
Noname manuscript No.
(will be inserted by the editor)

Provable ICA with Unknown Gaussian Noise,
and Implications for Gaussian Mixtures and
Autoencoders

Sanjeev Arora · Rong Ge · Ankur
Moitra · Sushant Sachdeva

Received: date / Accepted: date

Abstract We present a new algorithm for Independent Component Analy-
sis (ICA) which has provable performance guarantees. In particular, suppose
we are given samples of the form y = Ax + η where A is an unknown but
non-singular n×n matrix, x is a random variable whose coordinates are inde-
pendent and have a fourth order moment strictly less than that of a standard
Gaussian random variable and η is an n-dimensional Gaussian random vari-
able with unknown covariance Σ: We give an algorithm that provably recovers
A and Σ up to an additive ϵ and whose running time and sample complex-
ity are polynomial in n and 1/ϵ. To accomplish this, we introduce a novel
“quasi-whitening” step that may be useful in other applications where there
is additive Gaussian noise whose covariance is unknown. We also give a gen-
eral framework for finding all local optima of a function (given an oracle for
approximately finding just one) and this is a crucial step in our algorithm,

Sanjeev Arora
Princeton University
Princeton, NJ
E-mail: arora@cs.princeton.edu

Rong Ge
Microsoft Research
Cambridge, MA
E-mail: rongge@microsoft.com

Ankur Moitra
Massachusetts Institute of Technology
Cambridge, MA
E-mail: moitra@mit.edu

Sushant Sachdeva
Yale University
New Haven, CT
E-mail: sachdeva@cs.princeton.edu

2 Sanjeev Arora et al.

one that has been overlooked in previous attempts, and allows us to control
the accumulation of error when we find the columns of A one by one via local
search.

Keywords independent component analysis · mixture models · method of
moments · cumulants

1 Introduction

We present an algorithm (with rigorous performance guarantees) for a basic
statistical problem. Suppose η is an independent n-dimensional Gaussian ran-
dom variable with an unknown covariance matrix Σ and A is an unknown
but non-singular n × n matrix. We are given samples of the form y = Ax + η
where x is a random variable whose coordinates are independent, mean zero
and have a fourth order moment strictly less than that of a Gaussian random
variable with same variance. The most natural case is when x is chosen uni-
formly at random from {+1, −1}n, although our algorithms work in the more
general case above. Our goal is to reconstruct an additive approximation to
the matrix A and the covariance matrix Σ running in time and using a num-
ber of samples that is polynomial in n and 1

ϵ , where ϵ is the target precision
(see Theorem 1). This problem arises in several applications within machine
learning: Independent Component Analysis (ICA), Deep Learning, Gaussian
Mixture Models (GMM), etc. We describe these connections next, and known
results (focusing on algorithms with provable performance guarantees, since
that is our goal).

Most obviously, the above problem can be seen as an instance of Inde-
pendent Component Analysis (ICA) with unknown Gaussian noise. ICA has
an illustrious history with applications ranging from econometrics, to signal
processing, to image segmentation. The goal generally involves finding a lin-
ear transformation of the data so that the coordinates are as independent as
possible [9] [22] [24]. This is often accomplished by finding directions in which
the projection is “non Gaussian” [21]. Clearly, if the datapoint y is generated
as Ax (i.e., with no noise η added) then applying linear transformation A−1

to the data results in samples A−1y whose coordinates are independent. This
noiseless case was considered by Comon [9] and Frieze, Jerrum and Kannan
[16], and their goal was to recover an additive approximation to A efficiently
and using a polynomial number of samples. We will later note a gap in their
reasoning, albeit fixable by our methods. To the best of our knowledge, prior
to our work there were no known algorithms for ICA with Gaussian noise with
provable guarantees. Here we require that our algorithms run in polynomial
time, and that their estimates converge at an inverse polynomial rate to the
true values as we increase the number of samples. See also concurrent and
independent work by Anandkumar et al. [1], Hsu and Kakade [20], that give
alternative, efficient algorithms that use tensor decompositions instead of local
search, as we do here.

Provable ICA with Unknown Gaussian Noise 3

The second view of our problem is as a compactly described Gaussian
Mixture Model. Our data is generated as a mixture of 2n identical Gaussian
coordinates (with an unknown covariance matrix) whose centers are the points
{Ax : x ∈ {−1, 1}n}, and all mixing weights are equal. Notice, this mixture
of 2n Gaussians can be described using O(n2) parameters. The problem of
learning Gaussian mixtures has a long history, and the popular approach in
practice is to use the EM algorithm [14], though it has no worst-case guarantees
(the method may take a very long time to converge, and worse, may not
always converge to the correct solution). An influential paper of Dasgupta [11]
initiated the program of designing algorithms with provable guarantees, which
was improved in a sequence of papers [3], [5], [25], [27]. But in the current
setting, it is unclear how to apply any of the above algorithms (including
EM) since the trivial application would keep track of exponentially many
parameters – one for each component. Thus, new ideas seem necessary to
achieve polynomial running time.

The third view of our problem is as a simple form of autoencoding [19]. This
is a central notion in Deep Learning, where the goal is to obtain a compact
representation of a target distribution using a multilayered architecture, where
a complicated function (the target) can be built up by composing layers of a
simple function (called the autoencoder [6]). The main tenet is that there are
interesting functions which can be represented concisely using many layers,
but would need a very large representation if a “shallow” architecture is used
instead. This is most useful for functions that are “highly varying” (i.e. cannot
be compactly described by piecewise linear functions or other “simple” local
representations). Formally, it is possible to represent using just (say) n2 pa-
rameters, some distributions with 2n “varying parts” or “interesting regions.”
The Restricted Boltzmann Machine (RBM) is an especially popular autoen-
coder in Deep Learning, though many others have been proposed. However,
to the best of our knowledge, there has been no successful attempt to give a
rigorous analysis of Deep Learning. Concretely, if the data is indeed generated
using the distribution represented by an RBM, then do the popular algorithms
for Deep Learning [18] learn the model parameters correctly and in polynomial
time? Clearly, if the running time were actually found to be exponential in the
number of parameters, then this would erode some of the advantages of the
compact representation.

How is Deep Learning related to our problem? As noted by Freund and
Haussler [15], an RBM with real-valued visible units (the version that seems
more amenable to theoretical analysis) is precisely a mixture of exponentially
many standard Gaussians. It is parametrized by an n × m matrix A and a
vector θ ∈ Rn. It encodes a mixture of n-dimensional standard Gaussians
centered at the points {Ax : x ∈ {−1, 1}m}, where the mixing weight of the
Gaussian centered at Ax is exp(∥Ax∥2

2 + θ ·x). This is of course reminiscent of
our problem. Formally, our algorithm can be seen as a nonlinear autoencoding
scheme analogous to an RBM but with uniform mixing weights. Interestingly,
the algorithm that we present here looks nothing like the approaches favored

4 Sanjeev Arora et al.

traditionally in Deep Learning, and may provide an interesting new perspec-
tive.

1.1 Our Results and Techniques

We give a provable algorithm for ICA with unknown Gaussian noise. We have
not made an attempt to optimize its running time, but we emphasize that this
is in fact the first algorithm with provable guarantees for this problem and
moreover we believe that in practice our algorithm will run almost as fast as
the usual ICA algorithms, which are its close relatives.

Theorem 1 (Main, Informally, see Theorem 7) There is an algorithm
that recovers the unknown A and Σ up to additive error ϵ in each entry in
time that is polynomial in n, ∥A∥2, ∥Σ∥2, 1/ϵ, 1/λmin(A) where ∥ · ∥2 denotes the
operator norm and λmin(·) denotes the smallest eigenvalue.

