

Critical Review

Subscriber access provided by NEW YORK MED COLL

The Nanoscale Basis of CO2 Trapping for Geologic Storage

Ian C. Bourg, Lauren E. Beckingham, and Donald J. DePaolo

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.5b03003 • Publication Date (Web): 12 Aug 2015

Downloaded from http://pubs.acs.org on August 18, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	The Nanoscale Basis of CO ₂ Trapping for Geologic
2	Storage
3	Ian C. Bourg ^{*1,2} , Lauren E. Beckingham ² , and Donald J. DePaolo ²
4	¹ Department of Civil and Environmental Engineering and Princeton Environmental Institute,
5	Princeton University, E-208 E-Quad, Princeton, NJ 08544, United States
6	² Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,
7	CA 94720, United States
8	KEYWORDS. Carbon Capture and Storage, Geologic Carbon Sequestration, CO2,
9	Nanogeoscience, Shale, Permeability, Multiphase Flow.
10	AUTHOR INFORMATION
11	Corresponding Author
12	* Phone: 1-609-258-4541; e-mail: bourg@princeton.edu.
13	Author Contributions
14	The manuscript was written through contributions of all authors. All authors have given approval
15	to the final version of the manuscript.
16	Notes
17	The authors declare no competing financial interest.

18 ABSTRACT: Carbon capture and storage (CCS) is likely to be a critical technology to achieve 19 large reductions in global carbon emissions over the next century. Research on the subsurface storage of CO₂ is aimed at reducing uncertainties in the efficacy of CO₂ storage in sedimentary 20 21 rock formations. Three key parameters that have a nanoscale basis and that contribute 22 uncertainty to predictions of CO_2 trapping are the vertical permeability k_v of seals, the residual CO_2 saturation $S_{g,r}$ in reservoir rocks, and the reactive surface area a_r of silicate minerals. This 23 24 review summarizes recent progress and identifies outstanding research needs in these areas. Available data suggest that the permeability of shale and mudstone seals is heavily dependent on 25 26 clay fraction and can be extremely low even in the presence of fractures. Investigations of 27 residual CO_2 trapping indicate that CO_2 -induced alteration in the wettability of mineral surfaces 28 may significantly influence $S_{g,r}$. Ultimately, the rate and extent of CO₂ conversion to mineral 29 phases are uncertain due to a poor understanding of the kinetics of slow reactions between 30 minerals and fluids. Rapidly improving characterization techniques using X-rays and neutrons, 31 and computing capability for simulating chemical interactions, provide promise for important 32 advances.

33

34 INTRODUCTION

Carbon capture and storage (CCS)—the capture of CO_2 from stationary industrial sources, such as power plants, and its long-term storage in geologic reservoirs—is an emerging technology that could contribute up to 55% of global CO_2 abatement efforts over the coming century.^{1–7} The overall cost of CCS derives primarily from the cost of separating CO_2 from other gases and is expected to decrease substantially within a decade through new CO_2 capture technologies that already exist at the bench scale.^{6,8,9} The storage component of CCS, known as

geologic carbon sequestration (GCS), is conceptually straightforward (Fig. 1), relatively 41 inexpensive (< \$12 per ton of CO₂ emissions avoided);^{3,4,8-10} and already implemented at a 42 worldwide level of ~16 Mt CO_2 yr⁻¹ at industrial and pilot sites in North America, Europe, Asia, 43 Algeria, and Australia.^{7,11–17} Technologies for CO₂ transport and geologic injection have been 44 routinely used since the 1970s for CO₂-enhanced oil recovery (CO₂ EOR), a technology 45 currently applied on a scale of ~50 Mt CO₂ yr⁻¹ worldwide, $^{2-4,6,17}$ and are analogous to the 46 47 mature technologies applied at hundreds of sites in North America and Europe for natural gas storage and for acid gas and hazardous liquid waste disposal.^{1,4} Large CO₂ storage capacities 48 49 exist worldwide in saline aquifers (1,000 to 10,000 Gt CO₂) and depleted oil and gas reservoirs (675 to 900 Gt CO₂),³ the storage formations that are the focus of this paper. Additional storage 50 capacity (potentially large, but less well characterized) exists in coal beds,¹⁸ basalt flows,¹⁹ 51 ultramafic aquifers,²⁰ ocean sediments,²¹ and methane clathrate formations.²² 52

53 Implementation of CCS as a CO_2 mitigation technology relies heavily on geophysical models 54 to predict the fate of large CO₂ plumes in the subsurface on time scales of weeks to thousands of years.^{1,6,11,16,18,23-36} Among the many properties that must be accurately predicted, of foremost 55 56 importance are predictions of the efficacy of CO₂ trapping mechanisms (Fig. 1). At present, 57 sensitivity analyses and comparisons to data from GCS sites indicate that existing field scale 58 models, while yielding useful qualitative insights, have relatively limited quantitative predictive accuracy in this regard.^{11,14–16,18,25,33,37,38} An important limitation to this accuracy, in addition to 59 60 the well-established challenges associated with upscaling flow and reactivity in heterogeneous porous media, is incomplete knowledge of the parameters and constitutive relations that describe 61 62 the properties of porous rock-brine-CO₂ systems at the nanoscale, pore-network scale, and core 63 scale.

64

65 Figure 1. Schematic figure illustrating the distribution of CO₂ near an injection well roughly one decade after the end of injection and the four trapping mechanisms that enable GCS.^{1,3-} 66 ^{5,7,12,24,26,28,33,39,40} Supercritical CO₂ is injected in previously brine-filled, micrometer scale pore 67 68 spaces of a highly permeable geologic formation (typically a sandstone) at depths > 800 m, 69 where it is ~ 30 % less dense than the resident brine. The storage formation is overlain by a thick 70 fine-grained geologic formation, the top seal or caprock, typically a shale or mudstone. The 71 storage formation may contain layers or lenses of fine-grained rock (secondary seals). The 72 vertical migration of the CO₂ plume is retarded or stopped by the seals (stratigraphic trapping). During the migration of the plume, a portion of the CO₂ remains trapped as disconnected 73 74 droplets at the trailing edge of the plume (residual trapping). On time scales of thousands of 75 years, CO₂ dissolves in the formation water (solubility trapping), reacts with silicate minerals, 76 and precipitates as solid carbonate (mineral trapping). Plume dimensions may reach ~10 km in

width and ~100 m in height. The vertical scale is expanded roughly 50 times relative to the
horizontal scale.

79

80 In the present paper, we examine three parameters used in field scale GCS models that have a 81 clear nanoscale basis and that contribute significantly to the uncertainty of field scale predictions of CO₂ trapping: the vertical permeability k_v of seals, ^{18,24,26,30,33,41} the residual CO₂ saturation S_{gr} 82 in reservoir rocks, 14,15,23,24,41 and the reactive surface area a_r of silicate solids. $^{42-46}$ For the sake of 83 brevity, we do not address the equally interesting nanoscale basis of geothermal effects.⁴⁷ 84 solubility trapping,⁴⁸ or the impact of impurities such as SO₂ or H₂S.⁴⁹ We also do not discuss 85 processes that are not directly related to CO₂ trapping, such as CO₂ invasion in reservoir 86 rocks,^{50,51} CO₂ molecular diffusion in natural gas reservoirs,⁵² monitoring,¹⁷ injectivity,⁵³ 87 colloidal transport,⁵⁴ induced seismicity,³⁹ CO₂-brine-rock equations of state,⁵⁵ CO₂ plume shape 88 and velocity,³⁷ or the potential consequences of CO₂ leakage^{56,57} or that do not have a clear 89 nanoscale basis, such as reservoir topography^{12,58} and heterogeneity.^{59,60} We focus on examining 90 91 how nanoscale phenomena influence core scale properties associated with CO₂ trapping in rock-92 brine-CO₂ systems.

93

94 KEY PARAMETERS IN CO₂ TRAPPING PREDICTIONS

95 Stratigraphic trapping: vertical permeability (k_v) of fine-grained rock formations. The 96 fluid transport properties of seals (vertical permeability k_v , capillary breakthrough pressure $P_{c,b}$) 97 strongly influence the rate of dissipation of reservoir overpressure, plume shape (hence sweep 98 efficiency), upward plume migration velocity, the rate of CO₂ dissolution in brine and, 99 eventually, the rate of CO₂ entry into the caprock.^{12,24,26,29,30,33,39,41,59,61-63} Here, we focus primarily on the k_v values of seals. Existing data indicate that $P_{c,b}$ tends to increase by roughly one order of magnitude for every three orders of magnitude decrease in k_v .^{64,65}

102 At the regional scale, the effective k_v values of seals are determined by fluid flow through 103 preferential flow paths such as faults, fractures, micro-fractures, and poorly cemented wells.^{26,32,45,56,62,66-77} These preferential flow paths, though ubiquitous, do not preclude 104 stratigraphic trapping as shown by the existence of natural CO₂ and hydrocarbon accumulations 105 in the subsurface.^{78,79} Evidence of fluid flow through fractures and faults in shales and 106 107 mudstones—the fine-grained lithologies that constitute the vast majority of aquitards and caprocks to GCS sites and natural gas reservoirs^{13,80,81}—is provided by observations of thermal, 108 salinity, and isotopic anomalies near faults,⁸²⁻⁸⁴ of fault and fracture mineralization by 109 carbonates, sulfates, or other solids,^{67,76,85,86} and by studies showing that the regional 110 111 permeability of these formations is sometimes several orders of magnitude higher than k values measured in unfractured core samples.^{26,67,87} Conversely, concentration profiles of conservative 112 113 tracers (halides, noble gases, water isotopes) in shales and mudstones on length scales of tens to 114 hundreds of meters, the persistence of hydraulic pressure differences across these formations, 115 and the scale-independence of permeability in some shales are consistent with molecular diffusion being the dominant mass transport process in these formations on time scales of 116 millions of years.^{73,82,84,87,88} Furthermore, while fault damage zones in crystalline rocks tend to 117 have k values orders of magnitude higher than the undamaged rock, 89,90 the mass transport 118 119 properties of fault damage zones in shale and mudstone are, at least in some cases, indistinguishable from those of the rock matrix.^{82,84,91} 120

121 The presence of faults and fractures in seals, even if they cause only a minor enhancement of 122 seal permeability prior to CO_2 injection, implies that models that describe the seals as

homogeneous may underestimate the sensitivity of $k_{\rm v}$ and $P_{\rm c,b}$ to geochemical and geomechanical 123 alteration.^{31,39,63,71,74,75,92–96} Three lines of evidence indicate that clays and clay minerals play an 124 125 important role in this sensitivity. Firstly, conventional hydrocarbon exploration studies have found that, despite the structural and petrophysical complexity of faults.^{66,90,97,98} the barrier 126 127 properties of faults are primarily determined by the clay content of the fault-filling material as quantified by proxies such as the shale gouge ratio (SGR).^{62,98–101} With increasing clay content or 128 SGR, fault permeability decreases from $\sim 10^{-15}$ to 10^{-19} m² and P_{cb} increases from ~ 0.1 to 10 129 MPa. 98,100 Secondly, the fault friction coefficient μ_s of the Mohr-Coulomb failure model, an 130 131 important parameter in the brittle failure of rocks and the mechanics of slip along faults and fractures, $^{10,35,68,102-104}$ depends strongly on clay content: μ_s values range from 0.6 to 0.85 for most 132 rocks,^{27,104,105} but clay-rich rocks can have μ_s values as low as 0.2.^{31,39,97,99,106–109} Clay-rich rocks 133 134 also tend to deform in a more ductile, self-sealing manner than other rocks, a desirable seal property.^{81,85,99,107,110} Finally, the stress-porosity-permeability relations of porous media (or 135 stress-aperture-permeability, in the case of unfilled fractures), of key importance in predicting 136 the permeability of preferential flow paths in seals,^{27,78,85,111} are highly sensitive to clay 137 content.^{80,112,113} For example, the permeability k of sedimentary rocks is routinely modeled as 138 139 having a power-law dependence on porosity ϕ ,

$$140 \quad \mathbf{k} \propto \mathbf{\phi}^{\mathbf{n}}. \tag{1}$$

141 where $n \sim 3$ in homogeneous, non-clayey media and larger *n* values are associated with emergent 142 phenomena such as wormhole-like or bedding-oriented dissolution paterns^{34,56,111,114–116} or 143 localized salt precipitation.^{53,117} The presence of clay minerals, however, can decrease *k* by up to 144 five orders of magnitude at fixed porosity^{80,87,99,113,118} in a manner that depends strongly on the 145 type of clay mineral (*k* decreases from kaolinite to illite to smectite).^{99,106,119,120}

146 Knowledge of the properties of shales and mudstones lags behind that of other sedimentary rocks despite their importance in a range of areas including basin modeling.68,77,121-123 147 radioactive waste management,^{73,88,124} wellbore stability,^{125–127} soil science,¹²⁸ fault rupture,⁹⁷ the 148 behavior of subduction zones,^{108,129} and the subsurface retention of hydrocarbons.^{78,112} The 149 150 relative scarcity of experimental data on these rocks derives in part from the significant 151 challenges associated with their fine-grained nature. Sample alteration during core retrieval and 152 storage (in particular, the formation of micro-cracks associated with unloading and drying) may not be entirely avoidable.^{78,102,118,130–135} Porosity and pore structure are challenging to 153 154 characterize, because most of the pore space is located in pores with widths between 2 and 10 155 nm, beyond the range of standard microscopy tools, and a significant fraction is located in pores 156 narrower than 2 nm that are not probed by N₂ adsorption or mercury intrusion porosimetry (MIP).^{69,77,78,118,131,133,134,136-142} Examination of the microstructure of shales and mudtones 157 increasingly relies on nanoscience tools such as small angle neutron scattering (SANS).¹⁴³⁻¹⁴⁵ 158 159 Studies of mudstone and shale routinely report the clay content of the solid (mass fraction of particles $< 2 \mu m$ in diameter) but less frequently its clay mineralogy (mass fraction of clay 160 minerals).^{77,118,122,146,147} Experimental challenges associated with sample preservation, 161 162 geomechanics, and the characterization of clay mineralogy are particularly crucial, because the 163 porosity, permeability, and geomechanical properties of clayey media are highly sensitive to clay 164 mineralogy, the stress history of the rock, and the solution with which the rock is in contact.^{87,99,102,106,109,112,118,120–122,128,130,133,140,147–150} Finally, measurements of k_v and $P_{c,b}$ are 165 166 challenging because of their sensitivity to minute leaks and to the compressibility of the testing equipment^{83,87,88,151} and because they require durations on the order of weeks to months.^{64,65,78,151} 167

- 168 Despite the challenges outlined above, a significant database now exists on the core scale
- 169 relations between ϕ , k_v , and other properties in well-characterized shales and mudstones. Our
- 170 compilation of existing data on these relations is shown in Figure 2.

174 Figure 2. Compilation of experimental data (blue) and model predictions (orange) on the core 175 scale properties of shales and mudstones: (a) porosity ϕ as a function of maximum effective stress $\sigma_{e,max}$; (b) logarithm of the permeability k_v as a function of porosity; (c) log k_v as a 176 function of phyllosilicate mass fraction X_{clay} in the solid phase. Blue squares represent well-177 178 characterized shales and mudstones (Keuper claystone, Kirtland formation, Nordland shale, 179 Draupne shale, Fjerritslev formation, Norwegian shelf Jurassic mudrocks, Chimney Rock and 180 Gothic shale, ZeroGen shale, Tuscaloosa mudstone and marine shale, Boom clay, Toarcian-181 Domerian shale, Opalinus clay, Callovo-Oxfordian clay, Couche Silteuse, Muderong shale, 182 North German Basin claystones, Wilcox shale, Kimmeridge shale, Flovd shale, Chattanooga shale, Conasauga shale, Duvernay shale, Wakkanai mudstone).^{64,67,73,82,84-86,91,102,110,130-132,135-} 183 137,139-142,148,149,152-183 Thick blue lines show a representative selection of normally-consolidated 184 185 clay-rich sediments either retrieved from a range of depths or compacted to a range of ϕ values using a standard oedometric test.^{109,123,146,150,184,185} Permeability values were measured by water 186 187 advection at the core scale in the direction normal to the bedding or in an unspecified direction. 188 In the case of hydrocarbon-bearing shales, very few hydraulic permeability data are available; 189 helium permeability values were included if they had been obtained on samples pre-treated to remove all other fluids.¹⁸³ Porosity values were obtained using techniques that measure the total 190 191 (water accessible) porosity of nanoporous rocks (HTO diffusion, pycnometry, SANS). Maximum 192 effective stress values were approximated from the maximum burial depth of each formation, d_{max} , using the relation $\sigma_{e,\text{max}} \approx 10.9 \times d_{\text{max}}$ (with d_{max} in km and $\sigma_{e,\text{max}}$ in MPa, based on a solid 193 density of 2.64 kg dm⁻³ and a sediment porosity of 0.2). Orange lines are models of the properties 194 of generic shales and mudstones used in GCS or basin models.^{80,86,186-192} The model of 195 Dzevanshir et al.¹⁸⁹ is plotted for clay contents of 40 to 60 % and a sediment age of 170 Ma 196

(lower shaded area in Fig. 2a). The models of Yang and Aplin^{80,122} are plotted for clay contents 197 of 40 to 60 % (upper shaded area in Fig. 2a, shaded area in Fig. 2b) and for $\phi = 0.05$ to 0.2 198 199 (shaded area in Fig. 2c). The dashed green lines in Fig. 2b are models of the permeability of generic sandstones.^{34,56} The green symbol in Fig. 2c shows the range of sandstone permeabilities 200 201 predicted by the same models if $\phi = 0.1$. The solid purple lines in Fig. 2c describe a model of the 202 relationship between fault permeability and SGR, plotted under the assumption that SGR is a reasonable proxy for X_{clay} (the purple shaded area shows the range of values predicted for fault 203 displacements of 1 mm to 1 km).98,100 204

205

206 Figure 2 reveals that shales and mudstones follow a complex set of relationships between $\sigma_{e,max}$, ϕ , X_{clay} , and k_{v} . The scatter in the experimental database may reflect the experimental 207 challenges noted above, as well as differences in mineralogy and in the extent of cementation 208 and clay mineral recrystallization.^{77,170,172,193} In the case of Fig. 2a, additional scatter may arise 209 210 because pore water in clay formations can be significantly over- or under-pressured and, also, because ϕ depends not only on $\sigma_{e,max}$ but also, to a smaller extent, on σ_{e} .^{88,129,172,184,189,192} The 211 212 offset between the properties of weakly consolidated sediments (blue lines) and rocks (blue squares) in Figure 2a suggests that the relation between ϕ and $\sigma_{e,max}$ is sensitive to the rate of 213 214 compaction, perhaps because slower compaction allows more extensive cementation or because 215 the rate at which pore water can be expelled from compacting fine-grained sediments is limited 216 by the very low permeability of these sediments.

The database on k_v vs. ϕ reveals that weakly consolidated sediments roughly follow Eq. 1 with $m \sim 10$ (thick dashed orange line at $\phi > 0.2$ in Fig. 2b). This large ϕ -dependence of k_V is consistent with observations that the pore size distribution of shales and mudstones is bimodal or

220 more complex and that compaction tends to compress large, hydrodynamically active pores before nanopores.^{77,194,195} At $\phi < 0.2$, the ϕ -dependence of k_v becomes essentially nil (in fact, k_v 221 222 may have an inverse ϕ -dependence at $\phi < 0.1$ in Fig. 2b), suggesting the disappearance of 223 hydrodynamically active pores. In contrast, almost every model in Fig. 2b, including the well 224 known Kozeny-Carman relation (plotted as a thick orange line in the case of an idealized shale consisting of 20-nm-thick illite particles),¹⁹⁵ predicts a near-linear relation between log k_v and log 225 ϕ . The only exception is the model of Yang and Aplin,⁸⁰ a parametric relation fitted to 226 experimental results and describing k_v as a function of ϕ and X_{clay} , which correctly predicts the 227 228 near invariance of k_V with ϕ at $\phi < 0.2$. This near invariance is consistent with the concept of 229 critical depth of burial (CDB) used in hydrocarbon exploration, according to which the 230 permeability of clayey rocks rapidly decreases with depth until ~2.5 to 3.2 km, then become almost invariant with depth.⁷⁸ The near invariance of k_V with porosity at $\phi < 0.2$ may be partly 231 232 explained by the thick dashed orange line at $\phi < 0.2$ in Fig. 2b, which represents the water flux 233 that would occur by pressure-driven molecular diffusion, i.e., diffusion driven by the Pdependence of the chemical potential of water, calculated here with the equation $k_{v,app}$ = 234 $(\mu v_m/RT) \times D_e$, where D_e is the effective diffusion coefficient of water in the porous medium, 235 modeled with the expression $D_e = (\phi/G) \times D_0$ ($\mu = 8.935 \ 10^{-4}$ Pa s is the viscosity of water at 298 236 K, $v_{\rm m} = 18.07 \ 10^{-6} \ {\rm m}^3 \ {\rm mol}^{-1}$ is the partial molar volume of water at 298 K, $R = 8.314 \ {\rm J} \ {\rm mol}^{-1} \ {\rm K}^{-1}$ 237 is the ideal gas constant, T = 298 K is absolute temperature, $D_0 = 2.30 \ 10^{-9} \ \text{m}^2 \ \text{s}^{-1}$ is the self-238 diffusion coefficient of pure liquid water at 298 K,¹⁹⁶ and $G \sim 4$ is the average geometric factor 239 of smectite-rich porous media).¹⁹⁷ This pressure-driven molecular diffusion model imposes a 240 241 lower boundary on the range of measureable k_v values, in agreement with Fig. 2b.

