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DeePCG: constructing coarse-grained models via deep neural networks
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We introduce a general framework for constructing coarse-grained potential models without ad

hoc approximations such as limiting the potential to two- and/or three-body contributions. The
scheme, called Deep Coarse-Grained Potential (abbreviated DeePCG), exploits a carefully crafted
neural network to construct a many-body coarse-grained potential. The network is trained with
full atomistic data in a way that preserves the natural symmetries of the system. The resulting
model is very accurate and can be used to sample the configurations of the coarse-grained variables
in a much faster way than with the original atomistic model. As an application we consider liquid
water and use the oxygen coordinates as the coarse-grained variables, starting from a full atomistic
simulation of this system at the ab initio molecular dynamics level. We find that the two-body,
three-body, and higher-order oxygen correlation functions produced by the coarse-grained and full
atomistic models agree very well with each other, illustrating the effectiveness of the DeePCG model
on a rather challenging task.
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I. INTRODUCTION

In molecular dynamics (MD), we are often faced with
two types of coarse-graining tasks. In a first set of appli-
cations we are interested in evaluating the Landau free
energy, which is a function of a small subset of coarse-
grained (CG) variables. In this case the CG variables
are either scalar or low dimensional vector variables. In
a second set of applications we are interested in sampling
with molecular dynamics (MD) or with Monte Carlo the
configurations of an extensive set of CG variables. In this
case the dimensionality of the CG space is proportional
to the size of the system but is reduced relative to the full
space of atomistic coordinates. The first type of CG vari-
ables is typically adopted to study problems like phase
transitions, where the objective is to perform detailed
analyses of the Landau free energy surface by finding the
metastable states, the free energy barriers between these
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states, the transition pathways, etc. Take the melting
of a solid as an example, the Steinhardt order parame-
ters [1] have been used as CG variables to differentiate
solid (crystal) and liquid phases. The second type of CG
variables is typically used to accelerate configurational
sampling relative to full atomistic simulations. For ex-
ample, one may coarse-grain a polymer by replacing the
monomers with point-like particles, or beads, connected
by springs.

For a good description of the Landau free energy
surface one needs to find good order parameters act-
ing as CG variables and address the issues associated
with crossing high energy barriers. Typically these ap-
proaches are limited to a few CG variables, but recent
work demonstrated that machine learning methods al-
low us to describe the functional dependence of the Lan-
dau free energy surface on several CG variables [2–8].
When considering extensive CG variables, the difficulty
is often associated with finding an accurate free energy
function in the space of the CG variables. Such free en-
ergy function usually depends on the CG variables in
a complex and nonlinear way. Therefore, finding a
good representation of this function often requires sub-
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stantial physical/chemical intuition [9–25]. In princi-
ple, machine learning methods can address this problem
more accurately and in an automated way [26–31], but
most machine learning approaches so far have focused
on the representation of the potential energy surface in
the space of the atomistic degrees of freedom rather than
the representation of the free energy surface in the space
of the CG variables. For example, the Deep Potential
method [30], a model based on deep neural networks, has
made it possible to parametrize an atomistic potential
energy function derived from quantum mechanics with-
out ad hoc approximations. A subsequent development
of this approach, called Deep Potential Molecular Dy-
namics (DeePMD) [31], has allowed us to perform MD
simulations of comparable quality to ab initio molecular
dynamics (AIMD) [32] at the cost of classical empirical
force fields.
The free energy surface, rather than the potential en-

ergy surface, is the key physical quantity that we need
to represent when dealing with CG variables. In this
work, we introduce the Deep Coarse-Grained Potential
(DeePCG) scheme, an approach that generalizes the
Deep Potential and DeePMD methods to representations
of the free energy surface in the space of the CG vari-
ables, a quantity that will be called the CG potential in
the following. A related method to represent the many-
body character of the CG potential in molecules was re-
cently reported in Ref. [33]. In our approach, similar
to the Deep Potential and DeePMD methods, no ad hoc

approximations are required, in addition to the network
model itself, to represent the CG potential. The scheme
is very accurate as demonstrated by the almost perfect
agreement of the many-body correlations extracted from
CG simulations with the corresponding correlations ex-
tracted from the original atomistic model. In the present
work, we use liquid water as an example to illustrate the
approach. We choose AIMD as the underlying atomistic
model, and replace the individual water molecules with
point-like particles located at the oxygen sites in the CG
model. The excellent agreement of the second-, third-,
and higher-order correlation functions between CG and
atomistic models shows the promise of the DeePCG ap-
proach.

