
57

XNAS: A Regressive/Progressive NAS for Deep Learning

S. Y. KUNG, Princeton University

Deep learning has achieved great and broad breakthroughs in many real-world applications. In particular,

the task of training the network parameters has been masterly handled by back-propagation learning. How-

ever, the pursuit on optimal network structures remains largely an art of trial and error. This prompts some

urgency to explore an architecture engineering process, collectively known as Neural Architecture Search

(NAS). In general, NAS is a design software system for automating the search of effective neural architecture.

This article proposes an X-learning NAS (XNAS) to automatically train a network’s structure and parameters.

Our theoretical footing is built upon the subspace and correlation analyses between the input layer, hidden

layer, and output layer. The design strategy hinges upon the underlying principle that the network should

be coerced to learn how to structurally improvethe input/output correlation successively (i.e., layer by layer).

It embraces both Progressive NAS (PNAS) and Regressive NAS (RNAS). For unsupervised RNAS, Principal

Component Analysis (PCA) is a classic tool for subspace analyses. By further incorporating teacher’s guid-

ance, PCA can be extended to Regression Component Analysis (RCA) to facilitate supervised NAS design.

This allows the machine to extract components most critical to the targeted learning objective. We shall

further extend the subspace analysis from multi-layer perceptrons to convolutional neural networks, via in-

troduction of Convolutional-PCA (CPCA) or, more simply, Deep-PCA (DPCA). The supervised variant of

DPCA will be named Deep-RCA (DRCA). The subspace analyses allow us to compute optimal eigenvectors

(respectively, eigen-filters) and principal components (respectively, eigen-channels) for optimal NAS design

of multi-layer perceptrons (respectively, convolutional neural networks). Based on the theoretical analysis, an

X-learning paradigm is developed to jointly learn the structure and parameters of learning models. The objec-

tive is to reduce the network complexity while retaining (and sometimes improving) the performance. With

carefully pre-selected baseline models, X-learning has shown great successes in numerous classification-type

and/or regression-type applications. We have applied X-learning to the ImageNet datasets for classification

and DIV2K for image enhancements. By applying X-learning to two types of baseline models, MobileNet and

ResNet, both the low-power and high-performance application categories can be supported. Our simulations

confirm that X-learning is by and large very competitive relative to the state-of-the-art approaches.

CCS Concepts: • Computing methodologies→ Artificial intelligence; Machine learning;

Additional Key Words and Phrases: Deep learning, X-learning, neural architectural search (NAS), regres-

sion/progression NAS, discriminant information (DI), regression component analysis (RCA), Kernel-LSE

(KLSE), Deep-PCA (DPCA)

ACM Reference format:

S. Y. Kung. 2022. XNAS: A Regressive/Progressive NAS for Deep Learning. ACM Trans. Sensor Netw. 18, 4,

Article 57 (November 2022), 32 pages.

https://doi.org/10.1145/3543669

Author’s address: S. Y. Kung, E-Quad B230, Princeton University, Princeton, NJ 08544; email: kung@princeton.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

1550-4859/2022/11-ART57

https://doi.org/10.1145/3543669

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

https://orcid.org/0000-0002-7314-0720
https://doi.org/10.1145/3543669
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543669
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543669&domain=pdf&date_stamp=2022-11-29

57:2 S. Y. Kung

1 INTRODUCTION

Deep learning networks provide a versatile platform to facilitate a broad spectrum of AI applica-
tions. However, it remains largely unresolved on various issues concerning the structural aspects
of deep networks. To combat this problem, it has recently become trendy to explore Neural Ar-

chitecture Search (NAS) [4, 5, 7, 12, 28, 47]. Along this vein, this article studies subspace analyses
critical to Regression NAS (RNAS) and Progressive NAS (PNAS) for deep learning, which ulti-
mately leads to a joint parameter-structure learning paradigms named X-learning NAS (XNAS).

The organization and the logical flow of the article is as follows. Section 2 explains why the
NAS design deep learning network can be perceived as a structural learning strategy designed
to successively (i.e., layer by layer) enhance the desired input/output correlation. Therefore, our
paramount objective hinges upon maximization of such correlation. To this end, Section 2 develops
vital subspace analysis to support RNAS and PNAS designs for Multi-Layer Perceptrons (MLPs).
For that purpose, the algorithmic tools developed are Principal Component Analysis (PCA) and
Regression Component Analysis (RCA) for unsupervised and supervised learning of MLPs,
respectively. Section 3 further extends the analysis to cover Convolutional Neural Network

(CNN) PNAS/RNAS, for which the corresponding algorithms are Deep-PCA (DPCA)/Deep-RCA

(DRCA) for structural learning of CNNs. Based on the said analyses, Section 4 develops an X-

learning paradigm to jointly train the structure and parameters of the network. Finally, Section 5
empirically demonstrates a broad spectrum of successful and competitive applications of XNAS.

2 SUBSPACE ANALYSIS FOR MLPS: RNAS AND PNAS

With reference to the U-shaped performance curve illustrated in Figure 1, there are two ways
to up-grade the structure of networks: (1) PNAS: growing the baseline network (e.g., [9, 27]) or
(2) RNAS: trim it into a slimmer model (e.g., [12, 14, 15, 24, 29, 44, 46]). We shall look into subspace
analysis for PNAS and RNAS in deep learning. This section provides the theoretical footing for
MLPs [33, 36, 37, 42].

2.1 Role of Least Square Error in Linear Correlation: The Higher the Correlation, the
Lower the Least Square Error

In a nutshell, our learning objective is to see how the hidden layers might be gradually transformed
(i.e., layer by layer) so that they become more and more aligned to the targeted output [21, 23, 41].
Mathematically, it means higher and higher correlation between the subspace spanned by the
hidden layer(s) and the targeted (teacher) subspace at the output layer. This is pictorially illustrated
by Figure 2, in which an originally low input-output correlation (cf. Figure 2(a)) is shown to be
gradually transformed to a higher layer-output correlation in Figure 2(b).

Upon completion of the training phase, it is anticipated that the final layer will be ultimately
trained to exhibit a high correlation with the targeted subspace, which will in turn assure high
accuracy. Therefore, the optimization metric for parameter/structural learning must fully reflect
such subspace correlation.

Least square error formulation: Without rank constraints on HT. The Least Square Error (LSE)

has been a classic metric for correlation analysis in statistics and estimation theory. LSE offers an
effective score to evaluate the correlation between a data input x ∈ �M and the targeted output
y ∈ �L , where M and L denote the input and output dimensions. Let B denote the batch size, then
the input and output data can be represented by their respective data matrices:

X ∈ �M×B and Y ∈ �L×B .

The LSE problem is to find an optimal projection matrix H to minimize the LSE:

E = LSE = ‖Y − HT X]‖2F = trace
(
[Y − HT X] [Y − HT X]T

)
, (1)

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:3

Fig. 1. A U-shaped structural learning curve: generalization error vs. the network size. Left-hand-side region:
Networks need to be grown in size (i.e., PNAS). Right-hand-side region: Networks need to be pruned in size
(i.e., RNAS).

Fig. 2. Theoretically, our NAS design objective hinges upon maximization of a desired input/output and
layer/output correlation, respectively denoted as < x, y > and < x, y >. (a) Initially, the input/output corre-
lation < x, y > is generally unsatisfactory. (b) Gradually, the hidden layer will be trained to deliver a higher
correlation < x, y >.

where the subscript denotes the Frobenius norm. The optimal estimate of the output is Ŷ = HT X,
where

HT = YXT [XXT]−1. (2)

This optimal solution can them be plugged into Equation (1) to obtain

E = ‖Y − Ŷ]‖2F = ‖Y‖
2
F − trace

(
[XXT]−1[XYT YXT]

)
. (3)

For notational convenience, we shall define Regression Matrix (RM) as follows:

RM = [XXT]−1 (XYT YXT). (4)

Conservation of the sum of LSE and discriminant information. The preceding trace norm is related
to (1) Fisher’s “discriminative ratio” in classification as well as (2) Shannon’s “mutual information”
in information theory [10, 39]. As such, we shall define the Discriminant Information (DI) as

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:4 S. Y. Kung

Fig. 3. Two conservation principles are intimately related, with H (y), I (x|y), and H (y|x) corresponding re-
spectively to ‖Y‖2

F
, DI, and LSE. (a) In estimation theory, the conservation between DI and LSE is DI +LSE =

‖Y‖2
F

. (b) Likewise, in information theory, I (x, y) + H (y|x) = H (y).

follows [20–22]:

DI ≡ trace (RM).

Equation (3) offers an important equality that

‖Y‖2F = LSE + DI . (5)

This is illustrated by Figure 3(a). This suggests the conservation principle that for any observation
X, the sum of LSE and the Y-relevant information embedded within X is always equal to the total
“entropy” embedded in Y. There are two closely related types of conservation principles depicted
by Figure 3. Under some statistical assumptions, including normalized output-variance [21], they
become interchangeable with each other. In this case, LSE and DI share the same role as H (y|x)
and I (x, y), respectively.

