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Appendix A. Study area

We restricted our study to protected areas in the Brazilian Cerrado. Please see Fig. A.1 for a map.

Figure A.1: Map of study areas. Outline on map demarks the Cerrado. Study areas are coloured red.



Appendix B. Rainfall and tree cover distribution in the Cerrado

The distribution of annual rainfall [1] per forest patch in the Cerrado is given in Fig. B.2. The distribution lends itself
well to a distinction in terms of 3 different climates: forests receiving less than 1100 mm, between 1100 and 1800 mm
and more than 1800 mm.

The distribution of tree cover over our study region is given in Fig. B.3. Unlike the distribution of rainfall, there is
no clear threshold separating obvious forests sites from obvious grassland sites. Thankfully, the two most common
tree cover values are 0 and 100%. For sites with an intermediate value, we use thresholds of 50% and 75% to either
include or exclude the local maximum around 55 and 60%.

As shown in Fig. B.4, some areas in our study region are dominated by geographical features. However, numerically,
the bulk of the data comes from grass-forest mosaics as shown in Fig. 1 of the main text.
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Figure B.2: Histogram of annual precipitation. The y-axis shows the number of forest patches in our remotely sensed data set that have a specific
annual rain fall. The dashed vertical line demark the boundaries between sites with low, medium and high rain fall, presented in Figure 1E&F of
the main text.

Appendix C. Statistical estimates of scale exponents

The empirical data is characterized by two sets fat-tail distributions: the distribution functions f (A) of forest area A,
and the distribution functions g(P) of perimeter P. The quantities A and P are themselves linked by a scaling relation
of the form P ∼ Aγ. Let f (A) ∼ A−φ and g(P) ∼ P−θ for large values of A and P, we can derive γ as a function of φ and
θ. Doing so allows us to use the robust statistical framework developed to estimate scaling exponents in power-law
distributions in order to also estimate γ, and obtain error bounds on all exponents.
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Figure B.3: Histogram of tree cover. The y-axis shows the number of sites in our remotely sensed data set that have a estimated tree cover. The
inset uses a limited y-axis to highlight the distribution of tree cover among forested sites.
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Figure B.4: Tree cover in an area where forest cover is strongly influenced by geographical features. Left panel shows raw data; right panel shows
the same area with the 50% tree cover threshold applied. The panel show a 4 km by 4 km area.

First, let us derive the relation between γ, φ and θ. We have

g(P)dP = f (A(P))
dA
dP

dP ∼ P−φ/γP1/γ−1dP (C.1)

where we use both f (A) ∼ A−φ and the variable change P ∼ Aγ to rewrite g(P)dP. If we now use the correspondence
between the last expression and g(P) ∼ P−θ, we obtain

γ =
φ − 1
θ − 1

. (C.2)

We can use Eq. C.2 to estimate γ if we can obtain estimates and error bounds on both φ and θ. To do so, we rely
on the framework developed by Clauset, Shalizi and Newman [2], which we here summarize. With a sequence of
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observations X = {xi}, the likelihood that X came from the normalized discrete probability distribution P(x) would be
the product of the likelihood of every observation:

∏
i P(xi). The log-likelihood would then simply be

L (P(X)) = ln

∏
i

P(xi)

 =
∑

i

ln [P(xi)] . (C.3)

In our case, since the power-law behavior might only be present in the tail, we define the observed data as the subset
of all n observations xi ≥ xmin where xmin is an appropriate bound for the power-law tail. Thus, the log-likelihood of
data xi depends on both ν and xmin following

L(ν, xmin) = ln

 n∏
i=1

x−νi∑
j>xmin

j−ν

 (C.4)

where the sum is simply the normalizing factor of the tail. This sum can be referred to as a generalized zeta function
ζ(ν, xmin). The MLE of ν and xmin, usually noted ν̂ and x̂min, are thus obtained by maximizing

L(ν, xmin) = −n ln
[
ζ(ν, xmin)

]
− ν

n∑
i=1

ln ki . (C.5)

Maximizing for ν using a given xmin is straightforward: we scan potential ν values, typically in steps of 10−2 or 10−3.
Choosing the right xmin is another story. If too low, we risk including the non-power-law behaviour (if any) of the data.
If too high, we lose too many observations and the estimate of ν will also suffer. For consistency, we used xmin = 10
(in pixels and square pixels, not meters and square meters) on all data, both simulated and empirical. The error bounds
on ν are then given by the following standard deviation:

σ =
ν̂ − 1
√

n
+ O(n) , (C.6)

where n is the number of data points above x̂min.

Using this procedure in the three climatic regions and both the 50% and 75% forest cover threshold, we obtain the
following intervals for the exponents

γhigh,50 = 0.68 ± 0.03, γmedium,50 = 0.70 ± 0.01, γlow,50 = 0.70 ± 0.02 ;
φhigh,50 = 1.78 ± 0.02, φmedium,50 = 1.81 ± 0.01, φlow,50 = 1.94 ± 0.02 ;
θhigh,50 = 2.15 ± 0.02, θmedium,50 = 2.15 ± 0.01, θlow,50 = 2.35 ± 0.02 .

