459 

provides a route towards predicting their P- and salinity-dependence. For example, Eq. 4 460 

indicates that adsorbed water films at mineral-CO2 interfaces (known to exist at least in some 461 

conditions)304,306,321–323 must influence γsg through the direct influence of water adsorption324 but 462 

also the P-dependence of γsg through the influence of the water film on CO2 adsorption at the 463 

solid-CO2 interface. The sensitivity of interfacial energy to adsorption implies that θ must be 464 

sensitive to any impurity that adsorbs at any interface in the mineral-brine-CO2 system, 465 

particularly at the CO2-mineral interface.11,17,57,279,288 According to Eq. 4 the hysteresis of 466 

measured θ values further implies the existence of a hysteretic interfacial reaction. Several 467 

studies have hypothesized that this reaction is a strong binding (chemisorption) of CO2 to surface 468 
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hydroxyl functional groups.284,294,296 However, infrared spectroscopy, neutron scattering, and 469 

MD simulation results consistently indicate that CO2 adsorbs on silica, feldspar, and mica 470 

surfaces by a weak physisorption mechanism and is completely displaced from these surfaces in 471 

the presence of water.322,325,326 Therefore, the underlying origin of the hysteresis of mineral-472 

brine-CO2 θ values remains unknown. 473 

Mineral trapping: Reactive surface area (ar) of silicates at in-situ conditions. Of the four 474 

trapping mechanisms involved in GCS, the ultimate and most secure is mineral trapping (Fig. 1), 475 

whereby CO2 is sequestered as solid carbonates through reactions of the type:42,43,327 476 

M(II)-bearing-silicates + CO2 + H2O ⇒ carbonate minerals + M(II)-free-silicates (5) 477 

In Eq. 5, key M(II)-bearing-silicates include feldspars (plagioclase), phyllosilicates (biotite, 478 

chlorite, glauconite, smectite), and mafic minerals (olivine, pyroxene); M(II)-free silicates include 479 

feldspar, kaolinite, and quartz.42–44,92,116,328,329 Natural analogs and geochemical models indicate 480 

that the carbonate minerals responsible for CO2 trapping are primarily dolomite, ankerite, 481 

siderite, and dawsonite.44,92,202,327,329–332 The rate and extent of mineral trapping are not well 482 

understood, largely because of uncertainties in the reactivity of silicate minerals. These 483 

unknowns influence predictions of CO2 mineral trapping, but also CO2 storage capacity via 484 

porosity and permeability evolution114,116,333–335 and leakage pathway evolution via geochemical 485 

alteration of fractured seals and well cements.45,74,93,336 486 

In field scale GCS models, silicate reaction rates are generally described with the 487 

phenomenological transition-state-theory (TST) formalism,116,232,337 which requires knowledge, 488 

for each silicate phase of interest, of its reactive surface area ar, its thermodynamic solubility 489 

constant Ks, and several rate law parameters for each reaction mechanism. For example, the rate 490 

of proton-promoted growth (RH) is described as: 491 
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where the first set of brackets describes the thermodynamic driving force (Q is the ion activity 493 

product, p and q are empirical power-law exponents) and the second set of brackets contains the 494 

rate law parameters for the proton-promoted reaction mechanism [kH
298K is the rate constant at 495 

298 K, EH is the activation energy, (H+) is the activity of the proton, and nH is the reaction order 496 

with respect to protons].43,44,46,338–341 Modeling silicate reaction rates with this formalism has 497 

several weaknesses from the functional form of the rate law itself to uncertainties in parameter 498 

values. Model parameters are based on laboratory scale measurements of pure mineral phases in 499 

simple electrolytes at far-from-equilibrium conditions, thus their accuracy for predicting reaction 500 

rates in realistic conditions is highly uncertain, particularly in the case of 501 

aluminosilicates.43,44,46,76,336,342,343 Parameters for Eq. 6 are compiled in thermodynamic and 502 

kinetic databases,344–346 with the choice of database used influencing model predictions of 503 

trapped CO2 by as much as 61%.347,348 In addition, rate law parameters for mixed mineral 504 

phases,28,349 poorly crystalline phases such as amorphous Si-rich phases,228,341,350–352 or other 505 

phases such as analcime and ankerite340 are poorly constrained. In these cases, mineral proxies 506 

are often used to approximate rate parameters. Selection of an appropriate mineral proxy is not 507 

trivial as the resulting approximations can significantly impact predicted mineral reactions.353 508 