The classical approach for ICA initiated in Comon [9] and Frieze, Jerrum
and Kannan [16] works in the noiseless case where we have y = Ax. The first
step is whitening, which applies a suitable linear transformation that makes
the variance the same in all directions, thus reducing to the case where A
is an orthogonal matrix. Given samples y = Rx where R is an orthogonal
matrix, the rows of R can be found in principle by computing the vectors u
that are the exact local minima of E[(u ·y)4]. Subsequently, a number of works
(see e.g. [10] [13]) have focused on giving algorithms that are robust to noise.
A popular approach is to use the fourth order cumulant (as an alternative
to the fourth order moment) as a method for “denoising,” or any one of a
number of other functionals whose local optima reveal interesting directions.
However, theoretical guarantees of these algorithms are not well understood.
For example, many known approaches assume exact access to various statistics,
but provide no sample complexity bounds in order to calculate these or no
bounds on the error of their estimator when given noisy approximations to
the statistics.

The above procedures in the noise-free model can almost be made rigorous
(i.e., provably polynomial running time and number of samples), except for one
subtlety: it is unclear how to use local search to find all optima in polynomial
time. In practice, one finds a single local optimum, projects to the subspace
orthogonal to it and continues recursively on a lower-dimensional problem.
However, a naive implementation of this idea is unstable since approximation
errors can accumulate badly, and to the best of our knowledge no rigorous
analysis has been given prior to our work. (This is not a technicality: in some
similar settings the errors are known to blow up exponentially [28].) One of our
contributions is a simple framework for analyzing local search that avoids this
issue, and is able to find all local optima without error accumulating badly.
(Section 5.2.)

Our major new contribution however is dealing with noise that is an un-
known Gaussian. This is an important generalization, since many methods

Provable ICA with Unknown Gaussian Noise 5

used in ICA are quite unstable to noise (and a wrong estimate for the covari-
ance could lead to bad results). Here, we no longer need to assume we know
even rough estimates for the covariance. Moreover, in the context of Gaus-
sian Mixture Models this generalization corresponds to learning a mixture of
identical but non-spherical Gaussians where the common covariance of the
components is not known in advance.

We design new tools for denoising and especially whitening in this setting.
Denoising uses the fourth order cumulant instead of the fourth order moment
used in [16] and whitening involves a novel use of the Hessian of the cumulant.
Even then, we cannot reduce to the simple case y = Rx as above, and are left
with a more complicated functional form (see “quasi-whitening” in Section 3.)
Nevertheless, we can reduce to an optimization problem that can be solved
via local search, and which remains amenable to a rigorous analysis and from
which we can recover A as well as the covariance Σ of the noise.

In order to avoid cluttered notation, we have focused on the case in which
x is chosen uniformly at random from {−1, +1}n, although our algorithm
and analysis work under the more general conditions that the coordinates of
x are (i) independent with mean zero and unit variance; (ii) have a fourth
order moment that is less than three (the fourth order moment of a Gaussian
random variable). In this case, the functional P (u) (see Lemma 1) will take
the same form but with weights depending on the exact value of the fourth
order moment for each coordinate. Since we already carry through an unknown
diagonal matrix D throughout our analysis, this generalization only changes
the entries on the diagonal and the same algorithm and proof apply.

Subsequent Work

There has been considerable recent work on Independent Component Analysis
and related problems. Belkin, Rademacher and Voss [4] recently gave an im-
proved algorithm for ICA with unknown Gaussian noise that works when each
of the coordinates of x has a fourth order moment that is bounded away from
three (instead of strictly less than three, as in our setting). Goyal, Vempala
and Xiao [17] gave an algorithm for overcomplete ICA that works even when
A is an n × m matrix and m ≫ n (see also [12], [29]). There have also been
a number of recent works giving improved algorithms for learning mixtures
of Gaussians where the number of components is a fixed polynomial in the
dimension [17], [8], [2]. However these results are incomparable since in our
setting the number of components is exponential but we require their centers
to be the image of the hypercube under a linear transformation.

2 Overview

In this section we give an overview for the main ideas of our algorithm (see
Algorithm 1, for more details see Section 4).

6 Sanjeev Arora et al.

Algorithm 1. MainAlgorithm, Input:samples,ϵ Output: matrices Â, Σ̂
with accuracy ϵ

(Denoising and Quasi-whitening)

1. Pick a random u0 ∼ N (0, 1
n In)

2. Take 2N samples y1, y2, ..., yN , y′
1, y′

2, ..., y′
N

(N = poly(n∥A∥2, ∥Σ∥2, 1/ϵ, 1/λmin(A))), estimate the Hessian H(P (u0)) of the 4-th
order cumulant P (u0) = −κ4(uT y) = 2

∑n
i=1(u

T A)4i (see Section 3 for more details).

H(P̂ (u0)) =
1

N

N∑

i=1

12(uT
0 yi)

2yiy
T
i + 2(uT

0 y′
i)

2yiy
T
i

+ 2(uT
0 yi)

2y′
i(y

′
i)

T + 4(uT
0 yi)(u

T
0 y′

i)(yi(y
′
i)

T + (y′
i)y

T
i).

3. Compute B such that H(P̂ (u0)) = BBT .

(Finding Local Maxima)

4. Estimate

P̂ ′(u) = −
1

N

N∑

i=1

(uT B−1yi)
4 +

3

N

(
N∑

i=1

(uT B−1yi)
2(uT B−1y′

i)
2

)

which is an empirical estimation of P ′(u) (which is the 4-th order cumulant in the
whitened coordinate system, later in Section 3 defined to be P ′(u) = κ4(uT z) =
κ4(uT B−1y)).

5. Choose parameters β and δ to be poly(n∥A∥2, ∥Σ∥2, 1/ϵ, 1/λmin(A)) according to The-
orem 10.

6. Use Algorithm 3 AllOPT(P̂ ′(u), β, δ′, β′, δ′) of Section 5 to compute all n local maxima

of the function P̂ ′(u).

(Recovering Parameters)

7. Let R be the matrix whose rows are the n local optima recovered in the previous step.
8. Use Algorithm 4 Recover of Section 6 to find A and Σ

Before explaining our algorithm, let us first recall previous approaches.
The approach of Frieze Jerrum and Kannan [16] is to approximate the second
moment matrix. One can then use this to find a linear transformation so that
applying it transforms the problem to an instance where the columns of A are
almost orthogonal. This is often called whitening. After this transformation,
the second step of the algorithm attempts to maximize a function of the 4th
order moments and the analysis proceeds by showing that this function has
exactly 2n distinct local maxima that correspond to the columns of the (trans-
formed) A matrix (with sign flips). Finally in the last step one can recover the
original A by undoing the linear transformation.

Our algorithm has three similar steps: Denoising and Quasi-whitening,
Finding Local Maxima and Recovering Parameters.

Denoising and Quasi-whitening In our setting the model has Gaussian noise,
so the moment structure is very different from the noiseless case. We first
observe that if we use 4th order cumulants, instead of 4th order moments, our

Provable ICA with Unknown Gaussian Noise 7

statistics will be unaffected by the Gaussian noise. However, the second order
cumulants and moments are the same, and they both depend on the Gaussian
noise. In order to perform (quasi-)whitening, we observe that the singular
value decomposition of a certain Hessian matrix (which we can estimate from
samples) can used to find a suitable linear transformation. We can think of
this step as a replacement for the one in [16] which is affected by Gaussian
noise. See Section 3 for details.

Finding the Parameters After quasi-whitening, the problem essentially re-
duces to the following:

Question: Suppose there is a function f which has exactly n orthogonal local
maxima that correspond to the columns of A. Given an empirical estimate f̂
of this function, can we find vectors that are close to the local maxima of f?

Frieze Jerrum and Kannan[16] showed how to find one local maximum.
However it was not clear how this could generalize to finding all the local
maxima as naively the errors accumulate exponentially in terms of the dimen-
sion. We identify properties of the function f (namely locally approximable
and locally improvable, see Section 5), and show that in general under these
assumptions it is possible to find all local maxima using a delicate two-step
local search procedure. See Section 5 for details.

Recovering the Parameters This is a standard step, we use basic linear algebra
to invert the (quasi-)whitening transformation and estimate the covariance Σ.
We also prove polynomial bounds on the sample complexity. See Theorem 12.