242 The plot of log k_v vs. X_{clav} (Fig. 2c) demonstrates that X_{clav} plays an important role in the 243 permeability of shale and mudstone. The data compiled in Figure 2c indicate that k_v decreases by six orders of magnitude as X_{clay} increases from 0 to 0.35 and by one more order of magnitude as 244 X_{clay} increases from 0.35 to 0.7. The database on k_{v} vs. X_{clay} is roughly consistent with the model 245 of Yang and Aplin⁸⁰ but different from the relation between fault permeability and SGR 246 observed at the reservoir scale (thick purple lines).^{98,100} This difference may reflect a scale 247 dependence of permeability resulting from the heterogeneous distribution of clays in faults.⁹⁷ 248 The much greater sensitivity of k_v to X_{clay} at $X_{clay} < -0.35$ (Fig. 2c) is consistent with several lines 249 of evidence, including data on k_v vs. X_{clav} in clay-sand mixtures,⁸⁶ on the mechanics of fracture 250 slip,¹⁹⁸ and on the $P_{c,b}$ values of hydrocarbon fluids in faults,^{62,98,101} indicating the existence of a 251 threshold in rock properties at $X_{clay} \approx 0.3$ to 0.4. The location of this threshold is consistent with 252 253 the predictions of a simple conceptual model of sedimentary rocks as mixtures of large grains 254 (quartz, feldspar, carbonates) and a fine-grained clay matrix, on which an optimal packing of the clay matrix in the space between the larger grains occurs at $X_{clay} \sim 0.35$.⁹⁹ 255

256 Several notable implications of Fig. 2 are, firstly, that models of the stress-porosity-257 permeability relationships of seals and seal fault zones used in reservoir scale GCS models^{27,103,186-188} bear little resemblance to the experimental database. The model of mudstone 258 permeability as a function of ϕ and clay content proposed by Yang and Aplin,⁸⁰ which has not 259 260 been used in GCS models to our knowledge, is the most closely consistent with the experimental 261 database. Field scale simulations that use fixed values of seal porosity and permeability almost invariably assume ϕ values near the lower end of the experimental range ($\phi = 0.01$,^{27,47,103,188} 262 $0.05^{61,187}_{,,187} 0.05$ to $0.07^{35}_{,,199}_{,,199}$ or $0.338^{200}_{,,199}$ and k_v values near the upper end of the experimental 263 range $(k_v = 10^{-19}, 27, 187, 188, 10^{-18}, 29, 35, 47, 61, 200, 1.6, 10^{-18}, 94, 2.0, 10^{-18}, 199, or 10^{-17}, m^2)$.^{40,201} Clearly, the 264

265 values of ϕ and k_v used in field scale GCS models should be reexamined in the light of the 266 experimental database. Secondly, fractures and faults may not strongly impact seal permeability 267 if they are filled by a material with $\phi \le 0.2$ and $X_{clav} > 0.35$. Thirdly, CO₂-induced dissolution of 268 carbonate minerals in fractures and faults, which is predicted by reactive transport modeling studies and observed in core scale experiments,^{94,202,203} may have positive or negative impacts on 269 permeability depending on the values of ϕ and X_{clay} in the fracture- or fault-filling material. In 270 some conditions, carbonate dissolution may even result in a permeability decrease, if the increase 271 272 in ϕ is more than offset by the associated increase in X_{clay} .

273 Much of the existing core scale research on the evolution of preferential flow paths in seals exposed to CO₂-brine mixtures has focused on open fractures in seal rocks^{93,96,203–205} and well 274 cements.^{70,206–213} The stress-aperture-permeability relations that determine fluid flow in fractured 275 276 rocks are analogous to the stress-porosity-permeability relations that describe flow in filled fractures.^{86,135,214} The few existing data on these stress-aperture-permeability relations in the case 277 278 of shales and mudstones suggest that fractures can self-seal on time scales of days to months if $\sigma_{\rm e}$ is sufficiently high.^{85,86} The precise stress-dependence of $k_{\rm v}$ and $P_{\rm c,b}$ in seal fractures, 279 280 however, is not well known, because of insufficient understanding of the mechanics of asperities 281 on fracture surfaces and of the feedbacks between the mechanics of the fracture and of the rock matrix.^{81,85,86,135,155,174,215,216} 282

In the case of CO_2 invasion in fractured caprocks, two important complications are the importance of crack dilation mechanics on two phase flow in argillaceous rocks^{171,214,216} and the geochemical alteration of fracture surfaces by CO_2 . Existing studies show that CO_2 -brine mixtures can rapidly dissolve calcite (and, in the case of cement, portlandite) on fracture surfaces if the invading brine is undersaturated with respect to calcite, rapidly increasing fracture

288 aperture, generating a higher-porosity altered zone on fracture surfaces and also, at least in some cases, increasing fracture surface roughness.^{70,93,96,203–205,210,211} If the invading fluid is 289 equilibrated with respect to calcite, the reactivity of fracture surfaces is much slower and 290 dissolution of M^{II}-bearing silicates followed by precipitation of carbonates and amorphous silica 291 292 can result in fracture sealing in certain conditions, particularly at low fluid flow rates.^{70,74,207,209,212,213,217-222} Important unknowns in models of geochemical fracture alteration 293 include the impact of adsorption^{162,223} and porosity changes^{208,224} on molecular diffusion 294 295 coefficients in the rock matrix. In some cases, calcite dissolution on fracture surfaces has been 296 found to lead to the release of colloidal particles (clays, dolomite) and a decrease in fracture permeability,^{93,96,204,205} a behavior analogous to that hypothesized for filled fractures in the 297 298 previous paragraph based on the data in Figs. 2b,c. Finally, geochemical alteration has been 299 found, at least in some cases, to weaken fracture surfaces and asperities by dissolving carbonate 300 and silicate cements, modifying the stress-aperture relationship of the fracture in a manner that facilitates fracture sealing by normal stresses. ^{39,71,205,213,219} 301

302 The sensitivity of seals to geochemical and geomechanical alteration elicits several important 303 fundamental questions. One of these questions is the manner in which carbonates precipitate in 304 fractured nanoporous rocks. Nanoscale studies of this phenomenon reveal that the kinetics of carbonate precipitation are strongly influenced by the substrate on which they precipitate,^{225,226} 305 the roughness of the substrate,²²⁷ the presence of adsorbed water films,²²⁸ and pore size.²²⁹⁻²³² 306 307 These studies suggest that in fractured seals, carbonate solids may sometimes preferentially 308 precipitate in the fractures rather than in the nanoporous rock matrix, a phenomenon that may be driven by the surface energy of carbonate minerals^{229,233} and that would enhance the resilience of 309 310 seals to geochemical alteration.

311 A second key nanoscale question is the impact of geochemical alterations on the mechanics 312 (swelling, aggregation) and permeability of seals. The mechanics of clayey media are well 313 known to be sensitive to ionic strength, pH, and the valence of the exchangeable cation^{120,121,124,126,234–236} in a manner that reflects the role of pore fluids in hydrating clay surfaces 314 and in mediating electrostatic interactions between clay particles.^{120,125,234,235} This sensitivity 315 strongly impacts the permeability and mechanics of weakly consolidated clays,^{124,195} but the 316 317 effect on shale and mudstone is variable and has not been systematically examined at GCSrelevant conditions of high salinity, effective stress, and, pCO₂.^{77,127,142,149,237} In this context, 318 319 recent observations that smectite-water pastes can adsorb significant quantities of CO₂ (up to ~0.07 g_{CO2} g_{clav}^{-1} at high pCO₂ levels) by intercalation of CO₂ in water-filled clay interlayer 320 321 nanopores, and that this intercalation modifies the swelling free energy of the clay minerals, may 322 be highly relevant (it also implies that clay-rich seals can be viewed, to some extent, as storage formations).^{173,238-243} This CO₂-induced alteration of clay mechanics may impact fracture 323 apertures and the frictional strength of clay-rich fault gouge,²³⁹ but a detailed understanding of 324 325 the relationships and their relevance to seal permeability remain to be established.

Residual trapping: residual CO₂ saturation ($S_{g,r}$) in reservoir rocks. Residual CO₂ saturation ($S_{g,r}$) is a key parameter of GCS models that determines the extent of residual trapping and strongly influences plume migration velocity, storage capacity, and storage security.^{4,14,23,24,41,244,245} Despite its importance, $S_{g,r}$ remains poorly constrained and a large range of values have been used in field scale models (solid and dashed lines in Fig. 3). The experimental database on $S_{g,r}$ in GCS-relevant conditions includes only a handful of field scale²⁴⁶ and core scale measurements,^{244,247-257} some of which may be highly uncertain.^{16,258} Current understanding of $S_{g,r}$, therefore, remains strongly influenced by studies of non-aqueous fluids other than CO₂.^{259–267}

Investigations of residual trapping of CO_2 and hydrocarbons indicate that $S_{g,r}$ is highly 335 sensitive to the initial CO₂ saturation $S_{g,i}$ and the mineral-water-CO₂ wetting angle θ (defined 336 such that $\theta = 0^{\circ}$ for a perfectly hydrophilic medium).^{252,254} The capillary number Ca = $v_w \mu_w / \gamma_{gw}$ 337 (where v_w and μ_w are the Darcy velocity and viscosity of the aqueous phase and γ_{gw} is the CO₂-338 water interfacial tension) also influences $S_{g,r}$, but only at high fluid velocities (Ca > 10⁻⁶) that are 339 not relevant to CO₂ trapping in GCS.^{33,252,268} Details of multiphase flow at the pore network to 340 341 core scale have a less well-characterized influence on $S_{g,r}$ that may result in a dependence of $S_{g,r}$ on ϕ .^{253,254,260,262,269} The yellow and blue diamonds in Fig. 3 are consistent with $S_{g,r,max}/S_{g,i,max} =$ 342 $0.166/\phi^{0.63}$, where $S_{g,i,max}$ and $S_{g,r,max}$ are the maximum achievable initial and residual CO₂ 343 saturation.²⁵³ Residual CO₂ saturation $S_{g,r}$ also depends on pore to core scale heterogeneity^{253,270} 344 and on the topology of the CO₂ phase.^{269,271} Other properties that influence $S_{g,r}$, such as CO₂-345 brine interfacial tension γ_{gw} ,²⁴⁸ are thought to do so primarily through their impact on $S_{g,i}$ or θ . 346

Figure 3. Plot of $S_{g,r}$ vs. $S_{g,i}$ measured in core samples or reservoir rocks at Ca $\leq 10^{-6}$ (symbols) 349 or used in field scale GCS models (lines). Experimental results obtained at unspecified $S_{g,i}$ or Ca 350 conditions or with brine that was not initially saturated with respect to CO2 are not 351 shown.^{244,247,248,272} Small red and orange triangles were obtained in sandstone at the scale of an 352 X-ray CT voxel (red: Berea, Paaratte, Tuscaloosa; orange: Mount Simon).²⁵² Small pink circles 353 were obtained in Berea sandstone (at Ca $\leq 2.5 \ 10^{-6}$) at the scale of an X-ray CT slice.²⁷³ Yellow 354 symbols were obtained in sandstone at the core scale (cross (x): Doddington;²⁴⁹ crosses (+): 355 Berea;²⁵⁶ asterisks (*): Berea;²⁶⁹; squares: Berea;²⁵⁰ circle: Tako;²⁵¹ diamonds: Berea, 356 Doddington, Stainton, Springwell;²⁵³ triangles: Bentheimer, Doddington).²⁵⁵ Blue symbols were 357 obtained in limestone at the core scale (diamonds: Ketton, Estaillades, Indiana;²⁵³ squares: 358 Indiana;²⁵⁷ triangles: Estaillades, Ketton, Mount Gambier).²⁵⁵ Solid lines describe models based 359 on Land's formulation $\{S_{g,r} = S_{g,i}/(1+CS_{g,i}), \text{ where } C \text{ is Land's constant}\}^{259} \text{ with } C = 2.45,^{24}$ 360 2.25,⁵⁹ 1.61,²⁷⁴ or 1.05²³ or based on the model of Spiteri and coworkers²⁶⁷ { $S_{g,r} = \alpha S_{g,i} - \beta S_{g,i}^2$ } 361 with $\alpha = 1$ and $\beta = 0.5$.²⁷⁵ Dashed lines describe models according to which $S_{g,r}$ equals $S_{g,i}$ up to a 362

363 certain value and is invariant with $S_{g,i}$ above this threshold value, with $S_{g,r,max} = 0.05$,^{28,36,103,186–} 364 ^{188,202} 0.10,⁶⁰ 0.18,²⁷⁶ 0.25,^{26,35,41,61,200} or 0.30.⁴⁰ For clarity, the dashed lines are drawn with 365 $S_{g,i,max} = 0.8$. Models of $S_{g,r}$ that used almost identical values of $S_{g,r,max}$ are shown as a single line. 366 Well-based measurements at the Otway GCS pilot site yielded $S_{g,r} = 0.11$ to 0.2, but the 367 corresponding $S_{g,i}$ value was not reported.²⁴⁶

368

The dependence of $S_{g,r}$ on $S_{g,i}$ and θ has been extensively examined at the core and pore-369 network scales in the case of hydrocarbon-water systems.^{259-261,263-267} In strongly hydrophilic 370 media, $S_{g,r}$ increases monotonically with $S_{g,i}$ to a maximum value $S_{g,r,max}$.^{259,267} In mixed-371 wettability systems, $S_{g,r}$ is smaller than in water-wet systems and may have a non-monotone 372 dependence on $S_{g,i}$.^{263,265,267} The influence of θ on $S_{g,r}$ derives from the mechanisms of brine 373 374 imbibition at the pore network scale: small θ values favor imbibition by a link snap-off 375 mechanism (i.e., by filling of pore throats in order of increasing size, which traps the non-wetting 376 phase in the pore bodies), whereas larger θ values favor imbibition by piston-type displacement, which causes less trapping.^{260,264,266,267} 377

Models of $S_{g,r}$ in GCS-relevant conditions evidently require accurate predictions of $S_{g,i}$ and θ in 378 379 mineral-brine-CO₂ systems. Capillary invasion in porous media, which determines $S_{g,i}$, is a complex, multi-scale phenomenon that is largely beyond the scope of this review.^{50,277,278} Here, 380 we focus on the mineral-brine-CO₂ wetting angle θ , and in particular on the θ values obtained as 381 382 the water phase recedes or advances, θ_r and θ_a , a fundamental property that remains incompletely 383 understood in the context of GCS. Core scale measurements of capillary pressure vs. CO₂ 384 saturation (P_c vs. S_g) and X-ray CT images of fluid distribution during CO₂-brine multiphase 385 flow yield indirect estimates of θ when interpreted with the Young-Laplace equation,

$$386 \qquad P_{\rm c} = C \gamma_{\rm gw} / r_{\rm t} \times \cos\theta, \tag{2}$$

where $P_{\rm c}$ is the capillary pressure at which CO₂ can invade pore throats of radius $r_{\rm t}$, $\gamma_{\rm gw}$ is the 387 388 CO_2 -water interfacial tension, and C is a shape factor equal to 1 for slit-shaped pore throats and 2 389 for circular pore throats. Capillary invasion studies show that GCS relevant rocks and minerals are water-wet during CO₂ invasion ($\theta_r \sim 0$ to 50°).^{51,250,268,278–281} During brine imbibition, most 390 measurements yield high $S_{g,r}$ values and a monotone dependence on $S_{g,i}$ indicative of water-wet 391 392 systems (Fig. 3). However, three types of data suggest that GCS-relevant rocks may be intermediate-wet during brine imbibition ($\theta_a \sim 90^\circ$), at least in some cases: firstly, data on $S_{g,r}$ in 393 394 Mount Simon sandstone, where many sandstone grains are coated with fibrous illite, show less trapping and a non-monotone dependence on $S_{g,i}$ suggestive of intermediate-wet conditions 395 (orange triangles in Fig. 3).²⁵² Secondly, several studies of brine imbibition in quartz and 396 carbonate sand packs report low P_c values suggestive of intermediate-wet properties.^{247,272,281} 397 398 Thirdly, pore-network scale examinations of the distribution of CO₂-brine fluid mixtures in sand 399 packs and glass micromodels suggest that silica surfaces sometimes become intermediate-wet upon exposure to CO2.249,254,282 These observations highlight the need for predictive models of 400 wettability and contact angle hysteresis in CO₂-brine-mineral systems such as those that already 401 402 exist for oil-water systems.²⁸³

of θ using micromodels,²⁸² goniometric 403 Direct measurements contact angle experiments^{49,245,284–300} and molecular dynamics (MD) simulations^{301–305} provide little clarity on 404 405 the wetting properties of rocks exposed to CO_2 . As expected, carbon-rich solids such as 406 anthracite, limestone from the Weyburn oilfield, and oil-coated quartz, and partly dehydroxylated silica surfaces have intermediate-wet properties ($\theta = 44$ to 140°).^{284–} 407 286,288,301,303,305 Other solids (calcite, silica, clays, mica), however, have θ values ranging from 408

ACS Paragon Plus Environment

409 water-wet to intermediate-wet ($\theta = 0$ to 100°) depending on the study.^{49,245,282,288–291,293–} 410 ^{300,302,303,306}

411 Figure 4 shows a compilation of all available data on the θ_r and θ_a values of mineral-brine-CO₂ 412 systems obtained in goniometric contact angle experiments, excluding results that were obtained 413 with dehydroxylated silica surfaces. Studies that did not impose an advancing or receding water phase, not shown in Fig. 4, yielded θ values that were mostly intermediate between the θ_r and θ_a 414 values compiled in Fig. 4, as expected.^{288,291,293,302,305} The data compiled in Fig. 4 yield average 415 416 θ_r values of 21 ± 11°, 25 ± 16°, and 30 ± 8° for quartz, calcite, and mica, i.e., the mineral 417 surfaces are water-wet during CO₂ invasion. The uncertainty derives primarily from systematic 418 differences between the results of different groups. Possible causes of these systematic differences (and also of the differences between measurements of θ and $S_{g,r}$ obtained from pore-419 420 network and core scale experiments) include the sensitivity of θ to trace levels of impurities and differences in surface roughness.^{300,307} The difference between the θ_r values of silica in air (0°)³⁰⁸ 421 422 and in CO₂ (21 \pm 11°) is consistent with the smaller negative surface proton charge of silica at lower pH values.^{51,245,282,297,306} Other silicate minerals (feldspars, clay minerals) have similar 423 wettability to quartz, calcite, and mica.^{292,297} Reported θ_r have little or no *P*- or *T*-dependence. 424 The salinity-dependence may be either positive, ^{49,295} negative, ²⁹⁷ or essential nil.²⁹⁴ 425

For all three surfaces, θ_a is significantly larger than θ_r , and the range of θ_a values reported by individual research groups is much larger than the range of reported θ_r values (Fig. 4).^{49,294,296,300} Existing data reveal that θ_a increases significantly with salinity (by ~ 5° per M NaCl) with no clear *P* or *T* dependence.^{49,294,296,300}

430

431

Figure 4. Compilation of the best available measurements of θ in mineral-brine-CO₂ systems 432 measured during water retreat (θ_r) and advance (θ_a) on quartz, calcite, and mica by groups that 433 used a captive CO₂ drop positioned beneath the solid substrate in an otherwise brine-filled 434 reservoir. Results that were obtained with partially or fully dehydroxylated silica 435 surfaces,^{284,301,303} with the sessile drop technique,^{288,291,293,302} or that did not fully describe their 436 experimental techniques are not shown.²⁹² Results reported by Broseta et al.²⁹⁴ include 437 previously published data by the same group.^{289,290} Symbols show the average reported values. 438 439 Vertical lines show the range of measured θ values (not the uncertainty of individual measurements) over the examined pressure, temperature, and salinity range (Saraji et al.²⁹⁶: 3.4-440 11.7 MPa, 308-333 K, 0 M; Saraji et al.⁴⁹: 13.8-27.6 MPa, 323-373 K, 0.2-5.0 M; Farokhpoor et 441 al.²⁹⁵: 0.3-40 MPa, 309-339 K, 0-0.8 M NaCl; Wang et al.²⁹⁷: 7-20 MPa, 303-323 K, 0-1.15 M 442 Na-Cl-Ca-SO₄-Mg brine; Broseta et al.²⁹⁴: 0.5-14.0 MPa, 282-393 K, 0-7 M NaCl; Wan et al.³⁰⁰: 443 7.5-15 MPa, 318 K, 0.1 M NaCl). 444

Environmental Science & Technology

446	At the nanoscale, the θ values of mineral surfaces derive from the interfacial energies of the
447	mineral-brine (γ_{sw}), mineral-CO ₂ (γ_{sg}), and brine-CO ₂ interfaces through Young's equation:
448	$\cos\theta = (\gamma_{\rm sg} - \gamma_{\rm sw})/\gamma_{\rm gw}.$ (3)
449	The brine-CO ₂ interfacial energy γ_{gw} has been extensively studied using
450	experiments, ^{287,288,296,299,309–314} MD simulations, ^{303,315–317} and lattice-gas simulations. ³¹⁸ The
451	experimental database indicates that γ_{gw} decreases with P and increases with T and
452	salinity. ^{309,310,312,313,315,319} In most GCS-relevant conditions, $\gamma_{gw} \sim 25$ to 30 mN m ⁻¹ with little <i>P</i> or
453	T dependence and with a linear salinity dependence of about 1.5 mN m ⁻¹ per unit of anionic or
454	cationic charge molality. ^{287,288,296,303,311,314,316} Theoretical studies have shown that the P - and
455	salinity-dependence of γ_{gw} results from CO_2 adsorption and salt exclusion at the brine- CO_2
456	interface in accordance with the Gibbs adsorption equation: ^{303,315,317–319}

$$457 \qquad d\gamma_{\rm gw} = -\Gamma_i^{(w)} d\mu_i, \tag{4}$$

where μ_i is the chemical potential of species *i* and $\Gamma_i^{(w)}$ is the surface excess of *i* relative to water 458 at the interface. The absolute values of γ_{sg} and γ_{sw} are not directly measurable, 320 but Eq. 4 459 460 provides a route towards predicting their P- and salinity-dependence. For example, Eq. 4 461 indicates that adsorbed water films at mineral-CO₂ interfaces (known to exist at least in some conditions)^{304,306,321–323} must influence γ_{sg} through the direct influence of water adsorption³²⁴ but 462 also the P-dependence of γ_{sg} through the influence of the water film on CO₂ adsorption at the 463 solid-CO₂ interface. The sensitivity of interfacial energy to adsorption implies that θ must be 464 sensitive to any impurity that adsorbs at any interface in the mineral-brine-CO2 system, 465 particularly at the CO2-mineral interface.11,17,57,279,288 According to Eq. 4 the hysteresis of 466 measured θ values further implies the existence of a hysteretic interfacial reaction. Several 467 468 studies have hypothesized that this reaction is a strong binding (chemisorption) of CO₂ to surface

469 hydroxyl functional groups.^{284,294,296} However, infrared spectroscopy, neutron scattering, and 470 MD simulation results consistently indicate that CO_2 adsorbs on silica, feldspar, and mica 471 surfaces by a weak physisorption mechanism and is completely displaced from these surfaces in 472 the presence of water.^{322,325,326} Therefore, the underlying origin of the hysteresis of mineral-473 brine- $CO_2 \theta$ values remains unknown.