II. METHODOLOGY

A. Basic Theory

We consider a d-dimensional system with N atoms in
the constant-volume canonical (NV T ) ensemble. The
coordinates of the atoms, in the laboratory frame, are
q = {q1, q2, . . . , qdN} ∈ R

dN . The configurational distri-
bution function is defined by

p(q) =
1

Z
e−βV (q), (1)

where Z =
∫

e−βV (q) dq is the partition function.

The coarse-grained variables ξ(q) =
{ξ1(q), ξ2(q), . . . , ξM (q)} are a reduced set of coor-
dinates (M < dN). M can be finite and independent of
the system size or it can be extensive with the system
size, as in the two cases discussed in the introduction.
When M is finite the CG variables are the so-called
order parameters of the system. When M is extensive,
the CG variables replace molecular objects with simpler
sub-objects. The configurational distribution of the
CG system is the projection of the configurational
distribution of the microscopic (atomistic) system onto
the space of the CG variables:

p(ξ) =
1

Z

∫

e−βV (q)δ(ξ(q)− ξ) dq. (2)

The probability distribution in Eq. (2) allows us to de-
fine the CG potential and the forces acting on the CG
variables as:

U(ξ) = −
1

β
ln p(ξ), (3)

and

F (ξ) = −∇ξU(ξ), (4)

respectively. Eq. (3) tells us that a good CG potential
should reproduce accurately the full configurational dis-
tribution of the CG variables in the atomistic model.
Testing the quality of the full configurational distribu-
tion of the CG variables is difficult, and, typically tests
have been based only on two- and three-body correlation
functions [15, 16, 19, 20].
U(ξ) is uniquely specified by the underlying atomistic

model and the definition of the CG degrees of freedoms.
Therefore, constructing a CG model involves two steps:
(1) the choice of an appropriate CG-potential represen-
tation, and (2) the optimization of the parameters that
define the potential representation. The way in which
these two issues are addressed differentiates alternative
schemes.
We notice that, even if we knew exactly U(ξ), we would

not have a closed deterministic form for the equation of
motion of the CG variables due to the dN −M missing
degrees of freedom in the CG potential. The issue of the
dynamics of the CG variables has been addressed in the
literature. See, e.g., Refs. [34, 35]. Further assumptions,
like a time-scale separation between the CG variables and
the remaining degrees of freedom, are usually required to
recover dynamical information of the atomistic model. In
the following we shall focus on the accurate construction
of the CG potential. We will leave to future studies the
investigation of CG dynamics.

B. CG potential representation

We adopt a neural network representation Uw(ξ) for
the CG potential U(ξ). Here w are the parameters to
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be optimized by the training process. Uw(ξ) should be
constructed using in input only the generalized coordi-
nates ξ, without any human intervention in the opti-
mization process. The Uw(ξ) constructed in this way
should preserve the symmetry properties of U(ξ). In this
manuscript we limit ourselves to considering CG objects
that behave as point particles and have only positional
dependence. In this case, the ξ variables are the coor-
dinates of the CG particles. More general choices of the
CG objects have been suggested in the literature [36–39]
when dealing with, e.g., polymers, biological molecules,
or colloidal particles. In these cases it may be useful to
consider rods, ellipsoids, particles connected by springs,
etc., as the CG objects. In principle, all these cases
could be treated with the present formalism. In the setup
adopted here of point-like CG objects, the CG potential
Uw is extensive, intrinsically many-body, and should pre-
serve the translational and rotational invariance, as well
as the permutational symmetry of the CG objects.
All the properties of the CG potential described above

are preserved by the Deep Potential model [30]. To illus-
trate how it works, we use the example of liquid water.
We write the CG potential as a sum of the local con-
tributions of the CG particles, i.e., Uw(ξ) =

∑

i U
w
i (ξ).