3 Denoising and Quasi-Whitening

As mentioned, our approach is based on the fourth order cumulant. The cumu-
lants of a random variable are the coefficients of the Taylor expansion of the
logarithm of the characteristic function [26]. Let κr(X) be the rth cumulant
of a random variable X . We make use of:

Fact 2 (i) If X has mean zero, then κ4(X) = E[X4] − 3E[X2]2. (ii) If X is
Gaussian with mean µ and variance σ2, then κ1(X) = µ, κ2(X) = σ2 and
κr(X) = 0 for all r > 2. (iii) If X and Y are independent, then κr(X + Y) =
κr(X) + κr(Y).

The crux of our technique is to look at the following functional, where y is
the random variable Ax+ η whose samples are given to us. Let u ∈ Rn be any
vector. Then P (u) = −κ4(uT y). Note that for any u we can compute P (u)
reasonably accurately by drawing sufficient number of samples of y and taking
an empirical average. Furthermore, since x and η are independent, and η is
Gaussian, the next lemma is immediate. We call it “denoising” since it allows
us empirical access to some information about A that is uncorrupted by the
noise η.

8 Sanjeev Arora et al.

Lemma 1 (Denoising Lemma) P (u) = 2
∑n

i=1(u
T A)4i .

Proof The crucial observation is that uT y = uT Ax+uT η is the sum of two in-
dependent random variables, Ax and η and that P (u) = −κ4(uT Ax + uT η) =
−κ4(uT Ax)−κ4(uT η) = −κ4(uT Ax). So in fact, the functional P (u) is invari-
ant under additive Gaussian noise independent of the variance matrix Σ.
This vastly simplifies our computation:

E[(uT Ax)4] =
n∑

i=1

(uT A)4i E[x4
i] + 6

∑

i<j

(uT A)2i (u
T A)2jE[x2

i]E[x2
j]

=
n∑

i=1

(uT A)4i + 6
∑

i<j

(uT A)2i (u
T A)2j = −2

n∑

i=1

(uT A)4i + 3(uT AAT u)2

Furthermore E[(uT Ax)2]2 = (uT AAT u)2 and we conclude that

P (u) = −κ4(u
T y) = −E[(uT Ax)4] + 3E[(uT Ax)2]2 = 2

n∑

i=1

(uT A)4i .

3.1 Quasi-Whitening via the Hessian of P (u)

In prior works on ICA, whitening refers to reducing to the case where y = Rx
for some some orthogonal matrix R. Here we give a technique to reduce to the
case where y = RDx+η′ where η′ is some other Gaussian noise (still unknown),
R is an orthogonal matrix and D is a diagonal matrix that depends upon A.
We call this quasi-whitening. Quasi-whitening suffices for us since local search
using the objective function κ4(uT y) will give us (approximations to) the rows
of RD, from which we will be able to recover A.

Quasi-whitening involves computing the Hessian of P (u), which recall is
the matrix of all 2nd order partial derivatives of P (u). Throughout this section,
we will denote the Hessian operator by H. In matrix form, HP (u) is

HP (u) =
∂2

∂ui∂uj
P (u) = 24

n∑

k=1

Ai,kAj,k(Ak · u)2

= 24
n∑

k=1

(Ak · u)2AkAT
k = ADA(u)AT

where Ak is the k-th column of the matrix A (we use subscripts to denote
the columns of matrices throught the paper). DA(u) is the following diagonal
matrix:

Definition 1 Let DA(u) be a diagonal matrix in which the kth entry is
24(Ak · u)2.

Provable ICA with Unknown Gaussian Noise 9

Of course, the exact Hessian of P (u) is unavailable and we will instead
compute an empirical approximation P̂ (u) to P (u) (given many samples from
the distribution), and we will show that the Hessian of P̂ (u) is a good approx-
imation to the Hessian of P (u).

Definition 2 Given 2N samples y1, y′
1, y2, y′

2..., yN , y′
N of the random variable

y, let

P̂ (u) =
−1

N

N∑

i=1

(uT yi)
4 +

3

N

N∑

i=1

(uT yi)
2(uT y′

i)
2.

Our first step is to show that the expectation of the Hessian of P̂ (u) is exactly
the Hessian of P (u). In fact, since the expectation of P̂ (u) is exactly P (u) (and
since P̂ (u) is an analytic function of the samples and of the vector u), we can
interchange the Hessian operator and the expectation operator. Roughly, one
can imagine the expectation operator as an integral over the possible values
of the random samples, and as is well-known in analysis, one can differentiate
under the integral provided that all functions are suitably smooth over the
domain of integration.

Claim 3 Ey,y′ [−(uT y)4 + 3(uT y)2(uT y′)2] = P (u)

This claim follows immediately from the definition of P (u), and since y
and y′ are independent.

Lemma 2 H(P (u)) = Ey,y′ [H(−(uT y)4 + 3(uT y)2(uT y′)2)]

Next, we compute the two terms inside the expectation:

Claim 4 H((uT y)4) = 12(uT y)2yyT

Claim 5 H((uT y)2(uT y′)2) = 2(uT y′)2yyT + 2(uT y)2y′(y′)T +
4(uT y)(uT y′)(y(y′)T + (y′)yT)

Let λmin(A) denote the smallest eigenvalue of A. Our analysis also requires
bounds on the entries of DA(u0):

Claim 6 If u0 is a random Gaussian variable N (0, 1
nIn) with expected square

norm 1, then with probability 1 − O(1/
√

n) we have for all i,

n
min
i=1

∥Ai∥2
2n

−4 ≤ DA(u0)i,i ≤ n
max
i=1

∥Ai∥2
2
9 logn

n
.

Proof Since u0 is a Gaussian random variable, each of the Ai · u is distributed
as a Gaussian with mean zero and variance ∥Ai∥2/n.

By the tail properties of Gaussian distribution, we know Pr[|Aiu̇0| ≥
∥Ai∥ 3

√
log n
n] ≤ n−2. On the other hand, by the anticoncentration properties

of Gaussians, Pr[|Aiu̇0| ≤ ∥Ai∥n−2] ≤ O(n−1.5). Hence by union bound with

probability at least 1 − O(1/
√

n), none of the events |Aiu̇0| ≥ ∥Ai∥ 3
√

log n
n ,

|Aiu̇0| ≤ ∥Ai∥n−2 happen. In this case we know (DA(u0))i,i = |Ai · u0|2 is in
between minn

i=1 ∥Ai∥2
2n

−4 and maxn
i=1 ∥Ai∥2

2
9 log n

n .

10 Sanjeev Arora et al.

Lemma 3 If u0 is chosen randomly fron N (0, 1
nIn) and furthermore we are

given 2N = poly(n, 1/ϵ, 1/λmin(A), ∥A∥2, ∥Σ∥2) samples of y, then with prob-
ability 1 − O(1/

√
n) we will have that (1 − ϵ)ADA(u0)AT ≼ H(P̂ (u0)) ≼

(1 + ϵ)ADA(u0)AT .

Proof The Hessian of P̂ (u0) is the sum of independent random matrices (see
Definition 2. First we consider entry-wise bounds for matrices in this sum.
For example, the variance of any entry in H((uT y)4) = 12(uT y)2yyT can be
bounded by O(∥y∥8

2) (with probability 1 − exp(−Ω(n))), which we can then
bound by E[∥y∥8

2] ≤ O(E[∥Ax∥8
2+∥η∥8

2]). This can be bounded by O(n4(∥A∥8
2+

∥Σ∥4
2)). This is also an upper bound for the variance (of any entry) when

computing H(P̂ (u0)) (the other terms have smaller variance).
Applying standard concentration bounds, poly(n, 1/ϵ′, ∥A∥2, ∥Σ∥2) sam-

ples suffice to guarantee that all entries of H(P̂ (u0)) are ϵ′ close to H(P (u)).
The smallest eigenvalue of H(P (u)) = ADA(u0)AT is at least

λmin(A)2
n

min
i=1

∥Ai∥2
2n

−4

where here we have used Claim 6. If we choose ϵ′ = poly(1/n, λmin(A), ϵ), then
we are also guaranteed (1 − ϵ)ADA(u0)AT ≼ H(P̂ (u0)) ≼ (1 + ϵ)ADA(u0)AT

holds.