Traditionally, LSE often serves as a primary optimization criterion in machine learning. Now,
thanks to Equation (5), the LSE minimization problem can now be equivalently formulated as a DI
maximization problem. Moreover, DI is intimately related to our subsequent subspace analysis (for
structural learning) due to the fact that DI can be naturally subdivided into its eigen-components:

DI =

M∑

i=1

λi , (6)

where {λi , i = 1, . . . ,M } denote the eigenvalues of RM.
Equation (6) reflects a full DI corresponding to the full-rank regression analysis. In the situation

that a condition of reduced rank is imposed, then it becomes a problem of subspace (regression)
analysis. Moreover, it can be shown that the eigen-subdivision in DI plays a vital role in NAS struc-
tural learning. For NAS, it is vital to address key questions such as “which layer to prune/grow
the model,” “‘how to prune/grow each layer,” and “by how much.” DI serves well as an appealing
Structural Optimization Metric (SOM) for structural learning. More exactly, DI serves as an
effective objective function guiding us to best augment/shrink a hidden layer. This will be elabo-
rated further in our subsequent discussion.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:5

2.2 Subspace Theory for RNAS

A main concern on deep learning via Back-Propagation (BP) has to do with the curse of dimen-
sionality of both depth and width. This can be attributed to a phenomenon known as exploding/
vanishing gradients with deep and/or wide networks. Dimension reduction is vital, if not imper-
ative, because the curse may be somewhat mitigate when a hidden layer narrows. (Note that the
condition number associated with a layer tends to deteriorate with increasing width [11]. Gener-
ically speaking, a high dimensionality in feature spaces (i.e., the number of neurons in a layer)
usually means high computational complexity and power consumption in both the (offline) learn-
ing and (online) prediction phases. Moreover, it will become more vulnerable to data overfitting,
which could further jeopardize the generalization performance. This offers a rather compelling
motivation for us to consider the RNAS strategy.

2.2.1 Unsupervised PCA for Dimension Reduction. A popular subspace approach to dimension
reduction is PCA, which can be used to effectively compress the original input data X and then later
reconstruct it optimally. From RM’s perspective, PCA represents a special situation that X = Y in
Equation (4). In this case, RM is degenerated into a symmetric covariance matrix:

RM = [XXT]−1
(
XXT XXT

)
= XXT .

Note that PCA(X) is typically formed from the principal eigenvectors of XXT .

2.2.2 Supervised RCA for Dimension Reduction. For the supervised scenarios, the subspace anal-
ysis for PCA needs to be extended to a notion termed RCA. RCA is the best subspace representation

of X, denoted by Ŷ = HT X, with HT = FU, which can be used to optimally reconstruct Y. The
RCA formulation minimizes the loss function (cf. Equation (1)):

L (F,U) = ‖ Y − FUX ‖2F , (7)

where the subscript F denotes the Frobenius norm and F ∈ �L×m and U ∈ �m×M with m ≤
min{M,L}. The optimal RCA solution involves a two-stage process in min-min optimization:

min
F,U
L (F,U) = min

U

[
min

F
L (F,U)

]
. (8)

Note that its inner optimizer (for any fixed matrix U) can be solved via the conventional LSE
method (cf. Equation (2)). Thus, we have

F = [UXXT UT]−1UXYT . (9)

Plugging Equation (9) into Equation (7), we arrive at

L (F,U) = ‖Y‖2F − tr
[(

U[XXT]UT
)−1 (

UXYT YXT UT
)]
, (10)

whose minimum can be attained by setting U as follows:

U = [v1, . . . , vm]T , (11)

where {v1, . . . , vm } are the m principal eigenvectors of the RM, [XXT]−1
(
XYT YXT

)
(cf. Equa-

tion (4)). Thus, we have the following RCA theorem.

Theorem 1 (RCA Theorem: RCA(X,Y)). The optimal RCA estimate can be expressed as Ŷ = HT X,

where HT = FU and

• According to Equation (11), U = [v1, . . . , vm]T .

• Thereafter, via Equation (9), we have F = YXT UT [UXXT UT]−1.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:6 S. Y. Kung

Fig. 4. Two vital special cases of RCA: (1) PCA (when X = Y) and (2) LSE (when H is fully ranked). Historically,
Adrien-Marie Legendre and Carl Friedrich Gauss were both the recognized pioneers of the least squares
method in the early 19th century. However, Gauss was also credited for systematically laying computational
and theoretical foundation for LSE method. As to PCA, while the full phrase “Principal Component Analysis”
was coined by Hoteling [49], its theoretical foundation PCA was first developed by Pearson [48].

Plugging Equations (9) and (11) into Equation (10), we have

LSERCA = ‖Y‖2F −
m∑

i=1

λi . (12)

Let us study a simple numerical example to help illustrate the RCA algorithm.

Example 1 (LSE, RCA). Let the input and output data matrices be given as follows:

X =

[
1 0.1 0 0 0
0 1.1 0 0 0

]
and Y =

[
1 1 1 1 1
0 3 2 1 0

]
(a) LSE solution: The optimal LSE solution (with a full rank m = 2) is HT =

[
1 0
0 1

]
, which

leads to an LSE of LSELSE = 8.

(b) PCA solution: The eigenvalues and eigenvectors of RM =
[

1 1
1 10

]
are

λ1 = 10.11, v1 = [0.1212 0.9926]T ; and λ2 = 0.89, v2 = [−0.9823 0.1873]T .

Thereafter, via Equations (9) and (11), the optimal rank-1 projection matrix can be obtained as

HT = FU =

[
0.1204 0.9859
0.3254 2.6652

]
.

This ultimately leads to the following estimation error: LSERCA = LSELSE + λ2 = 8 + 0.89 = 8.89.

Figure 4 depicts two important special cases of RCA: (1) PCA (PCA is the same as RCA when
X = Y) and (2) LSE (RCA becomes LSE when H is fully ranked). The latter leads to the conventional
LSE of LSELSE = ‖Y‖2F −

∑M
i=1 λi , since all of the eigen-components are fully accounted for.

2.3 Subspace Analysis for PNAS

Note that RCA can be further extended to ERCA for PNAS (Figure 5).

2.3.1 PCA Extraction for Unsupervised PNAS. For NAS, it is common practice that only a small
number of neurons should be incremented in each step to assure safer convergence and better
control on the hardware cost. As depicted in Figure 6,

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:7

Fig. 5. Extension of RCA to (1: left-hand-side) DiLOSS neuron selection/pruning and (2: right-hand-side)
ERCA for PNAS.

• Our PNAS approach proposes to relay and concatenate information in the lower layer to
(1) the next layer or (2) directly to the top layer, just like U-Net or DenseNet [19, 35].
• Unlike U-Net or DenseNet, only critical and informative (principal) components are being

relayed forward in the PNAS, thus effectively controlling unwanted growth of the width of
hidden layers.

In the traditional PCA, the extracted components are expressed as X′ = PCA(X). In information-
theoretical denotation, they will be more conveniently expressed as

X′ = ICA (X),

where the subscript CA stands for component analysis and I stands for information or mutual
information.

For PNAS design, there are more suitable components (than PCA) to be considered:

• Unsupervised component extraction: ICA (X,A⊥). To not duplicate information that might
overlap with A, we should extract ICA (X,A⊥) (cf. Figure 6(a)), where A⊥ denotes the com-
plement subspace of span[A].
• Supervised component extraction: ICA (X,Y,A⊥). The objective of supervised learning for

PNAS is to augment the original vector space (associated with the hidden layer) to best
cover the vector space spanned by Y. To this end, the teacher’s value should be incorporated
into the formula of the mutual information (i.e., ICA (X,Y,A⊥)) for our component analysis.
See Figure 6(b).

Note that solutions for both formulations can be derived from the principal eigenvectors pertaining
to their respective RM.

2.3.2 Extended PCA Extraction for Unsupervised PNAS. Extended PCA (EPCA) can be viewed
as a generalized variant of PCA. From the information perspective, it can be viewed as the compo-
nent analysis for ICA (X,A⊥). Let us denote the input matrix and neuron data matrix in a hidden
layer by X and A, respectively. EPCA takes into account the information already existing in the
original hidden layer: A. It would be wasteful if any resource is spent on the information that over-
laps with A. From the subspace’s perspective, to circumvent the said redundancy, we first derive
X̃(= Res(X|A))—that is, the residue of X after removal the subspace spanned by H. More precisely,

X̃ = X − ZA, where Z = XAT [AAT]−1. (13)

It follows that the component analysis for ICA(X,A⊥) can be expressed as follows:

X′ = PCA(X̃).

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:8 S. Y. Kung

Fig. 6. Illustration of a concatenated hidden layer for PNAS structural learning. It concatenates the key
information extracted from the in lower layer and appends it to either (1) the next adjacent layer or (2)
directly to the top layer. Two kinds of critical components are under our consideration: (a) unsupervised
EPCA (principal components of ICA (X,A⊥) are extracted) and (b) supervised ERCA (principal components
of ICA (X,Y,A⊥) are extracted).

LSE analysis. Let us denote an expanded matrix as follows:

Φ ≡
[

A

X′

]
. (14)

Corresponding to the expanded data matrix (from X′ to Φ), we now want to find the optimal W

to minimize |Y − Ŷ]‖2F = ‖Y −WT Φ]‖2F .

2.3.3 Extend RCA to ERCA for Supervised PNAS Design. The objective of supervised subspace
learning for PNAS is to find the optimal component(s) of X to augment the hidden layer A so that
the combined space can best cover Y. Just like EPCA is used for unsupervised PNAS, ERCA is its
counterpart for supervised PNAS. The ERCA algorithm consists of two stages:

• Computation of the output residual matrix: Let Y denote the output matrix (or teacher matrix)
and A the hidden-layer data matrix. Let Ỹ represent the output residual matrix:

Ỹ = Res(Y|A) = Y − GA, where G = YAT [AAT]−1, (15)

which is orthogonal to A. Namely, Ỹ eludes any information that has to do with A.
• Computation of the optimal component(s) to supplement A: For a more concise expression, let

us denote

I (X, Y,A⊥) = I (X, I (Y,A⊥)) = I (X, Ỹ),

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:9

where Ỹ represents the information embedded in I (Y,A⊥). In short,

ERCA = ICA (X, Ỹ) = RCA(X, Ỹ).