Uw
i (ξ), the potential contribution of the CG particle i,

is constructed in two steps. First, the coordinates of the
CG particle i and its neighbors within a cut-off radius Rc

are transformed into the descriptors {Dij} of the local
environment of the CG particle i. We call this proce-
dure local frame transformation and refer to Fig. 1 for
more details. In the following we use the symbol Di to
denote the entire set of descriptors for atom i. Next, as
illustrated in Fig. 2, the descriptors Di are given in input
to a fully connected feedforward neural network to com-
pute the potential contribution of the CG particle i. The
mathematical formulation of the network structure is also
presented in Fig. 2, where the operation of each layer of
the network corresponds to a linear mapping of the out-
put from the previous layer combined with a nonlinear
mapping. The translational and rotational symmetries
are preserved by the local frame transformation. The
permutational symmetry is preserved because: (a) for
each CG particle i, its descriptors D ij are sorted in as-
cending order according to the inverse distances between
particles i and j; (b) the subnetworks associated with
the same type of particles share the same parameters w;
(c) Uw(ξ) =

∑

i U
w
i (ξ) is an additive relationship. More

details on the Deep Potential method can be found in
Refs. [30, 31]. Due to the adoption of a finite cutoff ra-
dius, the simulation cost of the DeePCG model scales
linearly with the system size.

C. CG potential optimization

The construction of the CG potential Uw(ξ), intro-
duced in Subsection B, has many similarities with the
construction of the potential energy V (q), using the

z

y

x

k

 j

 ii(a)

 i(b)

FIG. 1: Schematic plot of the neural network input for the
environment of CG particle i, using water as an example.
Red and white balls represent the oxygen and the hydrogen
atoms of the microscopic system, respectively. Purple balls
denote CG particles, which, in our example, are centered at
the positions of the oxygens. We first sort all the CG par-
ticles within the cutoff radius Rc centered at i, according to
their inverse distances from i. These particles constitute the
neighbors of i. i(a) and i(b) are the first and the second near-
est neighbor, respectively, of i. j and k are generic neighbors
of i. i, i(a), and i(b) define the local frame of i. In this
local frame, i is the origin; the arrow from i to i(a) defines
the x axis; the directional normal to the plane containing i,
i(a), and i(b) defines the z axis; the y axis is then assigned
with the right-hand rule. Site j is close to i and is described
with full radial and angular information by the descriptor
Dij = {1/Rij , xij/R

2

ij , yij/R
2

ij , zij/R
2

ij}, where (xij , yij , zij)
are Cartesian coordinates in the local frame of i. Site k is far
from i and is described with radial information only by the
descriptor Dik = {1/Rik}.

DeePMD method. There is, however, a very important
difference in the two cases. In the DeePMD case the
potential energy V (q) is directly available from the un-
derlying AIMD simulations. In the DeePCG case, the
CG potential is a free energy and is not directly avail-
able. Therefore, the optimization for the CG potential
requires a specific formulation. We adopt a force-
matching scheme like the one in the multi-scale coarse-
graining method introduced by Voth et al. [15]. In addi-
tion, we pay special attention to the fact that a neural
network representation Uw(ξ) may have tens of thou-
sands, or more, variational parameters, and a suitable
optimization algorithm is needed.

A straightforward force-matching approach would con-
sist in fitting accurate mean forces from atomistic simula-
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FIG. 2: Schematic plot of the sub-network structure for the
CG particle i. Di (see definition in text) is the input and Ui

is the output. In this sub-network, data flow from the input
layer (Di) to the output layer (Ui) through K hidden layers,
where each layer is a composition of a linear transformation
and a piecewise nonlinear operation ψ(· · · ). We use the hy-
perbolic tangent for the nonlinear function ψ. This procedure
is adopted for all the hidden layers. In the final step going
from the last hidden layer to Ui, only the linear transforma-
tion is applied.

tions. There have been many efforts in this direction [40–
42]. Of particular interest is a simple formula proposed
by Ciccotti et al. [40], in which a set of dN -dimensional
vectors bj(q) that satisfy

∇qξi(q) · bj(q) = δij , i, j = 1, . . .M, (5)

is introduced. Then the mean force on ξi(q), namely the
negative gradient of U(ξ) with respect to the position of
the i-th CG particle, can be expressed as

