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ABSTRACT

Precipitation extremes have a widespread impact on societies and ecosystems; it is therefore important to

understand current and future patterns of extreme precipitation. Here, a set of new global coupled climate

models with varying atmospheric resolution has been used to investigate the ability of these models to re-

produce observed patterns of precipitation extremes and to investigate changes in these extremes in response

to increased atmospheric CO2 concentrations. The atmospheric resolution was increased from 28 3 28 grid
cells (typical resolution in the CMIP5 archive) to 0.258 3 0.258 (tropical cyclone permitting). Analysis has

been confined to the contiguous United States (CONUS). It is shown that, for these models, integrating at

higher atmospheric resolution improves all aspects of simulated extreme precipitation: spatial patterns, in-

tensities, and seasonal timing. In response to 23 CO2 concentrations, all models show a mean intensification

of precipitation rates during extreme events of approximately 3%–4%K21. However, projected regional

patterns of changes in extremes are dependent on model resolution. For example, the highest-resolution

models show increased precipitation rates during extreme events in the hurricane season in the U.S.

Southeast; this increase is not found in the low-resolutionmodel. These results emphasize that, for the study of

extreme precipitation there is a minimummodel resolution that is needed to capture the weather phenomena

generating the extremes. Finally, the observed record and historical model experiments were used to in-

vestigate changes in the recent past. In part because of large intrinsic variability, no evidence was found for

changes in extreme precipitation attributable to climate change in the available observed record.

1. Introduction

Precipitation is of vital importance to societies and

ecosystems around the world (e.g., Jackson et al. 2001).

In contrast, extreme precipitation events may have

widespread negative impacts. For example, in the con-

tiguous United States (CONUS) these impacts include

increased extreme streamflow (Groisman et al. 2001),

increased damage from floods (Pielke and Downton

2000), increased outbreaks of waterborne diseases

(Curriero et al. 2001), increased soil water stress (Fay

et al. 2003; Knapp et al. 2008), and increased crop

damage (Rosenzweig et al. 2002). The societal impor-

tance of precipitation extremes shows there is a need for

reliable projections of how these extreme events may

change in response to global climate change.

Theoretical understanding of precipitation extremes is

based on the idea that, within an atmospheric column, the

precipitation rate P during an extreme event depends on

precipitation efficiency «, vertical velocitiesv(p), and the

vertical derivative of saturation specific humidity qs
along a moist adiabat S(T, p)5 dqs/dpjue* (O’Gorman

and Schneider 2009; O’Gorman 2015):

P52«fv(p)S(T, p)g, (1)

where the braces denote the mass-weighted vertical in-

tegral. Precipitation efficiency is defined as the total
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storage of water vapor in the column and the transport

of water vapor to and from the column. In the absence of

dynamical or physical changes, the change of extreme

precipitation depends on the last factor only—the

thermodynamical change ofmoisture in the atmosphere.

This is often simplified to a scaling related to the

Clausius–Clapeyron relation of 6%–8%K21; for each

degree of surface warming it is expected that pre-

cipitation rates during extreme events increase by 6%–

8% (e.g., Allen and Ingram 2002; Trenberth et al. 2003;

Pall et al. 2007; Muller et al. 2011; Westra et al. 2014;

O’Gorman 2015). However, the relevant location (local,

regional, or global) for computing the temperature

change is unknown. Therefore, Clausius–Clapeyron

scaling can only be used as a first estimate of thermo-

dynamic climate change.

Global climate models can be used to extend such

theoretical considerations. Climate sensitivities [change

per degree warming (%K21)] estimated from model

experiments include thermodynamic, dynamic, and

physical contributions to changes in extreme pre-

cipitation. Based on analyses of model experiments in

phases 3 and 5 of the Coupled Model Intercomparison

Project (CMIP3 and CMIP5) archives, which were as-

sessed in the Intergovernmental Panel on Climate

Change (IPCC) FourthAssessment Report (AR4; IPCC

2007) and Fifth Assessment Report (AR5; IPCC 2013),

precipitation extreme events are expected to happen

more frequently and the extremes are expected to be

stronger by the end of the twenty-first century. The

sensitivity of extreme precipitation to climate change

varies strongly between models and between regions

(e.g., Sun et al. 2007; Kharin et al. 2007, 2013; Sillmann

et al. 2013; Toreti et al. 2013; Villarini et al. 2013a;

Wuebbles et al. 2014; Fischer and Knutti 2015). Fur-

thermore, the sensitivity is larger the more extreme the

events that are considered (e.g., the 1-yr vs 5-yr return-

ing events; Shiu et al. 2012; Fischer and Knutti 2015).

The conclusions of these modeling studies are com-

plemented by trends in the observed record of extreme

precipitation (e.g., Kunkel et al. 1999; Kunkel 2003;

Villarini et al. 2013b; Mallakpour and Villarini 2015);

however, spatial and temporal availability of station

data is often a limiting factor for climate studies.

The societal value of climate projections based on

model experiments is limited by, among other factors,

the ability of a model to accurately simulate the ob-

served present-day climate. Common model biases re-

lated to precipitation include biases in seasonal mean

precipitation (dry regions receive too little precipitation

and wet regions too much; Sheffield et al. 2013) and an

overestimation of the number of days with precipitation

(the ‘‘drizzle problem’’; e.g., Dai 2006; Schubert et al.

2008; Lee et al. 2009; Mehran et al. 2014). The drizzle

problem further leads to an overestimation of the fre-

quency of light precipitation and underestimation of the

frequency of extreme precipitation. In part, the bias in

the distribution of precipitation rates (light vs extreme)

reflects a misrepresentation of the atmospheric pro-

cesses that lead to precipitation in the real world, which

are often at scales smaller than those resolved in global

climate models (Wehner et al. 2010). Other impacts of

coarse model resolution include a smoothing of spatial

features such as orography, which limit the reliability of

projections on regional scales (Thibeault and Seth 2014;

Schoof and Robeson 2016).

Common approaches to work around such issues in-

clude the use of high-resolution atmosphere-only

models or downscaling techniques. The latter includes

methods based on the statistical distribution of pre-

cipitation in the present-day climate or further in-

tegration with a regional model, to add regional value to

coupled model output (e.g., Dibike and Coulibaly 2006;

Frei et al. 2006; Gutowski et al. 2010; Ning et al. 2015;

Schoof 2015). However, such solutions may not be in

dynamical or thermodynamical equilibrium outside the

region considered. Furthermore, a regional model’s

hydrology is often constrained by the large-scale mois-

ture flux convergence prescribed as an outer boundary

condition. Global models are needed to represent en-

ergetics, dynamics, and moisture consistently. In

atmosphere-only models it has been shown that models

with higher-resolution grids improve the spatial patterns

of seasonal mean precipitation, the statistics of daily

precipitation, and the magnitudes of precipitation ex-

tremes (Duffy et al. 2003; Iorio et al. 2004; Wehner et al.

2010). However, because of interactions between at-

mosphere and ocean, coupled atmosphere–ocean

models are more suitable tools for studies of climate

change than atmosphere-only models.

At the National Oceanic and Atmospheric Adminis-

tration (NOAA)/Geophysical Fluid Dynamics Labora-

tory (GFDL) a family of global coupledmodels has been

developed to test the impact of high atmospheric model

resolution in a global coupled atmosphere–ocean

framework. Three models with identical ocean and sea

ice model components have been coupled to atmo-

spheric and land model components of low (28 3 28; as
typically found in the CMIP5 archive), medium (0.58 3
0.58; a tropical cyclone-permitting model), and high

(0.258 3 0.258) resolution. In this paper, the impact of

atmospheric model resolution in a global coupled model

framework is investigated for the simulation of extreme

precipitation events in the CONUS.