Theorem 2 (ERCA Algorithm). The ERCA components can be derived via the RCA algorithm

(cf. Theorem 1) as follows:

X′ = RCA(X, Ỹ). (16)

Let the optimal LSE estimate of Ỹ be denoted as

ˆ̃
Y = HT X = F UX, (17)

where F ∈ �L×m and U ∈ �m×M , with m ≤ min(L,M). Similar to Equation (11), the optimal U can

be formed as

U =
[
v′1 · · · v′m

]T , (18)

where v′i denotes the i-th eigenvector associated with

RMERCA ≡ (XT X)−1 (XỸT ỸXT).

The ERCA components can be expressed as X′ = UX. Moreover, we have

FT = (U[XXT]UT)−1UXỸT . (19)

LSE estimation. The optimal estimate of Y can be derived as

Ŷ =
Equation (15)

GA + ˆ̃
Y =

Equation (17)
GA + HT X = G [A] + F [UX]. (20)

Error analysis. The estimate yields the following LSE:

LSE
(m)
ERCA

= tr (ỸỸT) −
m∑

i=1

λ′i , (21)

where λ′i denotes the i-th eigenvalue associated with RMERCA. �

Example 2 (ELSE, EPCA, and ERCA). In addition to the known matrices X and Y already given
in Example 1, now we also have

A =

[
0 1 1 0 0
0 0 0 1 0

]
.

• Extended LSE algorithm: This can be viewed as an Extended LSE (ELSE) problem, where
Y will be estimated from X and A via the classic LSE estimator. In this case, the combined
rank of X and A is 2 + 2 = 4. The ELSE solution can be derived as follows:

GT =

[
1 0
0 1

]
and HT =

[
1 1
2 1

]
.

The optimal ELSE estimation of Y is

Ŷ = GT A + HT X =

[
1 1 1 1 0
0 3 2 1 0

]
.

Finally, the ELSE error amounts to LSEELSE = 1.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:10 S. Y. Kung

• EPCA algorithm (unsupervised augmentation):

EPCA(X |A, m = 1) (i.e., total rank = 2 + m = 3)

It can be shown that (details omitted) (via unsupervised EPCA) is v1 = [−0.9910 −0.1338]T ,
leading to the following optimal (unsupervised) estimate of Y:

Ŷ =
Equation (20)

[
0.9701 1.1205 0.8795 1 0
0.1205 2.5150 2.4850 1 0

]
. (22)

This results in an LSE score of LSEEPCA = 1.5150, which falls within the range of rank-3
scores prescribed bounds by Lemma 1. (See ♦ in Figure 8 (shown later).)
• ERCA algorithm (supervised augmentation):

ERCA(X,Y |A, m = 1) (i.e., total rank = 2 + m = 3)

Via Equation (15), the output residual matrix is

G =

[
1 1

2.5 1

]
, (23)

which leads to

Ỹ =

[
1 0 0 0 1
0 0.5 −0.5 0 0

]
.

Next, we construct the RM associated with ERCA based on X and Ỹ:

RM = (XXT)−1 (XỸT ỸXT) =

[
1 0

−0.0682 0.2500

]
,

with λ′1 = 1 and v1 = [0.9959 − 0.0905]T . The optimal augmenting component to A can
thus be derived as

X′ = UX = vT
1 X = [0.9959 0 0 0 0]

Error analysis. Via Equation (19), we obtain

HT = FU =
[

1.0041 0
]

[0.9959 − 0.0905] =

[
1 −0.0909
0 0

]
. (24)

It follows that

Ŷ =
Equation (20)

GA + HT X =

[
1 1 1 1 0
0 2.5 2.5 1 0

]
.

leading to LSEERCA = 1.5.
A numerical illustration of the ERCA PNAS design process is given in Figure 7.

2.4 Lower and Upper Bounds of LSE w.r.t. Ranks

Lemma 1 (RNAS/PNAS Bound Lemma: Ranges of LSE w.r.t. Ranks). The subspace analysis

theoretically reveals the ranges of LSE w.r.t. ranks are as follows:

• After reduction of the ranks of the X-layer from M down tom, the range of LSE is as follows:

Range of LSE =

⎡⎢⎢⎢⎢⎣ tr (YYT) −
m∑

i=1

λi , tr (YYT) −
M∑

i=M+1−m

λM

⎤⎥⎥⎥⎥⎦ . (25)

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:11

Fig. 7. Numerical Illustration of PNAS design for Example 2: augmented layer via supervised ERCA.

• After augmentation of the ranks of the A-layer from M up to M +m, the range of LSE is as

follows (proof omitted):

Range of LSE =

⎡⎢⎢⎢⎢⎣ LSEA −
m∑

i=1

λ′i , LSEA −
m∑

i=M+1−m

λ′M

⎤⎥⎥⎥⎥⎦ . (26)

Let us revisit Example 2 to help illuminate the usage of Lemma 1.

Example 3. Lemma 1 can be once again verified via the following inequalities: Theoretically, we
have (here, r denotes the rank of the space involved)

EELSE (r = 4) ≤ EERCA (r = 3) ≤ EEPCA (r = 3) ≤ ELSE (r = 2) ≤ ERCA (r = 1) ≤ EPCA (r = 1), (27)

and, for this example, we have respectively

1 ≤ 1.5 ≤ 1.515 ≤ 2.5 ≤ 8.89 ≤ 17.5, (28)

EELSE = 1 ≤ EERCA = 1.5 ≤ EEPCA = 1.515 ≤ ELSE = 2.5 ≤ ERCA = 8.89 ≤ EPCA = 17.5, (29)

where the PCA’s error 17.5 is based on the best estimate of Y via rank-1 PCA of X. Finally, the
inequalities and the lower/upper bounds of LSE are illustrated in Figure 8.

3 RNAS/PNAS DESIGNS FOR CNNS

CNN represents a new generation of neural network, which adopts learnable convolution opera-
tors so as to take into account the neighborhood sensitivity inherent in 1D and 2D signal/image
processing applications [25]. Note that the matrix notations we used for the net function of a layer

in MLP can be represented as u(l) =W(l) a(l−1) , where W, a(l−1) and u(l) denote the weigh matrix,
input channels, and net values pertaining to the l-th layer. WLOG, we shall place our focus on
the first layer—that is, l = 1 (i.e., the (l − 1)-th and l-th layers respectively represent the input

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:12 S. Y. Kung

Fig. 8. Lower and upper bounds of the LSE scores with respect to different ranks. (Here, “♦” indicates
LSEEPCA.)

and first layers). In this case, the input vector is a(0) = x. Note that a basic ConvNet in CNN is
structurally similar to MLP, except that the multiplication-based operations in MLP are being
substituted by convolution-based operations in CNN. More exactly, each link now performs a
convolution operation:

u =W ∗ x, (30)

where (and from now on) we further drop the layer indices for notational convenience.

3.1 Toeplitz-Matrix Representations for the Entire Layer of CNNs

Our approach to the unification between MLP and CNN is via observing that the convolution
operators can be represented by a matrix-vector multiplication.

3.1.1 Single-Channel Toeplitz-Matrix Representations. For CNNs, the convolution in one indi-
vidual link is

ω−1∑

ν=0

w (ν)x (μ − ν), where ν = 1, . . . ,d − ω + 1, (31)

where ω denotes the length of the 1D kernel. Note that the output of the convolution can be
represented by the following matrix-vector multiplication:

y = XT w = XT
[
w (1) w (2) . . . w (ω)

]T
, (32)

where X denotes its Input Toeplitz Expanded Matrix (ITEM):

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (1) x (2) · · · x (d − ω + 1)

x (2) x (3)
... x (d − ω + 2)

...
...

...
...

x (ω) x (ω + 1) · · · x (d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(33)

Example 4 (Equivalence of Two Matrix Representations). In this example, the weight vector and
input vectors respectively are

w =
[

2 4 6
]T

(i.e., ω = 3)

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:13

and

x =
[

1 2 3 4 5 6
]T

(i.e., d = 6).

Pursuant to Equation (31), we have

x ∗w =
[

28 40 52 64
]T
.

However, the Toeplitz array is as follows:

X =
⎡⎢⎢⎢⎢⎢⎣

1 2 3 4
2 3 4 5
3 4 5 6

⎤⎥⎥⎥⎥⎥⎦ .
It follows that the link-wise response can be derived by vector-matrix multiplication:

y = XT w =
[

28 40 52 64
]T
,

which is is equivalent to what derived via convolution in Equation (31).

3.1.2 Matrix Representation for an Entire CNN Layer. Let Cin and Cout respectively denote the
number of channels into and out of the layer under our study. Collectively, for multi-channel CNN,
an expanded matrix form, such a mapping performed by a ConvNet layer at any time instant, say
t , can be collectively expressed as follows:

Y =
−→
W XIT EM

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−→w1,1
−→w1,2 · · · · · · −→w1,Cin−→w2,1
−→w2,2 · · · · · · −→w2,Cin

...
...

...
...

...
−→wCout ,1

−→wCout ,2 · · · · · · −→wCout ,Cin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...
XCin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where Y denotes the net value after the convolution and Xi denotes the ITEM matrix (cf. Equa-
tion (33)) associated with the i-channel, with i = 1, . . . ,Cin . This can be viewed as a basic system
of linear equations for the Kernel-LSE (KLSE) formulation useful for robust deconvolution.

The matrix representation facilitates some sort of unification between MLPs and CNNs. More
importantly, it leads to a new kind of component analysis instrumental for subspace analyses of
CNNs. This will be elaborated in the subsequent discussion.