Fi(ξ) = −∂iU(ξ) = 〈Fi(q)〉ξ=ξ(q), (6)

with an instantaneous force estimator

Fi(q) = −bi(q) · ∇qV (q) +
1

β
∇q · bi(q). (7)

Here 〈· · · 〉ξ=ξ(q) denotes conditional expectation over the
equilibrium distribution of the system restricted to the
hypersurface ξ = ξ(q). To train the DeePCG model one
needs to minimize the so-called loss function with respect
to the model parameters w. The most natural choice of
loss function in terms of force-matching is

L̂(w) =
1

dDM

D
∑

n=1

dM
∑

i=1

∣

∣Fi(ξn) + ∂iU
w(ξn)

∣

∣

2
, (8)

where D is the number of configurations of CG variables
ξn in the dataset and the mean force Fi(ξn) is estimated
with Eq. (6). We notice that the sample of CG con-
figurations in Eq. (8) is very general in the sense that it
does not need to be an equilibrium sample at the ther-
modynamic conditions of the atomistic simulation. For
example, the sample could include, in an enhanced way,
accessible CG configurations that have a small proba-
bility of occurrence at the thermodynamic conditions of
interest, such as in the case of rare events. We stress,
however, that the sampling of the microscopic degree
of freedom orthogonal to ξ in Eq. (6) must be done at
the appropriate thermodynamic conditions. In practice,
the different configurations ξn in the dataset can be ex-
tracted from unconstrained MD or Monte Carlo (MC)
simulations of the microscopic atomistic model at differ-
ent temperatures.
The above straightforward approach is not convenient

when the conditional expectation values in Eq. (6) re-
quire computationally expensive constrained/restrained
simulations. In this situation we find it more conve-
nient to approximate the ensemble average 〈· · · 〉q with

the average ( 1
D

∑D
n=1 · · · ) over the configurations ξn (see

Eq. (10) below). The latter average does not require
constrained/restrained simulations, but it requires ξn to
be extracted from equilibrium atomistic simulations at
the temperature selected in Eq. (1). Then the mean force
Fi in the loss function (8) can be replaced by the instan-
taneous force Fi. In other words, this corresponds to
using an instantaneous version of the loss function

L̂ins(w) =
1

dDM

D
∑

n=1

dM
∑

i=1

∣

∣Fi(ξn) + ∂iU
w(ξn)

∣

∣

2
. (9)

With a sufficiently large representative dataset, we ex-
pect that the ensemble average of the difference between
predicted and instantaneous forces should be approxi-
mated quite well by L̂ins(w), i.e.:

Lins(w) :=
1

dM

dM
∑

i=1

〈
∣

∣Fi(ξ(q)) + ∂iU
w(ξ(q))

∣

∣

2〉

q
(10)

≈ L̂ins(w).

This amounts to an ergodicity requirement for the atom-
istic system and is always valid if the system samples an
equilibrium thermodynamic state.
By definition, L̂ins(w) is much easier to compute than

L̂(w). Below we argue that L̂ins(w) is also a valid loss
function to optimize CG potential. To see this, note that
the instantaneous force can be viewed as the mean force
plus a random error R, which depends on the microscopic
configuration q, i.e.,

Fi(q) = Fi(ξ(q)) +Ri(q). (11)

By using Eq. (6), the average 〈Ri(q)〉ξ=ξ(q) in the con-
strained ensemble vanishes, so the average 〈Ri(q)〉q also
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vanishes. By inserting (11) into (10), the instantaneous
loss function (10) becomes

Lins(w) = L(w) +
1

dM

dM
∑

i=1

〈

R2
i (q)

〉

q
, (12)

with

L(w) :=
1

dM

dM
∑

i=1

〈
∣

∣Fi(ξ(q)) + ∂iU
w(ξ(q))

∣

∣

2〉

q
. (13)

Since the second term on the right hand side of Eq. (12)
is independent of w, Lins(w) and L(w) have the same

minimizer. This equivalence justifies our usage of L̂ins(w)
as the loss function.

In the application example that we discuss in the next
section we use CG variables that depend linearly on the
microscopic coordinates, similar to Ref. [15]. However,
the method that we have illustrated in Eqs. (6) and (7)
can deal with non-linear dependencies as well, as in the
method discussed in Ref. [43].