There are two objectives to this study: first, to test the

hypothesis that the quality of simulated extreme
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precipitation is improvedwhen the horizontal resolution

of the atmospheric model component in a fully coupled

global climate model is increased and second, to in-

vestigate changes in extreme precipitation in response to

CO2 forcing and to investigate whether such projected

changes depend on model resolution.

The rest of this paper is organized as follows: The set

of coupled models and observation-based data products

used in this study are described in section 2. The meth-

odology is discussed in section 3. The results are dis-

cussed in section 4. A summary and a final discussion are

given in section 5.

2. Models and data

a. Model descriptions

We use a suite of global coupled climate models to

evaluate the impact of horizontal atmospheric resolu-

tion on the quality of simulated extreme precipitation

events and on potential changes in precipitation ex-

tremes in the CONUS. TheGFDL coupledmodels—the

Low Ocean Atmosphere Resolution (LOAR) model,

the Forecast-Oriented Low Ocean Resolution (FLOR)

model, and the High-Resolution FLOR (HiFLOR)

model—share the same atmosphere, land, ocean, and

sea ice model components that were derived for the

GFDL Coupled Model version 2.1 (CM2.1; Delworth

et al. 2006) and version 2.5 (CM2.5; Delworth et al.

2012). The LOAR model has an horizontal atmospheric

resolution of 28 3 28 (C48 grid; i.e., 48 3 48 grid cells on

each face of the cubed sphere). In the FLOR model, the

horizontal resolution has been increased to 0.58 3 0.58
(C180 grid). In the HiFLOR model, the horizontal atmo-

spheric grid is further refined tobe 0.258 3 0.258 (C384 grid).
In all models, the atmospheric model component is

based on a finite-volume dynamical core on a cubed

sphere (Putman and Lin 2007), with 32 vertical levels.

The dynamical time step is modified to match the indi-

vidual model’s atmospheric resolution. Atmospheric

physics is similar to that in GFDL CM2.5 (Delworth

et al. 2006, 2012; Vecchi et al. 2014). Convection is pa-

rameterized following the relaxed Arakawa–Schubert

formulation; large-scale supersaturation is condensed

into cloud water from which large-scale precipitation

fluxes are derived. Details on these and other parame-

terization schemes can be found in Anderson et al.

(2004). The ocean model component is Modular Ocean

Model, version 5 (MOM5; Griffies 2012), configured as

inVecchi et al. (2014), with a 18 3 18 horizontal grid. The
land model component is the Land Model, version 3

(LM3; Milly et al. 2014), with an equivalent horizontal

resolution as the atmospheric model component. The

sea ice model is the Sea Ice Simulator, version 1 (SIS1),

as in Delworth et al. (2012). More details on the FLOR

model setup can be found in Vecchi et al. (2014) and Jia

et al. (2015) and for the HiFLOR model setup in

Murakami et al. (2015). To reach radiative balance at

the top of atmosphere, cloud parameters were tuned in

FLOR. These parameters have not been retuned in

LOAR and HiFLOR; therefore, physical parameteri-

zations are the same across models, but LOAR, FLOR,

andHiFLOR have a different global mean temperature,

with the lowest-resolution model being the warmest and

the highest-resolution model being the coldest.

LOAR, FLOR, and HiFLOR have been developed

from the older global coupled climate model GFDL

CM2.1 (Delworth et al. 2006). The atmospheric dy-

namical core, the land model component and the ocean

model component have been updated. LOAR has a

horizontal resolution that is similar to theGFDLCM2.1;

however, the vertical atmospheric resolution has been

increased from 24 to 32 levels. Since its development,

CM2.1 has been used for many climate studies and was

part of the IPCC AR4 (IPCC 2007) and AR5 (IPCC

2013). The higher atmospheric and land resolutions of

FLOR and HiFLOR have been shown to improve nu-

merous aspects of global climate compared to CM2.1—

for example, the seasonal prediction of temperature and

precipitation (Jia et al. 2015), sea surface temperatures

(SSTs; Stock et al. 2015), sea ice (Msadek et al. 2014),

orographic precipitation (Kapnick et al. 2014), and

tropical cyclones (Vecchi et al. 2014; Murakami et al.

2015; Zhang et al. 2016). FLOR is considered to be a

new base model; LOAR and HiFLOR can be viewed as

low- and high-resolution versions of that newly de-

veloped base model.

b. Experiment descriptions

Present-day control experiments were created by in-

tegrating LOAR, FLOR, and HiFLOR for 300 years

with constant 1990 radiative forcing and land-use con-

ditions. These experiments were used to evaluate the

quality of the simulated precipitation fields in the three

coupled models. Any variability in these experiments is

the result of internal variability within the climate sys-

tem; all external forcing is constant. Years 171–270 were

used for analysis in the current paper.

Starting at year 101 of the present-day control ex-

periments, forced integrations with additional CO2

forcing were performed. For the first 70 years of these

experiments, the CO2 concentration was increased by

1%yr21. In year 170 the CO2 concentration has doubled

relative to the present-day control experiment. From

year 170 onward, the models were integrated for

an additional 100 years with constant, double-CO2
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concentration relative to the present-day control ex-

periments. We will refer to years 171–270 of this in-

tegration as the 2 3 CO2 experiment.

Finally, an ensemble of historical integrations was

created in which the model sea surface temperature SST

was restored to the interannually varying observed field

SSTT. To do so, a restoring tendency was added to the

SST tendency as computed in the coupled model O
over a set restoring time scale t:

dSST

dt
5O 1

1

t
(SST

T
2 SST). (2)

The observed SST field was taken from the Met Office

Hadley Centre Sea Ice and SST dataset (HadISST1.1;

Rayner et al. 2003). The historical experiment consists

of six ensemble members each for FLOR and HiFLOR

and covers the period 1971–2012 (three with t 5 5 days

and three with t 5 10 days). Individual ensemble

members have been created using different initial con-

ditions generated from a previous set of restoring ex-

periments; more details can be found in Murakami

et al. (2015).

In all experiments themodels were integrated globally

but analysis in this paper is restricted to the CONUS.

c. Observationally based data

The simulated precipitation data are compared to the

National Centers for Environmental Prediction

(NCEP)/Climate Prediction Center (CPC) unified

gauge-based analysis of daily precipitation over the

CONUS (Higgins et al. 2000). This dataset provides

estimates of daily precipitation totals on a 0.258 3 0.258
grid for the CONUS. The estimates are based on gauge

data, interpolated using the optimal interpolation

scheme of Gandin and Hardin (1965) (Chen et al. 2008).

The CPC dataset covers the time period 1 January

1948–31 December 2006. To address uncertainties in

the CPC data and their potential impact on the result of

this study, similar analyses as those presented have

been performed on other datasets based on different

observational data sources. The results of these ana-

lyses are documented in the appendix and will be ref-

erenced throughout this study.

3. Methods

There are many different definitions of extreme events

in the scientific literature. For precipitation, these are

generally based on either precipitation rates (e.g., total

annual precipitation, annual maximum daily or monthly

precipitation, and the precipitation rate of the 99th per-

centile of daily or monthly precipitation; Sen Roy and

Balling 2004; Min et al. 2011; O’Gorman 2015) or the

number or duration of precipitation events (e.g., number

of days with precipitation exceeding 25mm, frequency of

wet days, and the duration of dry periods; Curriero et al.

2001; Durman et al. 2001; Sen Roy and Balling 2004). In

some cases the resulting data are fitted to a statistical

distribution (e.g., a generalized extreme value distribu-

tion or z scores; Curriero et al. 2001; Min et al. 2011).

Here, we have chosen to focus on the precipitation

rate (i.e., intensity) of daily precipitation events with a 1-

and 5-yr return period. All days of the year were in-

cluded in the analysis—both days with precipitation and

days without precipitation. We did not fit a statistical

distribution to the data before analysis because the

model integrations were sufficiently long to accurately

estimate the precipitation rate of the 1- and 5-yr re-

turning event. In addition to annual extremes, we have

also investigated seasonal extreme events, using events

with a 1- or 5-season return period. For the evaluation of

the quality of simulated precipitation in the different

models (section 4a), we have also computed the simple

daily intensity index (SDII; e.g., Peterson et al. 2008),

which is a measure of the mean precipitation rate on

days with precipitation. The SDII is computed by di-

viding the total annual precipitation by the number of

days with precipitation equal or greater than 1mm.