Lemma 4 Suppose that (1−ϵ)ADA(u0)AT ≼ M̂ ≼ (1+ϵ)ADA(u0)AT , and let

M̂ = BBT . Then there is an orthogonal matrix R∗ such that ∥B−1ADA(u0)1/2−
R∗∥F ≤

√
nϵ.

The intuition is: if any of the singular values of B−1ADA(u0)1/2 are outside
the range [1 − ϵ, 1 + ϵ], we can find a unit vector x where the quadratic forms

xT ADA(u0)AT x and xT M̂x are too far apart (which contradicts the condition
of the lemma). Hence the singular values of B−1ADA(u0)1/2 can all be set to
one without changing the Frobenius norm of B−1ADA(u0)1/2 too much, and
this yields an orthogonal matrix.

Proof Let M = ADA(u0)AT and let C = ADA(u0)1/2, and so M = CCT and

M̂ = BBT . The condition (1 − ϵ)M ≼ M̂ ≼ (1 + ϵ)M is well-known to be

equivalent to the condition that for all vectors x, (1 − ϵ)xT Mx ≤ xT M̂x ≤
(1 + ϵ)xT Mx.

Suppose for the sake of contradiction that S = B−1C has a singular value
outside the range [1 − ϵ, 1 + ϵ]. Assume (without loss of generality) that S has
a singular value strictly larger than 1+ ϵ (and the complementary case can be
handled analogously). Hence there is a unit vector y such that yT SST y > 1+ϵ.

But since BSST BT = CCT , if we set xT = yT B−1 then we have xT M̂x =
xT BBT x = yT y = 1 but xT Mx = xT CCT x = xT BSST BT x = yT SST y >
1+ ϵ. This is a contradiction and so we conclude that all of the singular values
of B−1C are in the range [1 − ϵ, 1 + ϵ].

Provable ICA with Unknown Gaussian Noise 11

Let UΣV T be the singular value decomposition of B−1C. If we set all of
the diagonal entries in Σ to 1 we obtain an orthogonal matrix R∗ = UV T .
And since the singular values of B−1C are all in the range [1− ϵ, 1+ ϵ], we can
bound the Frobenius norm of B−1C − R∗: ∥B−1C − R∗∥F ≤

√
nϵ, as desired.

4 Our Algorithm (and Notation)

In this section we describe our overall algorithm. It uses as a blackbox the
denoising and quasi-whitening already described above, as well as a routine
for computing all local maxima of some “well-behaved” functions which is
described later in Section 5.

Notation: Placing a hat over a function corresponds to an empirical approx-
imation that we obtain from random samples. This approximation introduces
error, which we will keep track of.

Step 1: Pick a random u0 ∼ N (0, 1
nIn) and estimate the Hessian H(P̂ (u0)).

Compute B such that H(P̂ (u0)) = BBT .

Step 2: Take 2N samples y1, y2, ..., yN , y′
1, y

′
2, ..., y

′
N , and let

P̂ ′(u) = − 1

N

N∑

i=1

(uT B−1yi)
4 +

3

N

(
N∑

i=1

(uT B−1yi)
2(uT B−1y′

i)
2

)

which is an empirical estimation of P ′(u) (later defined to be P ′(u) = κ4(uT z) =
κ4(uT B−1y)).

Step 3: Use the procedure AllOPT(P̂ ′(u), β, δ′, β′, δ′) of Section 5 to com-
pute all n local maxima of the function P̂ ′(u) (since P̂ ′(u) is symmetric u and
−u are considered as the same local maxima).

Step 4: Let R be the matrix whose rows are the n local optima recovered in
the previous step. Use procedure Recover of Section 6 to find A and Σ.

Explanation: Step 1 uses the transformation B−1 computed in the previous
Section to quasi-whiten the data. Let D = DA(u0) be the diagonal matrix
defined in Definition 1. We consider the sequence of samples z = B−1y, which
are therefore of the form R′D−1/2x + η′ where η′ = B−1η, D = DA(u0) and
R′ is close to an orthogonal matrix R∗ (by Lemma 4). In Step 2 we look at
κ4((uT z)), which effectively denoises the new samples (see Lemma 1), and thus
is the same as κ4(R′D−1/2x). Let P ′(u) = κ4(uT z) = κ4(uT B−1y) which is
easily seen to be E[(uT R′D−1/2x)4]. Step 2 estimates this function, obtaining
P̂ ′(u). Then Step 3 tries to find local optima via local search. Ideally we would
have liked access to the functional P ∗(u) = (uT R∗x)4 since the procedure for
local optima works only for true orthogonal transformations. But since R′ and
R∗ are close we can make it work approximately with P̂ ′(u), and then in Step
4 use these local optima to finally recover A.

12 Sanjeev Arora et al.

Theorem 7 Suppose we are given samples of the form y = Ax+ η where x is
uniform on {+1, −1}n, A is an n×n matrix, η is an n-dimensional Gaussian
random variable independent of x with unknown covariance matrix Σ. There
is an algorithm that with high probability recovers ∥Â − AΠDiag(si)∥F ≤ ϵ
where Π is some permutation matrix and each si ∈ {+1, −1} and also recovers
∥Σ̂ − Σ∥F ≤ ϵ. Furthermore the running time and number of samples needed
are poly(n, 1/ϵ, ∥A∥2 , ∥Σ∥2 , 1/λmin(A))

Proof In Step 1, by Lemma 4 we know once we use z = B−1y, the whitened
function P ′(u) is inverse polynomially close to P ∗(u). Then by Lemma 7, the

function P̂ ′(u) we get in Step 2 is inverse polynomially close to P ′(u) and

P ∗(u). Theorem 9 and Lemma 9 show that given P̂ ′(u) inverse polynomially
close to P ∗(u), Algorithm 3: : AllOPT finds all local maxima with inverse
polynomial precision. Finally by Theorem 12 we know A and W are recovered
correctly up to additive ϵ error in Frobenius norm. The running time and
sampling complexity of the algorithm is polynomial because all parameters in
these Lemmas are polynomially related.

Note that here we recover A up to a permutation of the columns and sign-
flips. In general, this is all we can hope for since the distribution of x is also
invariant under these same operations. Also, the dependence of our algorithm
on the various norms (of A and Σ) seems inherent since our goal is to recover
an additive approximation, and as we scale up A and/or Σ, this goal becomes
a stronger relative guarantee on the error.

5 Framework for Iteratively Finding all Local Maxima

In this section, we first describe a fairly standard procedure (based upon New-
ton’s method) for finding a single local maximum of a function f∗ : Rn → R

among all unit vectors and an analysis of its rate of convergence. Such a pro-
cedure is a common tool in statistical algorithms, but here we state it rather
carefully since we later give a general method to convert any local search al-
gorithm (that meets certain criteria) into one that finds all local maxima (see
Section 5.2).

Given that we can only ever hope for an additive approximation to a local
maximum, one should be concerned about how the error accumulates when
our goal is to find all local maxima. In fact, a naive strategy is to project
onto the subspace orthogonal to the directions found so far, and continue in
this subspace. However, such an approach seems to accumulate errors badly
(the additive error of the last local maxima found is exponentially larger than
the error of the first). Rather, the crux of our analysis is a novel method for
bounding how much the error can accumulate (by refining old estimates).

Our strategy is to first find a local maximum in the orthogonal subspace,
then run the local optimization algorithm again (in the original n-dimensional
space) to “refine” the local maximum we have found. The intuition is that

Provable ICA with Unknown Gaussian Noise 13

since we are already close to a particular local maximum, the local search
algorithm cannot jump to some other local maximum (since this would entail
going through a valley).

5.1 Finding one Local Maximum

Throughout this section, we will assume that we are given oracle access to
a function f(u) and its gradient and Hessian. The procedure is also given a
starting point us, a search range β, and a step size δ. For simplicity in notation
we define the following projection operator.

Definition 3 Proj⊥u(v) = v − (uT v)u, Proj⊥u(M) = M − (uT Mu)uuT .