In practice, we find that the stochastic gradient de-
scent method is very efficient to optimize loss function
(9), which is a highly non-convex function corresponding
to a rugged landscape in the large parameter space due
to the nonlinearity of the neural network interpolation.
This ruggedness does not seem to constitute an essen-
tial difficulty since the different local minima found with
the stochastic gradient descent (SGD) method approx-
imate equally well the physics associated to the target
function. We will discuss this issue in more detail later.
Within our approach, the stochastic gradients ∇wl(w),
applied to update the parameters at each step, are pro-
vided by the average over a small batch B, a subset of
the whole dataset:

l(w) :=
1

dM

dM
∑

i=1

1

|B|

∑

α∈B

∣

∣Fi(ξ(qα)) + ∂iU
w(ξ(qα))

∣

∣

2
,

(14)

where |B| denotes the batch size. The above procedure is
different from the scheme adopted in Ref. [15], in which

the full gradients ∇wL̂ins(w) are applied to update the
parameters at each step. We find that SGD greatly re-
duces the number of gradient evaluations that are re-
quired.

We note that other systematic procedures to optimize
the parameters have been discussed in the literature. Of
particular interest is the iterative Boltzmann inversion
method [12], which works by iteratively optimizing the
CG interactions until the radial distribution functions
of the CG system match those of the target atomistic
simulation. By construction, it provides accurate two-
body correlations.

III. COARSE-GRAINING OF LIQUID WATER

To show how we construct the CG potential for an ex-
tensive CG system, we use the coarse graining of a liquid
water model from an ab initio density functional theory
(DFT) [44] based simulation into effective “water par-
ticles” as an example. Because of its importance as a
solvent in chemical and biological systems and its unique
properties, the study of water is of wide interest. The
DFT potential energy surface is intrinsically many-body.
Developing an accurate CG model that represents a wa-
ter molecule by a single particle is an ever-evolving and
ongoing quest [9, 12, 15–20].

Constructing effective interactions to achieve this goal
has usually required a large amount of human effort com-
bined with substantial physical/chemical intuition. For
example, in the mW monatomic potential [18], which
has been successfully used to study crystallization of wa-
ter [45], a specially designed Lennard-Jones-like form is
used for two-body interactions while three-body inter-
actions are adapted from the Stillinger-Weber potential
[46]. In principle, coarse graining approaches that do
not require physical/chemical intuition are possible by
exploiting general variational principles, such as the one
adopted in the multi-scale coarse-graining (MS-CG) [15]
or the iterative Boltzmann inversion [12] methods. How-
ever, even when using general variational principles to
bridge atomistic and CG scales, the faithfulness of dis-
tribution of the CG variables may still depend on the
CG representation. For example, in the applications of
the MS-CG method to liquid water, the two- and three-
body distribution functions of the CG variables still show
non-negligible deviations from the corresponding target
microscopic distributions [19, 20].

The DFT dataset in our example comes from Ref. [47].
The electronic structure of the water system is mod-
eled by DFT with the PBE0 exchange-correlation func-
tional [48] and includes the long-range dispersion inter-
actions self-consistently using the Tkatchenko-Scheffler
model [49]. The corresponding AIMD simulation [32]
adopts periodic boundary conditions and deuterons re-
place protons for a larger integration time step (0.5 fs).
The simulation data consist of snapshots from a 20 ps-
long trajectory in the NVT ensemble, where N = 192 (64
H2O molecules), V = 1.9275 nm3 (simple cubic periodic
simulation cell), and T = 330 K. In total 40,000 snap-
shots are recorded. The important difference between
training DeePMD and DeePCG is that in DeePCG one
is attempting to estimate mean forces that correspond
to conditioned averages of fluctuating atomic forces for
fixed CG configurations, while in DeePMD one is at-
tempting to estimate the deterministic atomic force in
a fixed atomic configuration. Therefore, a short AIMD
trajectory is not sufficient to train a DeePCG model with
satisfactory accuracy, but this difficulty is circumvented
by constructing a DeePMD model [31] from the AIMD
data and sampling the configurations with a much longer
DeePMD trajectory (15 ns). Figs. 3, 4, and 5 com-
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pare DeePMD and AIMD configurations in terms of the
O-O radial distribution function (RDF), O-O-O angu-
lar distribution functions (ADFs), and the distributions
of two averaged local Steinhardt parameters (defined in
Appendix A) [50], respectively. It is observed that the
configurations sampled by DeePMD are in almost per-
fect agreement with the AIMD data. Therefore, when
considering the oxygen configurations, training with the
data generated by DeePMD is essentially indistinguish-
able from that with data generated by AIMD.
Now we construct the DeePCG model. We use oxygen