Potential changes in extreme precipitation due to

climate change were investigated using the 2 3 CO2

experiments. We investigated the change in the pre-

cipitation rate of the 1- or 5-yr returning events, as well

as the change of the seasonality of extreme events.

To identify trends of extreme precipitation, we used

the peak-over-threshold approach; that is, for every year

we counted the number of days with precipitation ex-

ceeding the precipitation rate of the 1- or 5-yr returning

event. By design, the mean of these counts is 1.0 and

0.2 yr21, respectively. We have used a Poisson re-

gression model to examine whether trends exist in the

frequency of extreme precipitation events, as was done

in Villarini et al. (2013b) and Mallakpour and Villarini

(2015). Poisson regression was chosen because the data

are discrete (yearly counts), and it is assumed that the

data follow a Poisson distribution. We fitted a Poisson

model that depended linearly on time through a loga-

rithmic link function:

l
i
5 exp(b

0
1b

1
t
i
) , (3)

in which li is the predicted number of extreme events for

year ti. If coefficient b1 was different from zero at a 5%

significance level, we have reported that grid point as

having a trend in the frequency of extreme events.

For the CPC data, to reduce the influence of noise, we

have taken into account a box of 3 3 3 grid points
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around each grid point when counting the extreme

events. This corrects for storm systems that are shifted

by one grid point (;25km) in any direction but do ex-

ceed the threshold. The computed trends using this 33 3

box method are of similar size as the computed trends

using the normal one-gridpoint method; however, a

much larger fraction of the grid points showed a statis-

tically significant trend when the 3 3 3 box method was

used. For the model data this correction was not nec-

essary because of the availability of the ensemble of

historical integrations.

Chen and Knutson (2008) discuss the influence of

different interpretations of simulated precipitation data

on the evaluation of extreme precipitation in climate

models. Following their recommendation, we interpret

model-simulated precipitation data as area mean esti-

mates rather than point-based estimates. Therefore, in

section 4a all output from FLOR and HiFLOR and the

CPC data have been remapped onto the LOAR hori-

zontal grid to facilitate a fair comparison of the three

models and the observed data. When output from

FLOR and HiFLOR is compared, the analysis has been

done on the FLOR horizontal grid. All remapping was

done by means of a conservative remapping scheme and

was done before the computation of any index of (ex-

treme) precipitation.

4. Results

a. Evaluation of simulated precipitation in coupled
models with increasing horizontal atmospheric
model resolution

As shown in the spatial distribution of the annual

mean precipitation rate in the CPC observations

(Fig. 1a) and in the present-day control experiment of

the three models (Figs. 1b–d), FLOR andHiFLOR both

improve the simulated pattern compared to LOAR. The

observed east–west precipitation gradient is most re-

alistic in HiFLOR, although it is not as strong as ob-

served. The western CONUS is too wet in all models

(Figs. 1e–g). The precipitation maximum along the Gulf

Coast is most realistic in HiFLOR; the dry bias de-

creases with increasing horizontal atmospheric resolu-

tion. The spatial pattern of precipitation biases is similar

FIG. 1. Annual mean precipitation rate (mmday21) in (a) CPC observations, (b) LOAR, (c) FLOR, and (d) HiFLOR. Difference

between the model simulations and the observations (mmday21) for (e) LOAR, (f) FLOR, and (g) HiFLOR. Black dots in (e) indicate

the locations of Santa Fe, New Mexico, and New Orleans, Louisiana (see text).
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in all models, except Florida, which is too dry in LOAR

and too wet in HiFLOR. The size of the biases decreases

with increasing horizontal atmospheric resolution.

Furthermore, the increased horizontal spatial resolu-

tion in FLOR and HiFLOR allows for a more realistic

representation of orography (Delworth et al. 2012;

Kapnick and Delworth 2013). Consequently, the pre-

cipitation maximum associated with the Sierra Nevada

and Cascade Range appears in FLOR and HiFLOR,

although precipitation is overestimated compared to

CPC data. This wet bias is not present in LOAR, which

makes direct model comparison for this region difficult:

LOAR seems to get ‘‘better’’ values, although it is for

the wrong reason—the absence of realistic orography.

As a side note, there is evidence that conventional gridded

precipitation products, including the CPC dataset used

here, severely underestimate precipitation over the west-

ern CONUSmountain ranges (Lundquist et al. 2015). The

wet bias of FLOR and HiFLOR to reality may, therefore,

not be as grave over the SierraNevada andCascadeRange

as one would infer from this comparison.

For a more quantitative comparison, all high-

resolution data are first remapped to a common low-

resolution grid (Chen and Knutson 2008). As discussed

in section 3, such a procedure ensures that an equal

comparison of area mean precipitation rates with equal

degrees of freedom (grid points) is made. On a common

28 3 28 grid (as in LOAR) over the CONUS, the highest-

resolutionmodel (HiFLOR) performs best (Table 1, top

four rows). The CONUS mean precipitation bias de-

creases, the root-mean-square error (RMSE) decreases,

and the pattern correlation increases with increasing

horizontal atmospheric resolution. The comparison on a

common 0.58 3 0.58 grid (as in FLOR) shows HiFLOR

improves the simulation of mean precipitation from

FLOR (Table 1, rows 5–7).

As discussed before, besides correct simulation of

mean precipitation the simulation of extreme pre-

cipitation is highly relevant for society. The spatial dis-

tribution of the precipitation rate for the 1-yr returning

event in CPC observations and associated model biases

are shown in Fig. 2. For completeness and to show the

impact of remapping, the observed distribution and

model biases are shown on all model grids.

The largest precipitation intensities of the 1-yr

returning event in the observed data are found along

the Gulf Coast (70–110mmday21) and the Pacific coast,

Sierra Nevada, and Cascade Range (70–150mmday21;

Fig. 2c). Furthermore, the AppalachianMountains are a

local maximum. Generally, the precipitation rate during

extreme events decreases traveling inland and is higher

in regions with higher mean precipitation. The pattern

correlation of annual mean precipitation (Fig. 1a) and

the precipitation rate of the 1-yr returning event

(Fig. 2c) is 0.89. If the CPC data are remapped to lower-

resolution horizontal grids these patterns are generally

maintained, although the precipitation rate decreases

(e.g., the precipitation rate along the Gulf Coast is 70–

90mmday21 on the FLOR grid and 50–70mmday21 on

the LOAR grid; Figs. 2a,b). However, the extrema on

the West Coast, on the windward sides of the mountain

ranges, are not evident once the data are coarsened.

As was found for the annual mean precipitation rate,

model biases of the 1-yr returning event have a similar

pattern in all models and decrease with increasing hor-

izontal atmospheric resolution (Figs. 2d–i). Areas with a

mean dry bias are areas in which the precipitation rate

during the 1-yr returning event is underestimated (e.g.,

the Gulf Coast); areas with a mean wet bias are areas in

which precipitation associated with the 1-yr returning

event is overestimated (e.g., the U.S. Southwest). The

Sierra Nevada are a hot spot for model bias in FLOR

and HiFLOR, although the comparison is based on an

observational data product that underestimates mean

and extreme precipitation there (Lundquist et al. 2015).

Quantitatively, on the LOAR grid, HiFLOR out-

performs the other two models (i.e., lower mean bias,

lower RMSE, and higher pattern correlation; Table 2,

top four rows). On the FLOR grid, HiFLOR is less bi-

ased than FLOR (Table 2, rows 5–7). There is a con-

sistent improvement of the simulated 1-yr returning

event of precipitation when the atmospheric model

resolution is increased in a global coupled model for the

yearly returning event (Fig. 2 and Table 2) and events in

individual seasons (not shown).