3.2 Deep PCA

DPCA, also known as Convolutional-PCA (CPCA), combines three types of diversities:

• Channel diversity: Thechannel diversity (corresponding to the number of input channels
Cin ≥ 1) provides a vital ensemble statistics for various kinds of component analysis (e.g.,
PCA and RCA).
• Kernel diversity: The kernel diversity (represented by the window/kernel size κ ≥ 1) is vital

for CNN, as the diversified space may substantially expand the original input vector space.
• Batch diversity: DPCA also invokes the batch diversity parameterized by its batch size B ≥ 1.

DPCA and eigen-channels. With reference to Figure 9(a), DPCA (or eigen-channel) represents a
collective representation of multiple channels and batches of 1D or 2D feature maps, exemplified
by 1D speeches/music or 2D images/faces. Supposing that m components are to be extracted, the

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:14 S. Y. Kung

Fig. 9. (a) Eigen-channels are derived by DPCA via three varieties of diversities: kernel diversities (with
κ ≥ 1), channel diversity (with the number of input channels Cin ≥ 1), and batch diversity (with the batch
size B ≥ 1). (b) In contrast, eigen-images are derived by PCA via the channel diversity without engaging
any kernel diversity. As such, it can be perceived as a special case of eigen-channels with ω = 1.

corresponding DPCA can be expressed as follows:

yDPCA =
−→
W XST EM

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−→w1,1
−→w1,2 · · · · · · −→w1,Cin−→w2,1
−→w2,2 · · · · · · −→w2,Cin

...
...

...
...

...
−→wm,1

−→wm,2 · · · · · · −→wm,Cin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 (1) X1 (2) · · · X1 (B)
X2 (1) X2 (2) · · · X2 (B)
...

...
...

XCin
(1) XCin

(2) · · · XCin
(B)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(35)

The matrix XST EM , referred to as the Space Time Expanded Matrix (STEM) associated
with 1D or 2D feature maps, has large dimensions both vertically (space-wise) and horizontally
(time-wise):

XST EM ∈ � κCin × D′B

Note that 1D and 2D DPCAs involve different STEM-type “space-time” expansions:

• 1D STEM array representation: For the 1D case (cf. Equations (33) and (34)), we have
– The “space-dimension” is expanded from Cin to κCin , where κ = ω.
– The “time-dimension” is expanded from B to D ′B, where D ′ = d − ω + 1.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:15

Fig. 10. For RCA-DPCA, the input diversity ([DkX] | |F) is used as input data array. However, the recon-
structed space and the LSE are represented/measured by the non-diversified space spanned by X.

• 2D STEM array representation: For the 2D case (cf. [6]), we have
– The “space-dimension” is expanded from Cin to κCin , where κ = ω2.
– The “time-dimension” is expanded from B to D ′B, where D ′ = (d − ω + 1)2.

Two-stage optimization formulation for DPCA. The DPCA is derived from the STEM matrix given
in Equation (35). To expand its spanning capability, we note that DPCA effectively invokes twice
the diversification: one on the input feature maps (i.e., channels) and another on the extracted
components (which by themselves are feature maps as well). The advantage of engaging kernel
diversity is algebraically obvious because a STEM-diversified matrix always spans greater vector
space than its non-diversified counterpart.

DPCA is based on the following two-stage optimization formulation:

• Encoder or extraction phase: Extraction of DPCA.
• Decoder or reconstruction phase: Reconstruction from DPCA.

3.2.1 Encoder Phase: Formulation for Extraction of DPCA. The extraction phase of DPCA is
pictorially illustrated by Figure 10. Let the optimal estimate be denoted as Y = W[DkX], and we
seek an optimal matrix W, with W ∈ � Cin × κCin and rank(W) =m ≤ Cin , such that

min
W
| | X −W [DkX] | |F . (36)

In this case, the goal is to make Y approach X as closely as possible. However, Y is extracted
from DkX instead of X. Such an input-output asymmetry necessitates the adoption of the RCA
algorithm instead of the conventional PCA. In fact, when ambiguity is a concern, it would be
better to explicitly refer to DPCA of such kind as RCA-DPCA.

Alternatively, there may be situations that we would want the estimate, Y = W[DkX], where
W ∈ � κCin × κCin and rank(W) = m ≤ Cin , to best approach DkX instead of X. In this case, the
optimization formulation is modified to

min
W
| | DkX − W[DkX] | |F (37)

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:16 S. Y. Kung

(i.e., the input and output are identical to each other). Such a symmetry enables adoption of the
traditional PCA (instead of RCA), leading to a PCA-type algorithm named PCA-DPCA.

3.2.2 Decoder Phase: Formulation for Reconstruction from DPCA. In the reconstruction phase
(cf. Figure 10), it is vital to harness the kernel diversity associated with the extracted components:
Y. (Namely, the subspace used for reconstruction should be DkY instead of Y.) Furthermore, there
exist two plausible formulations for reconstruction, each with its own justificator:

• Reconstruction of non-diversified space X: In this case, we treat DPCA as an end product.
This corresponds to the scenario when the augmenting hidden layer (cf. Figure 6) happens
to be the final layer and no more convolutions are anticipated. This calls for a typical LSE
formulation to derive the best matrix P ∈ �Cin× κm such that

min
P
| | X − P [DkY] | |F . (38)

This type of reconstruction is pictorially illustrated by Figure 10.
• Reconstruction of diversified space DkX: In this case, the extracted DPCA is no longer treated

as an end product. Therefore, some further convolutions and diversification will be expected.
This corresponds to the scenario that the augmented hidden layer (cf. Figure 6) is positioned
in the middle and supposed to continue on with further convolution-type processing. In this
case, we will need to consider a different LSE formulation, seeking P ∈ �κCin× κm for

min
P
| | DkX − P[DkY] | |F . (39)

3.3 Performance Comparison: DPCA (i.e., RCA-DPCA) vs. PCA-DPCA

Our simulations cover two types of component extraction methods, RCA-DPCA vs. PCA-DPCA,
with comparison made over two types of reconstruction metrics1:

• Reconstruction of non-diversified space X: Note that RCA-DPCA is meant to best span X
according to Equation (36). As such, DPCA is theoretically poised to outperform its PCA-
DPCA. Empirically, our simulation confirms that RCA-DPCA holds a noticeable advantage
over its PCA-DPCA. In one experiment, we fixm = 10 and float κ = 3, . . . , 14. As depicted in
Figure 11(a), the RCA/PCA Normalized DI (NDI) ratio peaks at κ = 10, where the ratio is
≈ 2.1. We have also experimented with floating m; while fixing κ = 10, the NDI ratio peaks
atm = 2 for a high ratio of 2.5 and gradually tapers off to 1.7 whenm = 20.
• Reconstruction of diversified space DkX: It is illuminating to examine the following contrast-

ing observations:
– The PCA-DPCA is trained with diversification embedded in the target space (cf. Equa-

tion (37)). This first diversification is further advanced by yet a second diversification
pertaining to DkY in Equation (39). All together, the whole process amounts to twice
diversification, which exceeds what is really called for.

– For RCA-DPCA, however, the optimization prescribed by Equation (36) would result in
X ≈ span[Y] under the most idealistic scenario. This would in turn mean that DkX ≈
span[DkY], which matches the diversification embedded in the targeted subspace pre-
scribed by Equation (39).
Theoretically, the preceding analysis is clearly in favor of RCA-DPCA, which is also em-

pirically verified by the following simulation study. In the first experiment, we fix m = 10

1The NDI performance metric reported here represents the average statistics over 10 randomized datasets, based on 40

randomly correlated channels. Our comparison between RCA-DPCA and PCA-DPCA will be based on two types of exper-

iments, respectively, with changing diversity ω and component number m.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:17

Fig. 11. RCA-type vs. PCA-type DPCAs with the number of components fixed atm = 10, and ω ranges from
3 to 14: on reconstruction of X (a) and on reconstruction of DkX (b). (The lowest curve: NDI of PCA-DPCA;
middle curve: NDI of RCA-DPCA; highest curve: the NDI ratio: RCA-NDI/PCA-NDI.)

and float κ = 3, . . . , 14. As depicted in Figure 11(b), the RCA/PCA NDI ratio peaks at κ = 7,
where the ratio is ≈ 1.4. In the seccond experiment, with floating m and fixed κ = 10, the
NDI ratio remains roughly constant at about 1.25 to 1.3 for the entire range:m = 2 : 20.

In conclusion, RCA-DPCA holds significant superiority over PCA-DPCA for both types of targeted
reconstruction: either without diversification (i.e., X) or with diversification (i.e., DkX).

3.4 Comparison of PCA, RCA-DPCA, and PCA-DPCA

Channel diversity for eigen-images/eigenfaces. The development of eigen-images are primar-
ily built upon the channel diversity, without invoking any kernel diversity. With reference to
Figure 9(b), an eigen-image represents the collective statistics of multiple images. A set ofm princi-
pal eigen-images is the result of optimally mappingCin images tom representative images, where
Cin is the number of input channels.

Let us now focus on the i-th eigen-images (i.e., the i-th PCA component), which is represented
by

Y(i) =

Cin∑

j=1

w (i)
j Xj =

−→w(i)X, i = 1, . . . ,m,

where X ∈ �Cin × D denotes the matrix formed from the flattened vectors—each of dimension
D—collected from the Cin channels. For the extraction of eigen-images, we adopt the following
typical PCA formulation to derive an optimal matrix W, with rank(W) =m ≤ Cin , such that

min
W
| |X −WT WX | |F , where W ∈ �m × Cin . (40)

It is well known that the optimal solution for W can be formed from them principal eigenvectors
of XXT .