474 **Mineral trapping: Reactive surface area** (a_r) of silicates at *in-situ* conditions. Of the four 475 trapping mechanisms involved in GCS, the ultimate and most secure is mineral trapping (Fig. 1), 476 whereby CO₂ is sequestered as solid carbonates through reactions of the type:^{42,43,327}

477 $M^{(II)}$ -bearing-silicates + CO₂ + H₂O \Rightarrow carbonate minerals + $M^{(II)}$ -free-silicates (5)

In Eq. 5, key M^(II)-bearing-silicates include feldspars (plagioclase), phyllosilicates (biotite, 478 chlorite, glauconite, smectite), and mafic minerals (olivine, pyroxene); M^(II)-free silicates include 479 feldspar, kaolinite, and quartz.^{42–44,92,116,328,329} Natural analogs and geochemical models indicate 480 481 that the carbonate minerals responsible for CO₂ trapping are primarily dolomite, ankerite, siderite. and dawsonite.^{44,92,202,327,329–332} The rate and extent of mineral trapping are not well 482 483 understood, largely because of uncertainties in the reactivity of silicate minerals. These 484 unknowns influence predictions of CO₂ mineral trapping, but also CO₂ storage capacity via porosity and permeability evolution^{114,116,333–335} and leakage pathway evolution via geochemical 485 alteration of fractured seals and well cements.^{45,74,93,336} 486

In field scale GCS models, silicate reaction rates are generally described with the phenomenological transition-state-theory (TST) formalism,^{116,232,337} which requires knowledge, for each silicate phase of interest, of its reactive surface area a_r , its thermodynamic solubility constant K_s , and several rate law parameters for each reaction mechanism. For example, the rate of proton-promoted growth (R_H) is described as:

492
$$R_{\rm H} = a_{\rm r} \left\{ \left[1 - \left(\frac{Q}{K_{\rm s}}\right)^p \right]^q \right\} \left\{ k_{\rm H}^{298\rm K} e^{-\frac{E_{\rm H}}{R} \left(\frac{1}{T} - \frac{1}{298\rm K}\right)} ({\rm H}^+)^{n_{\rm H}} \right\}$$
(6)

493 where the first set of brackets describes the thermodynamic driving force (Q is the ion activity 494 product, p and q are empirical power-law exponents) and the second set of brackets contains the rate law parameters for the proton-promoted reaction mechanism $[k_{\rm H}^{298\rm K}]$ is the rate constant at 495 298 K, $E_{\rm H}$ is the activation energy, (H⁺) is the activity of the proton, and $n_{\rm H}$ is the reaction order 496 with respect to protons].^{43,44,46,338–341} Modeling silicate reaction rates with this formalism has 497 498 several weaknesses from the functional form of the rate law itself to uncertainties in parameter 499 values. Model parameters are based on laboratory scale measurements of pure mineral phases in 500 simple electrolytes at far-from-equilibrium conditions, thus their accuracy for predicting reaction 501 conditions is highly uncertain, particularly in the case rates in realistic of aluminosilicates.^{43,44,46,76,336,342,343} Parameters for Eq. 6 are compiled in thermodynamic and 502 kinetic databases,^{344–346} with the choice of database used influencing model predictions of 503 trapped CO₂ by as much as 61%.^{347,348} In addition, rate law parameters for mixed mineral 504 phases,^{28,349} poorly crystalline phases such as amorphous Si-rich phases,^{228,341,350–352} or other 505 phases such as analcime and ankerite³⁴⁰ are poorly constrained. In these cases, mineral proxies 506 507 are often used to approximate rate parameters. Selection of an appropriate mineral proxy is not trivial as the resulting approximations can significantly impact predicted mineral reactions.³⁵³ 508 509 Microstructural details, such as the distribution of Al/Si ordering in feldspars, are often not accounted for and may considerably influence mineral reactivity.³⁵⁴ 510

Beyond parameter uncertainties, the functional form of Eq. 6 is known, at least in some cases, to overestimate near-equilibrium rates, overestimate the nucleation rate of new mineral phases (it predicts that minerals start to precipitate as soon as $Q > K_s$ even if only by an infinitesimal amount), overestimate growth rates in conditions where the concentration ratios of reactants in

515 solution differ from their stoichiometry in the solid, and require different parameterizations to describe dissolution and growth.^{28,116,202,232,355–358} These limitations are due, in part, to the fact 516 517 that kinetic databases reflect only the range of conditions examined in laboratory experiments 518 and, thus, they inherently cannot predict the possible existence of additional reaction pathways at elevated pCO₂ levels,^{359–363} in the presence of H₂S, SO₂, or CH₄ impurities,^{336,364} or in the 519 presence of trace ions present in natural brines,³⁶⁵ or differences between the reactivity of 520 521 mineral surfaces with water-saturated CO₂ vs. CO₂-saturated water, which is a function of the thickness of adsorbed water films at CO₂-mineral interfaces.^{228,321,351,366–371} Improved predictions 522 of mineral growth rates have been demonstrated using new rate laws,^{232,356} but a consistent 523 524 framework applicable in reactive transport simulations has yet to emerge. Finally, the precision 525 of Q values used in Eq. 6 remains limited by incomplete knowledge of solution chemistry in CO₂-rich brines, particularly with regard to aluminum geochemistry and the activity coefficients 526 of solutes at high ionic strength (> 1 M). 42,43,372,373 527

528 While much attention has been devoted to the challenges described above regarding rate law 529 parameterization, a more pervasive source of uncertainty in applying Eq. 6 to rocks resides in the specific reactive surface areas a_r of each mineral phase.^{46,329,356} Reactive transport models often 530 approximate a_r with the specific surface area, a_s , that can be measured for pure minerals, for 531 example, using the Brunauer-Emmett-Teller (BET) gas adsorption technique,³⁷⁴ or estimated as 532 the geometric surface area assuming one or more particle sizes and a smooth^{340,375–377} or rough 533 surface modified with a surface roughness factor.³⁷⁸⁻³⁸⁰ Reactive surface area also depends on the 534 535 fraction of the specific surface area that is not occluded by surface coatings or other mineral grains, referred to as the specific accessible surface area of each mineral phase, a_a .³⁸¹ These 536 surface areas are related to each other by scaling factors C_1 and $C_2 < 1$: 537

538
$$a_{\rm r} = (C_1) a_{\rm a} = (C_1 C_2) a_{\rm s}$$
 (7)

539 where C_2 describes the fraction of the specific surface area that is accessible, and C_1 describes 540 the fraction of the accessible specific surface area that is reactive. In practice, these scaling factors are either assigned an arbitrary value ($C_1C_2 = 10^{-3}$ to 10^{-1} , 28,42,43,382 , $C_2 = 10^{-3}$)^{349,364} or 541 adjusted to fit measured reaction rates.^{338,383} The range of a_r values used in field scale GCS 542 543 models for a selection of common minerals is shown in Fig. 5. To a first approximation, increasing or decreasing all a_r values by a scaling factor has the same effect as scaling the time-544 axis of mineral reactivity with CO₂ by the same factor.^{20,42} Therefore, the range of a_r values in 545 Fig. 5 generates roughly two to four orders of magnitude uncertainty in the time scale of mineral 546 547 trapping.

548

550 **Figure 5.** Compilation of a_r values used in field scale GCS models for a selection of common 551 minerals.^{38,42,202,340,377–380,383–390}

553 Microscopic scale studies can provide important constraints for the parameterization of the scaling factors in Eq. 7.¹¹⁶ Examinations of geochemical alteration rates in pore network models, 554 555 core scale experiments, and reactive flow experiments show that the scaling factors are not invariant with time, aqueous chemistry, flow rate, or surface topography^{232,391–394} as frequently 556 557 assumed in field scale GCS models. At the nanoscale, reaction rates may depend more closely on reactive site density than on reactive surface area.^{232,394} At the microscopic scale, examinations 558 559 of sandstones and limestones show that C_2 is mineral-specific (i.e., mineral accessibility does not 560 reflect bulk mineral abundance) because clay minerals tend to form surface coatings and cements in the framework of larger quartz and carbonate grains.^{144,381,395,396} Furthermore, C_2 depends on 561 562 the scale of observation; for example, in one study of chlorite clay coatings and pore-filling 563 cements in sandstone, coatings that appeared continuous at a $\sim 1 \mu m$ resolution were found to be porous at a ~ 10 nm resolution.³⁹⁵ 564

Surface coatings are particularly critical in the evaluation of a_r , because they diminish the 565 566 reactivity of the underlying solid by several orders of magnitude in some cases, such as amorphous Si-rich coatings on feldspar, olivine, and borosilicate surfaces, kaolinite coatings on 567 feldspar surfaces³⁹⁷⁻⁴⁰¹ while leaving it essentially unchanged in other cases like smectite 568 569 coatings on feldspar surfaces, calcite coatings on diopside and basaltic glass, Mg-rich carbonate coatings on dolostone.^{401–405} At present, theory and models for predicting which coatings will 570 571 impact mineral accessibility and reactivity are lacking. The mode of surface coating precipitation 572 may explain experimental results in some cases, such as epitaxial growth having a greater inhibitory effect than random 3D nucleation and growth, 403,404,406 while in other studies 573 574 ostensibly identical amorphous Si-rich coatings have different impacts on the reactivity of different samples and even on different faces of the same crystal.^{407,408} 575

576 At the scale of a dissolving mineral surface, the formation of surface coatings is coupled to 577 mineral reactivity not only through its impact on a_r , as noted above, but also through its impact on solution chemistry at the dissolving surface.⁴⁰⁹ For example, in near-equilibrium conditions 578 579 feldspar dissolution may occur an order of magnitude more slowly than in far-from-equilibrium conditions because it is rate-limited by clay mineral precipitation.^{358,410} Such coupled reactions 580 581 may result in a dissolution that is, overall, incongruent, as in the case of dissolving aluminosilicate surfaces.^{350,409,411,412} Nanoscale studies suggest that the appearance of non-582 583 stoichiometry may, in some cases, involve stoichiometric dissolution followed by the subsequent precipitation of a surface coating, 350,398,409,413 whereas in other cases it involves the release of 584 soluble elements without a full dissolution of the silicate matrix.^{414,415} This coupling of mineral 585 586 dissolution and precipitation rates may be an important factor contributing to the discrepancy between field and laboratory data on mineral weathering rates.^{339,410,416} 587

588

589 SUMMARY AND CONCLUSIONS

590 Long-term storage of CO₂ in porous sedimentary formations relies on several properties that have a clear nanoscale basis including the vertical permeability k_v of seals, the residual CO₂ 591 saturation $S_{g,r}$ in reservoir rocks, and the reactive surface area a_r of minerals. These parameters, 592 593 and others, are macroscopic representations of nanoscale physico-chemical interactions that 594 occur at interfaces between mineral grains and fluids, and between coexisting fluids. A review of 595 available data on fluids, minerals, and rock types relevant to geologic carbon storage indicates 596 that the values typically used for these parameters in field scale models are not reflective of the 597 current state of knowledge, but neither is there an adequate understanding of the nanoscale basis 598 for the observed behavior or a means to predict how the behavior might evolve in a chemically

reactive system like CO_2 -brine-minerals. There is a need to better define the origins of these properties in terms of fundamental physico-chemical interactions, and to develop new constitutive relations to allow these properties to evolve during the extended time period (weeks to millennia) needed to describe CO_2 storage.

603 The seal rocks that cap CO_2 sequestration systems in the subsurface (typically shale and 604 mudstone) present special challenges as a result of their fine grain size and heterogeneity both in 605 terms of texture and mineralogy. Ultimately, to ensure safe CO₂ storage, it is necessary to know 606 the vertical permeability and capillary entry pressure for such rocks, both of which depend on 607 porosity, state of stress, mineralogy, and presence of fractures. In particular, knowledge of the 608 properties of seals is required to develop a more accurate understanding of the sensitivity of seal 609 $k_{\rm v}$ and $P_{\rm c,b}$ values to geochemical and geomechanical alteration. At present, knowledge of the 610 properties of shales and mudstones lags behind that of other sedimentary rocks, as illustrated by 611 the fact that extant models of the stress-porosity-permeability relations of these rocks bear little 612 resemblance to the experimental database. A first key need is to better understand the impact of 613 clay mineral mass fraction on the stress-porosity-permeability relations of fine-grained rocks and 614 its relation to the microsctructure of fine-grained rocks. Clay minerals can decrease k by more 615 than four orders of magnitude at fixed porosity. A second key need is to understand the impact of 616 clay minerals on fracture permeability and on the sensitivity of fracture permeability to 617 geochemical alteration. Existing data suggest that fractures and faults may not strongly impact 618 seal integrity if they have a sufficiently high clay content, and dissolution of carbonate minerals 619 in fractures and faults may actually result in permeability decrease if the porosity increase is 620 offset by an increase of the clay fraction in the fault. A third key need is to better understand the 621 mechanical response of asperities on fracture surfaces in shales and mudstones to induced

stresses, and the impact of geochemical alteration on those responses. Finally, future research should resolve the impact of pore size on the precipitation of secondary carbonate solids and determine the impact of CO_2 adsorption on hydrated swelling clay minerals. In particular, the impact of CO_2 adsorption on fracture apertures and on the frictional strength of clay-rich fault gouge is important.

627 Residual CO₂ saturation $(S_{g,r})$ is a key parameter of GCS models that determines the extent of 628 residual trapping and strongly influences plume migration velocity, storage capacity, and storage 629 security. Residual CO₂ saturation is highly sensitive to the mineral-water-CO₂ wetting angle, θ , 630 but potential changes in θ present difficulties in predicting $S_{g,r}$. Although it is generally believed 631 that GCS relevant rocks are water-wet in the presence of CO₂, there are both conflicting static 632 measurements as well as evidence that exposure of mineral surfaces to CO₂-acidified brine 633 changes wetting behavior for several minerals. In this context, one key need is to measure the 634 sensitivity of core-scale $S_{g,r}$ values to interfacial-scale θ values and the dependence of this 635 sensitivity on rock properties such as surface roughness. A second key need is to determine the timing of the wettability alteration, for example, does it occur when CO₂ first contacts the rock, 636 637 or does it take place more slowly and primarily influence brine imbibition. Finally, a third key 638 need is to develop predictive models of wettability and contact angle hysteresis in CO₂-brine-639 mineral systems, which can only come from knowledge of the nanoscale phenomena at the 640 mineral-fluid interface.

Although it is generally slow, mineral trapping is of considerable interest because it represents permanent immobilization of the injected CO_2 and, if extensive, lessens the need to make long term predictions of migration of fluid phases in the subsurface. However, the rate and extent of mineral trapping are not well understood, largely because of uncertainties in the dissolution and

645 precipitation rates of silicate minerals. In field scale GCS models, silicate reaction rates are 646 generally described with a phenomenological transition-state-theory (TST) formalism, but this 647 formalism is inadequate for a number of reasons, including its reliance on parametric fits of 648 laboratory data that are determined at far from equilibrium conditions and the need to specify the 649 reactive surface area a_r of each mineral. Viewed at the nanoscale at the mineral surface, mineral 650 dissolution is affected by chemical impurities, coupled reactions, mineral coatings, roughness, 651 and roughness evolution with time. Overall, there is still little predictive capability for mineral 652 reactivity on the long timescales (tens to thousands of years) needed to predict mineral trapping 653 of CO₂. A first key need in this area is the development of advanced rate laws that account for 654 mechanisms and chemical species that are important in GCS-relevant conditions. A second key 655 need is for experimental studies of the properties of surface coatings and their impact on surface 656 reaction rates. Finally, a third key need is to elucidate the pore-network scale feedbacks between 657 flow and reactivity, particularly in conditions with low flow rates that are most relevant to long-658 term CO₂ mineral trapping.

659

660 ACKNOWLEDGMENT

This research was performed under the auspices of the Center for Nanoscale Control of Geologic CO_2 (NCGC), an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231. The lead author is grateful to Drs. Michael Celia (Princeton), Curtis Oldenburg (LBNL), and Catherine Peters (Princeton) for providing advice on an early draft of the manuscript.

667 REFERENCES

- 668 (1) Bruant, R. G., Jr.; Guswa, A. J.; Celia, M. A.; Peters, C. A. Safe storage of CO_2 in deep 669 saline aquifers. *Environ. Sci. Technol.* **2002**, *36*, 240A – 245A.
- Pacala, S.; Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. *Science* 2004, *305*, 968–972.
- Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L., Eds. *IPCC Special Report* on Carbon Dioxide Capture and Storage; Cambridge University Press, 2005; p 430.
- 674 (4) Bachu, S. CO₂ storage in geological media: Role, means, status and barriers to
 675 deployment. *Prog. Energy Combust. Sci.* 2008, *34*, 254–273.
- 676 (5) Benson, S. M.; Cole, D. R. CO₂ sequestration in deep sedimentary formations. *Elements*677 2008, 4, 325–331.
- 678 (6) Haszeldine, R. S. Carbon capture and storage: How green can black be. *Science* 2009, 325, 1647–1652.
- 680 (7) Smit, B.; Reimer, J. A.; Oldenburg, C. M.; Bourg, I. C. Introduction to Carbon Capture
 681 and Sequestration; Imperial College Press, 2014.
- (8) Stauffer, P. H.; Keating, G. N.; Middleton, R. S.; Viswanathan, H. S.; Berchtold, K. A.;
 Singh, R. P.; Pawar, R. J.; Mancino, A. Greening coal: Breakthroughs and challenges in carbon capture and storage. *Environ. Sci. Technol.* 2011, *45*, 8597–8604.
- 685 (9) Rubin, E. S.; Zhai, H. The cost of carbon capture and storage for natural gas combined 686 cycle power plants. *Environ. Sci. Technol.* **2012**, *46*, 3076–3084.
- (10) Eccles, J. K.; Pratson, L.; Newell, R. G.; Jackson, R. B. Physical and economic potential
 of geological CO₂ storage in saline aquifers. *Environ. Sci. Technol.* 2009, *43*, 1962–1969.
- (11) Hovorka, S. D.; Benson, S. M.; Doughty, C.; Freifeld, B. M.; Sakurai, S.; Daley, T. M.;
 Kharaka, Y. K.; Holtz, M. H.; Trautz, R. C.; Nance, H. S.; et al. Measuring permanence of
 CO₂ storage in saline formations: the Frio experiment. *Environ. Geosci.* 2006, *13*, 105–
 121.
- (12) Chadwick, A.; Williams, G.; Delepine, N.; Clochard, V.; Labat, K.; Sturton, S.;
 Buddensiek, M.-L.; Dillen, M.; Nickel, M.; Lima, A. L.; et al. Quantitative analysis of
 time-lapse seismic monitoring data at the Sleipner CO₂ storage operation. *Lead. Edge*2010, 29, 170–177.