A similar analysis was done for the precipitation rate

of the extreme event with a 5-yr return period. The

spatial pattern of precipitation rate was found to be very

similar to that of the 1-yr returning event (pattern

TABLE 1. CONUS mean statistics of annual mean precipitation

rate (mmday21); included are the spatial mean, mean bias, RMSE,

and pattern correlation (corr). Boldface values are shown for the

best-performing model by that measure. Note that the data have

been remapped onto relevant lower resolution horizontal grids

before computation of the mean and statistics.

Model or dataset Grid Mean Bias RMSE Corr

CPC LOAR 2.07 — — —

LOAR LOAR 2.67 0.60 0.90 0.78

FLOR LOAR 2.64 0.57 0.73 0.92

HiFLOR LOAR 2.55 0.48 0.61 0.93

CPC FLOR 2.07 — — —

FLOR FLOR 2.65 0.57 0.79 0.88

HiFLOR FLOR 2.54 0.47 0.67 0.91

CPC HiFLOR 2.07 — — —

HiFLOR HiFLOR 2.54 0.47 0.69 0.90
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correlation of 0.98 for CPC data; figure not shown for the

5-yr returning event). The 5-yr precipitation intensities

are 100–200mmday21 along the Pacific coast and 120–

160mmday21 for the Gulf Coast region. For the 5-yr

returning event there is also a consistent decrease of the

mean bias and the RMSE and an increase in the pattern

correlation from LOAR to FLOR to HiFLOR (Table

2), the higher-resolution models simulate a more re-

alistic precipitation distribution.

In the appendix a similar verification of model simu-

lated extreme precipitation rates is presented based on

different observational data products. The results from

that analysis are in agreement with the results prese-

nted above; increased horizontal atmospheric resolution

improves the ability of the model to capture extreme

precipitation patterns.

Although not a measure of extreme precipitation, the

SDII gives an indication of whethermodels have a drizzle

problem—that is, an overestimation of the number of

days with precipitation and/or an underestimation of

the mean precipitation rate on a wet day (minimum

1mmday21 precipitation). From Table 2 it is obvious the

models do not have a drizzle problem over the CONUS;

the SDII is generally too high in the models. However,

the RMSE decreases and pattern correlation increases

with increasing atmospheric resolution, resulting in

FLOR and HiFLOR being less biased than LOAR and

HiFLOR being less biased than FLOR.

FIG. 2. (a)–(c) The 1-yr returning event of daily precipitation rate (mmday21) in CPC observations on different horizontal grids.

Differences between model simulations and the CPC observations (mmday21) for (d) LOAR, (e),(f) FLOR, and (g)–(i) HiFLOR using

different horizontal grids. Shown are data on the (a),(d),(e),(g) LOAR grid, (b),(f),(h) FLOR grid, and (c),(i) HiFLOR grid. Black dots in

(d),(e),(g) denote the locations as in Fig. 1e.
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To examine the distribution of precipitation rates in

more detail, histograms of precipitation rates for each

model are shown in Figs. 3a–c. More quantitative com-

parisons are provided by computing the precipitation

frequencies in different categories (Figs. 3d–f) and the

contribution of each category to the annual total pre-

cipitation (Figs. 3g–i). Precipitation categories were

chosen to match an equivalent analysis in Dai (2006).

For the CONUS as a whole, there is not much differ-

ence between the three models. The distribution of pre-

cipitation in the models is very close to the observed

distribution of precipitation rates, although LOAR un-

derestimates the frequencies of the most intense pre-

cipitation rates (Fig. 3a). The vertical lines for the annual

1-yr returning event show the mean value and model bias

as also noted in Table 2. Again, there is no clear indication

of a drizzle problem in the models; the frequency of light

precipitation (,10mmday21; Fig. 3d) and the contribu-

tion of light precipitation to the total annual precipitation

(Fig. 3g) are underestimated. The models slightly over-

estimate the contribution to total precipitation and fre-

quency of heavy precipitation (.10mmday21).

However, local biases are larger than the CONUS

mean bias (cf. values in Tables 1 and 2 with values in

Figs. 1 and 2, respectively). Therefore figures for two

specific locations have been added: for the grid point

closest to NewOrleans, Louisiana (Figs. 3b,e,h), and for

the grid point closest to Santa Fe, NewMexico (Figs. 3c,f,i).

These points were chosen such that there was one

located in a region with a wet bias and one in a region

with a dry bias (see black dots in Figs. 1e and 2d,e,g).

For these local points there are clear differences be-

tween the models. In New Orleans, a location with high

mean precipitation and large precipitation extremes,

LOAR underestimates the high tail of the distribution

of precipitation rates (Fig. 3b). This underestimation

bias is decreased in FLOR and HiFLOR. For pre-

cipitation rates above 50mmday21 HiFLOR is the best

of these models; note that the observed local 1-yr re-

turning event is 61mmday21 (CPC observations re-

mapped to LOAR horizontal grid). In Santa Fe, a

location of low mean precipitation and weak extremes,

all models overestimate the high tail of precipitation

rates (Fig. 3c). HiFLOR is the only one of these models

that has a distinctive peak in the 1–5mmday21 category

for the contribution to the total precipitation, which is so

clear in observations (Fig. 3i). LOAR has a too-flat

distribution of precipitation amounts over the middle

categories, where the observations show a sharp decline.

The overestimation of precipitation rates in the high tail

is reduced in HiFLOR, although still remains.

The above results of improved spatial patterns of mean

and extreme precipitation, CONUS mean statistics and

precipitation distribution are all for the annual mean,

taking into account all days in the year. We have repeated

these analyses for individual 3-month seasons (not shown)

and find that the results are robust; increasing horizontal

atmospheric model resolution systematically improves the

simulation of precipitation in the CONUS, and HiFLOR

provides the best simulation results of these models.

b. Changes in extreme precipitation in a double-CO2

climate

In the models, doubling the CO2 concentration leads

to changes of the CONUS mean annual mean daily

precipitation. Relative to the value in the present-day

control experiment (CTRL), the change is 1.5% in

LOAR, 0.2% inFLOR, and20.2% inHiFLOR(Table 3).

The global mean change of annual mean pre-

cipitation is larger: 2.4%, 3.0%, and 3.0% for LOAR,

FLOR, and HiFLOR, respectively. The small CONUS

mean value of change is the mean of larger increases

(wetter conditions in 2 3 CO2) in the northern CONUS

and decreases (drier conditions in 2 3 CO2) in the

southern CONUS in all models (Figs. 4a–c). Local

changes are substantial; for example, in Texas the

TABLE 2. As in Table 1, but for the annual 1-yr returning event, the annual 5-yr returning event, and the SDII of precipitation (mmday21).

Model or dataset Grid

1-yearly event 5-yearly event SDII

Mean Bias RMSE Corr Mean Bias RMSE Corr Mean Bias RMSE Corr

CPC LOAR 31.23 — — — 44.46 — — — 6.29 — — —

LOAR LOAR 35.60 4.37 8.51 0.85 49.03 4.57 12.94 0.80 6.69 0.40 1.01 0.86

FLOR LOAR 36.69 5.46 7.65 0.92 49.53 5.07 10.12 0.91 6.88 0.59 0.95 0.91

HiFLOR LOAR 34.05 2.82 5.34 0.94 46.16 1.70 7.86 0.93 6.69 0.40 0.71 0.94

CPC FLOR 39.04 — — — 57.83 — — — 7.53 — — —

FLOR FLOR 45.02 5.98 10.64 0.86 63.44 5.62 15.53 0.83 7.74 0.21 1.25 0.85

HiFLOR FLOR 42.59 3.56 7.88 0.91 60.34 2.52 11.95 0.89 7.78 0.25 1.04 0.90

CPC HiFLOR 41.70 — — — 62.50 — — — 8.08 — — —

HiFLOR HiFLOR 44.21 2.51 8.47 0.90 63.03 0.53 13.50 0.87 8.00 20.08 1.22 0.88
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decrease exceeds 20% in FLOR. Local changes are

smaller in HiFLOR. The patterns of change in DJF and

JJA are similar to what was found in the CMIP5 archive

(Maloney et al. 2014).