Comparison of PCA, RCA-type DPCA, and PCA-type DPCA. The overall comparison among these
is highlighted by the following table:

PCA RCA-DPCA PCA-DPCA

Input Kernel Diversity No Yes Yes

Output Kernel Diversity No No Yes

Computational Complexity O (C3
in) O (C3

in) O (κ3C3
in)

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:18 S. Y. Kung

Fig. 12. The original color images are shown in the center. Also displayed are the (RGB) eigen-kernels and
their respectively reconstructed images, associated with PCA-DPCA (a) and RCA-DPCA (b).

Theoretical comparison:

• Theoretically, RCA-DPCA outperforms the conventional PCA (used for extracting eigen-
faces) because PCA is more restrictive since it is only a special case of RCA-DPCA, when
κ = ω = 1. As highlighted in the preceding table, PCA and RCA-DPCA actually share the
same output target and the only difference is the use/lack of kernel diversity in their respec-
tive inputs. In this case, the more diversity, the better, as it can support greater spanning
subspace. Thus, their mutual comparison tends to favor RCA-DPCA.
• However, RCA-DPCA and PCA-DPCA share the same input kernel diversity and differ only

in the output kernel diversities. In reversal of fortune, more diversity is actually worse for
this case. Consequently, the odd is in favor of RCA-DPCA. Note that the diversified output
targeted by PCA-DPCA spreads out over a large subspace. Relatively speaking, RCA-DPCA
places its focus on a concentrated subspace to facilitate the extraction of truly relevant com-
ponents. As illustrated by Figure 12 (cf. Example 5), the image reconstructed by RCA-DPCA
is visibly superior to PCA-DPCA.

Example 5 (Comparison Between PCA-Type DPCA and RCA-Type DPCA for Color Images). The
dataset contains 64 color images, each with RGB channels. This means that the channel diversity
isCin = 3 and the batch size is B = 64. Visually, note the sharp contrast between the reconstructed
images displayed in Figure 12(a) and (b) for PCA-DPCA and RCA-DPCA, respectively. Quantita-
tively, there exists a big gap between the two average PSNRs: 16.65 dB vs. 24.63 dB respectively
for PCA-DPCA and RCA-DPCA.

Computational complexity: RCA-DPCA offers computational saving of O (κ3). PCA-DPCA de-
mands a huge computational complexity amounting to O (κ3C3

in). In contrast, the computational

complexity of RCA-DPCA can be drastically reduced to O (C3
in) since it follows the smaller of the

two matrix dimensions. Numerically, for the experiment in Example 5, RCA-DPCA is reportedly
faster than PCA-DPCA by around 26 folds.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:19

3.5 DPCA for CNN’s NAS Design

Just like PCA/EPCA are meant for structural design of MLP, DPCA/EDPCA are good for structural
design of CNNs. For the latter, the STEM representation plays a vital role in the derivation of
DPCA/EDPCA. Therefore, with the STEM representation, the subspace-based design can then be
made amenable to RNAS and PNAS deigns of CNNs. More elaborately:

• For MLPs, optimal PCA (or EPCA) weights w and components y are extracted from data
matrix X—that is,

X ⇒ (w = eigenvector, y = eigen-component).

• For CNNs, optimal DPCA (or EDPCA) kernels w and channels y are extracted from the STEM
array X—that is,

X ⇒ (w = eigen-kernel, y = eigen-channel).

Note further that DPCA is heavily dependent on the order of the convolution kernels (i.e., ω), As
such, it is sometimes necessarily denoted as DPCA(ω) for sake of clarity. Moreover, DPCA can
be computed from the m principal eigenvectors of a STEM array formed by cascading Xi (t), t =
1, . . . ,B, i = 1, . . . ,Cin over both time and channels. This is now further illuminated via a numer-
ical derivation of an exemplar STEM array in Equation (41), for DPCA(3).

Example 6 (Multi-Channel 1D CNN: Derivation of Principal Eigen-Kernels and Eigen-Channels).

This example explains how to compute a multi-channel 1D CNN. Assume that there are two input
channels with the respective 1D input waveforms being as follows:

• Input to Channel 1:

(1) For t = 1: x
(1)
1 =

[
−8 −5 −2 2 5 8

]T
.

(2) For t = 2: x
(2)
1 =

[
4 −7 3 1 −6 5

]T
.

(3) For t = 3: x
(3)
1 =

[
−4 5 −9 2 8 −1

]T
.

Via Equation (33), they respectively lead to X (1)
1 , X (2)

1 , and X (3)
1 .

• Input to Channel 2:

(1) For t = 1: x
(1)
2 =

[
1 2 3 3 2 1

]T
.

(2) For t = 2: x
(2)
2 =

[
2 −3 5 −4 3 1

]T
.

(3) For t = 3: x
(3)
2 =

[
2 0 3 0 0 −4

]T
.

Via Equation (33), they respectively lead to X (1)
2 , X (2)

2 , and X (3)
2 .

Two steps to derive DPCA are as follows:

Step 1: We construct the cascaded STEM matrix X ∈ �6×12:

X =

⎡⎢⎢⎢⎢⎣
X (1)

1 X (2)
1 X (3)

1

X (1)
2 X (2)

2 X (3)
3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 −5 −2 2 4 −7 3 1 −4 5 −9 2

−5 −2 2 5 −7 3 1 −6 5 −9 2 8

−2 2 5 8 3 1 −6 5 −9 2 8 −1

1 2 3 3 2 −3 5 −4 2 0 3 0

2 3 3 2 −3 5 −4 3 0 3 0 0

3 3 2 1 5 −4 3 1 3 0 0 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(41)

The targeted matrix Y is equal to the top two rows of X.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:20 S. Y. Kung

Step 2: The principal eigenvector of RCA(X,Y) is

u1 =
[
−0.998 −0.062 0.261 0.069 0.205 −0.118

]T
.

It follows that the eigen-kernels can be obtained from the first and second halves of u1:

(1) Channel 1: Eigen-kernel1 =
[
−0.9981 −0.0621 0.2609

]T
.

(2) Channel 2: Eigen-kernel2 =
[

0.0685 0.2049 −0.1182
]T

.

Thereafter, the three eigen-channels may be derived as follows:

y(t) =
∑

i

eigen-kerneli ∗ x
(t)
i , for t = 1, 2, and 3.

Thus, we obtain three output sequences with length 4 = d − ω + 1 (one for each time t):

(1) For t = 1: y(1) =
[

7.8972 6.0336 3.7603 0.2776
]T

.

(2) For t = 2: y(2) =
[
−3.8437 8.3531 −5.4535 0.9015

]T
.

(3) For t = 3: y(3) =
[

1.1162 −3.2951 11.1514 −2.2811
]T

.

DPCA may be extended to EDPCA and EDRCA to further facilitate PNAS design for CNNs. This
is illustrated by the following example.

Example 7 (Extension to EDPCA and EDRCA). This example explains how to compute a multi-
channel 1D CNN, assuming that ω = 3, d = 6, with the batch size B = 3.

• Compute eigen-kernels and eigen-channels for ICA (X,A⊥). Assume that there are two chan-
nels in the input layer (i.e., Cin = 2), as well as in the hidden layer (i.e., Chidden = 2). First,
via Equation (35), we can obtain the STEM array for X ∈ �6×12, where 6 = ω ×Cin = 3 × 2
and 12 = (d − ω + 1) × B = 4 × 3. By the same token, we can construct the STEM array for

A ∈ �6×12. First, we compute X̃ = Res(X|A), then, via the RCA-DPCA algorithm, we can

derive ICA (X̃) as the optimal eigen-channels to supplement the hidden layer A.
• Compute eigen-kernels and eigen-channels for ICA (X,Y,A⊥). By now, we have already com-

puted X and A. In addition, assuming that there is only one output channel, we can also

derive Y ∈ �3×12, where 3 = ω × Cout = 3 × 1 = 3. First, we compute Ỹ = Res(Y|A),
then, via the DRCA algorithm, we can derive ICA (X, Ỹ) as the optimal eigen-channels to
best augment A.

4 X-LEARNING LEARNING PARADIGM

Based on the subspace analysis, X-learning is proposed as a joint parameter and structural learning
paradigm, and it can accommodate both RNAS and PNAS in an interleaved manner. Generally
speaking, X-learning can be viewed as a sort of hybrid of RNAS and PNAS. Nevertheless, in the
RNAS mode alone, X-learning can also be successfully applied to certain datasets and baselines for
some applications [24].

4.1 X-Learning: Augment Deep BP-Parameter Learning with Structural Learning

An evolutionary iterative learning paradigm. Now we are ready to propose an (EM-style) Evolu-
tionary and Iterative X-learning, aiming at jointly optimizing EOM (in the parameter space) and

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:21

Fig. 13. Illustration of iterations in X-learning.

LOM (in the structural space). The iterations between parameter and structural spaces are pictori-
ally illustrated by Figure 13:

• Parameter updating phase: For parameter learning, we shall stay with the BP learning based
on the BP of the error gradients. More specifically, the BP parameter updating rule is as
follows:

Δw (n+1)
ji (l) = w (n)

ji (l+)Δw (n)
ji (l),∀ layers, l = 1, . . . ,L,

where, via the BP chain rule, we have

Δw (n)
ji (l) = −η ∂E

∂w (n)
ji (l)

= η δ (n)
j (l) f ′(u (n)

j (l))a (n)
i (l − 1),

where the error signal δ (n)
j (l) ≡ − ∂E

∂a
(n)
j

(l)
.

• Structural pruning phase: The local teacher permits the computation of LOM (local opti-
mization metrics), such as DI or DiLOSS, to facilitate the ranking of hidden neurons. Such
a ranking provides a theoretical footing of the structural learning stage in the X-learning
paradigm.