The basic step of the algorithm is a modification of Newton’s method to
find a local improvement that makes progress so long as the current point u
is far from a local maximum. Notice that if we add a small vector to u, we do
not necessarily preserve the norm of u. In order to have control over how the
norm of u changes, during local optimization step the algorithm projects the
gradient ∇f and Hessian H(f) to the space perpendicular to u. There is also an
additional correction term −∂/∂uf(u) · ∥ξ∥2/2 (where ∂/∂u is the directional
derivative along direction u). This correction term is necessary because the
new vector we obtain is (u + ξ)/ ∥(u + ξ)∥2 which is close to u − ∥ξ∥2

2/2 · u +
ξ + O(β3). Therefore by Taylor’s expansion, we have f((u + ξ)/ ∥(u + ξ)∥2) =

Proj⊥u(∇f(u))T ξ + 1
2ξT Proj⊥u(H(f(u)))ξ − 1

2

(
∂
∂u

f(u)
)

· ∥ξ∥2
2 + O(β3). Step

2 of the algorithm is just maximizing a quadratic function and can be solved
exactly (see Remark 1). To increase efficiency it is also acceptable to perform
an approximate maximization step by taking ξ to be either aligned with the
gradient Proj⊥u∇f(u) or the largest eigenvector of Proj⊥u(H(f(u))).

Remark 1 In order to solve the optimization problem maxu
1
2uT Au−vT u sub-

ject to ∥u∥ ≤ β, observe that if the solution is inside the ball then u must be
equal to A†v, we can first check whether this case is an optimal solution. If
this is not optimal, then the optimal solution must be at the boundary and
we have (Au − v) = λu for some λ > 0, further by second order conditions we
have λ > λmax(A). In this region the norm of (A − λI)−1v is monotonically
decreasing, so there is a unique value λ where u = (A − λI)−1v have norm
exactly β. This λ (and the corresponding solution u) can then be found using
binary search.

The algorithm is guaranteed to succeed in polynomial time when the func-
tion is Locally Improvable and Locally Approximable:

Definition 4 ((γ, β, δ)-Locally Improvable) A function f(u) : Rn → R is
(γ, β, δ)-Locally Improvable, if for any u that is at least γ far from any local
maxima, there is a u′ such that ∥u′ − u∥2 ≤ β and f(u′) ≥ f(u) + δ.

14 Sanjeev Arora et al.

Algorithm 2. LocalOPT, Input:f(u), us, β, δ Output: vector v

1. Set u← us.

2. Maximize (see Remark 1): Proj⊥u(∇f(u))T ξ + 1
2
ξT Proj⊥u(H(f(u)))ξ − 1

2

(
∂

∂u

f(u)
)

·

∥ξ∥22
Subject to ∥ξ∥2 ≤ β and uT ξ = 0

3. Let ξ be the solution, ũ = u+ξ
∥u+ξ∥

4. If f(ũ) ≥ f(u) + δ/2, set u← ũ and Repeat Step 2
5. Else return u

Definition 5 ((β, δ)-Locally Approximable) A function f(u) is locally
approximable, if its third order derivatives exist and for any u and any direction
v, the third order derivative of f at point u in the direction of v is bounded
by 0.01δ/β3.

Note that the definition of Locally Approximable only depends on the
parameter δ/β3. We choose to define it with two parameters (β, δ) so that its
syntax matches the definition of (γ, β, δ)-Locally Improvable.

The analysis of the running time of the procedure comes from local Taylor
expansion. When a function is Locally Approximable it is well approximated by
the gradient and Hessian within a β neighborhood. The following theorem from
[16] showed that the two properties above are enough to guarantee the success
of a local search algorithm even when the function is only approximated.

Theorem 8 ([16], Lemma 11) Let f, f∗ be functions Rn → R whose 3rd
order derivatives exists, if |f(u) − f∗(u)| ≤ δ/8 for all u ∈ Sn−1, the function
f∗(u) is (γ, β, δ)-Locally Improvable, f(u) is (β, δ) Locally Approximable, then
Algorithm 2 will find a vector v that is γ close to some local maximum. The
running time is at most O((n2 +T)maxf∗/δ) where T is the time to evaluate
the function f and its gradient and Hessian, and max f∗ = maxu∈Sn−1 f∗(u).

5.2 Finding all Local Maxima

Now we consider how to find all local maxima of a given function f∗(u). The
crucial condition that we need is that all local maxima are orthogonal (which
is indeed true in our problem, and is morally true when using local search
more generally in ICA). Note that this condition implies that there are at
most n local maxima.1 In fact we will assume that there are exactly n local
maxima. If we are given an exact oracle for f∗ and can compute exact local
maxima then we can find all local maxima easily: find one local maximum,
project the function into the orthogonal subspace, and continue to find more
local maxima.

1 Technically, there are 2n local maxima since for each direction u that is a local maxima,
so too is −u but this is an unimportant detail for our purposes.

Provable ICA with Unknown Gaussian Noise 15

Algorithm 3. AllOPT, Input:f(u), β, δ, β′, δ′ Output: v1, v2, ..., vn, ∀i
∥vi − v∗

i ∥ ≤ γ.

1. Let v1 = LocalOPT(f, e1, β, δ)
2. FOR i = 2 TO n DO
3. Let gi be the projection of f to the orthogonal subspace of v1, v2, ..., vi−1.
4. Let u′ = LocalOPT(g, e1, β′, δ′).
5. Let vi = LocalOPT(f, u′, β, δ).
6. END FOR
7. Return v1, v2, ..., vn

Definition 6 The projection of a function f to a linear subspace S is a func-
tion on that subspace with value equal to f . More explicitly, if {v1, v2, ..., vd}
is an orthonormal basis of S, the projection of f to S is a function g : Rd → R

such that g(w) = f(
∑d

i=1 wivi).

The following theorem gives sufficient conditions under which the above
algorithm finds all local maxima, making precise the intuition given at the
beginning of this section.

Theorem 9 Suppose the function f∗(u) : Rn → R satisfies the following
properties:

(a) Orthogonal Local Maxima: The function has n local maxima v∗
i , and

they are orthogonal to each other.
(b) Locally Improvable: f∗ is (γ, β, δ) Locally Improvable.
(c) Improvable Projection: The projection of the function to any subspace

spanned by a subset of local maxima is (γ′, β′, δ′) Locally Improvable. The
step size δ′ ≥ 10δ.

(d) Lipschitz: If two points ∥u − u′∥2 ≤ 3
√

nγ, then the function value |f∗(u)−
f∗(u′)| ≤ δ′/20.

(e) Attraction Radius: Let Rad ≥ 3
√

nγ +γ′, for any local maximum v∗
i , let

T be min f∗(u) for ∥u − v∗
i ∥2 ≤ Rad, then there exist a set U containing

∥u − v∗
i ∥2 ≤ 3

√
nγ + γ′ and does not contain any other local maxima, such

that for every u that is not in U but is β close to U , f∗(u) < T .

If we are given function f such that |f(u) − f∗(u)| ≤ δ/8 and f is both (β, δ)
and (β′, δ′)−Locally Approximable, then Algorithm 3 can find all local maxima
of f∗ within distance γ.

To prove this theorem, we first notice the projection of the function f in
Step 3 of the algorithm should be close to the projection of f∗ to the remaining
local maxima. This is implied by Lipschitz condition and is formally shown in
the following two lemmas. First we prove a “coupling” between the orthogonal
complement of two close subspaces:

Lemma 5 Given v1, v2, ..., vk, each γ-close respectively to local maxima
v∗
1 , v∗

2 , ..., v∗
k (this is without loss of generality because we can permute the index

of local maxima), then there is an orthonormal basis vk+1, vk+2, ..., vn for the

16 Sanjeev Arora et al.

orthogonal space of span{v1, v2, ..., vk} such that for any unit vector w ∈ Rn−k,∑n−k
i=1 wkvk+i is 3

√
nγ close to

∑n−k
i=1 wkv∗

k+i.