The changes are larger for individual seasons. The

largest positive change is in December–February (DJF;

Table 3), in which most of the CONUS shows pre-

cipitation increases (Figs. 4d–f). In March–May (MAM)

the north–south division is very prominent (Figs. 4g–i).

As was the case for the annual mean, the local changes

are smaller in HiFLOR. In June–August (JJA) mean

precipitation decreases in most of the CONUS (Figs. 4j–l).

Local decreases exceed 40% in LOAR and FLOR;

however, those are found in regions in which summer

precipitation is weak. Changes in September–November

(SON) are weaker than in other seasons (Figs. 4m–o).

TheCONUSmeanprecipitation rate of the annual 1-yr

returning event increases by 11% relative to the 1-yr

event in the present-day control experiment in LOAR. In

FLOR and HiFLOR the increase is slightly weaker but

still substantial: 8.6% and 7.3%, respectively (Table 3).

The CONUS mean change of the annual 5-yr returning

event is larger: 12%, 9.7%, and 8.8% for LOAR, FLOR,

and HiFLOR, respectively. This is in agreement with

other studies that found that the more extreme the event

considered, the larger the change in response to global

warming (Shiu et al. 2012; Fischer and Knutti 2015).

Thermodynamic-forced changes of extreme precipita-

tion depend on mean heating of the lower troposphere

(O’Gorman 2015). As discussed in G. A. Vecchi et al.

(2016, manuscript in preparation), LOAR is the warmest

of thesemodels, andHiFLOR is the coolest model. These

differences are the result of a small radiative imbalance in

LOAR and HiFLOR (see section 2a). CONUS mean

surface warming in response to 2 3 CO2 varies between

2.5 and 2.7K in the annual mean (Table 3) and is stronger

than globalmean surfacewarming. Themodel differences

in temperature change are in part due to differences in

oceanic heat uptake between the different models (G. A.

Vecchi et al. 2016, manuscript in preparation). However,

FIG. 3. (a)–(c)Histograms of precipitation distribution in CPC observations (bars), withmodel histogramdata overlaid (scattered dots).

Vertical lines denote the precipitation rate of the 1-yr returning event. (d)–(f) Frequency of precipitation rates within set categories (%).

(g)–(i) Contribution of precipitation within categories to the annual total precipitation (%). Shown are mean values for (a),(d),(g)

CONUS, (b),(e),(h) New Orleans, and (c),(f),(i) Santa Fe. All data were remapped to the LOAR grid before analysis.
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a part of the model differences is from different patterns in

warming; CONUS warming does not scale consistently to

global mean warming in the models—the CONUS warm-

ing is 119%, 123%, and 139%of global warming, in LOAR,

FLOR, and HiFLOR, respectively.

For the computation of the climate sensitivity of CONUS

extreme precipitation, the mean increase of extreme pre-

cipitation per degree warming, an ambiguous decision on

which temperature change to consider needs to be made.

For example, is it local surface temperature change, local

tropospheric air temperature change, regional temperature

change, or global temperature change that controls changes

in precipitation? As a first-order approximation, we take

into consideration the local surface temperature change

when climate sensitivities are computed (i.e., the tempera-

ture change for each grid point separately). The annual 1-yr

returning event increases by 3.1%–4.1%K21 in themodels,

and the annual 5-yr returning event increases by 3.7%–

4.6%K21 (Table 3). The precipitation rate associated with

the 5-yr returning event increasesmore than that associated

with the 1-yr returning event. All models, for both ex-

treme event intensities, are below the theoretical thermo-

dynamical approximation of 6%–8%K21 estimated from

Clausius–Clapeyron scaling. FLOR and HiFLOR show a

lower sensitivity of the extreme events to warming. As a

result of the increased horizontal resolution and associated

smaller dynamical time step, higher-resolution models tend

to have a larger percentage of their precipitation coming

from the large-scale parameterization of precipitation

rather than from the convective parameterization of pre-

cipitation than do lower-resolution models. This is likely

caused by the increased number of dynamical time steps per

physics time step. The difference in parameterization of

simulated precipitation might be one reason for the model

differences.

Besides different mean thermodynamic responses,

there are differences in the spatial pattern of change of

the annual 1-yr returning precipitation event between

LOAR, FLOR, andHiFLOR (Figs. 5a–c). In LOAR the

largest changes are found in the U.S. Northeast, with

very little sensitivity in the Southwest. In HiFLOR the

largest increases are found in the eastern CONUS: near

the Great Lakes and in the Southeast. A highly sensitive

location for increasing extreme precipitation is found

along the Atlantic coast fromNorth Carolina to Florida.

The pattern from FLOR is somewhere between LOAR

and HiFLOR, with the largest changes in the north and

east. The differences in sensitivity between the models

are investigated in more detail by exploring changes in

individual seasons.

In DJF (Figs. 5d–f) the LOAR pattern of change is

similar to the annual pattern of change; the extremes in the

Northeast increase in size in response to CO2-induced

climate change, and in the southern CONUS the

changes are smaller. The Great Plains show increases

that are larger than in the annual mean. Furthermore,

the Gulf Coast is a location of increasing extreme

precipitation in FLOR. The amplitude of change is

smaller in HiFLOR than in FLOR and LOAR. In part,

this can be explained by the thermodynamical argu-

ment: FLOR warms slightly more than HiFLOR in

DJF (Table 3). Along the Mexican border there is a

TABLE 3. CONUSmean change of surface temperatureDT (K) andmean precipitationDP,DP intensity of the 1-yr returning event, and

DP intensity of the 5-yr returning event (given in mmday21, % of CTRL value, and %K21 local surface warming) in the 2 3 CO2

experiments. Values for the 1- and 5-season returning events are also shown.

Model Period DT (K)

DP mean DP 1-yearly event DP 5-yearly event

mmday21 % %K21 mmday21 % %K21 mmday21 % %K21

LOAR Annual 2.67 0.07 1.54 0.75 3.86 10.79 4.11 5.87 12.20 4.61

FLOR Annual 2.69 0.03 0.23 0.16 3.96 8.56 3.25 6.12 9.69 3.65

HiFLOR Annual 2.53 0.02 20.16 0.02 3.31 7.31 3.06 5.53 8.82 3.71

LOAR DJF 2.32 0.24 11.19 4.69 3.11 14.15 6.07 5.43 17.38 7.42

FLOR DJF 2.41 0.13 6.02 2.63 2.54 10.41 4.71 4.59 12.78 5.71

HiFLOR DJF 2.32 0.08 3.24 1.35 1.67 7.11 3.20 3.05 9.01 3.99

LOAR MAM 2.26 0.14 1.84 1.33 2.22 7.33 3.65 3.93 9.88 4.83

FLOR MAM 2.67 0.12 4.24 2.22 2.44 8.80 3.77 4.24 10.11 4.20

HiFLOR MAM 2.45 0.09 2.86 1.42 1.94 6.79 3.04 3.41 7.88 3.48

LOAR JJA 3.28 20.16 211.67 23.17 20.16 23.74 21.12 0.39 20.68 20.09

FLOR JJA 3.02 20.10 26.10 22.18 1.36 2.29 0.56 3.75 6.54 2.01

HiFLOR JJA 2.88 20.09 24.18 21.31 1.29 3.56 1.36 3.66 7.83 2.98

LOAR SON 2.81 0.04 1.38 0.58 2.01 8.58 3.20 4.23 11.52 4.19

FLOR SON 2.65 20.04 22.91 20.86 1.84 5.83 2.41 4.35 9.31 3.62

HiFLOR SON 2.49 20.02 21.16 20.27 1.98 6.63 2.89 4.32 9.17 3.95
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decrease of mean precipitation (Figs. 4d–f); the 1-yr

returning event decreases also, although the decrease

is weaker.