4.2 Backward Broadcast and Output Residual Learning

X-learning makes the dual use of input forward skips (FS) and output Back-Broadcasting (BB)

(Figure 14). It is well known that learning of deep networks is often severely hampered by the curse
of depth. To rectify this problem, the FS have been proposed to allow the input of the previous layer
to become accessible as a reference for the next layer [13]. It leads to the input residual learning

paradigm, which has been very effectively applied to allay the curse of depth.
In addition, we may also incorporate output BB so that the teacher values become directly acces-

sible to all hidden layers. This is conceptually dual to the input residual learning. This is illustrated
by Figure 14. As such, the teacher can be viewed as a local teacher to facilitate the use of local SOM

to facilitate output residual learning, previously proposed in Section 2.3.3.

Remark. Note that the residue Res(Y|A) associate with a hidden layer reflects the layer-output
correlation. The higher the residue, the lower the correlation. Such a residue will have to pass along
to the next layers for further learning. The future learning task will only have to focus on reducing
the residues associated with the subsequent layers. In this sense, it serves the same purpose of
applying input skips, and thus, hopefully, the curse of depth may be somewhat mitigated.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:22 S. Y. Kung

Fig. 14. X-learning employs both input and output residues, via the incorporation of input FS as well as
output BB.

4.3 LASSO-Type Optimization and Deleterious Neurons

To ensure convergence of any iterative learning algorithm, it is critical to stick to a vital minimal

updating principle. More specifically, it allows us to seamlessly inherit most of the existing weight
parameters and avoid having to train the entire network from scratch. The DiLOSS pruning scheme
is meant for such a strategy, as it can inherit most of the previously trained parameters. As such, it
can serve as an effective substitute of RCA for RNAS design. (Recall that RCA requires retraining
of all parameters in the layer.) Mathematically, the adoption of a SOM based on LASSO-regularized
DI will naturally reveal the critical role of DiLOSS. More importantly, such type of SOM can do well
in coercing the network to converge toward an optimal down-sized model. This point is further
elaborated in the following.

Node trimming based on LASSO-type LOM. It is known that regularization (e.g., LASSO types)
leads to better generalization, for both MLPs and CNNs. For the LASSO type, we propose the
following structural energy function for both classification and regression.

E = DIlocal − λ |a|0 (42)

For simplicity, let us momentarily assume that we remove one neuron at a time, resulting in the
following energy function (E ≡ DI) before/after contrast:

E = DI − λ‖â‖0 and E ′ = DI ′ − λ‖â′‖0 (43)

with ‖â‖0 = N and ‖â′‖0 = N − 1,where N denotes the number of (non-zero) neurons in the layer.
Let us further assume that what differentiates â′ from â is the removal of its i-th neuron. Because

DI monotonically decreases with removal of neuron(s), then ΔDIi = DI ′ −DI ≤ 0. In other words,

ΔDI = ΔE = λ − |ΔDI |i . (44)

Note that the LASSO-based metric E in Equation (43) will make a net gain by removing the i-th
neuron if and only if

|ΔDI |i = DiLOSSi < λ. (45)

Therefore, Equation (45) is formally the necessary and sufficient condition that the i-th neuron be
labeled as a deleterious neuron.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:23

Fig. 15. Illustrations related to Example 8 on applying DiLOSS to RNAS. (a) Because DiLOSS2 < DiLOSS1,
we should drop the second input, resulting in a rank-1 input space. (b) The two ♦’s, in the rank-1 range,
vindicate the choice of dropping the second input instead of the first input.

In each iteration, upon the completion of its parameter updating phase, we shall commence right
away its structural updating phase: those neurons designated as deleterious neurons will now be
dropped/pruned. The pruning process will be performed on the carefully selected hidden layers in
the network, each layer with its own empirically determined threshold λ.

Example 8 (RNAS via DiLOSS-Based Pruning). Continuing on with Example 1, with the present
attention focused on how to apply DiLOSS to drop one of two inputs in the X-layer.

Prune Second Neuron: Since DiLOSS2 = DiLOSStr imthesecondneuron = 1 is smaller than
DiLOSStr imthef ir stneuron = DiLOSS1 = 9.7, the best strategy is to drop the second neuron, leading
to

X′ =
[

0 1.1 0 0 0
]

and the mapping matrix is HT =
[

0.909
2.727

]
. with the best estimate obtained as Ŷ = HT X′ which in

turn results in the following:

LSEtr im 2nd node = LSELSE + DiLOSS2 = 8 + 1 = 9.

However, for comparison, by dropping the first neuron, we have

LSEtr im 1st node = LSELSE + DiLOSS1 = 8 + 9.7 = 17.7.

Therefore, compared with Figure 15, we have

EELSE (m′ = 2) ≤ EERCA (= 1.146) ≤ Etr im 2nd input of A (= 9)

≤ Etr im 1st input of A (= 17.7 ≤ 18) ≤ 18.11.

Thus, this example once again vindicates the range covered by rank-1 estimates, as prescribed
by Lemma 1.

4.4 Component Analysis via Data-Independent Selection Criterion

Let us now study a case of locally supervised structural learning for RNAS. Now the (lo-
cal) teacher’s role will be taken over by A = WX, replacing the traditional teacher: Y. For

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:24 S. Y. Kung

computational robustness, it is a common practice to incorporate another hyperparameter ρ ′ into
an information-theoretical DI [21] (i.e., output normalized), resulting in

DI = tr
[(

U[XXT + ρI]UT
)−1 (

UXAT [AAT + ρ ′I]−1AXT UT
)]
, (46)

where U is a selection matrix—that is, each column of U will be all zeros except one single “1” entry,
serving as the selection indicator. In this case, UUT = Im , assuming no repetitive selection.

Data-Independent Selection Criterion DIdi . To become data independent, we want to obviate DI’s
dependency on the actual input data matrix X. A typical way out is by simply assuming that X is
white (i.e., X XT = I). As shown in the following, although the derivation of DI initially engages
X and A, it will ultimately become dependent only on W:

• Note first that U[XXT + ρI]UT = (1 + ρ)I, and thus this term can be inconsequentially
dropped.
• Note further that XAT = XXT WT =WT and AAT =WX XT WT =WWT .

By making these two critical observations, we can arrive at a simplified metric for channel
selection:

DIdi ≡ tr
(
UWT [WWT + ρ ′I]−1WUT

)
. (47)

To highlight its data independency, a subscript di is purposefully inserted in the denotation: DIdi .
This data-independent metric leads to an expedient XNAS-type structural learning strategy known
as CHEX [17].

4.5 XNAS: Neural Architecture Search

Based on the popular reinforcement learning [32], many NAS designs have been proposed [18, 34,
47]. A prominent example is Google’s NASNet [47], which tests and evaluates neural architectures
across a search space with a prescribed search strategy and performance estimate. It adopts a
policy gradient to optimally update the controller (RNN), which in turn generates the key network
hyperparameters. NASNet has more comprehensive architecture space, thus the training cost is
often highly prohibitive. First, the policy gradient involves a highly time-consuming search of all
plausible architecture. Moreover, NASNet requires training from scratch for every architecture
specification.

To tackle this concern, there are numerous computationally economical approaches being pro-
posed. One is via a “differentiable” NAS, exemplified by DARTs [28]. It was designed to alleviate
the complexity caused by the huge search space. DARTs adopts a differentiable softmax to provide
a probability-like assessment the relative importance among competing substructures. This in turn
facilitates an efficient gradient-descent search of suitable architectures.

Although the softmax adopted by DARTs is deemed efficient for local ranking/selection, among
various substructures, it is not computationally amenable or easily expandable to facilitate highly
global search/selection. An alternative approach that is highly amenable to such global search is
exemplified by the so-called Once-For-All (OFA) net [4, 12]. By OFA, the network can be gradually
trimmed pursuant to multiple hyperparameters (e.g., width, depth, kernel, size, and resolution).
To assure an adequate search space, OFA starts initially with a “magnified” backbone, known as a
supernet. In OFA, not only does it decouple the training and search phases but also its selection
rule depends on the network weights instead of the training dataset. Such computational efficiency
allows OFA to cope well with large supernets. Consequently, OFA enjoys an improvement of more
than two orders of magnitude speedup over NASNet [4].

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:25

Fig. 16. A high-level XNAS flowchart.

Characterization of XNAS. To further expedite the training process, XNAS starts with a more
restrictive architecture space. Indeed, XNAS is (much) faster than NASNet by a factor of two or
more orders of magnitude. It is by and large competitive with OFA—each has its own merits. In an
ImageNet-based NAS design example, both OFA and a data-independent XNAS (i.e., CHEX [17])
deliver the same FLOPS (=0.9G) and compatible top-1 accuracy: 76.3% vs. 76.8%. However, they
differ significantly in both size and training time. For the former, OFA and XNAS require 14.5M and
7.2M parameters, respectively. For the latter, running on Nvidia V100, OFA and XNAS consume
1,200 vs. 260 GPU hours, respectively [17]. However, it is important to note that the preceding
comparison bears no statistical significance, as any comparison results are highly dependent on the
specific dataset, backbone, and targeted benchmarks. As a partial remedy, let us briefly highlight
their respective merits in search efficiencies as follows. On one hand, OFA’s search strategy is input-
data independent, a vital advantage in terms of training costs. On the other hand, the subspace
analysis in XNAS leads to DI-based SOM, making feasible closed-form formulation for expedient
structural learning. There are several additional points on XNAS worth remarking:

• To generate the search space, an agent is adopted to select the best model of the candidates,
selected according to their DI or DiLOSS scores. Moreover, our subspace analyses enable
closed-form structural search strategy. Each candidate is evaluated by the validation dataset,
a held-out dataset that is being used as a “fair environment” for model assessment.
• In XNAS, we shall start with a certain preferred baseline model and then gradually adjust it

into a new network. For example, we would start with slimmer architectures (e.g., MobileNet
for edge devices) so as to meet the stringent power/latency requirements.
• For some applications, we may resort to some kinds of hybrid of RNAS and PNAS, in an

interleaved manner, so as to harness the best of the two worlds [17, 24].