697 698 699	(13)	Michael, K.; Golab, A.; Shulakova, V.; Ennis-King, J.; Allinson, G.; Sharma, S.; Aiken, T. Geological storage of CO ₂ in saline aquifers—A review of the experience from existing storage operations. <i>Int. J. Greenh. Gas Control</i> 2010 , <i>4</i> , 659–667.
700 701 702	(14)	Daley, T. M.; Ajo-Franklin, J. B.; Doughty, C. Constraining the reservoir model of an injected CO ₂ plume with crosswell CASSM at the Frio-II brine pilot. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 1022–1030.
703 704 705 706	(15)	Sato, K.; Mito, S.; Horie, T.; Ohkuma, H.; Saito, H.; Watanabe, J.; Yoshimura, T. Monitoring and simulation studies for assessing macro- and meso-scale migration of CO ₂ sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan. <i>Int. J.</i> <i>Greenh. Gas Control</i> 2011 , <i>5</i> , 125–137.
707 708 709	(16)	Underschultz, J.; Boreham, C.; Dance, T.; Stalker, L.; Freifeld, B.; Kirste, D.; Ennis-King, J. CO ₂ storage in a depleted gas field: An overview of the CO2CRC Otway Project and initial results. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 922–932.
710 711 712	(17)	Kharaka, Y. K.; Cole, D. R.; Thordsen, J. J.; Gans, K. D.; Thomas, R. B. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO ₂ . <i>Rev. Mineral. Geochemistry</i> 2013 , <i>77</i> , 399–430.
713 714 715 716	(18)	Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 952–965.
717 718	(19)	Marieni, C.; Henstock, T. J.; Teagle, D. A. H. Geological storage of CO ₂ within the oceanic crust by gravitational trapping. <i>Geophys. Res. Lett.</i> 2013 , <i>40</i> , 6219–6224.
719 720	(20)	Zhang, S.; DePaolo, D. J.; Xu, T.; Zheng, L. Mineralization of carbon dioxide sequestered in volcanogenic sandstone reservoir rocks. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>18</i> , 315–328.
721 722	(21)	House, K. Z.; Schrag, D. P.; Harvey, C. F.; Lackner, K. S. Permanent carbon dioxide storage in deep-sea sediments. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 2006 , <i>103</i> , 12291–12295.
723 724	(22)	Espinoza, D. N.; Santamarina, J. C. P-wave monitoring of hydrate-bearing sand during CH ₄ –CO ₂ replacement. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 1031–1038.
725 726	(23)	Juanes, R.; Spiteri, E. J.; Orr, F. M., Jr.; Blunt, M. J. Impact of relative permeability hysteresis on geological CO ₂ storage. <i>Water Resour. Res.</i> 2006 , <i>42</i> , W12418.
727 728	(24)	Doughty, C. Investigation of CO_2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation. <i>Transp. Porous Media</i> 2010 , <i>82</i> , 49–76.
729 730	(25)	Würdemann, H.; Möller, F.; Kühn, M.; Heidug, W.; Christensen, N. P.; Borm, G.; Schilling, F. R.; the CO ₂ SINK Group. CO ₂ SINK—From site characterization and risk

731 732 733	assessment to monitoring and verification: One year of operational experience with the field laboratory for CO ₂ storage at Ketzin, Germany. <i>Int. J. Greenh. Gas Control</i> 2010 , <i>4</i> , 938–951.	
734 (26) 735 736	Zhou, Q.; Birkholzer, J. T.; Mehnert, E.; Lin, YF.; Zhang, K. Modeling basin- and plume-scale processes of CO ₂ storage for full-scale deployment. <i>Ground Water</i> 2010 , <i>48</i> , 494–514.	
737 (27) 738 739	Cappa, F.; Rutqvist, J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO ₂ . <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 336–346.	
740 (28) 741 742	Liu, F.; Lu, P.; Zhu, C.; Xiao, Y. Coupled reactive flow and transport modeling of CO ₂ sequestration in the Mt. Simon sandstone formation, Midwest U.S.A. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 294–307.	
743 (29) 744 745 746	Buscheck, T. A.; Sun, Y.; Chen, M.; Hao, Y.; Wolery, T. J.; Bourcier, W. L.; Court, B.; Celia, M. A.; Friedmann, S. J.; Aines, R. D. Active CO ₂ reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>6</i> , 230–245.	
747 (30) 748 749	Noy, D. J. J.; Holloway, S.; Chadwick, R. A.; Williams, J. D. O.; Hannis, S. A.; Lahann, R. W. Modelling large-scale carbon dioxide injection into the Bunter Sandstone in the UK Southern North Sea. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>9</i> , 220–233.	
750 (31) 751 752	Olden, P.; Pickup, G.; Jin, M.; Mackay, E.; Hamilton, S.; Somerville, J.; Todd, A. Use of rock mechanics laboratory data in geomechanical modelling to increase confidence in CO ₂ geological storage. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>11</i> , 304–315.	
753 (32) 754 755	Cavanagh, A.; Rostron, B. High-resolution simulations of migration pathways and the related potential well risk at the IEAGHG Weyburn–Midale CO ₂ storage project. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>16S</i> , S15–S24.	
756 (33) 757 758	Cavanagh, A. J.; Haszeldine, R. S. The Sleipner storage site: Capillary flow modeling of a layered CO ₂ plume requires fractured shale barriers within the Utsira Formation. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>21</i> , 101–112.	
759 (34) 760	Huang, X.; Bandilla, K. W.; Celia, M. A.; Bachu, S. Basin-scale modeling of CO ₂ storage using models of varying complexity. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>20</i> , 73–86.	
761 (35) 762 763	Konstantinovskaya, E.; Rutqvist, J.; Malo, M. CO ₂ storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): Insights from coupled reservoir-geomechanical modeling. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>22</i> , 88–110.	
764 (36) 765	Sung, RT.; Li, MH.; Dong, JJ.; Lin, A. TS.; Hsu, SK.; Wang, CY.; Yang, CN. Numerical assessment of CO ₂ geological sequestration in sloping and layered	
766 767		heterogeneous formations: A case study from Taiwan. Int. J. Greenh. Gas Control 2014, 20, 168–179.
-------------------	------	---
768 769 770	(37)	Nordbotten, J. M.; Flemisch, B.; Gasda, S. E.; Nilsen, H. M.; Fan, Y.; Pickup, G. E.; Wiese, B.; Celia, M. A.; Dahle, H. K.; Eigestad, G. T.; et al. Uncertainties in practical simulation of CO ₂ storage. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>9</i> , 234–242.
771 772 773	(38)	Mito, S.; Xue, Z.; Sato, T. Effect of formation water composition on predicting CO ₂ behavior: A case study at the Nagaoka post-injection monitoring site. <i>Appl. Geochemistry</i> 2013 , <i>30</i> , 33–40.
774 775	(39)	Rutqvist, J. The geomechanics of CO ₂ storage in deep sedimentary formations. <i>Geotech. Geol. Eng.</i> 2012 , <i>30</i> , 525–551.
776 777 778	(40)	Szulczewski, M. L.; MacMinn, C. W.; Herzog, H. J.; Juanes, R. Lifetime of carbon capture and storage as a climate-change mitigation technology. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 2012 , <i>109</i> , 5185–5189.
779 780	(41)	Doughty, C. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves. <i>Energy Convers. Manag.</i> 2007 , <i>48</i> , 1768–1781.
781 782 783	(42)	Xu, T.; Apps, J. A.; Pruess, K.; Yamamoto, H. Numerical modeling of injection and mineral trapping of CO_2 with H_2S and SO_2 in a sandstone formation. <i>Chem. Geol.</i> 2007 , <i>242</i> , 319–346.
784 785 786	(43)	Gaus, I.; Azaroual, M.; Czernichowski-Lauriol, I. Reactive transport modelling of the impact of CO ₂ injection on the clayey cap rock at Sleipner (North Sea). <i>Chem. Geol.</i> 2005 , <i>217</i> , 319–337.
787 788 789	(44)	Pham, V. T. H.; Lu, P.; Aagaard, P.; Zhu, C.; Hellevang, H. On the potential of CO ₂ -water-rock interactions for CO ₂ storage using a modified kinetic model. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 1002–1015.
790 791	(45)	Zhang, M.; Bachu, S. Review of integrity of existing wells in relation to CO ₂ geological storage: What do we know? <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 826–840.
792 793 794	(46)	Gaus, I.; Audigane, P.; André, L.; Lions, J.; Jacquemet, N.; Durst, P.; Czernichowski- Lauriol, I.; Azaroual, M. Geochemical and solute transport modelling for CO ₂ storage, what to expect from it? <i>Int. J. Greenh. Gas Control</i> 2008 , <i>2</i> , 605–625.
795 796	(47)	Vilarrasa, V.; Silva, O.; Carrera, J.; Olivella, S. Liquid CO ₂ injection for geological storage in deep saline aquifers. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>14</i> , 84–96.
797 798	(48)	Li, B.; Tchelepi, H. A.; Benson, S. M. Influence of capillary-pressure models on CO ₂ solubility trapping. <i>Adv. Water Resour.</i> 2013 , <i>62</i> , 488–498.

799 800 801	(49)	Saraji, S.; Piri, M.; Goual, L. The effects of SO ₂ contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO ₂ /brine/quartz systems. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>28</i> , 147–155.
802 803	(50)	Berg, S.; Ott, H. Stability of CO ₂ -brine immiscible displacement. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>11</i> , 188–203.
804 805 806	(51)	Pini, R.; Krevor, S. C. M.; Benson, S. M. Capillary pressure and heterogeneity for the CO ₂ /water system in sandstone rocks at reservoir conditions. <i>Adv. Water Resour.</i> 2012 , <i>38</i> , 48–59.
807 808 809	(52)	Oldenburg, C. M.; Webb, S. W.; Pruess, K.; Moridis, G. J. Mixing of stabily stratified gases in subsurface reservoirs: A comparison of diffusion models. <i>Transp. Porous Media</i> 2004 , <i>54</i> , 323–334.
810 811 812	(53)	Mathias, S. A.; Gluyas, J. G.; González Martínez de Miguel, G. J.; Bryant, S. L.; Wilson, D. On relative permeability data uncertainty and CO ₂ injectivity estimation for brine aquifers. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>12</i> , 200–212.
813 814 815	(54)	Sbai, M. A.; Azaroual, M. Numerical modeling of formation damage by two-phase particulate transport processes during CO ₂ injection in deep heterogeneous porous media. <i>Adv. Water Resour.</i> 2011 , <i>34</i> , 62–82.
816 817 818 819	(55)	Bodnar, R. J.; Steele-MacInnis, M.; Capobianco, R. M.; Rimstidt, J. D.; Dilmore, R.; Goodman, A.; Guthrie, G. PVTX properties of H ₂ O-CO ₂ -"salt" at PTX conditions applicable to carbon sequestration in saline formations. <i>Rev. Mineral. Geochemistry</i> 2013 , 77, 123–152.
820 821 822	(56)	Carroll, S. A.; Keating, E.; Mansoor, K.; Dai, Z.; Sun, Y.; Trainor-Guitton, W.; Brown, C.; Bacon, D. Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>29</i> , 153–168.
823 824 825	(57)	Burant, A.; Lowry, G. V; Karamalidis, A. K. Partitioning behavior of organic contaminants in carbon storage environments: A critical review. <i>Environ. Sci. Technol.</i> 2012 , <i>47</i> , 37–54.
826 827 828 829	(58)	Ambrose, W. A.; Lakshminarasimhan, S.; Holtz, M. H.; Núñez-López, V.; Hovorka, S. D.; Duncan, I. Geologic factors controlling CO ₂ storage capacity and permanence: case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO ₂ storage. <i>Environ. Geol.</i> 2008 , <i>54</i> , 1619–1633.
830 831	(59)	Saadatpoor, E.; Bryant, S. L.; Sepehrnoori, K. New trapping mechanism in carbon sequestration. <i>Transp. Porous Media</i> 2010 , <i>82</i> , 3–17.

(60) Deng, H.; Stauffer, P. H.; Dai, Z.; Jiao, Z.; Surdam, R. C. Simulation of industrial-scale

833 834		CO ₂ storage: Multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>10</i> , 397–418.
835 836 837	(61)	Birkholzer, J. T.; Zhou, Q.; Tsang, CF. Large-scale impact of CO ₂ storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. <i>Int. J. Greenh. Gas Control</i> 2009 , <i>3</i> , 181–194.
838 839 840	(62)	Bretan, P.; Yielding, G.; Mathiassen, O. M.; Thorsnes, T. Fault-seal analysis for CO ₂ storage: an example from the Troll area, Norwegian Continental Shelf. <i>Pet. Geosci.</i> 2011 , <i>17</i> , 181–192.
841 842	(63)	Zoback, M. D.; Gorelick, S. M. Earthquake triggering and large-scale geologic storage of carbon dioxide. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 2012 , <i>109</i> , 10164–10168.
843 844 845	(64)	Amann-Hildenbrand, A.; Bertier, P.; Busch, A.; Krooss, B. M. Experimental investigation of the sealing capacity of generic clay-rich caprocks. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>19</i> , 620–641.
846 847	(65)	Busch, A.; Amann-Hildenbrand, A. Predicting capillarity of mudrocks. <i>Mar. Pet. Geol.</i> 2013 , <i>45</i> , 208–223.
848 849	(66)	Aydin, A. Fractures, faults, and hydrocarbon entrapment, migration and flow. <i>Mar. Pet. Geol.</i> 2000 , <i>17</i> , 797–814.
850 851 852	(67)	Boisson, JY.; Bertrand, L.; Heitz, JF.; Moreau-Le Golvan, Y. In situ and laboratory investigations of fluid flow through an argillaceous formation at different scales of space and time, Tournemire tunnel, southern France. <i>Hydrogeol. J.</i> 2001 , <i>9</i> , 108–123.
853 854 855	(68)	Cosgrove, J. W. Hydraulic fracturing during the formation and deformation of a basin: A factor in the dewatering of low-permeability sediments. <i>Am. Assoc. Pet. Geol. Bull.</i> 2001 , <i>85</i> , 737–748.
856 857 858	(69)	Aplin, A. C.; Larter, S. R. Fluid flow, pore pressure, wettability, and leakage in mudstone cap rocks. In <i>Evaluating fault and cap rock seals: AAPG Hedberg Series, no. 2</i> ; Boult, P., Kadli, J., Eds.; The American Association of Petroleum Geologists, 2005; pp 1–12.
859 860	(70)	Bachu, S.; Bennion, D. B. Experimental assessment of brine and/or CO ₂ leakage through well cements at reservoir conditions. <i>Int. J. Greenh. Gas Control</i> 2009 , <i>3</i> , 494–501.
861 862	(71)	Crow, W.; Carey, J. W.; Gasda, S.; Williams, D. B.; Celia, M. Wellbore integrity analysis of a natural CO ₂ producer. <i>Int. J. Greenh. Gas Control</i> 2010 , <i>4</i> , 186–197.
863 864 865	(72)	Celia, M. A.; Nordbotten, J. M.; Court, B.; Dobossy, M.; Bachu, S. Field-scale application of a semi-analytical model for estimation of CO ₂ and brine leakage along old wells. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 257–269.

866 867 868	(73)	Mazurek, M.; Alt-Epping, P.; Bath, A.; Gimmi, T.; Waber, H. N.; Buschaert, S.; De Cannière, P.; De Craen, M.; Gautschi, A.; Savoye, S.; et al. Natural tracer profiles across argillaceous formations. <i>Appl. Geochemistry</i> 2011 , <i>26</i> , 1035–1064.
869 870	(74)	Carey, J. W. Geochemistry of wellbore integrity in CO ₂ sequestration: Portland cement- steel-brine-CO ₂ interactions. <i>Rev. Mineral. Geochemistry</i> 2013 , <i>77</i> , 505–539.
871 872	(75)	Song, J.; Zhang, D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. <i>Environ. Sci. Technol.</i> 2013 , <i>47</i> , 9–22.
873 874 875	(76)	Griffith, C. A.; Dzombak, D. A.; Lowry, G. V. Physical and chemical characteristics of potential seal strata in regions considered for demonstrating geological saline CO ₂ sequestration. <i>Environ. Earth Sci.</i> 2011 , <i>64</i> , 925–948.
876 877	(77)	Dewhurst, D. N.; Yang, Y.; Aplin, A. C. Permeability and fluid flow in natural mudstones. <i>Geol. Soc. London, Spec. Publ.</i> 1999 , <i>158</i> , 23–43.
878 879	(78)	Best, M. E.; Katsube, T. J. Shale permeability and its significance in hydrocarbon exploration. <i>Lead. Edge</i> 1995 , <i>14</i> (March), 165–170.
880 881	(79)	Bickle, M.; Kampman, N.; Wigley, M. Natural analogues. <i>Rev. Mineral. Geochemistry</i> 2013 , <i>77</i> , 15–71.
882 883	(80)	Yang, Y.; Aplin, A. C. A permeability-porosity relationship for mudstones. <i>Mar. Pet. Geol.</i> 2010 , <i>27</i> , 1692–1697.
884 885	(81)	Grunau, H. R. A worldwide look at the cap-rock problem. J. Pet. Geol. 1987, 10, 245–266.
886 887	(82)	Gautschi, A. Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes. <i>Hydrogeol. J.</i> 2001 , <i>9</i> , 97–107.
888 889 890	(83)	Croisé, J.; Schlickenrieder, L.; Marschall, P.; Boisson, J. Y.; Vogel, P.; Yamamoto, S. Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory. <i>Phys. Chem. Earth</i> 2004 , <i>29</i> , 3–15.
891 892 893	(84)	Mazurek, M.; Alt-Epping, P.; Bath, A.; Gimmi, T.; Waber, H. N. <i>Natural tracer profiles across argillaceous formations: The CLAYTRAC Project</i> ; Nuclear Energy Agency, Organisation for Economic Co-Operation and Development: Paris, 2009.
894 895	(85)	Gutierrez, M.; Øino, L. E.; Nygård, R. Stress-dependent permeability of a de-mineralised fracture in shale. <i>Mar. Pet. Geol.</i> 2000 , <i>17</i> , 895–907.
896 897	(86)	Bock, H.; Dehandschutter, B.; Martin, C. D.; Mazurek, M.; de Haller, A.; Skoczylas, F.; Davy, C. Self-sealing of fractures in argillaceous formations in the context of geological

898 899		<i>disposal of radioactive waste: Review and synthesis</i> ; Nuclear Energy Agency, Organisation for Economic Co-Operation and Development: Paris, 2010.
900 901	(87)	Neuzil, C. E. How permeable are clays and shales? <i>Water Resour. Res.</i> 1994 , <i>30</i> , 145–150.
902 903	(88)	Neuzil, C. E. Can shale safely host U.S. nuclear waste? <i>EOS, Trans. Am. Geophys. Union</i> 2013 , <i>94</i> , 261–268.
904 905	(89)	Mitchell, T. M.; Faulkner, D. R. Towards quantifying the matrix permeability of fault damage zones in low porosity rocks. <i>Earth Planet. Sci. Lett.</i> 2012 , <i>339-340</i> , 24–31.
906 907	(90)	Caine, J. S.; Evans, J. P.; Forster, C. B. Fault zone architecture and permeability structure. <i>Geology</i> 1996 , <i>24</i> , 1025–1028.
908 909 910	(91)	Motellier, S.; Devol-Brown, I.; Savoye, S.; Thoby, D.; Alberto, JC. Evaluation of tritiated water diffusion through the Toarcian clayey formation of the Tournemire experimental site (France). <i>J. Contam. Hydrol.</i> 2007 , <i>94</i> , 99–108.
911 912 913	(92)	Wollenweber, J.; Alles, S.; Busch, A.; Krooss, B. M.; Stanjek, H.; Littke, R. Experimental investigation of the CO ₂ sealing efficiency of caprocks. <i>Int. J. Greenh. Gas Control</i> 2010 , <i>4</i> , 231–241.
914 915 916	(93)	May, F. Alteration of wall rocks by CO ₂ -rich water ascending in fault zones: Natural analogues for reactions induced by CO ₂ migrating along faults in siliciclastic reservoir and cap rocks. <i>Oil Gas Sci. Technol.</i> 2005 , <i>60</i> , 19–32.
917 918 919	(94)	Andreani, M.; Gouze, P.; Luquot, L.; Jouanna, P. Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO ₂ seepage. <i>Geophys. Res. Lett.</i> 2008 , <i>35</i> , L14404.
920 921 922 923	(95)	Bildstein, O.; Kervévan, C.; Lagneau, V.; Delaplace, P.; Crédoz, A.; Audigane, P.; Perfetti, E.; Jacquemet, N.; Jullien, M. Integrative modeling of caprock integrity in the context of CO ₂ storage: Evolution of transport and geochemical properties and impact on performance and safety assessment. <i>Oil Gas Sci. Technol.</i> 2010 , <i>65</i> , 485–502.
924 925	(96)	Ellis, B. R.; Bromhal, G. S.; McIntyre, D. L.; Peters, C. A. Changes in caprock integrity due to vertical migration of CO ₂ -enriched brine. <i>Energy Procedia</i> 2011 , <i>4</i> , 5327–5334.
926 927	(97)	Wibberley, C. A. J.; Yielding, G.; Di Toro, G. Recent advances in the understanding of fault zone internal structure: a review. <i>Geol. Soc. London, Spec. Publ.</i> 2008 , <i>299</i> , 5–33.
928 929	(98)	Manzocchi, T.; Childs, C.; Walsh, J. J. Faults and fault properties in hydrocarbon flow models. <i>Geofluids</i> 2010 , <i>10</i> , 94–113.