To determine which is the dominant season in setting

the annual change, Fig. 6a shows the month of most

extreme events based on the number of peaks over

threshold for annual 1-yr returning event. The purple–

blue colors along the U.S. West Coast indicate that DJF

is the dominant period there, which is captured in all

models (Figs. 6b–d). Despite large changes in the pre-

cipitation rate of the 1-yr returning event in other sea-

sons along the U.S. West Coast, the annual mean

FIG. 4. Relative increase of themean daily precipitation in the 23CO2 experiments {[(23CO2)2CTRL]/CTRL;%} for (a),(d),(g),(j),(m)

LOAR, (b),(e),(h),(k),(n) FLOR, and (c),(f),(i),(l),(o) HiFLOR models. Time periods shown are (a)–(c) annual, (d)–(f) DJF, (g)–(i)

MAM, (j)–(l) JJA, and (m)–(o) SON.
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sensitivity (Figs. 5a–c) follows that of the DJF season

(Figs. 5d–f).

In MAM (Figs. 5g–i) all models agree that the 1-yr

returning event increases in intensity in the northern

CONUS (locally .12.5%K21) and decreases in in-

tensity in parts of the southern CONUS. Decreasing

extremes are found from California to Texas. If scaled

to the local temperature change the decrease exceeds

12.5%K21 in LOAR and is weaker in higher-resolution

models. Because the patterns are different in, for ex-

ample, southern Texas (decreasing extremes in LOAR

and FLOR and increasing extremes in HiFLOR), there

must be different dynamical causes for these changes in

the different models. The MAM season contributes to-

ward setting the annual mean extreme event over the

Great Plains (Fig. 6a). This contribution is not captured

FIG. 5. As in Fig. 4, but for the relative increase of the precipitation rate of the 1-yr returning event of daily precipitation.
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by FLOR and HiFLOR (Figs. 6b–d). LOAR correctly

simulates MAM as the dominant season for the annual

mean event over the Great Plains but is biased toward

MAM in the Southeast (Fig. 6b).

Decreasing extreme precipitation rates are found over

California during JJA in all models (Figs. 5j–l); if scaled

to the model’s temperature increase the decrease ex-

ceeds 12.5% K21 in all models. Increasing precipitation

rates associated with the 1-yr returning event are found

near the Great Lakes (all models), in the Midwest

(LOAR and FLOR), and along the Atlantic coast

(FLOR and HiFLOR) and Gulf Coast (HiFLOR;

.10%K21). The widespread decreasing mean pre-

cipitation in JJA (Figs. 4j–l) does not lead to widespread

decreases in precipitation extremes.

The Atlantic coastal trends are also found in SON

(Figs. 5m–o), particularly from Florida to South Caro-

lina. Similar to JJA, these trends are only found in

FLORandHiFLOR (in places.10%K21 in FLOR and

HiFLOR); the amplitude is stronger in HiFLOR. Fur-

ther increases in SON are found near the Great Lakes

and theMidwest. Decreasing extremes are projected for

California. The pattern is very different from the

changes in mean precipitation in which large areas show

decreasing precipitation (Figs. 4m–o).

Note that JJA and SON are part of the Atlantic hur-

ricane season and that FLOR and HiFLOR are tropical

cyclone-permitting models (Vecchi et al. 2014;

Murakami et al. 2015). The changes noted in FLOR and

HiFLOR along the Gulf and Atlantic coasts in those

seasons, both vulnerable to tropical cyclones and hur-

ricanes, may therefore be related to changes in tropical

cyclone locations and/or frequencies. In fact, G.A.Vecchi

et al. (2016, manuscript in preparation) shows that

FLOR and HiFLOR exhibit a displacement of tropical

cyclones from the Gulf of Mexico toward the Atlantic

seaboard in response to 23CO2. Such changeswould not

be captured in LOAR because of its coarse resolution.

From Fig. 6a, it is clear that the hurricane season (espe-

cially the month of September) is a highly important

season in setting the annual 1-yr returning event along the

Atlantic coast. FLOR and HiFLOR, although they

have a slight delay (Figs. 6c,d), reflect the influence of the

hurricane season. LOAR does not successfully simulate

the seasonality of extremes along the Atlantic coast;

rather than the summer months, winter or early spring is

the dominant time for precipitation extremes (Fig. 6b).

Although all models show significant changes in the

intensity of the 1-yr returning event, changes in the

seasonality of these extreme precipitation events are

FIG. 6. Month with most peaks over threshold for the annual 1-yr returning event in (a) CPC observations, the present-day control

experiment of (b) LOAR, (c) FLOR, and (d) HiFLOR, and in the 2 3 CO2 experiment of (e) LOAR, (f) FLOR, and (g) HiFLOR.
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minor. For example, along the Atlantic coast in FLOR

extremes shift from October to September (Figs. 6c,f).

LOAR shows larger shifts—for example, from Novem-

ber to March or April in the midlands (Figs. 6b,e).

However, as discussed previously, there are large dif-

ferences between the seasonality of the 1-yr returning

event in LOAR and in the CPC data.

The CONUS mean change of the 5-yr/5-season

returning event is larger than the change of the 1-yr/

1-season returning event (Table 3). The patterns of

change are approximately similar (Figs. 5 and 7); the

local changes are stronger for the 5-yr/5-season return-

ing event than for the 1-yr/1-season returning event. For

example, along the South Atlantic coast the pre-

cipitation rate of the annual 5-yr returning event in-

creases by .25% in HiFLOR (Fig. 7c). The same area

shows positive changes for the annual 1-yr returning

event, although slightly weaker (Fig. 5c). Local de-

creases of precipitation intensity in response to 23 CO2

forcing (e.g., in the Southwest in MAM; Figs. 5g–i) are

weaker for the 5-season event.

c. Trends in extreme precipitation in the observed
record and historical experiments

The projected changes in precipitation rates associ-

ated with the annual 1-yr returning event in response to

2 3 CO2 are substantial. Here we analyze observations

and model simulations over the recent past to see if

similar changes have already occurred. The mean trend

of the frequency of the annual 1-yr returning event, as

found in the CPC record, is shown in Fig. 8a. The CPC

data show that the eastern CONUS has mostly

experienced a positive trend (i.e., an increasing number)

of extreme events, although there are intermittent grid

points with a negative trend (i.e., a decreasing number of

extreme events). In the western CONUS, positive and

negative trends are found. The U.S. Northwest shows

large negative trends that are not recovered by these

models in a 23CO2 climate (Figs. 5a–c). In some places

the decrease exceeds two events per year every

100 years. If one considers that this is the trend of the fre-

quency of the event with a mean return period of 1 yr

over the 59 years for which CPC data are available, that

must indicate that most qualifying events were in the

first half of the record.

In Fig. 8d two time series of mean frequency of ex-

treme events are shown, for those grid points in Fig. 8a

that have the largest trends (Figs. 8b,c). Threshold

values of plus or minus two events per year every

100 years have been chosen, which results in a selection

of about 5% of the grid points in both cases. The line for

grid points with a large negative trend verifies the sharp

difference between the beginning and end of the record.

Before 1978 there are on average 2.0 extreme events per

year; in 1978 there is a sudden drop, after which the

average number of events is 0.6 yr21. The change is

smaller for the grid points with the large positive trend,

from 0.6 events yr21 before 1978 to 1.6 events yr21 after

1978. Note that themean value is not exactly equal to 1.0

because of the 3 3 3 box method used (see section 3).