Microstructural details, such as the distribution of Al/Si ordering in feldspars, are often not 509 

accounted for and may considerably influence mineral reactivity.354 510 

Beyond parameter uncertainties, the functional form of Eq. 6 is known, at least in some cases, 511 

to overestimate near-equilibrium rates, overestimate the nucleation rate of new mineral phases (it 512 

predicts that minerals start to precipitate as soon as Q > Ks even if only by an infinitesimal 513 

amount), overestimate growth rates in conditions where the concentration ratios of reactants in 514 
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solution differ from their stoichiometry in the solid, and require different parameterizations to 515 

describe dissolution and growth.28,116,202,232,355–358 These limitations are due, in part, to the fact 516 

that kinetic databases reflect only the range of conditions examined in laboratory experiments 517 

and, thus, they inherently cannot predict the possible existence of additional reaction pathways at 518 

elevated pCO2 levels,359–363 in the presence of H2S, SO2, or CH4 impurities,336,364 or in the 519 

presence of trace ions present in natural brines,365 or differences between the reactivity of 520 

mineral surfaces with water-saturated CO2 vs. CO2-saturated water, which is a function of the 521 

thickness of adsorbed water films at CO2-mineral interfaces.228,321,351,366–371 Improved predictions 522 

of mineral growth rates have been demonstrated using new rate laws,232,356 but a consistent 523 

framework applicable in reactive transport simulations has yet to emerge. Finally, the precision 524 

of Q values used in Eq. 6 remains limited by incomplete knowledge of solution chemistry in 525 

CO2-rich brines, particularly with regard to aluminum geochemistry and the activity coefficients 526 

of solutes at high ionic strength (> 1 M).42,43,372,373 527 

While much attention has been devoted to the challenges described above regarding rate law 528 

parameterization, a more pervasive source of uncertainty in applying Eq. 6 to rocks resides in the 529 

specific reactive surface areas ar of each mineral phase.46,329,356 Reactive transport models often 530 

approximate ar with the specific surface area, as, that can be measured for pure minerals, for 531 

example, using the Brunauer-Emmett-Teller (BET) gas adsorption technique,374 or estimated as 532 

the geometric surface area assuming one or more particle sizes and a smooth340,375–377 or rough 533 

surface modified with a surface roughness factor.378–380 Reactive surface area also depends on the 534 

fraction of the specific surface area that is not occluded by surface coatings or other mineral 535 

grains, referred to as the specific accessible surface area of each mineral phase, aa.
381 These 536 

surface areas are related to each other by scaling factors C1 and C2 < 1: 537 
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ar = (C1) aa = (C1C2) as (7) 538 

where C2 describes the fraction of the specific surface area that is accessible, and C1 describes 539 

the fraction of the accessible specific surface area that is reactive. In practice, these scaling 540 

factors are either assigned an arbitrary value (C1C2 = 10-3 to 10-1,28,42,43,382 C2 = 10-3)349,364 or 541 

adjusted to fit measured reaction rates.338,383 The range of ar values used in field scale GCS 542 

models for a selection of common minerals is shown in Fig. 5. To a first approximation, 543 

increasing or decreasing all ar values by a scaling factor has the same effect as scaling the time-544 

axis of mineral reactivity with CO2 by the same factor.20,42 Therefore, the range of ar values in 545 

Fig. 5 generates roughly two to four orders of magnitude uncertainty in the time scale of mineral 546 

trapping. 547 

 548 

 549 

Figure 5. Compilation of ar values used in field scale GCS models for a selection of common 550 

minerals.38,42,202,340,377–380,383–390 551 

 552 
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Microscopic scale studies can provide important constraints for the parameterization of the 553 

scaling factors in Eq. 7.116 Examinations of geochemical alteration rates in pore network models, 554 

core scale experiments, and reactive flow experiments show that the scaling factors are not 555 

invariant with time, aqueous chemistry, flow rate, or surface topography232,391–394 as frequently 556 