as the CG particle. We define the local environment of
an O atom with the same cutoff radius adopted in the
DeePMD model, i.e., Rc = 6Å. We use the full radial
and angular information for the 16 CG particles clos-
est to the particle at the origin (see, e.g., particle j in
Fig. 1), while retaining only radial information for all the
other particles within Rc, (see, e.g., particle k in Fig. 1).
Next, the local environment of each CG particle defines a
sub-network, and we use 4 hidden layers with decreasing
number of nodes per layer, i.e., 120, 60, 30, and 15 nodes
from the innermost to the outermost layer, to construct
the corresponding contribution to the CG potential.
The training process minimizes L̂ins(w) defined in

Eq. (9). The force on each oxygen in the atomistic model
serves as the instantaneous estimator Fi in Eq. (7). We
employ the stochastic gradient descent method with the
Adam optimizer [51] to update the parameters of each
layer, with a batch size of 4 and a learning rate that ex-
ponentially decays with the training step. In our current
implementation, the training process requires 15 hours on
a ThinkPad p50 laptop computer with an Intel Core i7-
6700HQ CPU and 32 GB memory. The DeePMD-kit [52]
is used for optimizations and MD simulations of both the
DeePMD and the DeePCG models.
After training, we perform an NVT simulation on the

CG variables. The initial snapshot for this simulation is
taken directly from a snapshot selected along the AIMD
trajectory. The CG force is generated directly by ana-
lytical gradient of the CG potential, the volume and the
temperature are the same of the AIMD simulation, and
the temperature is controlled using a Langevin thermo-
stat with a damping time τ = 0.1ps. In addition, using
the same strategy, we perform an NVT simulation on 512
CG variables, where the only difference is that the num-
ber of CG variables and the size of the simulation region
are 8 times larger than those of the AIMD simulation.

IV. DISCUSSION

In Figs. 3, 4, and 5, we show that the DeePCG model
reproduces very well the oxygen correlation functions
of the atomistic DeePMD model and, by extension, of
the underlying AIMD model. In addition to compar-
ing 2- and 3-body correlations, as done in standard pro-
tocols [19, 20], we also perform tests on how well the
DeePCG model preserves higher order distribution prop-
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FIG. 3: Upper panel: the O-O RDFs of liquid water from
AIMD and DeePMD for a system with 64 water molecules,
and from DeePCG simulation for systems with 64 and 512
CG particles; lower panel: the deviations of DeePMD and of
two DeePCG models relative to the AIMD result.
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FIG. 4: The O-O-O ADFs of liquid water from AIMD,
DeePMD, and DeePCG simulations. The results for four dif-
ferent cutoff radii are provided.

erties. In this regard, we calculate the sample averaged
local Steinhardt bond order parameters q̄4 and q̄6, and
find satisfactory agreement between the DeePCG and
DeePMD models.

In the example that we discussed above we use L̂ins(w)
to optimize a CG model of water. We find that to base
the optimization on L̂(w) defined in Eq. (8) is signifi-
cantly less efficient. This is because when the oxygens are
the CG variables, very long constrained simulations using
Eq. (6) are required to sample exhaustively the allowed
configurations of the hydrogen bond network (HBN).
Typically, when the oxygen positions are fixed, as in a
constrained simulation, different HBN configurations are
compatible with the fixed oxygen configurations, but it
takes a very long time, typically of the order of a few
nanoseconds, for the system to sample different HBN
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FIG. 5: Upper panel: the q̄4 and q̄6 distribution function of
liquid water from AIMD, DeePMD, and DeePCG simulations;
lower panel: deviations of DeePMD and of DeepCG from the
AIMD results.