Proof Let S1 be span{v1, v2, ..., vk}, S2 be span{v∗
1 , v∗

2 , ..., v∗
k} and S⊥

1 , S⊥
2 be

their orthogonal subspaces respectively. We first prove that for any unit vector
v ∈ S⊥

1 , there is another unit vector v′ ∈ S⊥
2 so that vT v′ ≥ 1 − 4nγ2. In fact,

we can take v′ to be the unit vector along the projection of v in S⊥
2 . To bound

the length of the projection, we instead bound the length of projection to
S2. Since we know vT

i v = 0 for i ≤ k and ∥vi − v∗
i ∥ ≤ γ, it must be that

(v∗
i)T v ≤ 2γ when γ < 0.01. So the projection of v in S2 has length at most

2
√

nγ and hence the projection of v in S⊥
2 has length at least 1 − 4nγ2.

Next, we prove that there is a pair of orthornormal bases {ṽk+1, ṽk+2, ..., ṽn}
and {ṽ∗

k+1, ṽ∗
k+2, ..., ṽ∗

n} for S⊥
1 and S⊥

2 such that
∑n−k

i=1 wkṽk+i is close to
∑n−k

i=1 wk ṽ∗
k+i. Once we have such a pair, we can simultaneously rotate the

two bases so that the latter becomes v∗
k+1, ..., v

∗
n.

To get this set of bases we consider the projection operator to S⊥
2 for

vectors in S⊥
1 . The squared length of the projection is a quadratic form over

the vectors in S⊥
1 . So there is a symmetric PSD matrix M such that

∥ProjS⊥
2

(v)∥2
2 = vT Mv

for v ∈ S⊥
1 . Let {ṽk+1, ṽk+2, ..., ṽn} be the eigenvectors of this matrix M . As

we showed the eigenvalues must be at least 1 − 8nγ2. The basis for S⊥
2 will

just be unit vectors along directions of projections of ṽi to S⊥
2 . They must also

be orthogonal because the projection operator ProjS⊥
2

is linear and

∥ProjS⊥
2

(
n−k∑

i=1

wiṽk+i)∥2
2 = ∥

n−k∑

i=1

wiProjS⊥
2

(ṽk+i)∥2
2 =

n−k∑

i=1

λiw
2
i

The second equality cannot hold if these vectors are not orthogonal. And for
any w,

(
n−k∑

i=1

wkṽk+i

)T (n−k∑

i=1

wkṽ∗
k+i

)

=
n−k∑

i=1

w2
k(ṽk+i)

T ṽ∗
k+i ≥ 1 − 8nγ2

So we conclude that the distance between these two vectors is at most 3
√

nγ.

Using this lemma we see that the projected function is close to the projec-
tion of f∗ in the span of the rest of local maxima (of f∗):

Lemma 6 Let g∗ be the projection of f∗ into the space spanned by the rest of
local maxima of f∗, and g be the projection of f into the orthogonal subspace
of the currently found local maxima, then for any ∥w∥ = 1 |g∗(w) − g(w)| ≤
δ/8 + δ′/20 ≤ δ′/8.

Provable ICA with Unknown Gaussian Noise 17

Proof The proof is straight forward because every vector w correspond to
a vector u in the original space Sn−1 (the u’s for different projections are
different, but they are close by Lemma 5). Therefore we have

|g∗(w) − g(w)| ≤ |f∗(u) − f(u)| + |f∗(u) − f∗(u′)|

for some ∥u − u′∥2 ≤ 3
√

nγ (u is the point that corresponds to w under
projection for g, u′ is the point that corresponds to w under projection for
g∗), we know the first one is at most δ/8 and the second one is at most δ′/20
by Lipschitz Condition.

Now we are ready to prove the main theorem.

Proof (Theorem 9) By Theorem 8 the first column is indeed γ close to a local
maximum. We then prove by induction that if v1, v2, ..., vk are γ close to
different local maxima, then vk+1 must be close to a new local maximum.

By Lemma 6 we know gk+1 is (γ′, β′, δ′) Locally Improvable, and because
it is a projection of f its derivatives are also bounded so it is (β′, δ′) Locally
Approximable. By Theorem 8 u′ must be γ′ close to local maximum for the
projected function. Then since the projected space is close to the space spanned
by the rest of local maxima, u′ is in fact γ′ + 3

√
nγ close to v∗

k+1 (here again
we are reindexing the local maxima wlog.).

Now we use the Attraction Radius property, since u is currently in U ,
f∗(u) ≥ T , and each step we go to a point u′ such that ∥u′ − u∥ ≤ β and
f∗(u′) > f∗(u) ≥ T . The local search in Algorithm 2 can never go outside U ,
therefore it must find the local maximum v∗

k+1.

6 Local Search on the Fourth Order Cumulant

Next, we prove that the fourth order cumulant P ∗(u) satisfies the properties
above. Then the algorithm given in the previous section will find all of the
local maxima, which is the missing step in our main goal: learning a noisy
linear transformation Ax + η with unknown Gaussian noise. We first use a
theorem from [16] to show that properties for finding one local maximum are
satisfied.

Also, for notational convenience we set di = 2DA(u0)
−2
i,i and let dmin and

dmax denote the minimum and maximum values (bounds on these and their
ratio follow from Claim 6). Using this notation P ∗(u) = 2

∑n
i=1(u

T Ai)4 and
P ∗(v) =

∑n
i=1 div4

i for v = R∗DA(u0)−1/2u.

Theorem 10 ([16]) When β < dmin/10dmaxn2, the function P ∗(u) is

(a) (3
√

nβ, β, P ∗(u)β2/100)−Locally Improvable and

(b) (β, dminβ2/100n)−Locally Approximable.

Moreover, the local maxima of the function are exactly {±R∗
i }.

18 Sanjeev Arora et al.

Proof The proof appears in [16]. Here for completeness we give the proof using
our notation, for completeness. Note that in the proof we will work with 2nd
order Taylor’s expansion

P ∗(u) = Proj⊥u(∇P ∗(u))T ξ+
1

2
ξT Proj⊥u(H(P ∗(u)))ξ−1

2

(
∂

∂u
P ∗(u)

)
·∥ξ∥2

2+O(β3)

By the properties of the functions the third order terms are bounded by O(β3)
while our improvements will be at least Ω(β2), so the improvement is still valid
for the original function.

First we establish that P ∗(u) is Locally Improvable.Observe that this de-
sirada is invariant under orthogonal transformation, so we need only prove the
theorem for P ∗(v) =

∑n
i=1 div4

i . The gradient of the function is ∇P ∗(v) =
4(d1v3

1 , d2v3
2 , ..., dnv3

n). Then

⟨∇P ∗(v), v⟩ = 4
n∑

i=1

div
4
i = 4P ∗(v)

Therefore the projected gradient φ = Proj⊥v∇P ∗(v) has coordinate φi =
4vi(div2

i − P ∗(v)). Furthermore, the Hessian H = H(P ∗(v)) is a diagonal
matrix whose (i, i)th entry is 12div2

i .
Consider the case in which ∥φ∥ ≥ P ∗(v)β/4. We can obtain an improve-

ment to P ∗(v)β2/100 because we can take ξ in the direction of φ and with
∥ξ∥2 = β/20. The contribution of the Hessian term is nonnegative and the

third term in the Taylor expansion −2P ∗(u) ∥ξ∥2
2 is small in comparison.

Hence, we can assume ∥φ∥ ≤ P ∗(v)β/4. Now let us write out the expression
of ∥φ∥2

n∑

i=1

v2
i (div

2
i − P ∗(v))2 ≤ β2(P ∗(v))2/16.

In particular every term v2
i (div2

i − P ∗(v))2 must be at most β2(P ∗(v))2/16..
Thus for any i, either v2

i ≤ β2 or (div2
i − P ∗(v))2 ≤ (P ∗(v))2/16.