Besides climate change, two other possible mechanisms

for this observed shift exist may be considered. First, in

1977 there was a shift in the Pacific decadal oscillation

(PDO; Mantua and Hare 2002). The PDO impacts the

CONUS hydroclimate (e.g., Hamlet and Lettenmaier

1999; Barlow et al. 2001; DeFlorio et al. 2013) and could

therefore be responsible for the observed shift. A second

explanation may be found in the nature of the gauge

network over the CONUS. In the late 1970s and early

1980s a large number of automatic stations was added to

the network, increasing the coverage overmany sparsely

covered areas. The effect of these changes on the con-

sistency of interpolated and gridded precipitation

products is unclear and bears examination given the

coincidence of the timing of the observing system

change and the extreme precipitation shifts. A similar

analysis on two more temporally homogeneous data

products is included in the appendix; one of these

products is based on satellite data and is mostly in-

dependent from the gauge-based estimates. The pattern

of trends is different between these products; none show

the pattern that was found in the CPC data, despite the

fact they cover the same time period.

Another way of investigating changes in the recent

past is by looking at historical model integrations.

Figures 9a,b show the ensemble mean trend in the his-

torical experiment. There are large differences between

the models; the ensemble of FLOR historical in-

tegrations show increasing numbers of extreme events in

the Northeast and near the Great Lakes, and the rest of

the CONUS shows both positive and negative trends

without an obvious pattern. However, only 21% of the

grid cells show an agreement of five ormore (two-thirds)

ensemble members with the sign of this trend (Fig. 9d).

HiFLOR shows positive trends along the Canadian

border but no pattern otherwise. In HiFLOR 23%of the

grid has an agreement of five or more ensemble mem-

bers (Fig. 9e). The ensemble mean of both models does

not match the pattern that was found in the CPC record

(Fig. 9c). There is a large variety of spatial patterns for

the individual ensemble members (not shown), as can

also be concluded from the low numbers in Figs. 9d,e.

The large differences between the trends as computed

from model data and from the CPC record are of some

concern. The difference between the pattern of Figs. 8a

and 9c, based in part on the same data, raises the
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question whether the observational record is sufficiently

long to make statements on the occurrence of extreme

events. A 36-yr HiFLOR integration, in which SSTs are

restored to a nonvarying annual cycle [Eq. (2)], shows

that similar values of increasing or decreasing trends can

be the result of internal variability alone (Fig. 9f).

Based on the presented data alone, it is not possible

to conclude whether the models do not capture the

observed changes, whether the trends in the CPC record

are the result of changes in gauge distribution, or

whether internal variability dominates over the forced

climate change signal. The differences between FLOR

and HiFLOR, the differences between individual en-

semble members in the historical experiment, and the

results of the HiFLOR climatological run suggest that

the role of internal variability in setting the number of

FIG. 7. As in Fig. 4, but for the relative increase of the precipitation rate of the 5-yr returning event of daily precipitation.
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extreme events is large and is larger than the forced

signal over the period 1971–2012.

5. Summary and discussion

By means of experiments with a family of global

coupled climate models with increasing atmospheric

resolution, the nature of daily extreme precipitation

events over the CONUS has been investigated. It has

been shown that there is a consistent improvement of

the quality of the simulated annual and seasonal mean

precipitation with increasing horizontal resolution in the

atmospheric model component. Additionally, the in-

tensity, spatial pattern, and seasonality of precipitation

extremes and the distribution of precipitation (light vs

heavy) show consistent improvement. These results

complement analyses of atmosphere-only models that

noted similar improvements of mean and extreme pre-

cipitation with increasing resolution (Duffy et al. 2003;

Iorio et al. 2004; Wehner et al. 2010).

In a 2 3 CO2 model experiment, the response of the

mean precipitation, the 1-yr returning event and the 5-yr

returning event of precipitation to global climate change

is tested. The CONUS annual mean daily precipitation

increases by 0.0%–0.8%K21 in these models. The 1-yr

returning event increases in intensity by 3.1%–4.1%K21

and the 5-yr event by 3.7%–4.6%K21. Spatial pattern

differences between models exist; changes are larger in

the lower-resolution model. For individual seasons,

differences between models become more obvious. For

example, in the higher-resolution, tropical-cyclone-

permitting models (FLOR and HiFLOR), the Atlantic

coast from North Carolina to Florida is a hotspot for

change in the summer months. The low-resolution

model (LOAR) does not project any change in ex-

treme precipitation intensity for the same period and

location. It is hypothesized that changes in tropical cy-

clone frequency, precipitation, and location may be re-

sponsible for the southeastern CONUS changes in

FLORandHiFLOR. LOARhas a too-coarse resolution

to simulate tropical cyclones and is therefore unable to

simulate the extreme events associated with tropical

cyclones correctly and cannot project associated

changes in a reliable manner.

It was previously known that there is a minimum

model resolution that is required to capture the weather

phenomena that lead to precipitation extremes, for

example, by orographic-forced precipitation (e.g.,

Kapnick and Delworth 2013) or tropical-cyclone-

induced precipitation (e.g., Murakami et al. 2015).

However, the results presented here show that it is im-

portant to meet that minimum resolution when making

climate change projections. The authors therefore rec-

ommend that, for any study of climate change, a careful

consideration of the minimum required model resolu-

tion for the specific scientific problem is done. An in-

teresting question to ask is whether downscaling LOAR

data would give the same results obtained by FLOR and

HiFLOR or whether results based on high-resolution

coupled models such as FLOR or HiFLOR are funda-

mentally different from downscaling experiments.

Statistically significant trends in the frequency of ex-

treme precipitation events exist in the observed record.

However, based on differences between the observed

record and historical model experiments, differences

between observational products, and differences be-

tween individual ensemble members in the historical

experiment, at this moment, those cannot be attributed

to climate change alone. The authors acknowledge this

creates a difficult situation for interpreting the past and

FIG. 8. (a) Observed trend of the frequency of the annual 1-yr

returning event of daily precipitation [events yr21 (100 yr)21].

Trends were computed using the 3 3 3 box method over the pe-

riod 1948–2006; only statistically significant trends (at the 5%

level) are shown. (b) Locations where the trend is less than

22.0 events yr21 (100 yr)21 and (c) locations where the trend is

greater than 2.0 events yr21 (100 yr)21. (d) Mean time series of event

frequency for all grid points in (b) (red solid line) and for all grid

points in (c) (blue dashed line).
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assessing predictions of the future: based on model ex-

periments the intensity and frequency of extreme pre-

cipitation events are predicted to increase in response to

increasing CO2 concentrations; however, these same

models suggest that, because of substantial internal

variability, the observed record is too short to make

statements on whether these changes have already

started to occur in the natural environment.

Besides extreme precipitation, there are many other

aspects of climate and climate change that are worth

revisiting with these newly developed coupled models,

such as the change in global climate sensitivity (tem-

perature change following a doubling of atmospheric

CO2) as noted here and in G. A. Vecchi et al. (2016,

manuscript in preparation). Furthermore, the high at-

mospheric resolution now allows for the direct in-

vestigation of regional climate phenomena in a global

coupled model framework. For example, a detailed

study of the circulation changes associated with the

noted change in precipitation extremes along the At-

lantic coast in FLOR and HiFLOR is under way. The

hypothesized attribution of these precipitation changes

to changes in tropical cyclones is being further in-

vestigated. The present study may be extended by con-

sidering the impact of increasing vertical resolution in

the atmospheric model component.