930 931 932	(99)	Crawford, B. R.; Faulkner, D. R.; Rutter, E. H. Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge. <i>J. Geophys. Res.</i> 2008 , <i>113</i> , B03207.
933 934	(100)	Manzocchi, T.; Walsh, J. J.; Nell, P.; Yielding, G. Fault transmissibility multipliers for flow simulation models. <i>Pet. Geosci.</i> 1999 , <i>5</i> , 53–63.
935 936	(101)	Yielding, G. Using probabilistic shale smear modelling to relate SGR predictions of column height to fault-zone heterogeneity. <i>Pet. Geosci.</i> 2012 , <i>18</i> , 33–42.
937 938	(102)	Dewhurst, D. N.; Hennig, A. L. Geomechanical properties related to top seal leakage in the Carnarvon Basin, Northwest Shelf, Australia. <i>Pet. Geosci.</i> 2003 , <i>9</i> , 255–263.
939 940 941	(103)	Pan, PZ.; Rutqvist, J.; Feng, XT.; Yan, F. Modeling of caprock discontinuous fracturing during CO ₂ injection into a deep brine aquifer. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>19</i> , 559–575.
942	(104)	Sibson, R. H. A note on fault reactivation. J. Struct. Geol. 1985, 7, 751-754.
943	(105)	Byerlee, J. Friction of rocks. Pure Appl. Geophys. 1978, 116, 615-626.
944 945	(106)	Morrow, C. A.; Shi, L. Q.; Byerlee, J. D. Permeability of fault gouge under confining pressure and shear stress. <i>J. Geophys. Res.</i> 1984 , <i>89</i> , 3193-3200.
946 947	(107)	Ingram, G. M.; Urai, J. L. Top-seal leakage through faults and fractures: the role of mudrock properties. <i>Geol. Soc. London, Spec. Publ.</i> 1999 , <i>158</i> , 125–135.
948 949	(108)	Schleicher, A. M.; Hofmann, H.; van der Pluijm, B. A. Constraining clay hydration state and its role in active fault systems. <i>Geochem. Geophys. Geosyst.</i> 2013 , <i>14</i> , 1039–1052.
950 951	(109)	Burland, J. B. On the compressibility and shear strength of natural clays. <i>Géotechnique</i> 1990 , <i>40</i> , 329–378.
952 953	(110)	Mutschler, T.; Triantafyllidis, T.; Balthasar, K. Geotechnical investigations of cap rocks above CO ₂ -reservoirs. <i>Energy Procedia</i> 2009 , <i>1</i> , 3375–3382.
954 955 956	(111)	Elkhoury, J. E.; Ameli, P.; Detwiler, R. L. Dissolution and deformation in fractured carbonates caused by flow of CO ₂ -rich brine under reservoir conditions. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>16S</i> , S203–S215.
957 958	(112)	Young, A.; Low, P. F.; McLatchie, A. S. Permeability studies of argillaceous rocks. <i>J. Geophys. Res.</i> 1964 , <i>69</i> , 4237–4245.
959 960	(113)	Nadeau, P. H. An experimental study of the effects of diagenetic clay minerals on reservoir sands. <i>Clays Clay Miner</i> . 1998 , <i>46</i> , 18–26.

- 961 (114) Gouze, P.; Luquot, L. X-ray microtomography characterization of porosity, permeability
 962 and reactive surface changes during dissolution. J. Contam. Hydrol. 2011, 120-121, 45–
 963 55.
- 964 (115) Fitts, J. P.; Peters, C. A. Caprock fracture dissolution and CO₂ leakage. *Rev. Mineral.* 965 *Geochemistry* 2013, 77, 459–479.
- (116) Steefel, C. I.; Molins, S.; Trebotich, D. Pore scale processes associated with subsurface
 CO₂ injection and sequestration. *Rev. Mineral. Geochemistry* 2013, 77, 259–303.
- 968 (117) Bacci, G.; Korre, A.; Durucan, S. Experimental investigation into salt precipitation during
 969 CO₂ injection in saline aquifers. *Energy Procedia* 2011, *4*, 4450–4456.
- 970 (118) Yang, Y.; Aplin, A. C. Permeability and petrophysical properties of 30 natural mudstones.
 971 *J. Geophys. Res.* 2007, *112*, B03206.
- (119) Mondol, N. H.; Bjørlykke, K.; Jahren, J. Experimental compaction of clays: relationship
 between permeability and petrophysical properties in mudstones. *Pet. Geosci.* 2008, *14*,
 319–337.
- 975 (120) Mesri, G.; Olson, R. E. Mechanisms controlling the permeability of clays. *Clays Clay* 976 *Miner.* 1971, 19, 151–158.
- (121) Vasseur, G.; Djeran-Maigre, I.; Grunberger, D.; Rousset, G.; Tessier, D.; Velde, B.
 Evolution of structural and physical parameters of clays during experimental compaction.
 Mar. Pet. Geol. 1995, *12*, 941–954.
- (122) Yang, Y.; Aplin, A. C. Definition and practical application of mudstone porosity-effective
 stress relationships. *Pet. Geosci.* 2004, *10*, 153–162.
- (123) Reece, J. S.; Flemings, P. B.; Dugan, B.; Long, H.; Germaine, J. T. Permeability-porosity
 relationships of shallow mudstones in the Ursa Basin, northern deepwater Gulf of Mexico.
 J. Geophys. Res. 2012, *117*, B12102.
- (124) Tessier, D.; Lajudie, A.; Petit, J.-C. Relation between the macroscopic behavior of clays
 and their microstructural properties. *Appl. Geochemistry* 1992, 7 (Supl. Issue 1), 151–161.
- 987 (125) Sherwood, J. D. Ionic transport in swelling shale. *Adv. Colloid Interface Sci.* 1995, *61*, 51–64.
- (126) Anderson, R. L.; Ratcliffe, I.; Greenwell, H. C.; Williams, P. A.; Cliffe, S.; Coveney, P.
 V. Clay swelling A challenge in the oilfield. *Earth-Science Rev.* 2010, *98*, 201–216.
- (127) Dusseault, M. B. Geomechanical challenges in petroleum reservoir exploration. *KSCE J. Civ. Eng.* 2011, *15*, 669–678.

993 994 995	(128)	Bruand, A.; Tessier, D. Water retention properties of the clay in soils developed on clayey sediments: significance of parent material and soil history. <i>Eur. J. Soil Sci.</i> 2000 , <i>51</i> , 679–688.
996 997 998	(129)	Fitts, T. G.; Brown, K. M. Stress-induced smectite dehydration: ramifications for patterns of freshening and fluid expulsion in the N. Barbados accretionary wedge. <i>Earth Planet. Sci. Lett.</i> 1999 , <i>172</i> , 179–197.
999 1000	(130)	Dewhurst, D. N.; Siggins, A. F. Impact of fabric, microcracks and stress field on shale anisotropy. <i>Geophys. J. Int.</i> 2006 , <i>165</i> , 135–148.
1001 1002 1003	(131)	Heath, J. E.; Dewers, T. A.; McPherson, B. J. O. L.; Petrusak, R.; Chidsey, T. C., Jr.; Rinehart, A. J.; Mozley, P. S. Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior. <i>Geosphere</i> 2011 , <i>7</i> , 429–454.
1004 1005 1006	(132)	Mbia, E. N.; Frykman, P.; Nielsen, C. M.; Fabricius, I. L.; Pickup, G. E.; Bernstone, C. Caprock compressibility and permeability and the consequences for pressure development in CO ₂ storage sites. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>22</i> , 139–153.
1007 1008	(133)	Katsube, T. J.; Mudford, B. S.; Best, M. E. Petrophysical characteristics of shales from the Scotian shelf. <i>Geophysics</i> 1991 , <i>56</i> , 1681–1689.
1009 1010	(134)	Josh, M.; Esteban, L.; Delle Piane, C.; Sarout, J.; Dewhurst, D. N.; Clennell, M. B. Laboratory characterisation of shale properties. <i>J. Pet. Sci. Eng.</i> 2012 , <i>88-89</i> , 107–124.
1011 1012	(135)	Skurtveit, E.; Aker, E.; Soldal, M.; Angeli, M.; Wang, Z. Experimental investigation of CO ₂ breakthrough and flow mechanisms in shale. <i>Pet. Geosci.</i> 2012 , <i>18</i> , 3–15.
1013 1014 1015	(136)	Keller, L. M.; Schuetz, P.; Erni, R.; Rossell, M. D.; Lucas, F.; Gasser, P.; Holzer, L. Characterization of multi-scale microstructural features in Opalinus Clay. <i>Microporous Mesoporous Mater.</i> 2013 , <i>170</i> , 83–94.
1016 1017 1018	(137)	Curtis, M. E.; Sondergeld, C. H.; Ambrose, R. J.; Rai, C. S. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. <i>Am. Assoc. Pet. Geol. Bull.</i> 2012 , <i>96</i> , 665–677.
1019 1020	(138)	Nelson, P. H. Pore-throat sizes in sandstones, tight sandstones, and shales. <i>Am. Assoc. Pet. Geol. Bull.</i> 2009 , <i>93</i> , 329–340.
1021 1022	(139)	Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, JC.; Gimmi, T.; Maes, N. Diffusion- driven transport in clayrock formations. <i>Appl. Geochemistry</i> 2012 , <i>27</i> , 463–478.
1023 1024	(140)	Schlömer, S.; Krooss, B. M. Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. <i>Mar. Pet. Geol.</i> 1997 , <i>14</i> , 565–580.

1025 1026 1027	(141)	Yven, B.; Sammartino, S.; Geraud, Y.; Homand, F.; Villieras, F. Mineralogy, texture and porosity of Callovo-Oxfordian argillites of the Meuse/Haute-Marne region (eastern Paris Basin). <i>Mém. Soc. Géol. Fr.</i> 2007 , <i>178</i> , 73–90.
1028 1029	(142)	Hildenbrand, A.; Schlömer, S.; Krooss, B. M.; Littke, R. Gas breakthrough experiments in pelitic rocks: comparative study with N_2 , CO_2 , and CH_4 . <i>Geofluids</i> 2004 , <i>4</i> , 61–80.
1030 1031 1032	(143)	Ruppert, L. F.; Sakurovs, R.; Blach, T. P.; He, L.; Melnichenko, Y. B.; Mildner, D. F. R.; Alcantar-Lopez, L. A USANS/SANS study of the accessibility of pores in the Barnett shale to methane and water. <i>Energy & Fuels</i> 2013 , <i>27</i> , 772–779.
1033 1034 1035	(144)	Swift, A. M.; Anovitz, L. M.; Sheets, J. M.; Cole, D. R.; Welch, S. A.; Rother, G. Relationship between mineralogy and porosity in seals relevant to geologic CO ₂ sequestration. <i>Environ. Geosci.</i> 2014 , <i>21</i> , 39–57.
1036 1037	(145)	Gu, X.; Cole, D. R.; Rother, G.; Mildner, D. F. R.; Brantley, S. L. Pores in Marcellus shale: A neutron scattering and FIB-SEM study. <i>Energy & Fuels</i> 2015 , <i>29</i> , 1295–1308.
1038 1039	(146)	Bryant, W. R.; Hottman, W.; Trabant, P. Permeability of unconsolidated and consolidated marine sediments, Gulf of Mexico. <i>Mar. Geotechnol.</i> 1975 , <i>1</i> , 1–14.
1040 1041 1042	(147)	Bennett, R. H.; Fischer, K. M.; Lavoie, D. L.; Bryant, W. R.; Rezak, R. Porometry and fabric of marine clay and carbonate sediments: Determinants of permeability. <i>Mar. Geol.</i> 1989 , <i>89</i> , 127–152.
1043 1044	(148)	Kwon, O.; Kronenberg, A. K.; Gangi, A. F. Permeability of Wilcox shale and its effective pressure law. <i>J. Geophys. Res.</i> 2001 , <i>106</i> , 19339–19353.
1045 1046 1047	(149)	Kwon, O.; Kronenberg, A. K.; Gangi, A. F.; Johnson, B.; Herbert, B. E. Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading. <i>J. Geophys. Res.</i> 2004 , <i>109</i> , B10205.
1048 1049 1050	(150)	Djéran-Maigre, I.; Tessier, D.; Grunberger, D.; Velde, B.; Vasseur, G. Evolution of microstructures and of macroscopic properties of some clays during experimental compaction. <i>Mar. Pet. Geol.</i> 1998 , <i>15</i> , 109–128.
1051 1052	(151)	Zhang, J.; Scherer, G. W. Permeability of shale by the beam-bending method. <i>Int. J. Rock Mech. Min. Sci.</i> 2012 , <i>53</i> , 179–191.
1053 1054 1055	(152)	Constantin, J.; Peyaud, J. B.; Vergély, P.; Pagel, M.; Cabrera, J. Evolution of the structural fault permeability in argillaceous rocks in a polyphased tectonic context. <i>Phys. Chem. Earth</i> 2004 , <i>29</i> , 25–41.

(153) Wittebroodt, C.; Savoye, S.; Frasca, B.; Gouze, P.; Michelot, J.-L. Diffusion of HTO, ³⁶Cl⁻ and ¹²⁵Γ in Upper Toarcian argillite samples from Tournemire: Effects of initial 1056 1057 iodide concentration and ionic strength. Appl. Geochemistry 2012, 27, 1432-1441. 1058

1059 1060 1061 1062	(154)	Gaucher, E.; Robelin, C.; Matray, J. M.; Négrel, G.; Gros, Y.; Heitz, J. F.; Vinsot, A.; Rebours, H.; Cassagnabère, A.; Bouchet, A. ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian–Oxfordian formation by investigative drilling. <i>Phys. Chem. Earth</i> 2004 , <i>29</i> , 55–77.
1063 1064	(155)	Billiotte, J.; Yang, D.; Su, K. Experimental study on gas permeability of mudstones. <i>Phys. Chem. Earth</i> 2008 , <i>33</i> , S231–S236.
1065 1066 1067	(156)	Savoye, S.; Goutelard, F.; Beaucaire, C.; Charles, Y.; Fayette, A.; Herbette, M.; Larabi, Y.; Coelho, D. Effect of temperature on the containment properties of argillaceous rocks: The case study of Callovo-Oxfordian claystones. <i>J. Contam. Hydrol.</i> 2011 , <i>125</i> , 102–112.
1068 1069	(157)	Melkior, T.; Yahiaoui, S.; Thoby, D.; Motellier, S.; Barthès, V. Diffusion coefficients of alkaline cations in Bure mudrock. 2007 , <i>32</i> , 453–462.
1070 1071 1072 1073	(158)	Descostes, M.; Blin, V.; Bazer-Bachi, F.; Meier, P.; Grenut, B.; Radwan, J.; Schlegel, M. L.; Buschaert, S.; Coelho, D.; Tevissen, E. Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute–Marne, France). <i>Appl. Geochemistry</i> 2008 , <i>23</i> , 655–677.
1074 1075	(159)	Escoffier, S.; Homand, F.; Giraud, A.; Hoteit, N.; Su, K. Under stress permeability determination of the Meuse/Haute-Marne mudstone. <i>Eng. Geol.</i> 2005 , <i>81</i> , 329–340.
1076 1077 1078	(160)	Marschall, P.; Horseman, S.; Gimmi, T. Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal. <i>Oil Gas Sci. Technol.</i> 2005 , <i>60</i> , 121–139.
1079 1080 1081	(161)	Van Loon, L. R.; Müller, W.; Iijima, K. Activation energies of the self-diffusion of HTO, ²² Na ⁺ and ³⁶ Cl ⁻ in a highly compacted argillaceous rock (Opalinus Clay). <i>Appl. Geochemistry</i> 2005 , <i>20</i> , 961–972.
1082 1083	(162)	Neuzil, C. E.; Provost, A. M. Recent experimental data may point to a greater role for osmotic pressures in the subsurface. <i>Water Resour. Res.</i> 2009 , <i>45</i> , W03410.
1084 1085 1086	(163)	Wersin, P.; Van Loon, L. R.; Soler, J. M.; Yllera, A.; Eikenberg, J.; Gimmi, T.; Hernán, P.; Boisson, JY. Long-term diffusion experiment at Mont Terri: first results from field and laboratory data. <i>Appl. Clay Sci.</i> 2004 , <i>26</i> , 123–135.
1087 1088 1089	(164)	Appelo, C. A. J.; Van Loon, L. R.; Wersin, P. Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. <i>Geochim. Cosmochim. Acta</i> 2010 , <i>74</i> , 1201–1219.
1090 1091 1092	(165)	Förster, A.; Giese, R.; Juhlin, C.; Norden, B.; Springer, N.; the CO ₂ SINK Group. The geology of the CO ₂ SINK site: From regional scale to laboratory scale. <i>Energy Procedia</i> 2009 , <i>1</i> , 2911–2918.

1093 1094 1095 1096	(166)	Förster, A.; Norden, B.; Zinck-Jørgensen, K.; Frykman, P.; Kulenkampff, J.; Spangenberg, E.; Erzinger, J.; Zimmer, M.; Kopp, J.; Borm, G.; et al. Baseline characterization of the CO ₂ SINK geological storage site at Ketzin, Germany. <i>Environ.</i> <i>Geosci.</i> 2006 , <i>13</i> , 145–161.
1097 1098 1099 1100	(167)	Harrington, J. F.; Noy, D. J.; Horseman, S. T.; Birchall, D. J.; Chadwick, R. A. Laboratory study of gas and water flow in the Nordland Shale. In <i>Carbon Dioxide Sequestration in Geological Media—State of the Science</i> ; Grobe, M., Pashin, J. C., Dodge, R. L., Eds.; American Association of Petroleum Geologists, 2009; pp 521–543.
1101 1102 1103	(168)	Pillitteri, A.; Cerasi, P.; Stavrum, J.; Zweigel, P.; Bøe, R. <i>Rock mechanical tests of shale samples from the cap rock of the Utsira Sand in well 15/9-A11</i> ; Report No. 33.5324.00/06/03, SINTEF Petroleum Research, Trondheim, 2003.
1104 1105	(169)	Angeli, M.; Soldal, M.; Skurtveit, E.; Aker, E. Experimental percolation of supercritical CO2 through a caprock. <i>Energy Procedia</i> 2009 , <i>1</i> , 3351–3358.
1106 1107 1108	(170)	Nadeau, P. H.; Peacor, D. R.; Yan, J.; Hillier, S. I-S precipitation in pore space as the cause of geopressuring in Mesozoic mudstones, Egersund Basin, Norwegian continental shelf. <i>Am. Mineral.</i> 2002 , <i>87</i> , 1580–1589.
1109 1110	(171)	Harrington, J. F.; Horseman, S. T. Gas transport properties of clays and mudrocks. <i>Geol. Soc. London, Spec. Publ.</i> 1999 , <i>158</i> , 107–124.
1111 1112 1113	(172)	Nygård, R.; Gutierrez, M.; Høeg, K.; Bjørlykke, K. Influence of burial history on microstructure and compaction behaviour of Kimmeridge clay. <i>Pet. Geosci.</i> 2004 , <i>10</i> , 259–270.
1114 1115 1116	(173)	Busch, A.; Alles, S.; Gensterblum, Y.; Prinz, D.; Dewhurst, D. N.; Raven, M. D.; Stanjek, H.; Krooss, B. M. Carbon dioxide storage potential of shales. <i>Int. J. Greenh. Gas Control</i> 2008 , <i>2</i> , 297–308.
1117 1118 1119	(174)	Dewhurst, D. N.; Jones, R. M.; Raven, M. D. Microstructural and petrophysical characterization of Muderong Shale: application to top seal risking. <i>Pet. Geosci.</i> 2002 , <i>8</i> (4), 371–383.
1120 1121 1122	(175)	Nuccio, V. F.; Condon, S. M. Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Formation; Bulletin 2000-O, U.S. Geological Survey, Washington, 1996.
1123 1124 1125	(176)	Bereskin, S. R.; McLennan, J. <i>Hydrocarbon potential of Pennsylvanian black shale reservoirs, Paradox Basin, southeastern Utah</i> ; Open-File Report 534, Utah Geological Survey, Salt Lake City, 2008.

1126 1127 1128	(177)	Heath, J. E.; Dewers, T. A.; McPherson, B. J. O. L.; Nemer, M. B.; Kotula, P. G. Pore- lining phases and capillary breakthrough pressure of mudstone caprocks: Sealing efficiency of geologic CO ₂ storage sites. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>11</i> , 204–220.
1129 1130 1131	(178)	Lu, J.; Milliken, K.; Reed, R. M.; Hovorka, S. Diagenesis and sealing capacity of the middle Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi. <i>Environ. Geosci.</i> 2011 , <i>18</i> , 35–53.
1132 1133 1134	(179)	Pashin, J. C.; Kopaska-Merkel, D. C.; Arnold, A. C.; McIntyre, M. R. <i>Geological foundation for production of natural gas from diverse shale formations</i> ; Open File Report 1110, Geological Survey of Alabama, Tuscaloosa, 2011.
1135 1136 1137	(180)	Tachi, Y.; Yotsuji, K.; Seida, Y.; Yui, M. Diffusion and sorption of Cs ⁺ , I ⁻ and HTO in samples of the argillaceous Wakkanai Formation from the Horonobe URL, Japan: Claybased modeling approach. <i>Geochim. Cosmochim. Acta</i> 2011 , <i>75</i> , 6742–6759.
1138 1139 1140	(181)	Takeda, M.; Hiratsuka, T.; Manaka, M.; Finsterle, S.; Ito, K. Experimental examination of the relationships among chemico-osmotic, hydraulic, and diffusion parameters of Wakkanai mudstones. <i>J. Geophys. Res. Solid Earth</i> 2014 , <i>119</i> , 010421.
1141 1142 1143	(182)	Clarkson, C. R.; Solano, N.; Bustin, R. M.; Bustin, A. M. M.; Chalmers, G. R. L.; He, L.; Melnichenko, Y. B. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. <i>Fuel</i> 2013 , <i>103</i> , 606–616.
1144 1145 1146 1147	(183)	Ghanizadeh, A.; Bhowmik, S.; Haeri-Ardakani, O.; Sanei, H.; Clarkson, C. R. A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques: Examples from the Duvernay Formation, Alberta (Canada). <i>Fuel</i> 2015 , <i>140</i> , 371–387.
1148 1149	(184)	Skempton, A. W. The consolidation of clays by gravitational compaction. <i>Q. J. Geol. Soc.</i> 1970 , <i>125</i> , 373–411.
1150 1151 1152	(185)	Dewhurst, D. N.; Aplin, A. C.; Sarda, JP. Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. <i>J. Geophys. Res.</i> 1999 , <i>104</i> , 29261–29274.
1153 1154	(186)	Rutqvist, J.; Tsang, CF. A study of caprock hydromechanical changes associated with CO ₂ -injection into a brine formation. <i>Environ. Geol.</i> 2002 , <i>42</i> , 296–305.
1155 1156 1157	(187)	Li, C.; Tien, NC.; Zhang, K.; Jen, CP.; Hsieh, PS.; Huang, SY.; Maggi, F. Assessment of large-scale offshore CO ₂ geological storage in Western Taiwan Basin. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>19</i> , 281–298.
1158 1159 1160	(188)	Rinaldi, A. P.; Rutqvist, J.; Cappa, F. Geomechanical effects on CO ₂ leakage through fault zones during large-scale underground injection. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>20</i> , 117–131.