If there are at least two coordinates k and l such that

(div
2
i − P ∗(v))2 ≤ (P ∗(v))2/16

then we know for these two coordinates v2
i ∈ [0.75P ∗(v)/di, 1.25P ∗(v)/di]. We

choose the vector ξ so that ξk = τvl and ξl = −τvk. Wlog assume ξ · φ ≥ 0
otherwise we use −ξ. Take τ so that τ2(v2

l + v2
k) = β2. Clearly ∥ξ∥ = β and

ξ · v = 0 so ξ is a valid solution. Also

τ2 ≥ β2/(v2
l + v2

k) ≥ 4

5

β2

P ∗(u)(1/dl + 1/dk)

Now consider the function we are interested in optimizing:

φ · ξ + 1/2ξT Hξ − 2P ∗(u) ∥ξ∥2 ≥ 1/2ξT Hξ − 2P ∗(u)β2

= 6τ2v2
kv2

l (dk + dl) − 2P ∗(u)β2

≥ 27

8
τ2P ∗(u)2

dk + dl

dkdl
− 2P ∗(u)β2 ≥ 7

10
P ∗(u)β2.

Provable ICA with Unknown Gaussian Noise 19

In the remaining case, all of the coordinates except for at most one satisfy
v2

i ≤ β2. Since we assumed β2 < 1
n , there must be one of the coordinate vk

that is large, and it is at least 1 − nβ2. Thus the distance of this vector to the
local maxima ek is at most 3

√
nβ.

We then observe that given enough samples, the empirical mean P̂ ′(u) is
close to P ∗(u). For concentration we require every degree four term zizjzkzl

has variance at most Z.

Claim 11 Z = O(d2
minλmin(A)8∥Σ∥4

2 + d2
min).

Proof We will start by bounding E[(zizjzkzl)2] ≤ E[(z8
i + z8

j + z8
k + z8

l)]. Fur-
thermore E[z8

i] ≤ O(E[(B−1Ax)8i + (B−1η)8i]). Note that although here B is
the empirical matrix computed in the algorithm, by Lemma 3 it is close to the
true quasi-whitening matrix with good probability, here we condition on this
event.

Next we bound E[(B−1η)8i], which is just the eighth moment of a Gaussian

with variance at most ∥B−1ΣB−T ∥2 ≤ ∥B−1∥2
2∥Σ∥2 ≤ d1/2

minλmin(A)−2∥Σ∥2.
Hence we can bound this term by

O(∥B−1ΣB−T ∥4
2) = O(d2

minλmin(A)8∥Σ∥4
2)

Finally the remaining term E[(B−1Ax)8i] can be bounded by O(d2
min) because

the variance of this random variable is only larger if we instead replace x by
an n-dimensional standard Gaussian.

Lemma 7 Given 2N samples y1, y2, ..., yN , y′
1, y

′
2, ..., y

′
N , suppose columns of

R′ = B−1ADA(u0)1/2 are ϵ close to the corresponding columns of R∗, with
high probability the function P̂ ′(u) is O(dmaxn1/2ϵ + n2(N/Z log n)−1/2) close
to the true function P ∗(u).

Proof P̂ ′(u) is the empirical mean of

F (u, y, y′) = −(uT B−1y)4 + 3(uT B−1y)2(uT B−1y′)2

In Section 3 we proved that P ′(u) = Ey,y′F (u, y, y′) =
∑n

i=1 2D−1/2
i,i (uT R′

i)
4 =∑n

i=1 di(uT R′
i)

4. First, we demonstrate that P ′(u) is close to P ∗(u), and then

using concentration bounds we show that P̂ ′(u) is close to P ′(u) (with high
probability) over all u.

The first part is a simple application of Cauchy-Schwartz:

|P ′(u) − P ∗(u)| =
n∑

i=1

di

[
(uT R′

i) − (uT R∗
i)
]
·
[
(uT R′

i + uT R∗
i)((u

T R′
i)

2 + (uT R∗
i)

2)
]

≤ dmax

√√√√
n∑

i=1

(uT (R′
i − R∗

i))
2 · (3

∥∥uT R′ + uT R∗∥∥
2
) ≤ 6dmaxn

1/2ϵ.

20 Sanjeev Arora et al.

The first inequality uses the fact that ((uT R′
i)

2 + (uT R∗
i)

2) ≤ 3, the second
inequality uses the fact that when ϵ is small enough,

∥∥uT R′
∥∥

2
≤ 2.

Next we prove that the empirical mean P̂ ′(u) is close to P ′(u). The key
point here is we need to prove this for all points u since a priori we have no
control over which directions local search will choose to explore. We accomplish
this by considering P̂ ′(u) as a degree-4 polynomial over u and prove that the
coefficient of each monomial in P̂ ′(u) is close to the corresponding coefficient in
P ′(u). This is easy: the expectation of each coefficient of F (u, y, y′) is equal to
the correct coefficient, and the variance is bounded by O(Z). The coefficients
are also sub-Gaussian so by Bernstein’s inequality the probability that any
coefficient of P̂ ′(u) deviates by more than ϵ′ (from its expectation) is at most

e−Ω(ϵ′2N/Z). Hence when N ≥ O(Z log n/ϵ′2) with high probability all the
coefficients of P̂ ′(u) and P ′(u) are ϵ′ close. When we write

P ′(u) =
n∑

i1,i2,i3,i4=1

P ′
i1,i2,i3,i4ui1ui2ui3ui4

P̂ ′(u) =
n∑

i1,i2,i3,i4=1

P̂ ′
i1,i2,i3,i4ui1ui2ui3ui4

And for any u:

|P ′(u) − P̂ ′(u)| ≤
n∑

i1,i2,i3,i4=1

|(P ′
i1,i2,i3,i4 − P̂ ′

i1,i2,i3,i4)ui1ui2ui3ui4 |

≤ ϵ′(
n∑

i=1

|ui|)4 ≤ ϵ′n2.

Therefore P̂ ′(u) and P ∗(u) are O(dmaxn1/2ϵ + n2(N/Z log n)−1/2) close.

This proof can also be used to show that the derivatives of the func-
tion P̂ ′(u) is concentrated to the derivatives of the true function P ∗(u) be-
cause the derivatives are only related to coefficients. Since we know P ∗(u) is
(β, dminβ2/100n)−Locally Approximable (Theorem 10), when we take ϵ to be
small enough and N to be large enough (both polynomial in the parameters),
we have P̂ ′(u) is also (β, dminβ2/50n)−Locally Approximable.

The other properties required by Theorem 9 are also satisfied:

Lemma 8 For any ∥u − u′∥2 ≤ r, |P ∗(u) − P ∗(u′)| ≤ 5dmaxn1/2r. All local
maxima of P ∗ has attraction radius Rad ≥ dmin/100dmax.

Proof The Lipschitz condition follows from the same Cauchy-Schwartz as ap-
peared above. When two points u and u′ are of distance r, |P ∗(u)−P ∗(u′)| ≤
5dmaxn1/2r. Finally for the Attraction Radius, we know when 3

√
nγ + γ′ ≤

dmin/100dmax, we can just take the set U to be uT R∗
i ≥ 1 − dmin/50dmax. For

all u such that uT R∗
i ∈ [1−dmin/25dmax, 1−dmin/50dmax] (which contains the

β neighborhood of U), we know the value of P ∗(u) ≤ T .

Provable ICA with Unknown Gaussian Noise 21

Algorithm 4. Recover, Input:B, P̂ ′(u), R̂, ϵ Output: Â, Σ̂

1. Let D̂A(u) be a diagonal matrix whose ith entry is 1
2

(
P̂ ′(R̂i)

)−1/2

.

2. Let Â = BR̂D̂A(u)−1/2.

3. Estimate C = E[yyT] by taking O((∥A∥2 + ∥Σ∥2)
4n2ϵ−2) samples and let Ĉ =

1
N

∑N
i=1 yiyT

i .

4. Let Σ̂ = Ĉ − ÂÂT

5. Return Â, Σ̂

Applying Theorem 9 we obtain the following Lemma (the parameters are
chosen so that all properties required are satisfied):

Lemma 9 Let β′ = Θ((dmin/dmax)2), β = min{γn−1/2, Ω((dmin/dmax)4n−3.5)},
then the procedure Recover(f, β, dminβ2/100n , β′, dminβ′2/100n) finds vec-
tors v1, v2, ..., vn, so that there is a permutation matrix Π and si ∈ {±1} and
for all i: ∥vi − (RΠDiag(si))∗

i ∥2 ≤ γ.