γhigh,75 = 0.66 ± 0.03, γmedium,75 = 0.70 ± 0.02, γlow,75 = 0.71 ± 0.01 ;
φhigh,75 = 1.79 ± 0.02, φmedium,75 = 1.84 ± 0.01, φlow,75 = 1.84 ± 0.01 ;
θhigh,75 = 2.20 ± 0.02, θmedium,75 = 2.20 ± 0.01, θlow,75 = 2.47 ± 0.01 .

Note that the error on φ and θ values are theoretical standard error, whereas error on the γ values correspond to 95%
intervals obtained using all values of φ and θ within 1.96 standard deviations of their respective mean (we assume
normality considering the possible values γ are bounded).
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While the intervals do not overlap for φ and θ across all climatic regions, the estimates for γ are surprisingly robust.
We find similar values in our simulated data, shown in Table 2 of the main text, such that almost all intervals of
confidence overlap at least around 0.69. In the main text, we reported the average maximum-likelihood value as an
averaged 95% interval.
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Figure C.5: Example of the fits obtained on two forest area distributions: Empirical data from the medium range of precipitation using the 50%
tree cover threshold (left) and data from the simulation set using a 515x512 lattice, pλ = 0.1, pα = 0.004, pβ = 10−5, p f = 4 · 10−7, pG = 0.9 and
pT = 0.1. (right). The scaling exponents obtained are, respectively, 1.81 and 1.95.

Appendix D. Additional flow results

One of our main results concern our ability to predict the fate of individual forest patches based on their current shape.
We here revisit the analysis behind Fig. 2 in the main text using a different set of parameters. In Fig. D.6, we find
that flows of forest patches in the perimeter-area space appear robust to changes in parameters. The simulations done
for this version use a 256x256 lattice with pλ = 0.1, pα = 0.022, pβ = 10−6, p f = 3.4 · 10−6, pG = 0.9 and pT = 0.1.
Flows are now averaged over 50 time steps.

Appendix E. Coarse-graining

The empirical data was constructed by coarse-graining satellite imagery according to the size of the tree cover (less
or more than 50% tree cover for savanna-grassland or forest respectively). This coarse-graining process obviously
affects the shape of a forest, but to what extent? Empirical results tell us that these regions are typically separated in
areas of low (<50%) or high (>75%) tree cover. Consequently, any threshold between 50-75% is reasonable, and we
used 50% following other sources in the literature.

However, we can take the analysis a step further and coarse-grain our numerical simulations following the same
process. We group sites of our lattices in pixels of 4 original sites (2x2) to which we assign a “forest” state if 2 or
more sites in the pixel are in a true “forest” site. This coarse-graining process thus follows the same 50% threshold to
distinguish between forest and grassland.

In Fig. E.7, we present results obtained by first running our entire numerical methodology on our model using a
256×256 square lattice, with pλ = 10−1, pβ = 10−4, pα = 5 · 10−3, ρG = 0.9, ρT = 0.1 and p f = 1.25 · 10−5;
then by applying this coarse-graining process. We find that the same scaling relation fits both the original data, and
coarse-grained data.
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Figure D.6: This figure validates the robustness of Fig. 2 in the main text to model parameters.

Appendix F. Linear scaling in previous models, and in the case α → 0

Recent models of fire in forest-grassland system (e.g. [3]) focused on the bistability of the system and not on the
spatial organization. Consequently, they do not incorporate a local mechanism for tree spreading (our pα parameter).
Indeed, we do find a large region of bistability (first order transition) in the limit pα → 0. However, in this limit,
the system does not reproduce the correct scaling of perimeter to area for individual forest patches, and consequently
models in this regime can not inform policy at the local level. We present results supporting this claim in Fig. F.8.

Appendix G. Details of the mean-field analysis

We write the mean-field equations for the spatial simulation as follows. Define the normalized densities of grass,
trees, ash and burning entities (both grass and trees can be lumped together, as the fire propagation rate is independent
of which entity catches fire in our model) as a function of time as G(t), T (t), A(t) and B(t). To derive the mean-field
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Figure E.7: (top figure) Time series of the total fraction of forested sites T as a function of time. One time step correspond to one iteration of
the rules of our model over all lattice sites. We observe the system at every 1000 time steps. (middle row) Histogram of area and perimeter for
every forest cluster observed. The estimated scaling exponents are shown in blue. (bottom row) Our analysis leads to a relation of perimeter to
area following a scaling exponent of 0.696 (95% confidence interval [0.62, 0.78]) which fits the data well both before (left) and after (right) the
coarse-graining process. To plot the coarse-grained data, we multiplied area by 4 and perimeter by 2 (so that their units still match that of the right
plot).
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Figure F.8: Results obtained on a 256×256 square lattice, using pλ = 10−2, pβ = 2 · 10−3, ρG = 0.9, ρT = 0.1 with (left) p f = 3 · 10−4 and pα = 0
or (right) p f = 5 · 10−4 and pα = 10−4. The scaling of perimeter appears closer to a linear relation (orange line) rather than the correct 0.7 power
law (blue line). While the linear fit is not excellent on the right figure, our fitting procedure suggests a scaling with exponent 0.95 (95% confidence
interval [0.84, 1.09]).