configurations. This is because of the long-range cor-
relations imposed on the HBN by the Pauling ice rules
(i.e., each oxygen has two nearer and two more distant
hydrogen neighbors) [53]. Thus, the scheme used here
for matching the on-the-fly instantaneous forces is much
more efficient.
It is well-known that neural network models are highly

nonlinear functions of the parameters w. Multiple lo-
cal minima exist in the landscape of the loss functions
L(w) or Lins(w). Indeed, different initializations of the
weights often lead to different local minimizers of the loss
function. This, however, does not seem to be a serious
problem as demonstrated by the test described below.
In this test, we prepare 1000 configurations randomly

selected from the DeePMD data and pick up oxygen po-
sitions to define the CG particle configurations. For a
CG particle i in each configuration, we define the model
deviation Σi to be the standard deviation of the force on
CG particle i predicted by CG models that only differ
among themselves by the initialization of the simulation
procedure, i.e.,

Σi =

√

〈

‖∇iUw −
〈

∇iUw
〉

w
‖2
〉

w
, (15)

where the ensemble average 〈· · · 〉w is taken with re-
spect to models obtained from the same training pro-
cess, the same training data set [56], but different ini-
tialization of the parameters w. In this way, 64,000 in-
stances of the model deviation Σi are computed, and they
are used to show the consistency of the predictions of
different DeePCG models quantitatively. As shown by
Fig. 6, with DeePMD data corresponding to 6 indepen-
dent 2.5 ns-long trajectories, 99.3% of the model devia-
tions, i.e., a large majority of them, are below 50 meV/Å.
Moreover, the deviations do not become more significant
when the magnitude of the CG force is large (inset in
Fig. 6). Therefore, the differences of the CG forces pre-
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FIG. 6: The distributions of the model deviation Σi of the
DeePCG model for liquid water, using training data from tra-
jectories of total length 2 ns, 5 ns, and 15 ns. The 2 ns data
are generated from a single trajectory; The 5 ns data are gen-
erated from 2 independent 2.5 ns-long trajectories; The 15 ns
data are generated from 6 independent 2.5 ns-long trajecto-
ries. Inset: the correlation between the magnitude of the CG
force and the model deviation, using 15 ns training data.

dicted by different DeePCG models are generally consis-
tent. Indeed the configurational distribution functions
generated by DeePCG models that differ only in the ini-
tialization are indistinguishable. If we use shorter trajec-
tories, the model deviations increase, as shown in Fig. 6
for DeePMD data corresponding to 2 independent 2.5 ns-
long trajectories, and for DeePMD data corresponding to
a single 2 ns-long trajectory. This confirms that longer
trajectories give better approximations of the ensemble
average for Lins(w).

In terms of computational cost and scalability, in the
current implementation, DeePCG accelerates DeePMD
7.5 times. Since all the physical quantities in DeePCG
are sums of local contributions, upon training, the
DeePCG model can be directly applied to much larger
systems with linear scaling of cost. To test the reliability
of DeePCG for larger systems, we perform a 1 ns-long
NVT CGMD simulation on a system containing 512 wa-
ter beads. This system is at the same temperature of
the original DeePMD data, but is 8 times larger than the
system used to construct the DeePCG model. The cor-
responding RDF, as shown in Fig. 3, is only very slightly
less structured than the DeePCG result with 64 water
beads, but tends to unity at large separation with a
longer tail as we expect. This is consistent with the result
in Ref. [54], which shows that the pair correlation func-
tion is almost converged in a 64-water fixed-cell system
and larger cells only loosen the structure very slightly.

Finally, like in the case of the Deep Potential and
DeePMD schemes [30, 31], in our implementation dis-
continuities are present in the forces, due to adoption of
a sharp cutoff radius, limitation of angular information
to a fixed number of atoms, and abrupt changes in the
atomic lists due to sorting. Upon training, these discon-
tinuities become much smaller than the thermal fluctua-
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tions and can be subsumed in the thermal noise applied
by the stochastic thermostat used to sample the canoni-
cal ensemble. The accuracy of the canonical distributions
of the CG variables reported in Figs. 3, 4, and 5, rela-
tive to the corresponding canonical distributions in the
underlying atomistic simulation, validates our approach.
While irrelevant for canonical sampling, the discontinu-
ities make the CG potential a piece-wise continuous func-
tion of the CG coordinates, whereas in principle it should
be a fully continuous function. We have recently general-
ized the present neural network representation in order to
construct potentials that are fully continuous both in the
space of the microscopic variables and in that of the CG
degrees of freedom [55]. We leave to future work a discus-
sion of applications using the fully continuous (smooth)
version of our approach.

