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Abstract

A new shooting string holographic model of jet quenching of light quarks in strongly coupled plasmas is presented to overcome the
phenomenological incompatibilities of previous falling string holographic scenarios that emerged when confronted with the recent
LHC data. This model is based on strings with finite momentum endpoints that start close to the horizon and lose energy as they
approach the boundary. This framework is applied to compute the nuclear modification factor RAA of light hadrons at RHIC and
LHC, showing that this model improves greatly the comparison with the recent light hadron suppression data. The effects of the
Gauss-Bonnet quadratic curvature corrections to the AdS 5 geometry further improve the agreement with the data.
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1. Introduction

Light quarks in AdS/CFT can be modeled by strings with one endpoint ending on a D7-brane in the bulk of AdS 5.
A possible way to model a light quark-anti quark pair that has undergone a hard scattering is by considering an initially
pointlike open string created close to the boundary with endpoints that are free to fly apart and fall towards the black
hole, the so-called “falling” strings [1, 2]. It was found [1–4] that the maximum distance such an energetic quark can
travel for a fixed energy E in a thermal N = 4 SYM plasma at a temperature T scales as ∆xmax ∝ E1/3T−4/3, where
the constant of proportionality is important for phenomenological applications as it determines the overall strength of
jet quenching.

In order to use this model and compute the observables such as the nuclear modification factor RAA, one needs
to know the details of how these light quarks lose energy. The application of a general formula for energy loss in
non-stationary string configurations [5] to the case of fallings strings has shown a seemingly linear path dependence
in the phenomenologically relevant range. Simple constructions of RAA [6] resulted in a serious under-prediction of
the LHC pion suppression data (although it had the right qualitative structure), even with the inclusion of the higher
derivative corrections to the AdS 5, indicating that the predicted jet quenching was too strong.

A possible resolution of this problem was recently offered by considering strings that have finite momentum at their
endpoints [7], as the stopping distance of light quarks dual to these strings is greater than in the previous treatments of
the falling strings, and hence may offer a better match with the experimental data. Furthermore, these strings provide
a more natural holographic dual of dressed energetic quarks, as one can think of the finite momentum endpoints
representing quarks themselves and the string between them the color field they generate. In this way, one also
obtains a clear distinction between the energy in the hard probe and energy contained in the color fields surrounding
it, thus offering a precise definition of the instantaneous jet energy loss that was missing in earlier accounts.
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2. Energy loss

Endpoints with finite momenta move along null geodesics in AdS 5-Schwarzschild and the evolution of their mo-
menta is governed by equations that do not depend on the bulk shape of the string, only on the radial position of the
endpoint [7]:

dE
dx

= −

√
λ

2π

√
f (z∗)
z2 , (1)

where
√
λ = L2/α′ is the ’t Hooft coupling, f (z) = 1 − z4/z4

H (the boundary is at z = 0), zH = 1/(πT ) and z∗ is the
minimal (inverse) radial coordinate the geodesic reaches and which hence completely determines the motion of the
endpoint. As mentioned before, the finite endpoint momentum provides a very natural definition of the quark energy
loss as precisely the rate (1) at which the energy gets drained from the endpoint.

For phenomenological purposes, we need to express (1) as a function of x, which means that we need to solve the
null geodesic equation. If, initially, at x = 0, the endpoint is located at z = z0 and is going towards the boundary, the
solution to the geodesic equation has a strongly convergent expansion for small z∗:

xgeo(z) = z2
H

(1
z
−

1
z0

)
+ O

 z4
∗

10z5 ,
z4
∗

10z5
0

 . (2)

This expansion is interesting for phenomenological reasons: we see that for small z the energy loss (1) is large
and therefore quarks dual to endpoints that move close to the boundary will be quenched quickly and won’t be
observable. This leads us to consider endpoints that start close to the horizon (the “shooting string” limit), and the
strong convergence of (2) for z∗ < z leads us to consider the simplest case of keeping only the first, z∗-independent
term in the expansion. This yields a particularly interesting form of energy loss [8]:

dE
dx

= −
π

2

√
λT 2

(
1
z̃0

+ πT x
)2

, (3)

where z̃0 ≡ πTz0 ∈ [0, 1]. Various limits of this energy loss have interesting physical interpretations: at small x, the
energy loss looks like a pure ∼ T 2 energy loss, similar to the pQCD elastic energy loss (with a running coupling); for
intermediate x, it looks like ∼ xT 3 with a path dependence similar to the pQCD radiative energy loss; and, finally, for
large x, it has a novel ∼ x2T 4 behavior. This is an interesting (and a very specific) generalization of the simpler “abc”
models of energy loss [9], where dE/dx ∝ EaxbT c.

A possible way to make our setup more realistic is to add higher derivative R2-corrections to the gravity sector
of AdS 5, which are the leading 1/Nc corrections in the presence of a D7-brane. It has been shown [6] that these
types of corrections can affect the energy loss significantly and it will be important to explore their effect in the
context of finite endpoint momentum strings. We will model the R2-corrections by adding a Gauss-Bonnet term
δL = λGBL2/2(R2 − 4R2

µν + R2
µνρσ) to the five-dimensional action. Here λGB is a dimensionless parameter, constrained

by causality [10] and positive-definiteness of the boundary energy density [11] to be −7/36 < λGB ≤ 9/100. A black
hole solution in this case is known analytically [12] and hence, using the same procedure as before, we can easily find
the energy loss from the finite endpoint momentum in this geometry, solve for the null geodesics and obtain a formula
similar to (3) [8]:

dEGB

dx
= −
√
λT 2Fn(λGB)

(
Gn(λGB)

z̃0
+ πT x

)2

. (4)

Here we have employed a perturbative expansion in λGB: functions Fn and Gn are functions of λGB only and do not
have a particularly illuminating explicit form, even for small n. For λGB as large as −7/36, by comparing to the
all-order numerical result, it was found that it is enough to go to n = 5 order in expansion.