Finally, it should be noted that the quality of climate

models can only be verified by comparing against ob-

servational datasets. It is therefore of high importance

that reliable observational data products, covering an

extensive time period, exist. Despite the CONUS

having a relatively high density of gauge stations com-

pared to other regions globally, there are areas with

relatively few gauges and biased observations as a con-

sequence. Such biases are found in particular over

complex terrain (e.g., Lundquist et al. 2015), where

much of the precipitation characteristics are still waiting

to be fully understood. Furthermore, the coincidence of

the observed changes in extreme precipitation with

changes in gauge distributions brings to the fore the

need for a systematic evaluation of the impact of ob-

serving system changes on our estimates of changes in

extreme precipitation.
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Models shown are (a),(d) FLOR and (b),(e),(f) HiFLOR.
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Commerce. CPC U.S. unified precipitation data were pro-

vided by theNOAA/OAR/ESRLPSD,Boulder,Colorado,

from their website (http://www.esrl.noaa.gov/psd/data/

gridded/data.unified.daily.conus.html). PRISM data were

provided by PRISM Climate Group, Oregon State Uni-

versity, Corvallis, Oregon, from their website (http://www.

prism.oregonstate.edu). PERSIANN-CDR data were pro-

vided by the NOAA/NESDIS/NCEI, Asheville, North

Carolina, from their download site (ftp://eclipse.ncdc.noaa.

gov/). MERRA-2 data were provided by the NASA/GEC/

DISC, Greenbelt, Maryland, from their website (http://disc.

sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl).

APPENDIX

Comparison of Observational Data Products for
Extreme Precipitation

Biases in observational-based estimates of pre-

cipitation influence the evaluation of model simulated

precipitation (as done in Section 4a) and the analysis

of trends in such datasets (as in Section 4c). Reliable

estimates of precipitation extremes and trends therein

require datasets to span long periods, such that the

extreme events can be sampled adequately, and re-

quire datasets to be homogeneous. The CPC dataset

that was used for verification and in the analysis here

spans 59 years, but might not be homogeneous be-

cause of changes in gauge observation (section 4c;

Fig. 8d). Here three additional datasets are used to

compare CPC-based estimates of the 1-yr and 5-yr

returning event, estimates of trends of the frequency

of the 1-yr returning event and to further verify

model output.

The additional products were selected to cover a

range of data sources. The PRISM data (Daly et al.

2008; 4 km 3 4 km resolution, 1981–2012) is a gauge-

based dataset, although its interpolation method is

more complex than that of the CPC data because it

takes into account local physiographic information.

FIG. A1. The 1-yr returning event of daily precipitation rate (mmday21) on the FLOR grid as in Fig. 2b, but for (a) PRISM,

(b) PERSIANN, and (c) MERRA-2 data. Differences between tested datasets and the CPC product (mmday21) on the FLOR grid for

(d) PRISM, (e) PERSIANN, and (f) MERRA-2 data. Note the color scale is similar to that used for Figs. 2d–i. Trend of the frequency of

the annual 1-yr returning event of daily precipitation [events yr21 (100 yr)21] as in Figs. 8a and 9c, but for (g) PRISM, (h) PERSIANN, and

(i) MERRA-2 data.
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PERSIANN data (Hsu et al. 1997; 0.258 3 0.258 res-
olution, 1983–2015) is a daily satellite product. It is

adjusted to GPCP version 2.2 data at monthly time

scales, it is therefore not completely independent

from the gauge-based observational data. Finally the

reanalysis product MERRA-2 (Bosilovich et al. 2015;

Rienecker et al. 2011; 0.58 3 0.6678 resolution, 1980–
2015) was selected. Disadvantages of PERSIANN and

MERRA-2 data include their dependence on indirect

measurements of precipitation, however these prod-

ucts are temporally more homogeneous data than

the CPC or PRISM data. All of the selected addi-

tional products span a shorter time period than the

CPC data.

The pattern of precipitation rates associated with the

1-yr returning event is comparable in all datasets (Figs. 2b

andA1a–c). Pattern correlations exceed 0.9 for all datasets

(Table A1). PRISM data is closest to CPC data, although

the PRISM data doesn’t interpolate station data to cover

the Great Lakes (where no stations exist) as CPC does.

There is no clear difference over mountainous regions, as

might be expected from the increased complexity of the

PRISM interpolation algorithm. PERSIANN data has

weaker precipitation rates associated with the 1-yr re-

turning event than the CPC data, MERRA-2 shows

stronger precipitation rates (Figs. A1d–f). Biases and

RMSEs when compared to CPC are much larger in the

PERSIANN data and MERRA-2 than in the PRISM

data (TableA1). These differences between datasets are

the same for the 5-yr returning event.

The verification of modeled precipitation rates for

the 1-yr returning event (Table 2) is repeated here

for the selected data products. As was found for the

CPC data, comparison against PRISM data shows a

consequent improvement of simulated precipitation

rates with increasing horizontal resolution (Table A2).

Comparison against PERSIANN data shows HiFLOR

performs well when all models are compared at

the LOAR grid. At the FLOR grid, FLOR has a

slightly higher pattern correlation thanHiFLOR does.

The comparison against MERRA-2 gives different

results and indicates FLOR outperforms HiFLOR for

all quantities measured. Note that precipitation in

MERRA-2 and other reanalysis products is a modeled

field, constrained by a correct dynamical atmospheric

state. It depends therefore on parameterization schemes,

which potentially introduces biases very similar to those

in the model output.

Finally, we show the trend of the frequency of the

1-yr returning event in the three data products

(Figs. A1g–i). These estimates of trends in extreme

precipitation are similar to those shown in Fig. 8a or

Fig. 9c (the latter based on a shorter time period, sim-

ilar to those shown here). The patterns of the trend are

different in each data product, verifying the conclusion

based on the model experiments that the observational

record is too short for such analysis. The two tempo-

rally more homogenous products (PERSIANN and

MERRA-2 data) do not show any agreement on the

sign of the trend in different CONUS regions. For ex-

ample, in MERRA-2 the U.S. Northeast is shown to

have stronger extremes, in the PERSIANN data this

area sees no significant change or change of the

opposite sign.

TABLE A1. As in Table 2, for the annual 1- and 5-yr returning

events (mmday21), but for intercomparing observational products.

Dataset Grid Mean Bias RMSE Corr

1-yr returning event

CPC FLOR 39.04 — — —

PRISM FLOR 40.01 0.97 4.51 0.97

PERSIANN FLOR 32.86 26.18 8.68 0.93

MERRA-2 FLOR 45.36 6.32 9.56 0.91

5-yr returning event

CPC FLOR 57.83 — — —

PRISM FLOR 58.87 1.05 8.19 0.96

PERSIANN FLOR 47.08 210.75 14.69 0.92

MERRA-2 FLOR 66.82 8.99 15.05 0.88

TABLE A2. As in Table 2 for the annual 1-yr returning event

(mmday21), but comparing against different observational

products.

Model or dataset Grid Mean Bias RMSE Corr

PRISM

PRISM LOAR 33.54 — — —

LOAR LOAR 35.60 2.06 8.49 0.86

FLOR LOAR 36.69 3.15 7.21 0.91

HiFLOR LOAR 34.05 0.51 5.78 0.93

PRISM FLOR 40.01 — — —

FLOR FLOR 45.02 5.01 11.47 0.85

HiFLOR FLOR 42.59 2.59 8.93 0.89

PERSIANN

PERSIANN LOAR 29.62 — — —

LOAR LOAR 35.60 5.98 10.27 0.84

FLOR LOAR 36.69 7.07 10.02 0.88

HiFLOR LOAR 34.05 4.43 7.81 0.90

PERSIANN FLOR 32.86 — — —

FLOR FLOR 45.02 12.16 14.92 0.84

HiFLOR FLOR 42.59 9.74 12.58 0.87

MERRA-2

MERRA-2 LOAR 37.61 — — —

LOAR LOAR 35.60 22.01 6.88 0.89

FLOR LOAR 36.69 0.92 5.31 0.92

HiFLOR LOAR 34.05 23.56 6.62 0.91

MERRA-2 FLOR 45.36 — — —

FLOR FLOR 45.02 20.34 7.37 0.91

HiFLOR FLOR 42.59 22.76 7.60 0.90
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