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Single crystal neutron diffraction studies have been performed on the S = 3/2 kagome staircase

compound Co3V2O8 with a magnetic field applied along the magnetization easy-axis ( ~H || ~a).
Previous zero-field measurements [Y. Chen, et al. Phys. Rev. B 74, 014430 (2006)] reported
a rich variety of magnetic phases, with a ferromagnetic ground state as well as incommensurate,

transversely polarized spin density wave (SDW) phases [with a propagation vector of ~k = (0 δ 0)]
interspersed with multiple commensurate lock-in transitions. The magnetic phase diagram with
~H || ~a adds further complexity. For small applied fields, µ0H ≈ 0.05 T, the commensurate lock-in
phases are destabilized in favor of the incommensurate SDW ones, while slightly larger applied fields
restore the commensurate lock-in phase with δ = 1/2 and yield a new commensurate phase with
δ = 2/5. For measurements in an applied field, higher-order scattering is observed that corresponds
to the second-harmonic.

PACS numbers: 75.25.-j, 75.30.Fv, 75.30.Kz

I. INTRODUCTION

Frustrated magnets - systems where lattice geometry1,
disorder2, or competing interactions3 prevent a simple
magnetic structure that satisfies all exchange interactions
- often develop exotic quantum ground states and low-
energy excitations. One geometrically frustrated lattice
of considerable interest is the kagome lattice4,5, consist-
ing of corner sharing equilateral triangles. A variation
on this structure, the kagome staircase lattice, has been
realized in the M3V2O8 compounds where the divalent
cation M = Mn, Co, Ni, Cu, or Zn6–11. These materials
display buckled kagome planes stacked along the b-axis.
As shown in Figure 1, this structure results in two crystal-
lographically distinct M sites: the M(1) sites (at the 4a
Wyckoff positions) are referred to as the “cross-tie” sites
while the M(2) sites (8e positions) are the “spine” sites.
Chains of spine sites run along the a-axis, and are coupled
through the cross-tie sites. The complicated interplay
of competing magnetic interactions in Ni3V2O8 (NVO)
yields a rich magnetic phase diagram9,12, with several dis-
tinct commensurate and incommensurate spin structures
arising in the order of the S = 1 Ni2+ moments. NVO is
multiferroic13, as the low-temperature incommensurate
magnetic structure in this material is a spiral structure
that breaks spatial inversion symmetry and leads to si-
multaneous ferroelectric order14,15. Co3V2O8 (CVO) fea-
tures the kagome staircase lattice decorated with S = 3/2
Co2+ ions. The crystal structure is orthorhombic, with
Cmca space group and lattice parameters of a = 6.027 Å,
b = 11.483 Å, and c = 8.296 Å. Much of the interest
in kagome lattice materials16–19 stems from theoretical

(a) (b)

Co(1)

Co(2)

FIG. 1: The kagome staircase structure of Co3V2O8. Co2+

ions form buckled kagome sheets in the a-c plane that are
stacked along the b-axis. The Co(2) “spine” sites (shown in
blue) form chains along the a-axis that are coupled through
the Co(1) “cross-tie” sites (green). (a) Kagome structure in
the a-c plane. (b) Buckled planes stacked along the b-axis.
The unit cell is outlined in gray.

and numerical predictions20–22 of a disordered quantum
ground state in the low-spin kagome lattice Heisenberg
antiferromagnet. In the kagome staircase compounds
Ni3V2O8 and Co3V2O8, the crystallographically distinct
spine and cross-tie sites interact through a variety of
exchange interactions both ferromagnetic and antifer-
romagnetic, including interactions beyond the nearest-
neighbor. Therefore NVO and CVO are of interest in
exploring the effects of multiple competing magnetic in-
teractions in a frustrated geometry.