equations, we first assign every site i j on the square two-dimensional lattice with the Bernoulli random variables
Gi, j(t), Ti, j(t), Ai, j(t), and Bi, j(t). At each site, only one of these four random variables can take the value 1, while the
remaining three variables are equal to 0.

We now write the probability for a particular random variable to undergo a change. Based on the elemental steps of
the model that were enumerated in the main text, the change in the probability that a site contains a grass patch in a
time increment ∆t is given by,

∆Gi, j = λ∆tAi, j −Gi, j∆t
[
β + f +

∑
(k,`)∈N(i, j)

(ρG Bk,` + αTk,`)
]
, (G.1)

where N(i, j) denotes the nearest-neighborhood of site (i, j). Analogous equations can be written for the change in
the probabilities that the site is occupied by a tree, by ash, or that the site is burning.

We then apply the expectation operator to all the quantities and make the following mean-field assumptions,

1. The lattice is translationally invariant implying 〈Gi, j〉 is independent of (i, j)
2. That averages of two-body quantities, such as 〈GT 〉 = 〈G〉〈T 〉, etc.

These assumption lead to the following set of rate equations:

Ġ = λA − (β + f ) G − 4ρG BG − 4αGT ,

Ṫ = 4αT (G + A) + βG − 4ρT BT ,

Ȧ = µB − λA − 4αT A ,

Ḃ = fG + 4ρG BG + 4ρT BT − µB .

(G.2)

We can solve (G.2) numerically for different parameter values. Here ρG and ρT are simply related to pG and pT , the
probabilities that a grass (or tree) patch that neighbors a burning patch catches fire before the burning patch turns
to ash. In particular ρG is related to pG by pG = ρG/(ρG + r), which implies that ρG = r pG/(1 − pG). Similarly
ρT = r pT/(1− pT ). We fix pG = 0.9 and pT = 0.1, as used in the simulations, but in general pG, the probability that fire
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spreads to a grass patch, is large and pT , the probability that fire spreads to a tree patch, is small. Then we fix λ = 0.05,
equivalently fixing the time units. We choose a set of values for α from 0 to λ/10 (since trees grow much slower than
grass) and different values for β. For each (α, β), we find T ∗, the steady state density of trees as a function of the fire
rate f . As we see in Fig. G.9, (G.2) exhibits rich behavior and corresponds to what we observe in the simulations.
For small values of β, the system undergoes a first-order transition in the tree density as a function of the fire rate
and consequently shows hysteresis. For large values of β, the system undergoes a second-order transition in the tree
density. The critical value of βc decreases as a function of α (Fig. G.10). There also exists a value αc beyond which
T ∗ = 1 is stable for any value of f and the fully forested state is always the only stable solution of the system.
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Figure G.9: (a) Fixed point value of T , for α = 0.001 and β = 0.2, 0.4, · · · , 1.0 as a function of f . Stable and unstable solutions are in blue (solid)
and red (dashed) lines respectively. βc ≈ 0.7 (b) Bistable region for α = 0.001 and β = 0.3.
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Figure G.10: Diagram of the possible phase transition. The markers follow βc as a function of α; βc is the value of β that divides the first- and
second-order transitions in T ∗ as a function of f . The vertical dotted line marks αc, which is the value of α beyond which T ∗ = 1 is stable even for
infinite f . These results were obtained with λ = 0.05, pt = 0.1 and pg = 0.9.

Appendix H. Derivation of αc, where a fully-forested state is the only outcome

Our mean-field results indicated that there exists a value αc above which there are no phase transitions in f ; i.e.,
T ∗ = 1 is stable even for infinite fire rates f . To derive this value in a simpler way, we can write the Jacobian for
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Eq. (G.2) and find the value of α, above which all the eigenvalues of the Jacobian at T = 1 are negative, for all values
of f and β. We use the fact that G + T + A + B = 1 and write the Jacobian of the reduced system with just the variables
G, T and A and substitute B = 1 −G − T − A. We evaluate the Jacobian at (G,T, A) = (0, 1, 0) to obtain,

J =

 −β − f − 4α 0 λ
4α + β + 4ρT 4ρT 4α + 4ρT

−µ −µ −µ − λ − 4α

 (H.1)

which can then be evaluated in the limit f → ∞ with β = 0 for simplicity. Again, αc is the smallest α for which all
eigenvalues are negative in the limit f → ∞. Numerically, we find that for α > αc = 0.01, T = 1 is always a steady
state.
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