assumed in field scale GCS models. At the nanoscale, reaction rates may depend more closely on 557 

reactive site density than on reactive surface area.232,394 At the microscopic scale, examinations 558 

of sandstones and limestones show that C2 is mineral-specific (i.e., mineral accessibility does not 559 

reflect bulk mineral abundance) because clay minerals tend to form surface coatings and cements 560 

in the framework of larger quartz and carbonate grains.144,381,395,396 Furthermore, C2 depends on 561 

the scale of observation; for example, in one study of chlorite clay coatings and pore-filling 562 

cements in sandstone, coatings that appeared continuous at a ~1 µm resolution were found to be 563 

porous at a ~10 nm resolution.395 564 

Surface coatings are particularly critical in the evaluation of ar, because they diminish the 565 

reactivity of the underlying solid by several orders of magnitude in some cases, such as 566 

amorphous Si-rich coatings on feldspar, olivine, and borosilicate surfaces, kaolinite coatings on 567 

feldspar surfaces397–401 while leaving it essentially unchanged in other cases like smectite 568 

coatings on feldspar surfaces, calcite coatings on diopside and basaltic glass, Mg-rich carbonate 569 

coatings on dolostone.401–405 At present, theory and models for predicting which coatings will 570 

impact mineral accessibility and reactivity are lacking. The mode of surface coating precipitation 571 

may explain experimental results in some cases, such as epitaxial growth having a greater 572 

inhibitory effect than random 3D nucleation and growth,403,404,406 while in other studies 573 

ostensibly identical amorphous Si-rich coatings have different impacts on the reactivity of 574 

different samples and even on different faces of the same crystal.407,408 575 
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At the scale of a dissolving mineral surface, the formation of surface coatings is coupled to 576 

mineral reactivity not only through its impact on ar, as noted above, but also through its impact 577 

on solution chemistry at the dissolving surface.409 For example, in near-equilibrium conditions 578 

feldspar dissolution may occur an order of magnitude more slowly than in far-from-equilibrium 579 

conditions because it is rate-limited by clay mineral precipitation.358,410 Such coupled reactions 580 

may result in a dissolution that is, overall, incongruent, as in the case of dissolving 581 

aluminosilicate surfaces.350,409,411,412 Nanoscale studies suggest that the appearance of non-582 

stoichiometry may, in some cases, involve stoichiometric dissolution followed by the subsequent 583 

precipitation of a surface coating,350,398,409,413 whereas in other cases it involves the release of 584 

soluble elements without a full dissolution of the silicate matrix.414,415 This coupling of mineral 585 

dissolution and precipitation rates may be an important factor contributing to the discrepancy 586 

between field and laboratory data on mineral weathering rates.339,410,416 587 

 588 

SUMMARY AND CONCLUSIONS 589 

Long-term storage of CO2 in porous sedimentary formations relies on several properties that 590 

have a clear nanoscale basis including the vertical permeability kv of seals, the residual CO2 591 

saturation Sg,r in reservoir rocks, and the reactive surface area ar of minerals. These parameters, 592 

and others, are macroscopic representations of nanoscale physico-chemical interactions that 593 

occur at interfaces between mineral grains and fluids, and between coexisting fluids. A review of 594 

available data on fluids, minerals, and rock types relevant to geologic carbon storage indicates 595 

that the values typically used for these parameters in field scale models are not reflective of the 596 

current state of knowledge, but neither is there an adequate understanding of the nanoscale basis 597 

for the observed behavior or a means to predict how the behavior might evolve in a chemically 598 
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reactive system like CO2-brine-minerals. There is a need to better define the origins of these 599 

properties in terms of fundamental physico-chemical interactions, and to develop new 600 

constitutive relations to allow these properties to evolve during the extended time period (weeks 601 

to millennia) needed to describe CO2 storage. 602 

The seal rocks that cap CO2 sequestration systems in the subsurface (typically shale and 603 

mudstone) present special challenges as a result of their fine grain size and heterogeneity both in 604 

terms of texture and mineralogy. Ultimately, to ensure safe CO2 storage, it is necessary to know 605 

the vertical permeability and capillary entry pressure for such rocks, both of which depend on 606 

porosity, state of stress, mineralogy, and presence of fractures. In particular, knowledge of the 607 