Previous single crystal neutron diffraction
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experiments23 on CVO in zero field revealed a rich
variety of magnetic phases. Below TC = 6.2 K
the system is ferromagnetically ordered, with easy
magnetization along the a-axis. A magnetic field of
µ0H = 0.3 T or greater applied along the a-axis in this
low-temperature ferromagnetic phase will produce a
saturated magnetization10,24 of about 3 µB/Co; recent
measurements suggest that a portion of this moment
resides on the O or V sites25. Above the ferromagnetic
ground state, magnetic reflections were observed at
(0 n ± δ l) where n is an even integer, l is an integer,
and δ evolves from 1/3 just above the ferromagnetic
phase to 0.55 at TN =11.3 K, above which the system
is paramagnetic. These reflections reveal a transversely
polarized antiferromagnetic (AF) spin density wave

(SDW) state with a propagation vector of ~k = (0 δ 0).
The value of δ displays commensurate lock-in phases at
1/3 (TC < T < 6.5 K) and 1/2 (6.9 K < T < 8.6 K)
interspersed with incommensurate SDW phases of
1/3 < δ < 1/2 and 1/2 < δ ≤ 0.55. In the ferromagnetic
ground state, the ordered moments on the spine and
cross-tie sites were refined as 2.73 µB and 1.54 µB ,
respectively. The magnetic structure in the δ = 1/2
AF phase consists of alternating ferromagnetic and
antiferromagnetic layers; in the ferromagnetic layers
the spine and cross-tie sites have ordered moments of
1.39 µB and 1.17 µB , respectively, while in the anti-
ferromagnetic layers the spine sites display an ordered
moment of 2.55 µB and the cross-tie sites are fully
frustrated with no ordered moment. The spin direction
for all Co moments is along the crystallographic a-axis
(the magnetization easy-axis), showing strong Ising-like

behavior. Magnetic phase diagrams for CVO with ~H
parallel to the b- and c-axes have been reported24,26,27,
with a complex evolution of the magnetic phases in field.

The crystallographic structures of Co3V2O8 and
Ni3V2O8 are remarkably similar, yet the magnetic struc-
tures displayed by the two materials are quite differ-
ent. These differences arise from the fact that the mag-
netic structures in CVO and NVO are determined by the
subtle competition between nearly balanced countervail-
ing magnetic interactions in a frustrated geometry. As
the structure consists of edge-sharing MO6 octahedra,
the M -O-M bond angles are close to 90◦ and nearest-
neighbor superexchange interactions will be fairly weak
so that interactions beyond the nearest-neighbor play a
significant role. The zero-field magnetic structures of
Co3V2O8 have been qualitatively reproduced by a min-
imal interaction Ising model with four competing spine-
spine interactions23, including a temperature dependent
interaction between nearest-neighbor spines that is in-
fluenced by the cross-tie Co(1) moments. While recent
spin wave measurements28 in the low-temperature ferro-
magnetic phase were modeled with only a ferromagnetic
nearest-neighbor Co(1)-Co(2) interaction, the strengths
of the competing spine-spine interactions that determine
the antiferromagnetic structures are not yet known.

In this paper, we present single crystal neutron diffrac-
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FIG. 2: H-T phase diagram for Co3V2O8 with ~H || ~a. The
material is paramagnetic at high temperature, and ferromag-
netic at low temperature or under a large applied field. The
antiferromagnetic phases are described by a transversely po-
larized spin density wave with moments aligned parallel to

~a and a propagation vector along ~b. Incommensurate SDW
phases are displayed, as well as commensurate lock-in phases
at δ = 1/3, 2/5 and 1/2.

tion data on Co3V2O8 measured in small magnetic fields

with ~H || ~a. We have determined the H-T magnetic
phase diagram, as is shown in Figure 2. We find that a
weak applied field, µ0H ≈ 0.05 T, destabilizes the com-
mensurate lock-in phases in favor of the incommensu-
rate AF phase. Slightly higher magnetic fields restore
the stability of the δ = 1/2 AF phase, and for applied
fields greater than 0.15 T we find a new commensurate
antiferromagnetic phase with δ = 2/5. No antiferromag-
netic phases are observed for µ0H ≥ 0.4 T; the high-field
transition between the ferromagnetic and paramagnetic
phases shown in Figure 2 is estimated from previously
reported data26. The H-T phase diagram of CVO with
~H || ~a has been previously reported26,27,29 on the basis of
bulk magnetization, specific heat, and dielectric measure-
ments. Our results are in general agreement with these
reports on the extent of the ferromagnetic and paramag-
netic phases; however, the use of single crystal neutron
diffraction has enabled us to better elucidate the evolving
propagation vector and discern the new AF phase with
δ = 2/5. For measurements in an applied field of at least
0.05 T we find second-order scattering at (0 n ± δ′ l)
positions where δ′ = 2δ. This is a clear change from
the third-order scattering observed in zero field23, and is
possible only in the presence of a net magnetization.