- (189) Dzevanshir, R. D.; Buryakovskiy, L. A.; Chilingarian, G. V. Simple quantitative
 evaluation of porosity of argillaceous sediments at various depths of burial. *Sediment*.
 Geol. 1986, 46, 169–175.
- (190) Maubeuge, F.; Lerche, I. Geopressure evolution and hydrocarbon generation in a north
 Indonesian basin: two-dimensional quantitative modelling. *Mar. Pet. Geol.* 1994, *11*, 104–
 1166
 115.
- (191) Luo, X.; Vasseur, G. Geopressuring mechanism of organic matter cracking: numerical
 modeling. Am. Assoc. Pet. Geol. Bull. 1996, 80, 856–874.
- (192) Mann, D. M.; Mackenzie, A. S. Prediction of pore fluid pressures in sedimentary basins.
 Mar. Pet. Geol. 1990, 7, 55–65.
- (193) Peltonen, C.; Marcussen, Ø.; Bjørlykke, K.; Jahren, J. Clay mineral diagenesis and quartz
 cementation in mudstones: The effects of smectite to illite reaction on rock properties.
 Mar. Pet. Geol. 2009, 26, 887–898.
- (194) Bowers, G. L.; Katsube, T. J. The role of shale pore structure on the sensitivity of wire line logs to overpressure. In *Pressure regimes in sedimentary basins and their prediction: AAPG Memoir 76*; Huffman, A. R., Bowers, G. L., Eds.; American Association of
 Petroleum Geologists, 2002; pp 43–60.
- (195) Olsen, H. W. Hydraulic flow through saturated clays. *Clays Clay Miner*. 1962, *9*, 131–
 1179 162.
- (196) Mills, R. Self-diffusion in normal and heavy water in the range 1-45°. *J. Phys. Chem.* 1973, 77, 685–688.
- (197) Bourg, I. C.; Sposito, G.; Bourg, A. C. M. Tracer diffusion in compacted, water-saturated
 bentonite. *Clays Clay Miner*. 2006, *54*, 363–374.
- (198) Kohli, A. H.; Zoback, M. D. Frictional properties of shale reservoir rocks. J. Geophys.
 Res.: Solid Earth 2013, 118, 5109–5125.
- (199) Dutta, P.; Zoback, M. D. CO₂ sequestration into the Wyodak coal seam of Powder River
 Basin—Preliminary reservoir characterization and simulation. *Int. J. Greenh. Gas Control* 2012, 9, 103–116.
- (200) Wainwright, H. M.; Finsterle, S.; Zhou, Q.; Birkholzer, J. T. Modeling the performance of large-scale CO₂ storage systems: A comparison of different sensitivity analysis methods.
 Int. J. Greenh. Gas Control 2013, *17*, 189–205.
- (201) Shukla, R.; Ranjith, P. G.; Choi, S. K.; Haque, A. Study of caprock integrity in geosequestration of carbon dioxide. *Int. J. Geomech.* 2011, *11*, 294–301.

1194 1195 1196	(202)	Gherardi, F.; Xu, T.; Pruess, K. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO ₂ storage in a depleted gas reservoir. <i>Chem. Geol.</i> 2007 , <i>244</i> , 103–129.
1197 1198 1199	(203)	Deng, H.; Ellis, B. R.; Peters, C. A.; Fitts, J. P.; Crandall, D.; Bromhal, G. S. Modifications of carbonate fracture hydrodynamic properties by CO ₂ -acidified brine flow. <i>Energy & Fuels</i> 2013 , <i>27</i> , 4221–4231.
1200 1201 1202	(204)	Noiriel, C.; Madé, B.; Gouze, P. Impact of coating development on the hydraulic and transport properties in argillaceous limestone fracture. <i>Water Resour. Res.</i> 2007 , <i>43</i> , W09406.
1203 1204 1205	(205)	Ellis, B. R.; Fitts, J. P.; Bromhal, G. S.; McIntyre, D. L.; Tappero, R.; Peters, C. A. Dissolution-driven permeability reduction of a fractured carbonate caprock. <i>Environ. Eng. Sci.</i> 2013 , <i>30</i> , 187–193.
1206 1207 1208	(206)	Kutchko, B. G.; Strazisar, B. R.; Dzombak, D. A.; Lowry, G. V; Thaulow, N. Degradation of well cement by CO ₂ under geologic sequestration conditions. <i>Environ. Sci. Technol.</i> 2007 , <i>41</i> , 4787–4792.
1209 1210 1211	(207)	Wigand, M.; Kaszuba, J. P.; Carey, J. W.; Hollis, W. K. Geochemical effects of CO ₂ sequestration on fractured wellbore cement at the cement/caprock interface. <i>Chem. Geol.</i> 2009 , <i>265</i> , 122–133.
1212 1213 1214	(208)	Shen, J.; Dangla, P.; Thiery, M. Reactive transport modeling of CO ₂ through cementitious materials under CO ₂ geological storage conditions. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>18</i> , 75–87.
1215 1216 1217	(209)	Wolterbeek, T. K. T.; Peach, C. J.; Spiers, C. J. Reaction and transport in wellbore interfaces under CO ₂ storage conditions: Experiments simulating debonded cement-casing interfaces. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>19</i> , 519–529.
1218 1219	(210)	Matteo, E. N.; Scherer, G. W. Experimental study of the diffusion-controlled acid degradation of Class H Portland cement. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>7</i> , 181–191.
1220 1221 1222	(211)	Mason, H. E.; Walsh, S. D. C.; DuFrane, W. L.; Carroll, S. A. Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods. <i>Environ. Sci. Technol.</i> 2014 , <i>48</i> , 7094–7100.
1223 1224 1225	(212)	Huerta, N. J.; Hesse, M. A.; Bryant, S. L.; Strazisar, B. R.; Lopano, C. L. Experimental evidence for self-limiting reactive flow through a fractured cement core: Implications for time-dependent wellbore leakage. <i>Environ. Sci. Technol.</i> 2013 , <i>47</i> , 269–275.
1226 1227 1228	(213)	Walsh, S. D. C.; Mason, H. E.; Du Frane, W. L.; Carroll, S. A. Mechanical and hydraulic coupling in cement-caprock interfaces exposed to carbonated brine. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>25</i> , 109–120.

- (214) Jain, A. K.; Juanes, R. Preferential mode of gas invasion in sediments: grain-scale
 mechanistic model of coupled multiphase fluid flow and sediment mechanics. J. Geophys.
 Res. 2009, 114, B08101.
- (215) Alkan, H.; Müller, W. Approaches for modelling gas flow in clay formations as repository
 systems. *Phys. Chem. Earth* 2008, *33*, S260–S268.
- (216) Olivella, S.; Alonso, E. E. Gas flow through clay barriers. *Géotechnique* 2008, 58, 157–1235
 176.
- (217) Carey, J. W.; Svec, R.; Grigg, R.; Zhang, J.; Crow, W. Experimental investigation of
 wellbore integrity and CO₂-brine flow along the casing-cement microannulus. *Int. J. Greenh. Gas Control* 2010, *4*, 272–282.
- (218) Duguid, A.; Scherer, G. W. Degradation of oilwell cement due to exposure to carbonated
 brine. *Int. J. Greenh. Gas Control* 2010, *4*, 546–560.
- (219) Abdoulghafour, H.; Luquot, L.; Gouze, P. Characterization of the mechanisms controlling
 the permeability changes of fractured cements flowed through by CO₂-rich brine. *Environ. Sci. Technol.* 2013, 47, 10332–10338.
- (220) Wertz, F.; Gherardi, F.; Blanc, P.; Bader, A.-G.; Fabbri, A. Cement CO₂-alteration
 propagation at the well–caprock–reservoir interface and influence of diffusion. *Int. J. Greenh. Gas Control* 2013, *12*, 9–17.
- (221) Newell, D. L.; Carey, J. W. Experimental evaluation of wellbore integrity along the cement-rock boundary. *Environ. Sci. Technol.* 2013, *47*, 276–282.
- (222) Liteanu, E.; Spiers, C. J. Fracture healing and transport properties of wellbore cement in
 the presence of supercritical CO₂. *Chem. Geol.* 2011, 281, 195–210.
- (223) Bourg, I. C.; Tournassat, C. Self-diffusion of water and ions in clay barriers. In *Natural and Engineered Clay Barriers*; Tournassat, C., Steefel, C. I., Bourg, I. C., Bergaya, F.,
 Eds.; Developments in Clay Science, Vol. 6; Elsevier, 2015, pp 189-226.
- (224) Huet, B. M.; Prevost, J. H.; Scherer, G. W. Quantitative reactive transport modeling of
 Portland cement in CO2-saturated water. *Int. J. Greenh. Gas Control* 2010, *4*, 561–574.
- (225) Fernandez-Martinez, A.; Hu, Y.; Lee, B.; Jun, Y.-S.; Waychunas, G. A. In situ
 determination of interfacial energies between heterogeneously nucleated CaCO₃ and
 quartz substrates: Thermodynamics of CO₂ mineral trapping. *Environ. Sci. Technol.* 2013,
 47, 102–109.
- (226) Li, Q.; Fernandez-Martinez, A.; Lee, B.; Waychunas, G. A.; Jun, Y.-S. Interfacial energies
 for heterogeneous nucleation of calcium carbonate on mica and quartz. *Environ. Sci. Technol.* 2014, 48, 5745–5753.

Page 51 of 76

1263 1264	(227)	Hedges, L. O.; Whitelam, S. Selective nucleation in porous media. <i>Soft Matter</i> 2013 , <i>9</i> , 9763-9766.
1265 1266 1267 1268	(228)	Felmy, A. R.; Qafoku, O.; Arey, B. W.; Hu, J. Z.; Hu, M.; Schaef, H. T.; Ilton, E. S.; Hess, N. J.; Pearce, C. I.; Feng, J.; et al. Reaction of water-saturated supercritical CO ₂ with forsterite: Evidence for magnesite formation at low temperatures. <i>Geochim. Cosmochim. Acta</i> 2012 , <i>91</i> , 271–282.
1269 1270	(229)	Emmanuel, S.; Ague, J. J. Modeling the impact of nano-pores on mineralization in sedimentary rocks. <i>Water Resour. Res.</i> 2009 , <i>45</i> , W04406.
1271 1272 1273 1274	(230)	Stack, A. G.; Fernandez-Martinez, A.; Allard, L. F.; Bañuelos, J. L.; Rother, G.; Anovitz, L. M.; Cole, D. R.; Waychunas, G. A. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry. <i>Environ. Sci. Technol.</i> 2014 , <i>48</i> , 6177–6183.
1275 1276 1277 1278	(231)	Anovitz, L. M.; Cole, D. R.; Rother, G.; Allard, L. F.; Jackson, A. J.; Littrell, K. C. Diagenetic changes in macro- to nano-scale porosity in the St. Peter Sandstone: An (ultra) small angle neutron scattering and backscattered electron imaging analysis. <i>Geochim. Cosmochim. Acta</i> 2013 , <i>102</i> , 280–305.
1279 1280	(232)	Stack, A. G. Next generation models of carbonate mineral growth and dissolution. <i>Greenhouse Gas Sci. Technol.</i> 2014 , <i>11</i> , 1–11.
1281 1282	(233)	Putnis, A.; Mauthe, G. The effect of pore size on cementation in porous rocks. <i>Geofluids</i> 2001 , <i>1</i> , 37–41.
1283 1284 1285 1286	(234)	Gonçalvès, J.; Rousseau-Gueutin, P.; Revil, A. Introducing interacting diffuse layers in TLM calculations: a reappraisal of the influence of the pore size on the swelling pressure and the osmotic efficiency of compacted bentonites. <i>J. Colloid Interface Sci.</i> 2007 , <i>316</i> , 92–99.
1287 1288 1289	(235)	Espinoza, D. N.; Santamarina, J. C. Clay interaction with liquid and supercritical CO ₂ : The relevance of electrical and capillary forces. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>10</i> , 351–362.
1290 1291 1292 1293	(236)	Michot, L. J.; Bihannic, I.; Thomas, F.; Lartiges, B. S.; Waldvogel, Y.; Caillet, C.; Thieme, J.; Funari, S. S.; Levitz, P. Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. <i>Langmuir</i> 2013 , <i>29</i> , 3500–3510.
1294 1295 1296	(237)	Sarout, J.; Detournay, E. Chemoporoelastic analysis and experimental validation of the pore pressure transmission test for reactive shales. <i>Int. J. Rock Mech. Min. Sci.</i> 2011 , <i>48</i> , 759–772.

1297 1298 1299	(238)	Ilton, E. S.; Schaef, H. T.; Qafoku, O.; Rosso, K. M.; Felmy, A. R. In situ X-ray diffraction study of Na ⁺ saturated montmorillonite exposed to variably wet super critical CO2. <i>Environ. Sci. Technol.</i> 2012 , <i>46</i> , 4241–4248.
1300 1301	(239)	de Jong, S. M.; Spiers, C. J.; Busch, A. Development of swelling strain in smectite clays through exposure to carbon dioxide. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>24</i> , 149–161.
1302 1303 1304 1305	(240)	Loring, J. S.; Schaef, H. T.; Turcu, R. V. F.; Thompson, C. J.; Miller, Q. R. S.; Martin, P. F.; Hu, J.; Hoyt, D. W.; Qafoku, O.; Ilton, E. S.; et al. In situ molecular spectroscopic evidence for CO ₂ intercalation into montmorillonite in supercritical carbon dioxide. <i>Langmuir</i> 2012 , <i>28</i> , 7125–7128.
1306 1307 1308	(241)	Botan, A.; Rotenberg, B.; Marry, V.; Turq, P.; Noetinger, B. Carbon dioxide in montmorillonite clay hydrates: Thermodynamics, structure, and transport from molecular simulation. <i>J. Phys. Chem. C</i> 2010 , <i>114</i> , 14962–14969.
1309 1310 1311 1312	(242)	Rother, G.; Ilton, E. S.; Wallacher, D.; Hauss, T.; Schaef, H. T.; Qafoku, O.; Rosso, K. M.; Felmy, A. R.; Krukowski, E. G.; Stack, A. G.; et al. CO ₂ sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. <i>Environ. Sci. Technol.</i> 2013 , <i>47</i> , 205–211.
1313 1314 1315	(243)	Giesting, P.; Guggenheim, S.; Koster van Groos, A. F.; Busch, A. X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO ₂ atmospheres. <i>Environ. Sci. Technol.</i> 2012 , <i>46</i> , 5623–5630.
1316 1317	(244)	Suekane, T.; Nobuso, T.; Hirai, S.; Kiyota, M. Geological storage of carbon dioxide by residual gas and solubility trapping. <i>Int. J. Greenh. Gas Control</i> 2008 , <i>2</i> , 58–64.
1318 1319	(245)	Chiquet, P.; Broseta, D.; Thibeau, S. Wettability alteration of caprock minerals by carbon dioxide. <i>Geofluids</i> 2007 , <i>7</i> , 112–122.
1320 1321 1322	(246)	LaForce, T.; Ennis-King, J.; Boreham, C.; Paterson, L. Residual CO ₂ saturation estimate using noble gas tracers in single-well field test: The CO2CRC Otway project. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>26</i> , 9–21.
1323 1324 1325	(247)	Plug, WJ.; Bruining, J. Capillary pressure for the sand–CO ₂ –water system under various pressure conditions. Application to CO ₂ sequestration. <i>Adv. Water Resour.</i> 2007 , <i>30</i> , 2339–2353.
1326 1327	(248)	Bachu, S.; Bennion, B. Effects of in-situ conditions on relative permeability characteristics of CO ₂ -brine systems. <i>Environ. Geol.</i> 2008 , <i>54</i> , 1707–1722.
1328 1329	(249)	Iglauer, S.; Paluszny, A.; Pentland, C. H.; Blunt, M. J. Residual CO ₂ imaged with X-ray micro-tomography. <i>Geophys. Res. Lett.</i> 2011 , <i>38</i> , L21403.

1330 1331 1332	(250)	Pentland, C. H.; El-Maghraby, R.; Iglauer, S.; Blunt, M. J. Measurements of the capillary trapping of super critical carbon dioxide in Berea sandstone. <i>Geophys. Res. Lett.</i> 2011 , <i>38</i> , L06401.
1333 1334 1335	(251)	Shi, JQ.; Xue, Z.; Durucan, S. Supercritical CO ₂ core flooding and imbibition in Tako sandstone—Influence of sub-core scale heterogeneity. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 75–87.
1336 1337 1338	(252)	Krevor, S. C. M.; Pini, R.; Zuo, L.; Benson, S. M. Relative permeability and trapping of CO ₂ and water in sandstone rocks at reservoir conditions. <i>Water Resour. Res.</i> 2012 , <i>48</i> , W02532.
1339 1340	(253)	Tanino, Y.; Blunt, M. J. Capillary trapping in sandstones and carbonates: Dependence on pore structure. <i>Water Resour. Res.</i> 2012 , <i>48</i> , W08525.
1341 1342 1343	(254)	Chaudhary, K.; Cardenas, M. B; Wolfe, W. W.; Maisano, J. A.; Ketcham, R. A.; Bennett, P. C. Pore-scale trapping of supercritical CO ₂ and the role of grain wettability and shape. <i>Geophys. Res. Lett.</i> 2013 , <i>40</i> , 3878–3882.
1344 1345	(255)	Andrew, M.; Bijeljic, B.; Blunt, M. J. Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>22</i> , 1–14.
1346 1347 1348	(256)	Ruprecht, C.; Pini, R.; Falta, R.; Benson, S.; Murdoch, L. Hysteretic trapping and relative permeability of CO_2 in sandstone at reservoir conditions. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>27</i> , 15–27.
1349 1350	(257)	El-Maghraby, R. M.; Blunt, M. J. Residual CO ₂ trapping in Indiana limestone. <i>Environ. Sci. Technol.</i> 2013 , <i>47</i> , 227–233.
1351 1352	(258)	Müller, N. Supercritical CO ₂ -brine relative permeability experiments in reservoir rocks— Literature review and recommendations. <i>Transp. Porous Media</i> 2011 , <i>87</i> , 367–383.
1353 1354 1355	(259)	Land, C. S. Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. In <i>SPE 42nd Annual Fall Meeting, Houston, Texas, 1-4 October 1967</i> ; SPE Paper 1942, Society of Petroleum Engineers, 1968.
1356 1357	(260)	Li, Y.; Wardlaw, N. C. The influence of wettability and critical pore-throat size ratio on snap-off. <i>J. Colloid Interface Sci.</i> 1986 , <i>109</i> , 461–472.
1358 1359	(261)	Lenormand, R.; Touboul, E.; Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. <i>J. Fluid Mech.</i> 1988 , <i>189</i> , 165–187.
1360 1361 1362	(262)	Jerauld, G. R.; Salter, S. J. The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling. <i>Transp. Porous Media</i> 1990 , <i>5</i> , 103–151.