As depicted in Figure 16, XNAS comprises two training subsystems that are applied in an inter-
leaved fashion:

(1) Parameter learning subsystem: For parameter learning, we shall just rely on the traditional
(externally supervised) BP learning [33, 37, 42].

(2) Structural learning subsystem: It contains three phases:
– Search space controller : Unlike reinforcement learning, in XNAS, we first generate a pool

of candidates (i.e., children) for RNAS/PNAS. To cope with the multiplicity of children,
XNAS adopts a search criteria based on a designated SOM controlled by hyperparameters
on FLOPS, storage, power, latency, and so forth.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:26 S. Y. Kung

– Evaluation phase (reward assessment): Evaluation or reward assessment of the candidates
is based on the generalization performances (e.g., accuracy or PSNR/SSIM) of the candi-
dates on the validation data. From reinforced learning’s perspective, the validation dataset,
being disjoint with the training dataset engaged in BP learning, is poised to furnish a fair
environment for evaluation.

– Agent and action: The major action (performed by the agent) is to select the winner(s)
according to the reward assessment.

5 APPLICATIONS OF X-LEARNING

X-learning can be applied to numerous applications in both the classification and regression sce-
narios. X-learning starts with a baseline net and end up with a structurally reduced net, which will
be termed X-net (with a prefix “X-”) so as to differentiate it from its original baseline model.

The success of X-learning critically depends on the how do we choose the baseline models. Here,
we aim at two major categories of applications: one high-performance for and the other for low-
power. The former has for long time been the predominant focus of research and development. The
latter has recently received a great deal of attention, and it prompts design of hardware-efficient
CNNs under the power and latency constraints critical for edge/mobile devices [40, 43–45]. This
is summarized by the following table:

5.1 Experimental Results of X-Learning for Classification

For a discussion on applications of X-learning to a broad spectrum of datasets with different base-
lines/backbones, see the work of Kung and Hou [23] and Kung et al. [24]. Here we shall focus
on reporting the experimental results on applying X-learning to the ImageNet datasets, based on
two types of baseline models: ResNet and MobileNet [13, 38]. Let us now briefly highlight the
experimental setup of such experiments using ResNet as the backbone:

• Dataset characterization:

– ImageNet dataset: 1.28M images each with 224 × 224 image resolution

– Supervising teacher : 1,000 class labels

– Validation dataset: 5,000 images

– Preprocessing: Normalization

– Data augmentation: Translation, random resized crop, random horizontal flip

• Backbone architecture:

– Number of layers: 50

– Kernel Size: 7 × 7, 3 × 3, 1 × 1

• Learning characterization:

– Structural fine-tuning performed once per epoch

– Each epoch comprises 120 batches each with (batch) size 256

• Performance metrics: Top-1 classification accuracy

• Design software: PyTorch-based software system

As shown in (the last row of) Table 1, X-ResNet50 can achieve 75.60% top-1 accuracy, a 0.5% gain
over the baseline, while accelerating the inference speed by 2x, which outperforms the current
state-of-the-art method [31] by around 1% in accuracy with similar speeds.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:27

Table 1. Comparison: Three X-ResNet50
Models Using Different FLOPS

Model Top-1 Acc. FLOPS Param.

Baseline 75.15% 4.09B 25.60M
X-ResNet50 76.34% 2.63B 17.00M

SFP [51] 74.61% 2.42B —
X-ResNet50 76.10% 2.31B 16.72M
Taylor [31] 74.60% 2.00B —
X-ResNet50 75.60% 2.00B 15.60M

Table 2. Comparison with Winner of 2018
LPRIC on ImageNet

Model Top-1 Acc. FLOPS Param.

MobileNetV2 71.80% 300M 3.47M
WM [38] 69.80% 210M 2.61M

X-MobileNetV2 70.80% 210M 2.33M
LPIRC 2018 65.20% 186M -
ThiNet [50] 65.44% 170M 2.57M
DCP [46] 65.91& 170M 2.57M

X-MobileNet 68.20% 170M 1.90M

Low-power models: X-learning on MobileNet. As shown in Table 2, X-learning reduces the
baseline (MobileNetV1&V2) to yield faster latency, and smaller hardware, making it amenable
to edge devices. More specifically, at 30-ms/image real-time speed (required by LPIRC 2019), X-
MobileNetV1 delivers 68.2% top-1 accuracy on ImageNet, a 3% improvement compared with 65.2%
reported by the winner of 2018 LPIRC (MobileNet).

5.2 Regression Scenarios: X-Learning for Super-Resolution Imaging Systems

X-learning can be effectively applied to most regression-type applications, embracing, for exam-
ple, restoration and enhancement problems. A typical imaging problem is as follows: given a
(low-quality) input image (poor quality in resolution and/or color rendition, etc.), find a nonlin-
ear mapping to best transform the input image into a desired output image. We shall highlight
some successful applications of X-learning to enhance low-resolution images and transform them
into Super-Resolution (SR) images. Our main focus will be placed on the application of fidelity-
based SR imaging systems, which tackles the problem of recovering a high-resolution image from
a single low-resolution image [1–3, 8].

Most state-of-the-art methods learn the optimal nonlinear mapping functions from multiple
low- and high-resolution exemplar pairs. This approach is closely related to recent example-based
methods based on deep CNNs. In fact, the sparse coding based SR methods can be viewed as a deep
CNN [2, 8]. The deep learning method can be formulated for generic image SR, where the teacher
will be set as the desired high-resolution images. The same techniques can be naturally carried
over to other types of applications with their own training samples, such as enhancing dim-light
images to a brighter image, where the teacher will be set as the desired brighter images.

X-learning approach to low-power SR imaging systems. Image SR and image enhancement have
numerous practical applications [2, 8, 26]. In this problem, the original images are low-quality
images, and the objective is to restore the low-quality images to a high-fidelity ones. The exper-
imental setup for applying X-learning to the DIV2K dataset using SRGAN as the backbone is as
follows:

• Dataset characterization:

– DIV2K dataset: 800 2Kx2K images

– Input: 500 × 500 low-resolution images

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:28 S. Y. Kung

Table 3. Comparison with Winner of PIRM Challenge
(FEQEnet)

Dataset SRCNN VDSR FEQE-P Ours

Set5 30.47/0.8610 31.53/0.8840 31.53/0.8824 31.84/0.889
Set14 27.57/0.7528 28.42/0.7830 28.21/0.7714 28.38/0.775

BSD100 26.89/0.7108 27.29/0.7262 27.32/0.7273 27.40/0.730
Urban100 24.51/0.7232 25.18/0.7534 25.32/0.7583 25.51/0.765

Table 4. Comparison with Winner of
PIRM Challenge (FEQEnet)

Model Param. FLOPS GPU Latency (seconds)

SRCNN 69K 128B 0.04
VDSR 668K 1231B 0.16

FEQE-P 96K 11B 0.01
Ours 92.6K 9.6B 0.004

– Supervising teacher (ground truth): 2Kx2K high-resolution images

– Validation dataset: 100 2Kx2K images

• Backbone architecture: SRGAN-37 comprises 34 ResNet layers and three up-scaling layers

– Kernel size: 7 × 7, 3 × 3, 1 × 1

• Learning characterization:

– Structural fine-tuning performed once per epoch

– Each epoch comprises 50 batches each with (batch) size 16

• Performance metrics: PSNR/SSIM

• Design software: PyTorch-based software system

Our baseline model is SRGAN, a predominant CNN-based model for SR imaging systems based
on ResNet. Note that SRGAN’s backbone model is ResNet, which is largely X-learning friendly,
with the exception that SRGAN employs the the so-called subpixel layers to up-scale the LR images
to the final HR output. This scheme is by itself unsuitable for X-learning. As a remedy, we replace
the subpixel layers by the nearest-neighbor interpolation with learnable convolution filters for
up-scaling. Thereafter, these upsampling layers become amenable to X-learning. X-SRGAN was
applied to SR image enhancement with DIV2K as the training dataset. The learned SR imaging
models are then applied to several test datasets, including Set5, Set14, BSD100, and Urban100.

Tables 3 and 4 summarize the performance and complexity comparison between SRCNN, VSDR,
FEQE-P, and X-SRGAN. As compared with SRGAN, X-SRGAN delivers a 16× saving in model
size and 14x in FLOPS while impairing a negligible loss of –0.2 dB in PSNR. As compared with
SRCNN, X-SRGAN trails SRCNN in storage or number of parameters (92.6K vs. 69K). However,
it outperforms SRCNN in FLOPS (9.6B vs. 128B) and GPU-latency FLOPS (0.4 vs. 40 ms). More
importantly, it far outperforms SRCNN in PSNR (31.84 vs. 30.47 ms) and SSIM (0.889 vs. 0.861).
Finally, X-SRGAN outperforms FEQEnet, the winner of the 2018 PIRM Challenge. More precisely,
X-SRGAN delivers an advantage of shorter latency by more than two folds while holding a 0.3 dB
net gain over FEQEnet in PSNR.