II. EXPERIMENT

Neutron diffraction experiments on single crystal sam-
ples of Co3V2O8 were performed on the BT-7 and BT-9
thermal triple-axis neutron spectrometers at the NIST



3

Center for Neutron Research. The growth of single crys-
tal samples has been reported previously23. Samples were
mounted in the (0 K L) scattering plane and placed in-
side a helium flow dewar inserted into a 7 T vertical-
field superconducting magnet. Thus the magnetic field
was applied parallel to the crystallographic a-axis, which
is also the magnetization easy-axis. Measurements were
performed on both a small (≈3×3×2 mm3) and a large
(4.6 g, roughly 1 cm on a side) single crystal. The small
crystal was measured on BT-7 while the large crystal
was measured on BT-9. The (0 0 2) reflections of the
pyrolytic graphite (PG) monochromator and analyzer se-
lected the fixed neutron energy of 14.7 meV (λ = 2.36 Å)
and PG filters were used to reduce higher-order neutrons.
When a field is applied parallel to the a-axis in the low-
temperature ferromagnetic phase we find a decrease in
the intensity of ferromagnetic Bragg reflections, with the
magnetic scattering intensity strongly suppressed under
applied fields of 0.1 T or greater. This behavior has been
previously reported by Qureshi, et al.25 and like that re-
port we attribute this effect to increasing primary ex-
tinction as the size of individual magnetic domains grows
upon application of a field.

There were quantitative differences in the scattering
observed from the small and large crystals, with a con-
trast in the boundaries between incommensurate phases
and commensurate lock-ins. The zero-field δ = 1/3
phase, present over only a 0.3 K temperature range in the
small crystal, was not observed as a clear lock-in phase
in the large crystal and at low fields the δ = 1/2 phase
was observed over a narrower temperature range and at
a slightly elevated temperature in the large crystal when
compared to the small crystal. Qualitatively, measure-
ments on both crystals were otherwise in good agreement,
displaying the same magnetic phases and higher-order
scattering. The H-T phase diagram (shown in Figure 2)
was determined using data from the small crystal, which
is likely to be of higher quality; this crystal was also used
for previously reported zero-field single crystal diffraction
measurements23. The data displayed in most other fig-
ures represent measurements on the large crystal, as the
increased scattering intensity allows us to more clearly
observe the higher-order peaks; however, the field depen-
dence of the (0 3 0) reflection at 7.9 K was measured on
the small crystal.

III. RESULTS

A. Magnetic Phase Diagram

Diffraction measurements were performed at several
magnetic field values between µ0H = 0.05 T and 0.40 T.
For each field, diffraction scans were measured with a
temperature increase between successive scans of 0.1 K
after first field-cooling from the paramagnetic phase into
the ferromagnetic phase. All measurements on CVO

reveal a propagation vector parallel to ~b∗ such that
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FIG. 3: Intensity color plots for scattering under applied fields
of 0.05 T to 0.30 T. (a) Scattering with µ0H = 0.05 T. Incom-
mensurate phases dominate this scattering, with the δ = 1/2
AF phase stable over only a narrow temperature range. (b)
Scattering with µ0H = 0.10 T. The δ = 1/2 commensurate
AF phase is again stable over a temperature range of about
2 K. (c) Scattering with µ0H = 0.30 T. The data display only
two commensurate phases, with δ = 2/5 and δ = 1/2.

only scans in the (0 K 0) direction will be considered.
A few representative measurements are shown in Fig-
ure 3; data are shown for µ0H = 0.05 T (panel (a)),
0.10 T (panel (b)), and 0.30 T (panel (c)). The data in
Figure 3(a), with µ0H = 0.05 T, display significant differ-
ences from the zero-field behavior. This small magnetic
field has destabilized the commensurate lock-in phases,
as the δ = 1/2 lock-in is present over only a very nar-
row temperature range. Similar to the zero-field case,
an incommensurate propagation vector is observed for
temperatures above and below the commensurate lock-in
phase. The incommensurate scattering at temperatures
below the δ = 1/2 lock-in evolves with a propagation
vector 0.27 ≤ δ < 1/2; this stands in contrast with the
zero-field case where the smallest δ value measured was
in the δ = 1/3 lock-in phase. At temperatures above
the δ = 1/2 lock-in phase the incommensurate propaga-
tion vector takes values of 1/2 < δ ≤ 0.55, similar to the
zero-field data.