1363	(263)	Morrow, N. Wettability and its effect on oil recovery. SPE J. 1990, 42, 1476–1484.
1364	(264)	Blunt, M. J.; Scher, H. Pore-level modeling of wetting. Phys. Rev. E 1995, 52, 6387-6403.
1365 1366	(265)	Jadhunandan, P. P.; Morrow, N. R. Effect of wettability on waterflood recovery for crude-oil/brine/rock systems. <i>SPE Reserv. Eng.</i> 1995 , <i>10</i> , 40–46.
1367 1368 1369	(266)	Al-Futaisi, A.; Patzek, T. W. Impact of wettability alteration on two-phase flow characteristics of sandstones: A quasi-static description. <i>Water Resour. Res.</i> 2003 , <i>39</i> , 1042.
1370 1371 1372 1373	(267)	Spiteri, E. J.; Juanes, R.; Blunt, M. J.; Orr, F. M., Jr. A new model of trapping and relative permeability hysteresis for all wettability characteristics. In <i>2005 SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9-12 October</i> ; 2005; SPE Paper 96448, Society of Petroleum Engineers, 2008.
1374 1375 1376	(268)	Pini, R.; Benson, S. M. Simultaneous determination of capillary pressure and relative permeability curves from core-flooding experiments with various fluid pairs. <i>Water Resour. Res.</i> 2013 , <i>49</i> , 3516–3530.
1377 1378	(269)	Zuo, L.; Benson, S. M. Process-dependent residual trapping of CO ₂ in sandstone. <i>Geophys. Res. Lett.</i> 2014 , <i>41</i> , 2820–2826.
1379 1380	(270)	Krevor, S. C. M.; Pini, R.; Li, B.; Benson, S. M. Capillary heterogeneity trapping of CO ₂ in a sandstone rock at reservoir conditions. <i>Geophys. Res. Lett.</i> 2011 , <i>38</i> , L15401.
1381 1382 1383	(271)	Herring, A. L.; Harper, E. J.; Andersson, L.; Sheppard, A.; Bay, B. K.; Wildenschild, D. Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO ₂ sequestration. <i>Adv. Water Resour.</i> 2013 , <i>62</i> , 47–58.
1384 1385 1386 1387	(272)	Tokunaga, T. K.; Wan, J.; Jung, JW.; Kim, T. W.; Kim, Y.; Dong, W. Capillary pressure and saturation relations for supercritical CO_2 and brine in sand: High-pressure $P_c(S_w)$ controller/meter measurements and capillary scaling predictions. <i>Water Resour. Res.</i> 2013 , <i>49</i> , 1–14.
1388 1389 1390	(273)	Akbarabadi, M.; Piri, M. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO ₂ /brine systems: An experimental study at reservoir conditions. <i>Adv. Water Resour.</i> 2013 , <i>52</i> , 190–206.
1391 1392 1393	(274)	Ide, S. T.; Jessen, K.; Orr, F. M., Jr. Storage of CO ₂ in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping. <i>Int. J. Greenh. Gas Control</i> 2007 , <i>1</i> , 481–491.
1394 1395	(275)	Qi, R.; LaForce, T. C.; Blunt, M. J. Design of carbon dioxide storage in aquifers. <i>Int. J. Greenh. Gas Control</i> 2009 , <i>3</i> , 195–205.

ACS Paragon Plus Environment

1396 1397 1398	(276)	Alkan, H.; Cinar, Y.; Ülker, E. B. Impact of Capillary Pressure, Salinity and In situ Conditions on CO2 Injection into Saline Aquifers. <i>Transp. Porous Media</i> 2010 , <i>84</i> , 799–819.
1399 1400 1401	(277)	Ellis, J. S.; Bazylak, A. Dynamic pore network model of surface heterogeneity in brine- filled porous media for carbon sequestration. <i>Phys. Chem. Chem. Phys.</i> 2012 , <i>14</i> , 8382– 8390.
1402 1403	(278)	Silin, D.; Tomutsa, L.; Benson, S. M.; Patzek, T. W. Microtomography and pore-scale modeling of two-phase fluid distribution. <i>Transp. Porous Media</i> 2011 , <i>86</i> , 495–515.
1404 1405 1406	(279)	Li, S.; Dong, M.; Li, Z.; Huang, S.; Qing, H.; Nickel, E. Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long-term CO ₂ storage in the Weyburn field. <i>Geofluids</i> 2005 , <i>5</i> , 326–334.
1407 1408 1409	(280)	Herring, A. L.; Andersson, L.; Newell, D. L.; Carey, J. W.; Wildenschild, D. Pore-scale observations of supercritical CO ₂ drainage in Bentheimer sandstone by synchrotron x-ray imaging. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>25</i> , 93–101.
1410 1411 1412	(281)	Wang, S.; Tokunaga, T. K. Capillary pressure - saturation relations for supercritical CO ₂ and brine in limestone/dolomite sands: Implications for geologic carbon sequestration in carbonate reservoirs. <i>Environ. Sci. Technol.</i> 2015 , <i>49</i> , 7208–7217.
1413 1414 1415	(282)	Kim, Y.; Wan, J.; Kneafsey, T. J.; Tokunaga, T. K. Dewetting of silica surfaces upon reactions with supercritical CO ₂ and brine: pore-scale studies in micromodels. <i>Environ. Sci. Technol.</i> 2012 , <i>46</i> , 4228–4235.
1416 1417	(283)	Kovscek, A. R.; Wong, H.; Radke, C. J. A pore-level scenario for the development of mixed wettability in oil reservoirs. <i>AIChE J.</i> 1993 , <i>39</i> , 1072–1085.
1418 1419	(284)	Dickson, J. L.; Gupta, G.; Horozov, T. S.; Binks, B. P.; Johnston, K. P. Wetting phenomena at the CO ₂ /water/glass interface. <i>Langmuir</i> 2006 , <i>22</i> , 2161–2170.
1420 1421	(285)	Siemons, N.; Bruining, H.; Castelijns, H.; Wolf, KH. Pressure dependence of the contact angle in a CO ₂ -H ₂ O-coal system. <i>J. Colloid Interface Sci.</i> 2006 , <i>297</i> , 755–761.
1422 1423 1424	(286)	Yang, D.; Gu, Y.; Tontiwachwuthikul, P. Wettability determination of the reservoir brine- reservoir rock system with dissolution of CO ₂ at high pressures and elevated temperatures. <i>Energy & Fuels</i> 2008 , <i>22</i> , 504–509.
1425 1426 1427	(287)	Chalbaud, C.; Robin, M.; Lombard, JM.; Martin, F.; Egermann, P.; Bertin, H. Interfacial tension measurements and wettability evaluation for geological CO ₂ storage. <i>Adv. Water Resour.</i> 2009 , <i>32</i> , 98–109.

1428 1429 1430	(288)	Espinoza, D. N.; Santamarina, J. C. Water-CO ₂ -mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO ₂ geological storage. <i>Water Resour. Res.</i> 2010 , <i>46</i> , W07537.
1431 1432 1433	(289)	Tonnet, N.; Shah, V.; Chiquet, P.; Diaz, J.; Mouronval, G.; Broseta, D. Wettability alteration of caprock minerals by acid gases. In <i>The 10th Wettability conference, Abu Dhabi, UAE, Oct. 27-28.</i> ; 2008.
1434 1435 1436	(290)	Shah, V.; Broseta, D.; Mouronval, G. Capillary alteration of caprocks by acid gases. In <i>SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK</i> ; SPE Paper 113353, Society of Petroleum Engineers, 2008.
1437 1438	(291)	Bikkina, P. K. Contact angle measurements of CO ₂ -water-quartz/calcite systems in the perspective of carbon sequestration. <i>Int. J. Greenh. Gas Control</i> 2011 , <i>5</i> , 1259–1271.
1439 1440 1441	(292)	Mills, J.; Riazi, M.; Sohrabi, M. Wettability of common rock-forming minerals in a CO ₂ - brine system at reservoir conditions. In <i>Proceedings of the International Symposium of the</i> <i>Society of Core Analysts, Austin, TX</i> ; SCA2011-06, Society of Core Analysts, 2011.
1442 1443	(293)	Jung, J.; Wan, J. Supercritical CO ₂ and ionic strength effects on wettability of silica surfaces: Equilibrium contact angle measurements. <i>Energy & Fuels</i> 2012 , <i>26</i> , 6053–6059.
1444 1445	(294)	Broseta, D.; Tonnet, N.; Shah, V. Are rocks still water-wet in the presence of dense CO ₂ or H ₂ S? <i>Geofluids</i> 2012 , <i>12</i> , 280–294.
1446 1447	(295)	Farokhpoor, R.; Bjørkvik, B. J. A.; Lindeberg, E.; Torsæter, O. Wettability behaviour of CO ₂ at storage conditions. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>12</i> , 18–25.
1448 1449 1450	(296)	Saraji, S.; Goual, L.; Piri, M.; Plancher, H. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions. <i>Langmuir</i> 2013 , <i>29</i> , 6856–6866.
1451 1452 1453	(297)	Wang, S.; Edwards, I. M.; Clarens, A. F. Wettability phenomena at the CO ₂ -brine-mineral interface: Implications for geologic carbon sequestration. <i>Environ. Sci. Technol.</i> 2013 , <i>47</i> , 234–241.
1454 1455	(298)	Wang, S.; Tao, Z.; Persily, S. M.; Clarens, A. F. CO ₂ adhesion on hydrated mineral surfaces. <i>Environ. Sci. Technol.</i> 2013 , <i>47</i> , 11858–11865.
1456 1457 1458	(299)	Wesch, A.; Dahmen, N.; Ebert, K.; Schön, J. Grenzflächenspannungen, tropfengrössen und kontaktwinkel in zweiphasensystem H ₂ O/CO ₂ bein temperaturen von 298 bis 333 K under drücken bis 30 MPa. <i>Chemie Ing. Tech.</i> 1997 , <i>69</i> , 942–946.
1459 1460 1461	(300)	Wan, J.; Kim, Y.; Tokunaga, T. K. Contact angle measurement ambiguity in supercritical CO ₂ -water-mineral systems: Mica as an example. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>31</i> , 128–137.

1462 1463	(301)	Liu, S.; Yang, X.; Qin, Y. Molecular dynamics simulation of wetting behavior at CO ₂ /water/solid interfaces. <i>Chinese Sci. Bull.</i> 2010 , <i>55</i> , 2252–2257.
1464 1465 1466	(302)	Bagherzadeh, S. A.; Englezos, P.; Alavi, S.; Ripmeester, J. A. Influence of hydrated silica surfaces on interfacial water in the presence of clathrate hydrate forming gases. <i>J. Phys. Chem. C</i> 2012 <i>116</i> , 24907-24915.
1467 1468 1469 1470	(303)	Iglauer, S.; Mathew, M. S.; Bresme, F. Molecular dynamics computations of brine-CO ₂ interfacial tensions and brine-CO ₂ -quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration. <i>J. Colloid Interface Sci.</i> 2012 , <i>386</i> , 405–414.
1471 1472 1473	(304)	Tenney, C. M.; Cygan, R. T. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles. <i>Environ. Sci. Technol.</i> 2014 , <i>48</i> , 2035–2042.
1474 1475 1476	(305)	McCaughan, J.; Iglauer, S.; Bresme, F. Molecular dynamics simulation of water/CO ₂ - quartz interfacial properties: Application to subsurface gas injection. <i>Energy Procedia</i> 2013 , <i>37</i> , 5387–5402.
1477 1478	(306)	Hamm, L. M.; Bourg, I. C.; Wallace, A. F.; Rotenberg, B. Molecular simulation of CO ₂ - and CO ₃ -brine-mineral systems. <i>Rev. Mineral. Geochemistry</i> 2013 , <i>77</i> , 189–228.
1479 1480 1481	(307)	Iglauer, S.; Salamah, A.; Sarmadivaleh, M.; Liu, K.; Phan, C. Contamination of silica surfaces: Impact on water-CO ₂ -quartz and glass contact angle measurements. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>22</i> , 325–328.
1482 1483	(308)	Lamb, R. N.; Furlong, D. N. Controlled wettability of quartz surfaces. J. Chem. Soc. Faraday Trans. 1 1982, 78, 61-73.
1484 1485 1486	(309)	Chiquet, P.; Daridon, JL.; Broseta, D.; Thibeau, S. CO ₂ /water interfacial tensions under pressure and temperature conditions of CO ₂ geological storage. <i>Energy Convers. Manag.</i> 2007 , <i>48</i> , 736–744.
1487 1488 1489	(310)	Kvamme, B.; Kuznetsova, T.; Hebach, A.; Oberhof, A.; Lunde, E. Measurements and modelling of interfacial tension for water+carbon dioxide systems at elevated pressures. <i>Comput. Mater. Sci.</i> 2007 , <i>38</i> , 506–513.
1490 1491 1492	(311)	Aggelopoulos, C. A.; Robin, M.; Vizika, O. Interfacial tension between CO ₂ and brine (NaCl+CaCl ₂) at elevated pressures and temperatures: The additive effect of different salts. <i>Adv. Water Resour.</i> 2011 , <i>34</i> , 505–511.
1493 1494 1495	(312)	Georgiadis, A.; Maitland, G.; Trusler, J. P. M.; Bismarck, A. Interfacial tension measurements of the $(H_2O + CO_2)$ system at elevated pressures and temperatures. <i>J. Chem. Eng. Data</i> 2010 , <i>55</i> , 4168–4175.

- (313) Hebach, A.; Oberhof, A.; Dahmen, N.; Kögel, A.; Ederer, H.; Dinjus, E. Interfacial tension at elevated pressures - Measurements and correlations in the water + carbon dioxide system. *J. Chem. Eng. Data* 2002, *47*, 1540–1546.
- (314) Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M. Interfacial tension of (brines + CO₂): CaCl₂(aq), MgCl₂(aq), and Na₂SO₄(aq) at temperatures between (343 and 423) K, pressures between (2 and 50) MPa, and total molalities of (0.5 to 5) mol kg⁻¹. J. Chem. *Eng. Data* 2012, *57*, 1369–1375.
- (315) Nielsen, L. C.; Bourg, I. C.; Sposito, G. Predicting CO₂-water interfacial tension under
 pressure and temperature conditions of geologic CO₂ storage. *Geochim. Cosmochim. Acta* 2012, 81, 28–38.
- (316) Liu, Y.; Lafitte, T.; Panagiotopoulos, A. Z.; Debenedetti, P. G. Simulations of vaporliquid phase equilibrium and interfacial tension in the CO₂-H₂O-NaCl system. *AIChE J.*2013, *59*, 3514–3522.
- (317) Li, X.; Ross, D. A.; Trusler, J. P. M.; Maitland, G. C.; Boek, E. S. Molecular dynamics simulations of CO₂ and brine interfacial tension at high temperatures and pressures. *J. Phys. Chem. B* 2013, *117*, 5647–5652.
- (318) Banerjee, S.; Hassenklöver, E.; Kleijn, J. M.; Cohen Stuart, M. A.; Leermakers, F. A. M.
 Interfacial tension and wettability in water-carbon dioxide systems: experiments and selfconsistent field modeling. *J. Phys. Chem. B* 2013, *117*, 8524–8235.
- (319) Duchateau, C.; Broseta, D. A simple method for determining brine–gas interfacial tensions. *Adv. Water Resour.* 2012, *42*, 30–36.
- (320) Butt, H.; Graf, K.; Kappl, M. *Physics and Chemistry of Interfaces, 2nd ed.*; Wiley-VCH:
 Weinheim, 2006.
- (321) Loring, J. S.; Thompson, C. J.; Wang, Z.; Joly, A. G.; Sklarew, D. S.; Schaef, H. T.; Ilton,
 E. S.; Rosso, K. M.; Felmy, A. R. In situ infrared spectroscopic study of forsterite
 carbonation in wet supercritical CO₂. *Environ. Sci. Technol.* 2011, 45, 6204–6210.
- (322) Kerisit, S.; Weare, J. H.; Felmy, A. R. Structure and dynamics of forsterite-scCO₂/H₂O
 interfaces as a function of water content. *Geochim. Cosmochim. Acta* 2012, 84, 137–151.
- (323) Kim, T. W.; Tokunaga, T. K.; Shuman, D. B.; Sutton, S. R.; Newville, M.; Lanzirotti, A.
 Thickness measurements of nanoscale brine films on silica surfaces under geologic CO₂
 sequestration conditions using synchrotron X-ray fluorescence. *Water Resour. Res.* 2012, 48, W09558.
- (324) Churaev, N. V. Surface forces in wetting films. *Adv. Colloid Interface Sci.* 2003, *103*, 1529
 197–218.

1530 (325) 1531 1532	Tripp, C. P.; Combes, J. R. Chemical modification of metal oxide surfaces in supercritical CO_2 : The interaction of supercritical CO_2 with the adsorbed water layer and the surface hydroxyl groups of a silica surface. <i>Langmuir</i> 1998 , <i>14</i> , 7348–7352.
1533 (326) 1534 1535	Cole, D. R.; Chialvo, A. A.; Rother, G.; Vlcek, L.; Cummings, P. T. Supercritical fluid behavior at nanoscale interfaces: Implications for CO ₂ sequestration in geologic formations. <i>Philos. Mag.</i> 2010 , <i>90</i> , 2339–2363.
1536 (327) 1537	Lagneau, V.; Pipart, A.; Catalette, H. Reactive transport modelling of CO ₂ sequestration in deep saline aquifers. <i>Oil Gas Sci. Technol.</i> 2005 , <i>60</i> , 231–247.
1538 (328) 1539 1540	Kaszuba, J.; Yardley, B.; Andreani, M. Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. <i>Rev. Mineral. Geochemistry</i> 2013 , <i>77</i> , 153–188.
1541 (329) 1542 1543	Zheng, F.; Shi, X. Q.; Wu, J. C.; Chen, Y.; Xu, H. X. Global sensitivity analysis of reactive transport modeling of CO ₂ geological storage in a saline aquifer. <i>Procedia Earth Planet. Sci.</i> 2013 , <i>7</i> , 798–801.
1544 (330) 1545 1546	Worden, R. H. Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO ₂ storage for greenhouse gas reduction. <i>Mar. Pet. Geol.</i> 2006 , <i>23</i> , 61–77.
1547 (331) 1548 1549 1550	Pauwels, H.; Gaus, I.; le Nindre, Y. M.; Pearce, J.; Czernichowski-Lauriol, I. Chemistry of fluids from a natural analogue for a geological CO ₂ storage site (Montmiral, France): Lessons for CO ₂ -water-rock interaction assessment and monitoring. <i>Appl. Geochemistry</i> 2007 , <i>22</i> , 2817–2833.
1551 (332) 1552 1553	Heinemann, N.; Wilkinson, M.; Haszeldine, R. S.; Fallick, A. E.; Pickup, G. E. CO ₂ sequestration in a UK North Sea analogue for geological carbon storage. <i>Geology</i> 2013 , <i>41</i> , 411–414.
1554 (333) 1555	Armstrong, R.; Ajo-Franklin, J. Investigating biomineralization using synchrotron based X-ray computed microtomography. <i>Geophys. Res. Lett.</i> 2011 , <i>38</i> , L08406.
1556 (334) 1557 1558	Nogues, J. P.; Fitts, J. P.; Celia, M. A.; Peters, C. A. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. <i>Water Resour. Res.</i> 2013 , <i>49</i> , 6006–6021.
1559 (335) 1560 1561 1562	Wendler, J.; Köster, J.; Götze, J.; Kasch, N.; Zisser, N.; Kley, J.; Pudlo, D.; Nover, G.; Gaupp, R. Carbonate diagenesis and feldspar alteration in fracture-related bleaching zones (Buntsandstein, central Germany): possible link to CO ₂ -influenced fluid–mineral reactions. <i>Int. J. Earth Sci.</i> 2011 , <i>101</i> , 159–176.

1563 1564 1565	(336)	Liu, F.; Lu, P.; Griffith, C.; Hedges, S. W.; Soong, Y.; Hellevang, H.; Zhu, C. CO ₂ -brine-caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. <i>Int. J. Greenh. Gas Control</i> 2012 , <i>7</i> , 153–167.
1566 1567 1568	(337)	Helgeson, H. C.; Murphy, W. M.; Aagaard, P. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar. <i>Geochim. Cosmochim. Acta</i> 1984 , <i>48</i> , 2405–2432.
1569 1570 1571	(338)	Brosse, É.; Magnier, C.; Vincent, B. Modelling fluid-rock interaction induced by the percolation of CO ₂ -enriched solutions in core samples: The role of reactive surface area. <i>Oil Gas Sci. Technol.</i> 2005 , <i>60</i> , 287–305.
1572 1573 1574	(339)	Maher, K.; Steefel, C. I.; White, A. F.; Stonestrom, D. A. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California. <i>Geochim. Cosmochim. Acta</i> 2009 , <i>73</i> , 2804–2831.
1575 1576 1577	(340)	Alemu, B. L.; Aagaard, P.; Munz, I. A.; Skurtveit, E. Caprock interaction with CO ₂ : A laboratory study of reactivity of shale with supercritical CO ₂ and brine mixtures at 250°C and 110 bars. <i>Appl. Geochemistry</i> 2011 , <i>26</i> , 1975–1989.
1578 1579	(341)	Carroll, S. A.; McNab, W. W.; Torres, S. C. Experimental study of cement- sandstone/shale-brine-CO ₂ interactions. <i>Geochem. Trans.</i> 2011 , <i>12</i> , 9.
1580 1581	(342)	White, A. F.; Brantley, S. L. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? <i>Chem. Geol.</i> 2003 , <i>202</i> , 479–506.
1582 1583 1584	(343)	Gadikota, G.; Swanson, E. J.; Zhao, H.; Park, AH. A. Experimental design and data analysis for accurate estimation of reaction kinetics and conversion for carbon mineralization. <i>Ind. Eng. Chem. Res.</i> 2014 , <i>53</i> , 6664–6676.
1585 1586 1587	(344)	Wolery, T. J.; Jackson, K. J.; Bourcier, W. L.; Burton, C.J.; Viani, B. E.; Knauss, K. G.; Delany, J. M. Current Status of the EQ3/6 Software Package for Geochemical Modeling. <i>ACS Symp. Series</i> 1990 , <i>416</i> , 104–116.
1588 1589 1590	(345)	Palandri, J. L.; Kharaka, Y. K. <i>A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling</i> ; Open File Report 2004-1068, US Geological Survey, 2004.
1591 1592 1593 1594	(346)	Johnson, J. W.; Oelkers, E. H.; Helgeson, H. C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. <i>Comput. Geosci.</i> 1992 , <i>18</i> , 899–947.
1595 1596 1597	(347)	Dethlefsen, F.; Haase, C.; Ebert, M.; Dahmke, A. Uncertainties of geochemical modeling during CO ₂ sequestration applying batch equilibrium calculations. <i>Environ. Earth Sci.</i> 2012 , <i>65</i> , 1105–1117.