V. CONCLUSION AND FUTURE WORK

In summary, DeePCG is a promising tool for param-
eterizing the CG potential and sampling CG configura-
tions via MD. Due to the generality of the procedure
adopted to construct the CG potential function, we ex-
pect DeePCG to be useful for a wide variety of tasks.
In the case of water, we note that one reason for the
great success of the mW potential is that it allows us
to accelerate ice nucleation by several orders of magni-
tude because the absence of the hydrogen coordinates in
the CG coordinate set eliminates the constraint imposed
by the Pauling ice rules [18]. It would be interesting to
investigate whether the CG water model introduced in
this paper could describe not only the liquid but also the

crystalline ice phase, and whether the freezing tempera-
ture of the CG model could approximate closely that of
the underlying microscopic model. Direct ice nucleation
studies would be greatly facilitated by the CG model.

Coarse grained models are often used to describe the
conformations of polymers, represented for example by
a sequence of beads and springs. Until now these mod-
els are typically constructed phenomenologically by re-
quiring that a small set of force constants match experi-
mental and/or molecular simulation data. The DeePCG
model presented here has the potential to completely
eliminate phenomenological assumptions such as the re-
striction to harmonic spring interactions, by systemati-
cally constructing a many-body potential for the beads
depending on their configurations. We leave these stud-
ies and a more rigorous investigation of the dynamical
properties of the CG models to future work.

Acknowledgments

The work of L. Zhang, J. Han, and W. E is sup-
ported in part by ONR grant N00014-13-1-0338, DOE
grants de-sc0008626 and de-sc0009248, and NSFC grants
U1430237 and 91530322. The work of R. Car is sup-
ported in part by DOE-SciDAC grant de-sc0008626. The
work of H. Wang is supported by the National Sci-
ence Foundation of China under Grants 11501039 and
91530322, the National Key Research and Development
Program of China under Grants 2016YFB0201200 and
2016YFB0201203, and the Science Challenge Project No.
JCKY2016212A502.

[1] Paul J Steinhardt, David R Nelson, and Marco
Ronchetti. Bond-orientational order in liquids and
glasses. Physical Review B, 28(2):784, 1983.

[2] T Stecher, N Bernstein, and G Csányi. Free energy sur-
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Appendix A: Definition of the local averaged

Steinhardt parameters

The bond orientational order of particle i (atom or
molecule) in a condensed environment is often described
by a local Steinhardt parameter ql(i) [1], defined as

ql(i) =
[ 4π

2l+ 1

m=l
∑

m=−l

|qlm(i)|2
]1/2

, (A1)

with

qlm(i) =

∑

j∈Nb(i)
s(rij)Ylm(r̂ ij)

∑

j∈Nb(i)
s(rij)

. (A2)

Here Nb(i) denotes the set of neighbors of particle i,
Ylm(r̂ ij) are spherical harmonics, and s(rij) is a switch-
ing function defined by

s(r) =















1, r < rmin,

1

2
+

1

2
cos

(

π
r − rmin

rmax − rmin

)

, rmin ≤ r < rmax,

0, r ≥ rmax.

(A3)

In this work we take rmin = 0.31 nm and rmax = 0.36 nm,
and adopt the modification of the local Steinhardt pa-
rameter proposed by Lechner and Dellago [50], which is
more sensitive than the original bond order parameter in
distinguishing different crystal structures. The modified
Steinhardt parameter is defined by

q̄l(i) =
[ 4π

2l+ 1

l
∑

m=−l

|q̄lm(i)|2
]

1

2

, (A4)

with

q̄lm(i) =

∑

j∈Ñb(i)
s(rij)qlm(j)

∑

j∈Ñb(i)
s(rij)

, (A5)

where Ñb(i) includes Nb(i) and the tagged particle i. In
the full expansion of the local averaged Steinhardt pa-
rameters, 4-body terms like Ylm(r̂ ik) · Ylm(r̂ jl), i 6= j 6=
k 6= l are found. Therefore, the distribution of the value
of the local averaged Steihardt parameters includes the
effect of 4-body angular correlations.
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