3. Calculation of RAA

Before using our proposed energy loss formulas (3) and (4) to compute RAA for pions at RHIC and LHC, we will
take several steps in order to phenomenologically imitate some of the features of QCD and hence allow for a more
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realistic computation. First, we will account for roughly three times more degrees of freedom in N = 4 SYM than
in QCD by relating the temperatures via [13] TSYM = 3−1/4 TQCD and promote a constant TQCD to a Glauber-like
TQCD(~x⊥, t, φ). To model the transverse expansion of the medium we will use a simple blast wave dilation factor
[14] rbl(t) =

√
1 + (vT t/R)2, where R is the mean nuclear radius and vT = 0.6 is the transverse velocity, and replace

ρpart(~x⊥) → ρpart(~x⊥/rbl)/r2
bl in the Glauber model. Finally, we use the fragmentation functions [15] to obtain the

pionic RAA from the partonic one (neglecting the gluon contribution).
We use the standard optical Glauber model to compute the participant and binary collisions densities, include

the effects of longitudinal expansion and model the spacetime evolution of the temperature. The details of the RAA

calculation are given in [8] and consist of finding the initial energy of a jet pT,i using the energy loss formulas (3) and
(4), given its final energy pT, f , production point ~x⊥ in the transverse plane and the angle φ in which it is moving. The
nuclear modification factor is then given by a weighted transverse plane average of the ratio of the initial production
spectra dσ/dpT (obtained from the LO pQCD CTEQ5 code [16]) at final and initial energies.

Our main results are shown in Fig. 1, while the other results can be found in [8]. Qualitatively, our RAA calculations
match the data quite well and a good quantitative fit at RHIC, with a reasonable choice of parameters and using (3) (i.e.
with no higher derivative corrections), is obtained by choosing λ = 3 (blue curve). In the LHC case, using the same
parameters results in a curve (also blue) that is noticeably below the data; this effect is often called the “surprising
transparency” of the LHC [9], where the effects of temperature increase from RHIC to LHC affect the RAA much more
than the competing increase of the production spectra.
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Figure 1. Nuclear modification factor RAA of pions in central collisions at RHIC and LHC. Our calculations are compared to the experimental data
from the PHENIX [17] and the CMS [18] collaborations for 0-5 % centrality class. All curves were evaluated with the same impact factor b = 3
fm, the freezout temperature of Tfreeze = 170 MeV, and the initial z̃0 = 1 (from (3)), while the LHC curves also have the same formation time of
ti = 1 fm/c and an additional temperature adjustment parameter T → κT .

A possible way to obtain a more satisfying fit to LHC is to include the higher derivative corrections via (4). A
more phenomenological reason to use these corrections is that they offer a theoretically well defined way to change
the shear viscosity, as, in the presence of the Gauss-Bonnet term, η/s = (1 − 4λGB)/(4π) [10]. Choosing a maximally
negative λGB = −0.2 increases the viscosity to 1.8/(4π), which is, together with our value of the formation time ti = 1
fm/c, in the ballpark of the parameters used in some of the most recent hydrodynamic simulations for the LHC [19]
necessary to describe the elliptic flow data of light hadrons. This effect puts our curve for λ = 1 on top of the LHC
data (green curve), while, as expected, the RHIC data is then over-predicted (also green).

However, in [19] the initial time ti = 1 fm/c used at the LHC was bigger than at RHIC where ti = 0.6 fm/c [20],
based on the requirements of the hydrodynamic simulations to fit the low pT elliptic flow data. Using such ti at RHIC
puts us on top of the data for λ = 4 (dashed black curve), while the LHC curve (red) is still somewhat below the data.
The reason why lowering the initial time ti had such a noticeable effect on RAA was because our energy loss formulas
(3) and (4) have a strong sensitivity to the temperature and in the Glauber model T ∝ t−1/3. More generally, this
strong sensitivity means that a small change in the temperature, T → κT , has the same effect as a large change in the
coupling, λ → κ6λ or κ8λ. Hence if there are any phenomenological uncertainties in the effective temperature, such
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that would allow the LHC temperature to be 10% lower (κ = 0.9) than given by the simple ratio of the multiplicities,
then we can fit the LHC data as well (black dashed curve).

4. Conclusions

The framework of finite endpoint momentum strings [7] allows for a clear definition of the instantaneous energy
loss of light quarks in a strongly coupled SYM plasma, which is identified with the energy flux from the endpoint to
the bulk of the string. Using this definition in the case of endpoints that start close to the horizon (“shooting” strings)
leads to a concise and phenomenologically interesting formula (3) [8]. Application of this formula, including the
higher derivative R2-corrections (via (4)), showed a good independent match with the RHIC and LHC central RAA

data for light hadrons. While it is challenging to simultaneously fit both LHC and RHIC data, the choice of λ = 4 and
λGB = −0.2 puts our predictions in the ballpark of data provided we include a 10% reduction of temperature at the LHC
relative to straightforward expectations based on multiplicities. Further inclusion of fluctuations and non-conformal
effects may provide a simultaneous fit with an even smaller temperature reduction.
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