1598 1599 1600	(348)	Haase, C.; Dethlefsen, F.; Ebert, M.; Dahmke, A. Uncertainty in geochemical modelling of CO ₂ and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases. <i>Appl. Geochemistry</i> 2013 , <i>33</i> , 306–317.
1601 1602 1603 1604	(349)	Fischer, S.; Liebscher, A.; De Lucia, M.; Hecht, L.; the Ketzin Team. Reactivity of sandstone and siltstone samples from the Ketzin pilot CO ₂ storage site-Laboratory experiments and reactive geochemical modeling. <i>Environ. Earth Sci.</i> 2013 , <i>70</i> , 3687–3708.
1605 1606 1607	(350)	Shao, H.; Ray, J. R.; Jun, YS. Dissolution and precipitation of clay minerals under geologic CO ₂ sequestration conditions: CO ₂ -brine-phlogopite interactions. <i>Environ. Sci. Technol.</i> 2010 , <i>44</i> , 5999–6005.
1608 1609 1610	(351)	Shao, H.; Ray, J. R.; Jun, YS. Effects of salinity and the extent of water on supercritical CO ₂ -induced phlogopite dissolution and secondary mineral formation. <i>Environ. Sci. Technol.</i> 2011 , <i>45</i> , 1737–1743.
1611 1612	(352)	Bilinski, H.; Horvath, L.; Ingri, N.; Sjöberg, S. Aluminosilicate phases during initial clay formation: H ⁺ -Al ³⁺ -oxalic acid-silicic acid-Na ⁺ system. <i>J. Soil Sci.</i> 1990 , <i>41</i> , 119–132.
1613 1614 1615	(353)	Koenen, M.; Wasch, L. J.; van Zalinge, M. E.; Nelskamp, S. Werkendam, the Dutch natural analogue for CO ₂ storage – long-term mineral reactions. <i>Energy Procedia</i> 2013 , <i>37</i> , 3452–3460.
1616 1617 1618	(354)	Yang, Y.; Min, Y.; Jun, YS. Effects of Al/Si ordering on feldspar dissolution: Part II. The pH dependence of plagioclases' dissolution rates. <i>Geochim. Cosmochim. Acta</i> 2014 , <i>126</i> , 595–613.
1619 1620	(355)	Yang, L.; Steefel, C. I. Kaolinite dissolution and precipitation kinetics at 22°C and pH 4. <i>Geochim. Cosmochim. Acta</i> 2008 , <i>72</i> , 99–116.
1621 1622	(356)	Hellevang, H.; Pham, V. T. H.; Aagaard, P. Kinetic modelling of CO ₂ –water–rock interactions. <i>Int. J. Greenh. Gas Control</i> 2013 , <i>15</i> , 3–15.
1623 1624	(357)	Saldi, G. D.; Jordan, G.; Schott, J.; Oelkers, E. H. Magnesite growth rates as a function of temperature and saturation state. <i>Geochim. Cosmochim. Acta</i> 2009 , <i>73</i> , 5646–5657.
1625 1626 1627 1628	(358)	Lu, P.; Fu, Q.; Seyfried, W. E. J.; Hedges, S. W.; Soong, Y.; Jones, K.; Zhu, C. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems – 2: New experiments with supercritical CO_2 and implications for carbon sequestration. <i>Appl. Geochemistry</i> 2013 , <i>30</i> , 75–90.
1629 1630	(359)	Carroll, S. A.; Knauss, K. G. Dependence of labradorite dissolution kinetics on CO _{2(aq)} , Al _(aq) , and temperature. <i>Chem. Geol.</i> 2005 , <i>217</i> , 213–225.

- (360) Hänchen, M.; Prigiobbe, V.; Baciocchi, R.; Mazzotti, M. Precipitation in the Mgcarbonate system—effects of temperature and CO₂ pressure. *Chem. Eng. Sci.* 2008, 63,
 1012–1028.
- (361) Hellmann, R.; Daval, D.; Tisserand, D. The dependence of albite feldspar dissolution
 kinetics on fluid saturation state at acid and basic pH: Progress towards a universal
 relation. *Comptes Rendus Geosci.* 2010, *342*, 676–684.
- (362) Daval, D.; Hellmann, R.; Martinez, I.; Gangloff, S.; Guyot, F. Lizardite serpentine
 dissolution kinetics as a function of pH and temperature, including effects of elevated
 pCO₂. *Chem. Geol.* 2013, *351*, 245–256.
- (363) Hu, Y.; Ray, J. R.; Jun, Y.-S. Na⁺, Ca²⁺, and Mg²⁺ in brines affect supercritical CO₂-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation. *Environ. Sci. Technol.* 2013, 47, 191–197.
- (364) Amin, S. M.; Weiss, D. J.; Blunt, M. J. Reactive transport modelling of geologic CO₂
 sequestration in saline aquifers: The influence of pure CO₂ and of mixtures of CO₂ with
 CH₄ on the sealing capacity of cap rock at 37 °C and 100 bar. *Chem. Geol.* 2014, 367, 39–
 50.
- (365) Crockford, P.; Telmer, K.; Best, M. Dissolution kinetics of Devonian carbonates at
 circum-neutral pH, 50 bar pCO₂, 105 °C, and 0.4 M: The importance of complex brine
 chemistry on reaction rates. *Appl. Geochemistry* 2014, *41*, 128–134.
- (366) McGrail, B. P.; Schaef, H. T.; Glezakou, V.-A.; Dang, L. X.; Owen, A. T. Water reactivity
 in the liquid and supercritical CO₂ phase: Has half the story been neglected? *Energy Procedia* 2009, 1, 3415–3419.
- (367) Kwak, J. H.; Hu, J. Z.; Turcu, R. V. F.; Rosso, K. M.; Ilton, E. S.; Wang, C.; Sears, J. A.;
 Engelhard, M. H.; Felmy, A. R.; Hoyt, D. W. The role of H₂O in the carbonation of
 forsterite in supercritical CO₂. *Int. J. Greenh. Gas Control* 2011, *5*, 1081–1092.
- (368) Regnault, O.; Lagneau, V.; Catalette, H.; Schneider, H. Experimental study of pure
 mineral phases/supercritical CO₂ reactivity. Implications for geological CO₂ sequestration.
 Comptes Rendus Geosci. 2005, 337, 1331–1339.
- (369) Thompson, C. J.; Loring, J. S.; Rosso, K. M.; Wang, Z. Comparative reactivity study of forsterite and antigorite in wet supercritical CO₂ by in situ infrared spectroscopy. *Int. J. Greenh. Gas Control* 2013, *18*, 246–255.
- (370) Wang, X.; Alvarado, V.; Swoboda-Colberg, N.; Kaszuba, J. P. Reactivity of dolomite in
 water-saturated supercritical carbon dioxide: Significance for carbon capture and storage
 and for enhanced oil and gas recovery. *Energy Convers. Manag.* 2013, 65, 564–573.

16 16 16	65 66 67	(371)	Qafoku, O.; Hu, J.; Hess, N. J.; Hu, M. Y.; Ilton, E. S.; Feng, J.; Arey, B. W.; Felmy, A. R. Formation of submicron magnesite during reaction of natural forsterite in H ₂ O-saturated supercritical CO ₂ . <i>Geochim. Cosmochim. Acta</i> 2014 , <i>134</i> , 197–209.
16 16 16	68 69 70	(372)	Trémosa, J.; Castillo, C.; Vong, C. Q.; Kervévan, C.; Lassin, A.; Audigane, P. Long-term assessment of geochemical reactivity of CO ₂ storage in highly saline aquifers: Application to Ketzin, In Salah and Snøhvit storage sites. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>20</i> , 2–26.
16 16 16	71 72 73	(373)	Hedlund, T.; Sjöberg, S.; Öhman, LO. Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. 15. A potentiometric study of speciation and equilibria in the Al^{3+} -CO ₂ (g)-OH ⁻ system. <i>Acta Chem. Scand. A</i> 1987 , <i>41</i> , 197–207.
16 16	74 75	(374)	Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. <i>J. Am. Chem. Soc.</i> 1938 , <i>60</i> , 309–319.
16 16 16	76 77 78	(375)	Gunter, W. D.; Perkins, E. H.; Hutcheon, I. Aquifer disposal of acid gases: modelling of water–rock reactions for trapping of acid wastes. <i>Appl. Geochemistry</i> 2000 , <i>15</i> , 1085–1095.
16 16 16	79 80 81	(376)	White, S. P.; Allis, R. G.; Moore, J.; Chidsey, T.; Morgan, C.; Gwynn, W.; Adams, M. Simulation of reactive transport of injected CO ₂ on the Colorado Plateau, Utah, USA. <i>Chem. Geol.</i> 2005 , <i>217</i> , 387–405.
16 16	82 83	(377)	Xu, T.; Apps, J. A.; Pruess, K. Mineral sequestration of carbon dioxide in a sandstone-shale system. <i>Chem. Geol.</i> 2005 , <i>217</i> , 295–318.
16 16	84 85	(378)	Zerai, B.; Saylor, B. Z.; Matisoff, G. Computer simulation of CO ₂ trapped through mineral precipitation in the Rose Run Sandstone, Ohio. <i>Appl. Geochemistry</i> 2006 , <i>21</i> , 223–240.
16 16 16	86 87 88	(379)	Zhang, W.; Li, Y.; Xu, T.; Cheng, H.; Zheng, Y.; Xiong, P. Long-term variations of CO ₂ trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China. <i>Int. J. Greenh. Gas Control</i> 2009 , <i>3</i> , 161–180.
16 16	89 90	(380)	Xu, T.; Yue, G.; Wang, F.; Liu, N. Using natural CO ₂ reservoir to constrain geochemical models for CO ₂ geological sequestration. <i>Appl. Geochemistry</i> 2014 , <i>43</i> , 22–34.
16 16	91 92	(381)	Peters, C. A. Accessibilities of reactive minerals in consolidated sedimentary rock: An imaging study of three sandstones. <i>Chem. Geol.</i> 2009 , <i>265</i> , 198–208.
16 16	93 94	(382)	White, A. F.; Peterson, M. L. Role of reactive-surface-area characterization in geochemical kinetic Models. <i>ACS Symp. Ser.</i> 1990 , <i>416</i> , 461–475.
16 16 16	95 96 97	(383)	Beni, A. N.; Stanjek, H.; Clauser, C. The formation of iron hydroxide coatings in an Emscher Marl: inverse reactive transport modeling of reactive surface area. <i>Environ. Earth Sci.</i> 2014 , <i>71</i> , 763–771.

geochemical transport in variably saturated fractured rocks: 1. Methodology. Am. J. Sci.

(384) Xu, T.; Pruess, K. Modeling multiphase non-isothermal fluid flow and reactive

1698 1699

1700		2001 , <i>301</i> , 16–33.
1701 1702 1703 1704 1705	(385)	Johnson, J. W.; Nitao, J. J.; Knauss, K. G. Reactive transport modelling of CO ₂ storage in saline aquifers to elucidate fundamental processes, trapping mechanisms, and sequestration partitioning. In <i>Geological Storage of Carbon Dioxide, Geological Society of London Special Publication 233</i> ; Bains, S. J., Worden, R. H., Eds.; Geological Society, London, 2004.
1706 1707 1708 1709	(386)	Audigane, P.; Gaus, I.; Pruess, K.; Xu, T. Reactive transport modeling using TOUGHREACT for the long term CO ₂ storage at Sleipner, North Sea. In <i>Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration DOE/NETL</i> ; 2005; Vol. 2.
1710 1711 1712	(387)	Knauss, K. G.; Johnson, J. W.; Steefel, C. I. Evaluation of the impact of CO ₂ , co- contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO ₂ . <i>Chem. Geol.</i> 2005 , <i>217</i> , 339–350.
1713 1714 1715 1716	(388)	Ozah, R. C.; Lakshminarasimhan, S.; Pope, G. A.; Sepehrnoori, K.; Bryant, S. L. Numerical simulation of the storage of pure CO ₂ and CO ₂ -H ₂ S gas mixtures in deep saline aquifers. In 2005 SPE Annual Technical Conference and Exhibition, Dallas, TX, 9-12 October 2005; SPE Paper 97255, Society of Petroleum Engineers, 2005.
1717 1718 1719	(389)	Balashov, V. N.; Guthrie, G. D.; Hakala, J. A.; Lopano, C. L.; Rimstidt, J. D.; Brantley, S. L. Predictive modeling of CO ₂ sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics. <i>Appl. Geochemistry</i> 2013 , <i>30</i> , 41–56.
1720 1721 1722	(390)	Bolourinejad, P.; Omrani, P. S.; Herber, R. Effect of reactive surface area of minerals on mineralization and carbon dioxide trapping in a depleted gas reservoir. <i>Int. J. Greenh. Gas Control</i> 2014 , <i>21</i> , 11–22.
1723 1724 1725 1726	(391)	Luhmann, A. J.; Kong, XZ.; Tutolo, B. M.; Garapati, N.; Bagley, B. C.; Saar, M. O.; Seyfried, W. E., Jr. Experimental dissolution of dolomite by CO ₂ -charged brine at 100 °C and 150 bar: Evolution of porosity, permeability, and reactive surface area. <i>Chem. Geol.</i> 2014 , <i>380</i> , 145–160.
1727 1728	(392)	Li, L.; Peters, C. A.; Celia, M. A. Upscaling geochemical reaction rates using pore-scale network modeling. <i>Adv. Water Resour.</i> 2006 , <i>29</i> , 1351–1370.
1729 1730 1731	(393)	Molins, S.; Trebotich, D.; Yang, L.; Ajo-Franklin, J. B.; Ligocki, T. J.; Shen, C.; Steefel, C. I. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. <i>Environ. Sci. Technol.</i> 2014 , <i>48</i> , 7453–7460.
1732	(394)	Fischer, C.; Arvidson, R. S.; Lüttge, A. How predictable are dissolution rates of crystalline

1733 material? *Geochim. Cosmochim. Acta* **2012**, *98*, 177–185.

1734 1735 1736	(395)	Landrot, G.; Ajo-Franklin, J. B.; Yang, L.; Cabrini, S.; Steefel, C. I. Measurement of accessible reactive surface area in a sandstone, with application to CO ₂ mineralization. <i>Chem. Geol.</i> 2012 , <i>318-319</i> , 113–125.
1737 1738 1739	(396)	Skovbjerg, L. L.; Hassenkam, T.; Makovicky, E.; Hem, C. P.; Yang, M.; Bovet, N.; Stipp, S. L. S. Nano sized clay detected on chalk particle surfaces. <i>Geochim. Cosmochim. Acta</i> 2012 , <i>99</i> , 57–70.
1740 1741 1742	(397)	Andreani, M.; Luquot, L.; Gouze, P.; Godard, M.; Hoisé, E.; Gibert, B. Experimental study of carbon sequestration reactions controlled by the percolation of CO ₂ -rich brine through peridotites. <i>Environ. Sci. Technol.</i> 2009 , <i>43</i> , 1226–1231.
1743 1744 1745 1746	(398)	Daval, D.; Sissmann, O.; Menguy, N.; Saldi, G. D.; Guyot, F.; Martinez, I.; Corvisier, J.; Garcia, B.; Machouk, I.; Knauss, K. G.; et al. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevated pCO ₂ . <i>Chem. Geol.</i> 2011 , <i>284</i> , 193–209.
1747 1748 1749	(399)	Gin, S.; Guittonneau, C.; Godon, N.; Neff, D.; Rebiscoul, D.; Cabié, M.; Mostefaoui, S. Nuclear glass durability: New insight into alteration layer properties. <i>J. Phys. Chem. C</i> 2011 , <i>115</i> , 18696–18706.
1750 1751 1752 1753	(400)	 Béarat, H.; McKelvy, M. J.; Chizmeshya, A. V. G.; Gormley, D.; Nunez, R.; Carpenter, R. W.; Squires, K.; Wolf, G. H. Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. <i>Environ. Sci. Technol.</i> 2006, <i>40</i>, 4802–4808.
1754 1755 1756	(401)	Zhu, C.; Veblen, D. R.; Blum, A. E.; Chipera, S. J. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization. <i>Geochim. Cosmochim. Acta</i> 2006 , <i>70</i> , 4600–4616.
1757 1758	(402)	Stockmann, G. J.; Wolff-Boenisch, D.; Gislason, S. R.; Oelkers, E. H. Do carbonate precipitates affect dissolution kinetics?: 2: Diopside. <i>Chem. Geol.</i> 2013 , <i>337-338</i> , 56–66.
1759 1760 1761	(403)	Stockmann, G. J.; Wolff-Boenisch, D.; Bovet, N.; Gislason, S. R.; Oelkers, E. H. The role of silicate surfaces on calcite precipitation kinetics. <i>Geochim. Cosmochim. Acta</i> 2014 , <i>135</i> , 231–250.
1762 1763 1764	(404)	Stockmann, G. J.; Wolff-Boenisch, D.; Gislason, S. R.; Oelkers, E. H. Do carbonate precipitates affect dissolution kinetics? 1: Basaltic glass. <i>Chem. Geol.</i> 2011 , <i>284</i> , 306–316.
1765 1766	(405)	Emmanuel, S. Mechanisms influencing micron and nanometer-scale reaction rate patterns during dolostone dissolution. <i>Chem. Geol.</i> 2014 , <i>363</i> , 262–269.

1767 1768 1769	(406)	Cubillas, P.; Köhler, S.; Prieto, M.; Causserand, C.; Oelkers, E. H. How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO ₃ dissolution—CdCO ₃ precipitation. <i>Geochim. Cosmochim. Acta</i> 2005 , <i>69</i> , 5459–5476.
1770 1771 1772 1773	(407)	Daval, D.; Hellmann, R.; Saldi, G. D.; Wirth, R.; Knauss, K. G. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. <i>Geochim. Cosmochim. Acta</i> 2013 , <i>107</i> , 121–134.
1774 1775 1776 1777	(408)	Sissmann, O.; Brunet, F.; Martinez, I.; Guyot, F.; Verlaguet, A.; Pinquier, Y.; Daval, D. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: Reevaluating the potential of CO ₂ mineral sequestration. <i>Environ. Sci. Technol.</i> 2014 , <i>48</i> , 5512–5519.
1778 1779 1780 1781	(409)	Hellmann, R.; Wirth, R.; Daval, D.; Barnes, JP.; Penisson, JM.; Tisserand, D.; Epicier, T.; Florin, B.; Hervig, R. L. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: A study based on the nanometer-scale chemistry of fluid–silicate interfaces. <i>Chem. Geol.</i> 2012 , <i>294-295</i> , 203–216.
1782 1783 1784	(410)	Zhu, C.; Lu, P. The coupling of dissolution and precipitation reactions as the main contributor to the apparent field-lab rate discrepancy. <i>Procedia Earth Planet. Sci.</i> 2013 , <i>7</i> , 948–952.
1785 1786 1787 1788	(411)	Hellmann, R.; Penisson, JM.; Hervig, R. L.; Thomassin, JH.; Abrioux, MF. An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution-reprecipitation. <i>Phys. Chem. Miner.</i> 2003 , <i>30</i> , 192–197.
1789 1790	(412)	Amrhein, C.; Suarez, D. L. Some factors affecting the dissolution kinetics of anorthite at 25°C. <i>Geochim. Cosmochim. Acta</i> 1992 , <i>56</i> , 1815–1826.
1791 1792 1793	(413)	Urosevic, M.; Rodriguez-Navarro, C.; Putnis, C. V.; Cardell, C.; Putnis, A.; Ruiz-Agudo, E. In situ nanoscale observations of the dissolution of {1014} dolomite cleavage surfaces. <i>Geochim. Cosmochim. Acta</i> 2012 , <i>80</i> , 1–13.
1794 1795 1796	(414)	Schott, J.; Pokrovsky, O. S.; Spalla, O.; Devreux, F.; Gloter, A.; Mielczarski, J. A. Formation, growth and transformation of leached layers during silicate minerals dissolution: The example of wollastonite. <i>Geochim. Cosmochim. Acta</i> 2012 , <i>98</i> , 259–281.
1797 1798	(415)	Gin, S.; Jollivet, P.; Fournier, M.; Angeli, F.; Frugier, P.; Charpentier, T. Origin and consequences of silicate glass passivation by surface layers. <i>Nat. Commun.</i> 2015 , <i>6</i> , 6360.
1799 1800 1801	(416)	Moore, J.; Lichtner, P. C.; White, A. F.; Brantley, S. L. Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith. <i>Geochim. Cosmochim. Acta</i> 2012 , <i>93</i> , 235–261.

Figure 1 80x88mm (300 x 300 DPI)

Figure 2a 117x83mm (300 x 300 DPI)

Figure 2b 118x83mm (300 x 300 DPI)

Figure 2c 117x83mm (300 x 300 DPI)

Figure 3 121x85mm (300 x 300 DPI)

Figure 4 85x77mm (300 x 300 DPI)

Figure 5 111x80mm (300 x 300 DPI)

TOC Art 57x44mm (300 x 300 DPI)