After obtaining R̂ = [v1, v2, ..., vn] we can use Algorithm 4 to find A and Σ:

Theorem 12 Given a matrix R̂ such that there is permutation matrix Π and
si ∈ {±1} with ∥R̂i − si(R∗Π)i∥2 ≤ γ for all i, Algorithm 4 returns matrix Â
such that

∥Â − AΠDiag(si)∥F ≤ O(γ ∥A∥2
2 n3/2/λmin(A))

Moreover if γ ≤ O(ϵ/ ∥A∥2
2 n3/2λmin(A))×min{1/ ∥A∥2 , 1}, we also have ∥Σ̂−

Σ∥F ≤ ϵ.

Recall that the diagonal matrix DA(u) is unknown (since it depends on A),
but if we are given R∗ (or an approximation) and since P ∗(u) =

∑n
i=1 di(uT R∗

i)
4,

we can recover the matrix DA(u) approximately from computing P ∗(R∗
i). Then

given DA(u), we can recover A and Σ and this completes the analysis of our
algorithm.

Proof By Lemma 4 we know the columns of R̂ is close the the columns of R∗

(the parameters will be set so that the error is much smaller than γ), thus
∥R̂i − si(R′Π)i∥2 ≤ γ. Applying Lemma 7 we obtain: |P̂ ′(R̂i) − P ∗(R̂i)| ≪ γ.
Furthermore, when ∥R̂i − siR∗

Π−1(i)∥2 ≤ γ we know that P ∗(R̂i)/dΠ−1(i) ∈
[1 − 3γ, 1 + 3γ] (here we are abusing notation and use the permutation matrix
as a permutation). Hence D̂A(u)i,i/ (DA(u))Π−1(i),Π−1(i) ∈ [1−3γ, 1+3γ]. We
have:

Âi = BR̂iD̂A(u)−1/2
i,i and (AΠDiag(si))i = BR′

Π−1(i) (DA(u))−1/2
Π−1(i),Π−1(i)

and their difference is at most O(γ ∥B∥2 (DA(u))−1/2
Π−1(i),Π−1(i)). Hence we can

bound the total error by O(γ ∥B∥2

∥∥DA(u)−1/2
∥∥

F
). We also know ∥B∥2 ≤

∥A∥2 ∥DA(u)1/2∥2 because BBT ≈ ADA(u)AT , so this can be bounded by

22 Sanjeev Arora et al.

O(γ ∥A∥2 ∥DA(u)∥1/2
2 ∥DA(u)−1/2∥F). Applying Claim 6, we conclude that

(with high probability) the ratio of the largest to smallest diagonal entry of
DA(u) is at most 9n3 log n ∥A∥2

2 /λmin(A)2 (because max ∥Ai∥2 ≤ ∥A∥2
2 and

min ∥Ai∥2 ≥ λmin(A)2). So we can bound the error by

O(γ ∥A∥2
2 n5/2 log n/λmin(A))

Consider the error for Σ: Using concentration bounds similar but much
simpler than those used in Lemma 7, we obtain that ∥Ĉ − C∥F ≤ ϵ/2. On
the other hand, ∥ÂÂT − AAT ∥F = ∥ÂÂT − AΠDiag(si)(AΠDiag(si))T ∥F ≤
2 ∥A∥2 ∥AΠDiag(si)− Â∥F + ∥AΠDiag(si)− Â∥2

F ≤ ϵ/2 (when γ is a suitably

small polynomial in the parameters). Therefore ∥Σ̂ − Σ∥F ≤ ∥Ĉ − C∥F +
∥ÂÂT − AAT ∥F ≤ ϵ. This completes the proof of the theorem.

Conclusions

Independent Component Analysis is a vast field with many successful tech-
niques. Most rely on heuristic nonlinear optimization. An exciting question
is: Can we give a rigorous analysis of those techniques as well, just as we did
for local search on cumulants? A rigorous analysis of deep learning — say,
an algorithm that provably learns the parameters of a Restricted Boltzmann
Machine — is another problem that is wide open, and a plausible special case
involves subtle variations on the problem we considered here.

References

1. A. Anandkumar, D. Foster, D. Hsu, S. Kakade, Y. Liu. Two SVDs suffice: spec-
tral decompositions for probabilistic topic modeling and latent dirichlet allocation.
Arxiv:abs/1203.0697, 2012.

2. J. Anderson, M. Belkin, N. Goyal, L Rademacher and J. Voss. The more the merrier:
the blessing of dimensionality for learning large gaussian mixtures. arxiv:1311.2891,
2013.

3. S. Arora and R. Kannan. Learning mixtures of separated nonspherical gaussians. Annals
of Applied Probability, pp. 69-92, 2005.

4. M. Belkin, L. Rademacher and J. Voss. Blind signal separation in the presence of
gaussian noise. In COLT 2013.

5. M. Belkin and K. Sinha. Polynomial learning of distribution families. FOCS pp. 103–
112, 2010.

6. Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, pp. 1–127, 2009.

7. A. Bhaskara, M. Charikar and A. Vijayaraghavan. Uniqueness of tensor decompositions
with applications to polynomial identifiability. arxiv:1304.8087, 2013.

8. A. Bhaskara, M. Charikar, A. Moitra and A. Vijayaraghavan. Smoothed analysis of
tensor decompositions. arxiv:1311.3651, 2013.

9. P. Comon. Independent component analysis: a new concept? Signal Processing, pp.
287–314, 1994.

10. S. Cruces, L. Castedo, A. Cichocki, Robust blind source separation algorithms using
cumulants, Neurocomputing, Volume 49, Issues 14, pp 87-118, 2002.

11. S. Dasgupta. Learning mixtures of Gaussians. FOCS pp. 634–644, 1999.

Provable ICA with Unknown Gaussian Noise 23

12. L. De Lathauwer, J Castaing and J. Cardoso. Fourth-order cumulant-based blind iden-
tification of underdetermined mixtures. IEEE Trans. on Signal Processing, 55(6):2965–
2973, 2007.

13. L., De Lathauwer; B., De Moor; J. Vandewalle. Independent component analysis based
on higher-order statistics only Proceedings of 8th IEEE Signal Processing Workshop
on Statistical Signal and Array Processing, 1996.

14. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM Algorithm. Journal of the Royal Statistical Society Series B, pp. 1–38,
1977.

15. Y. Freund , D. Haussler. Unsupervised learning of distributions on binary vectors using
two layer networks University of California at Santa Cruz, Santa Cruz, CA, 1994

16. A. Frieze, M. Jerrum, R. Kannan. Learning linear transformations. FOCS, pp. 359–368,
1996.

17. N. Goyal, S. Vempala and Y. Xiao. Fourier PCA. arxiv:1306.5825, 2013.
18. G. E. Hinton. A practical guide to training restricted boltzmann machines. UTML TR

2010-003, Department of Computer Science, University of Toronto, August 2010
19. G. Hinton, R. Salakhutdinov. Reducing the dimensionality of data with neural networks.

Science pp. 504–507, 2006.
20. D. Hsu, S. Kakade. Learning mixtures of spherical Gaussians: moment methods and

spectral decompositions. Arxiv:abs/1206.5766, 2012.
21. P. J. Huber. Projection pursuit. Annals of Statistics pp. 435–475, 1985.
22. A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis. Wiley: New

York, 2001.
23. A. Hyvarinen, E. Oja. A fast fixed-point algorithm for independent component analysis.

Neural Computation, pp. 1483–1492, 1997.
24. A. Hyvarinen, E. Oja. Independent component analysis: algorithms and applications.

Neural Networks, pp. 411–430, 2000.
25. A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians.

STOC pp. 553-562, 2010.
26. M. Kendall, A. Stuart. The Advanced Theory of Statistics Charles Griffin and Company,

1958.
27. A. Moitra and G. Valiant. Setting the polynomial learnability of mixtures of Gaussians.

FOCS pp. 93–102, 2010.
28. S. Vempala, Y. Xiao. Structure from local optima: learning subspace juntas via higher

order PCA. Arxiv:abs/1108.3329, 2011.
29. A. Yeredor. Blind source separation via the second characteristic function. Signal

Processing, pp. 897–902, 2000.