With an applied field of µ0H = 0.10 T, shown in Fig-
ure 3(b), the δ = 1/2 phase is stable over a temperature
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range comparable to that observed in zero field. This
behavior is consistent with recently reported data from
Petrenko, et al., where measurements at 7.5 K displayed
a commensurate δ = 1/2 propagation vector at zero field
and at µ0H = 0.15 T, yet displayed an incommensurate
δ = 0.475 propagation vector at µ0H = 0.072 T30. It
is possible that the low-field incommensurate structure
measured here arises from long wavelength “spin slips”31

similar to the behavior reported for ErNi2B2C32–34. An
intriguing question remains whether the two regions of
the H-T phase diagram displaying a δ = 1/2 propaga-
tion vector are connected or distinct. The phase diagram

with ~H || ~a determined by Yen, et al.29 reported dielec-
tric constant anomalies at small applied fields, signalling
the loss of the zero-field δ = 1/2 phase for all tempera-
tures where this phase was present. Further, in field de-
pendent neutron diffraction measurements the intensity
of the (0 3 0) reflection, which will be shown to be the
higher-order reflection of the high-field δ = 1/2 phase,
at 7.9 K displays a sharp transition at µ0H = 0.05 T
suggesting that these phases are distinct.

Data measured with µ0H = 0.30 T, as shown in Fig-
ure 3(c), display only two phases: the δ = 1/2 phase as
well as a new commensurate lock-in phase with δ = 2/5.
This new phase corresponds to a spin density wave with a
wavelength of five kagome layers, intermediate to the two
previously known commensurate lock-in phases which
have wavelengths of four (δ = 1/2) or six (δ = 1/3)
layers. Extensive neutron diffraction measurements26,30

have been reported with ~H || ~b and ~H || ~c; a commen-
surate lock-in with δ = 2/5 has not been reported in
any of these measurements and appears to be unique to
fields along the magnetization easy-axis. Over the full
range of fields for which this δ = 2/5 phase is present
(0.15 T ≤ µ0H ≤ 0.35 T), it is bounded on the high-
temperature side by the δ = 1/2 phase; this phase tran-
sition does not feature any intervening incommensurate
phase with a δ value between 2/5 and 1/2. In zero field,
the incommensurate propagation vector passes through a
value of δ = 2/5 with no sign of a commensurate lock-in;
this suggests that the δ = 2/5 lock-in phase in field is
stabilized not by higher-order terms in the Landau ex-
pansion of the Hamiltonian, as is the case for the zero-
field lock-ins23, but rather by the Zeeman energy. It
should be noted that neither an incommensurate square
density wave nor a commensurate square density wave
where the wavelength is an even number of kagome lay-
ers could yield a net moment in this system. However,
a commensurate spin density wave whose wavelength is
an odd number of kagome layers can develop a net mo-
ment through a squaring-up of the sinusoidal SDW; in
particular, a SDW with δ = 2/5 can evolve towards an
up-up-up-down-down state with a net moment.

FIG. 4: Intensity color plots with a logarithmic scale for scat-
tering at fields µ0H = 0.10 T (panel a) and µ0H = 0.30 T
(panel b). The logarithmic scale is used to highlight the
second-order scattering at (0 2+δ′ 0).

B. Second-Order Peaks

Zero-field measurements on CVO23 found, upon cool-
ing, incommensurate reflections with 1/3 < δ < 1/2
for 6.5 K < T < 6.9 K and the δ = 1/3 phase for
6.2 K < T < 6.5 K. These phases also displayed higher-
order scattering in addition to the first-order reflection
at (0 δ 0), with a second peak observed at (0 δ† 0)
where δ† = 2-3δ. Alternatively, one can express these
positions by defining the fundamental peak position as
δ = 1/2-ξ; the higher-order peak will then be located at
δ† = 1/2+3ξ. This relation persists into the δ = 1/3
phase where a strong higher-order peak was observed at
(0 1 0). Higher-order scattering is common when a spin
density wave deviates from a simple sinusoid by “squar-
ing up”; even-order harmonics are forbidden when the
system does not feature a net magnetic moment, which
is consistent with the third-order peak observed in the
zero-field data. Figure 4 displays the data measured
under applied fields of 0.10 T (panel (a)) and 0.30 T
(panel (b)) with a logarithmic intensity scale. With the
logarithmic scale, higher-order scattering is observed at
(0 2+δ′ 0) in addition to the primary peak at (0 2+δ 0).
For µ0H = 0.10 T the higher-order peak emerges from
the primary peak at low temperatures, and δ′ increases
with increasing temperature until δ′ = 1 in the phase
where the primary peak position is described by δ = 1/2.
For µ0H = 0.30 T the higher-order peak is located at
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FIG. 5: (a) Positions for the primary and second-order peaks,
shown as δ (left scale) and δ′ (right scale), measured at
µ0H = 0.10 T. The scale for the second-order peak is double
that of the first-order peak, showing that δ′ ≈ 2δ. (b) Ratio
of the second-order and first-order peak integrated intensities,
also measured at µ0H = 0.10 T. The second-order relative in-
tensity decreases monotonically with increasing temperature,
except for an increase upon entering the δ′ = 1.0 commensu-
rate lock-in phase. Uncertainties throughout this article are
statistical and refer to one standard deviation.