properties of seals is required to develop a more accurate understanding of the sensitivity of seal 608 

kv and Pc,b values to geochemical and geomechanical alteration. At present, knowledge of the 609 

properties of shales and mudstones lags behind that of other sedimentary rocks, as illustrated by 610 

the fact that extant models of the stress-porosity-permeability relations of these rocks bear little 611 

resemblance to the experimental database. A first key need is to better understand the impact of 612 

clay mineral mass fraction on the stress-porosity-permeability relations of fine-grained rocks and 613 

its relation to the microsctructure of fine-grained rocks.  Clay minerals can decrease k by more 614 

than four orders of magnitude at fixed porosity. A second key need is to understand the impact of 615 

clay minerals on fracture permeability and on the sensitivity of fracture permeability to 616 

geochemical alteration.  Existing data suggest that fractures and faults may not strongly impact 617 

seal integrity if they have a sufficiently high clay content, and dissolution of carbonate minerals 618 

in fractures and faults may actually result in permeability decrease if the porosity increase is 619 

offset by an increase of the clay fraction in the fault. A third key need is to better understand the 620 

mechanical response of asperities on fracture surfaces in shales and mudstones to induced 621 
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stresses, and the impact of geochemical alteration on those responses. Finally, future research 622 

should resolve the impact of pore size on the precipitation of secondary carbonate solids and 623 

determine the impact of CO2 adsorption on hydrated swelling clay minerals.  In particular, the 624 

impact of CO2 adsorption on fracture apertures and on the frictional strength of clay-rich fault 625 

gouge is important. 626 

Residual CO2 saturation (Sg,r) is a key parameter of GCS models that determines the extent of 627 

residual trapping and strongly influences plume migration velocity, storage capacity, and storage 628 

security. Residual CO2 saturation is highly sensitive to the mineral-water-CO2 wetting angle, θ, 629 

but potential changes in θ present difficulties in predicting Sg,r. Although it is generally believed 630 

that GCS relevant rocks are water-wet in the presence of CO2, there are both conflicting static 631 

measurements as well as evidence that exposure of mineral surfaces to CO2-acidified brine 632 

changes wetting behavior for several minerals. In this context, one key need is to measure the 633 

sensitivity of core-scale Sg,r values to interfacial-scale θ values and the dependence of this 634 

sensitivity on rock properties such as surface roughness. A second key need is to determine the 635 

timing of the wettability alteration, for example, does it occur when CO2 first contacts the rock, 636 

or does it take place more slowly and primarily influence brine imbibition. Finally, a third key 637 

need is to develop predictive models of wettability and contact angle hysteresis in CO2-brine-638 

mineral systems, which can only come from knowledge of the nanoscale phenomena at the 639 

mineral-fluid interface. 640 

Although it is generally slow, mineral trapping is of considerable interest because it represents 641 

permanent immobilization of the injected CO2 and, if extensive, lessens the need to make long 642 

term predictions of migration of fluid phases in the subsurface. However, the rate and extent of 643 

mineral trapping are not well understood, largely because of uncertainties in the dissolution and 644 
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precipitation rates of silicate minerals. In field scale GCS models, silicate reaction rates are 645 

generally described with a phenomenological transition-state-theory (TST) formalism, but this 646 

formalism is inadequate for a number of reasons, including its reliance on parametric fits of 647 

laboratory data that are determined at far from equilibrium conditions and the need to specify the 648 

reactive surface area ar of each mineral. Viewed at the nanoscale at the mineral surface, mineral 649 

dissolution is affected by chemical impurities, coupled reactions, mineral coatings, roughness, 650 

and roughness evolution with time. Overall, there is still little predictive capability for mineral 651 

reactivity on the long timescales (tens to thousands of years) needed to predict mineral trapping 652 

of CO2. A first key need in this area is the development of advanced rate laws that account for 653 

mechanisms and chemical species that are important in GCS-relevant conditions. A second key 654 

need is for experimental studies of the properties of surface coatings and their impact on surface 655 

reaction rates. Finally, a third key need is to elucidate the pore-network scale feedbacks between 656 

flow and reactivity, particularly in conditions with low flow rates that are most relevant to long-657 

term CO2 mineral trapping. 658 
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