(0 2.8 0) or (0 3 0) in, respectively, the phases where
δ = 2/5 or 1/2.

In Figure 5(a), the positions of the primary and
higher-order peaks are shown for the data measured at
µ0H = 0.10 T. The left scale denotes the δ value for
the first-order peak, while the right scale denotes the δ′

value for the higher-order peak; the scale for the higher-
order peak is double that of the primary peak, so that
the overlap of these data demonstrates that δ′ ≈ 2δ. This
matches the results from the µ0H = 0.30 T data where δ′

values of 0.8 and 1 were observed in the δ = 2/5 and 1/2
phases, respectively, demonstrating that all higher-order
reflections in a magnetic field are second-harmonics. Fig-
ure 5(b) displays the ratio of the second-order and first-
order integrated intensities in the µ0H = 0.10 T data.
The relative intensity of the second-order reflection gen-
erally decreases with increasing temperature, demon-
strating that the magnetic SDW is closer to a perfect
sinusoid at higher temperatures with the squaring-up be-
coming more pronounced at lower temperatures; how-
ever, the second-order intensity is also slightly enhanced
in the temperature range corresponding to the δ = 1/2
phase.

Figure 6 displays the field dependence of the intensity
of the (0 3 0) reflection, which corresponds to the second-
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FIG. 6: Field dependent intensity of the (0 3 0) reflection
measured at T = 7.9 K with increasing and decreasing field.
This second-order reflection arises sharply at 0.05 T.

order scattering in the δ = 1/2 phase, measured at 7.9 K
on the small single crystal. This temperature lies roughly
in the middle of the narrow δ = 1/2 phase measured at
a constant field of 0.05 T. The intensity of this reflection
appears sharply at a minimum field of 0.05 T; impor-
tantly, there is no measurable magnetic scattering at the
(0 3 0) position for any field smaller than 0.05 T despite
the fact that the material is also in a δ = 1/2 phase at
this temperature in zero field. This suggests that the
two regions of the phase diagram displaying a δ = 1/2
phase should be considered distinct from one another,
as only the high-field region displays second-order scat-
tering. The intensity of this reflection falls off at higher
fields, signifying a transition into the δ = 2/5 phase at a
field of about 0.2 T. The field dependence of the intensity
at the (0 2.5 0) reflection at 7.9 K showed a narrow dip
in intensity at 0.05 T, but at this temperature any dis-
commensuration comparable to that reported at 7.5 K30

was too small to be clearly resolved.

IV. SUMMARY

In summary, Co3V2O8 features a variety of magnetic
phases arising from competing magnetic interactions on
a frustrated lattice. The application of a magnetic field
along the magnetization easy-axis promotes the develop-
ment of a net moment; this adds yet another term in
an already complicated Hamiltonian. Just as competing
interactions in zero field yield multiple different phases
as a function of temperature, the impetus to produce
a net magnetization under field yields a complex phase
diagram. Small applied fields, µ0H ≈ 0.05 T, destabi-
lize the low-field commensurate structures in favor of
the incommensurate spin density wave. Larger applied
fields lead to the restoration of a δ = 1/2 commensurate
phase, a new commensurate SDW with δ = 2/5, and
second-harmonic higher-order scattering. Scattering at
the (0 3 0) reflection arises sharply at a field of 0.05 T,
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suggesting that the low-field and high-field δ = 1/2 re-
gions of the phase diagram differ in that only the latter
displays a squaring-up of the sinusoidal SDW and the
concomitant second-order reflections.
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