X-learning for high-performance SR imaging systems. We also make a comparison between the
X-pruning based network compression and a network binarization method for the SR system [30],
where the weights of the original CNN are converted to [–1, +1] to save model size and computation
complexity. For baseline CNN, we use LapSRN and SRResNet. In our experiments, we observed that
X-SRGAN outperformed SR binarization by a large margin in terms of PSNR/SSIM performance
metrics. Moreover, X-SRGAN achieved a higher reduction factor of model size, FLOPS, and latency.
(For more details, see the work of Kung and Hou [23].)

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:29

Fig. 17. The reconstructed “PPT2004” images via SRGAN (a) and JEX-SRGAN (b).

5.3 Other Application Examples: Denoising, Light Enhancing, and Image Compression

X-learning has also demonstrated great success in some other applications, including a denoising
tool for noisy images) and light enhancement for night shots, among others. (For more discussion,
see the work of Kung and Hou [23].) In addition, by incorporating the conventional JPEG technique
into the overall CNN network, X-learning can be readily applied to further reduce the model size
and yet enhance its performance. This leads to the development of a JPEG-Embedded X-SRGAN

(JEX-SRGAN) for image compression [16]. JEX-SRGAN comprises two subnetworks: (1) a prepro-
cessing network (JCNN) to apply JPEG to compress the input images so as to harness the forte of
traditional compression tools and then (2) a reconstructing SRGAN or another SR-imaging CNN.
Thereafter, X-learning is applied to prune the CNN model to attain an optimal trade-off between
the compression ratio and PSNR of reconstructed images. The preliminary results of JEX-SRGAN
appears to be rather impressive. For the Set14 dataset, as an example, the 16x-compressed SRGAN
yields PSNR/SSIM of 28.53/0.78 while needing 1.5M network parameters. In comparison, the 20x-
compressed X-JPEGAN delivers a much higher PSNR/SSIM (34.68/0.92) while only using 0.11M
parameters. Figure 17 further places the reconstructed images by the SRGAN and JEX-SRGAN,
side by side, with the characters “McGraw-Hill” being highlighted. It is evident that JEX-SRGAN
(albeit being compressed more) reconstructs a sharper image (Figure 17) [16].

6 CONCLUSION AND FUTURE DIRECTION

This article proposes an XNAS design strategy to automatically train the network’s parameters and
structure. It advocates the use of subspace analysis as the theoretical footing for both PNAS and
RNAS strategies. We have further extended the subspace analysis from MLPs to CNNs. Moreover,
an X-learning paradigm is developed, which has demonstrated a broad spectrum of classification-
type and regression-type applications. Moreover, it is conceivable that a proper hybrid of RNAS
and PNAS may bring about further performance improvements, as exemplified by Hou et al. [17].
In addition to the reported success by applying XNAS to network compression, image enhance-
ment, and base on the XNAS design strategy, we plan to further venture into some challenging
research fronts: including 3D reconstruction, meta-learning (with few shots), bio-authentication,
and many domain-driven applications. As well, the theoretical footing based on our subspace anal-
ysis distinguishes XNAS apart from most of the other NAS methods. Therefore, a proper merger
of XNAS with other compatible platforms stands a good chance to jointly crack the current per-
formance ceilings.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:30 S. Y. Kung

ACKNOWLEDGMENTS

The author wishes to thank Zejiang Hou and Yuchen Liu of Princeton University for their invalu-
able contribution to the research on X-learning and development of the XNAS design software
system.

REFERENCES

[1] Eirikur Agustsson and Radu Timofte. 2017. NTIRE 2017 challenge on single image super-resolution: Dataset and

study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 126–135.

[2] Michal Aharon, Michael Elad, and Alfred Bruckstein. 2006. K-SVD: An algorithm for designing overcomplete dictio-

naries for sparse representation. IEEE Transactions on Signal Processing 54, 11 (2006), 4311–4322.

[3] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. 2012. Low-complexity single-

image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 2012 British Machine Vision

Conference.

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-for-all: Train one network and

specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019).

[5] Han Cai, Ligeng Zhu, and Song Han. 2018. ProxylessNAS: Direct neural architecture search on target task and

hardware. arXiv preprint arXiv:1812.00332 (2018).

[6] Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma. 2015. PCANet: A simple deep learning

baseline for image classification? IEEE Transactions on Image Processing 24, 12 (2015), 5017–5032.

[7] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan, et al. 2019. Cham-

Net: Towards efficient network design through platform-aware model adaptation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition.

[8] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image super-resolution using deep convolutional

networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 2 (2015), 295–307.

[9] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. 2018. DPP-Net: Device-aware progres-

sive search for Pareto-optimal neural architectures. In Proceedings of the European Conference on Computer Vision

(ECCV’18). 517–531.

[10] Ronald A. Fisher. 1938. The statistical utilization of multiple measurements. Annals of Eugenics 8 (1938), 376–386.

[11] G. H. Golub and C. F. Van Loan. 1996. Matrix Computations (3rd ed.). Johns Hopkins University Press, Baltimore, MD.

[12] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural

network. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15). 1135–

1143.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[14] Zejiang Hou and Sun-Yuan Kung. 2021. A discriminant information approach to deep neural network pruning. In

Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR’21). IEEE, Los Alamitos, CA, 9553–

9560.

[15] Zejiang Hou and Sun-Yuan Kung. 2022. Multi-dimensional dynamic model compression for efficient image super-

resolution. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.

[16] Zejiang Hou and S. Y. Kung. 2019. Internal report. Princeton University (Sept. 2019).

[17] Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong Jin, Yuan Xie, and

Sun-Yuan Kung. 2022. CHEX: CHannel exploration for CNN model compression. arXiv preprint arXiv:2203.15794

(2022).

[18] Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh Chang, Jia-Yu Pan,

Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. 2018. MONAS: Multi-objective neural architecture search using rein-

forcement learning. arXiv preprint arXiv:1806.10332 (2018).

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. 2017. Densely connected convolutional

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[20] Sun Yuan Kung. 2014. Kernel Methods and Machine Learning. Cambridge University Press.

[21] Sun-Yuan Kung. 2017. Compressive privacy: From information/estimation theory to machine learning [lecture notes].

IEEE Signal Processing Magazine 34, 1 (2017), 94–103, 112.

[22] Sun-Yuan Kung. 2017. Discriminant component analysis for privacy protection and visualization of big data. Multi-

media Tools and Applications 76, 3 (2017), 3999–4034.

[23] Sun-Yuan Kung and Zejiang Hou. 2020. Augment deep BP-parameter learning with local XAI-structural learning.

Communications in Information and Systems 20, 3 (2020), 319–352.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

XNAS: A Regressive/Progressive NAS for Deep Learning 57:31

[24] Sun-Yuan Kung, Zejiang Hou, and Yuchen Liu. 2019. Methodical design and trimming of deep learning networks:

Enhancing external BP learning with internal omnipresent-supervision training paradigm. In Proceedings of the 2019

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’19). IEEE, Los Alamitos, CA.

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document

recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[26] Juncheng Li, Faming Fang, Kangfu Mei, and Guixu Zhang. 2018. Multi-scale residual network for image super-

resolution. In Proceedings of the European Conference on Computer Vision (ECCV’18).

[27] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. 2018. Progressive neural architecture search. In Proceedings of the European Conference

on Computer Vision (ECCV’18).

[28] H. Liu, K. Simonyan, and Y. Yang. 2018. DARTS: Differentiable architecture search. arXiv preprint arXiv:1806.09055

(2018).

[29] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. 2017. Learning efficient

convolutional networks through network slimming. In Proceedings of the IEEE International Conference on Computer

Vision. 2736–2744.

[30] Yinglan Ma, Hongyu Xiong, Zhe Hu, and Lizhuang Ma. 2019. Efficient super resolution using binarized neural net-

work. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 694–703.

[31] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. 2019. Importance estimation for neural

network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[32] P. Read Montague. 1999. Reinforcement learning: An introduction, by Sutton, R. S. and Barto, A. G. Trends in Cognitive

Sciences 3, 9 (1999), 360.

[33] David B. Parker. 1985. Learning Logic. Technical Report TR-47. Center of Computational Research in Economics and

Management Science, Massachusetts Institute of Technology, Cambridge, MA.

[34] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient neural architecture search via param-

eters sharing. In Proceedings of the International Conference on Machine Learning.

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional networks for biomedical image

segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted

Intervention.

[36] Frank Rosenblatt. 1958. The perceptron: A probabilistic model for information storage and organization in the brain.

Psychological Review 65, 6 (1958), 386–408.

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1985. Learning Internal Representations by Error

Propagation. Technical Report. La Jolla Institute for Cognitive Science, University of California, San Diego.

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2: In-

verted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition. 4510–4520.

[39] Claude Elwood Shannon. 1948. A mathematical theory of communication. Bell System Tchnical Journal 27 (1948),

379–423, 623–656.

[40] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V. Le. 2019.

MnasNet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition.

[41] Andrew R. Webb and David Lowe. 1990. The optimised internal representation of multilayer classifier networks

performs nonlinear discriminant analysis. Neural Networks 3, 4 (1990), 367–375.

[42] Paul Werbos. 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph. D. Disser-

tation, Harvard University.

[43] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda,

Yangqing Jia, and Kurt Keutzer. 2019. FBNet: Hardware-aware efficient convnet design via differentiable neural ar-

chitecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. 2018. Slimmable neural networks. arXiv preprint

arXiv:1812.08928 (2018).

[45] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An extremely efficient convolutional

neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[46] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui

Zhu. 2018. Discrimination-aware channel pruning for deep neural networks. In Proceedings of the 32nd International

Conference on Advances in Neural Information Processing Systems. 883–894.

[47] Barret Zoph and Quoc V. Le. 2017. Neural architecture search with reinforcement learning. In Proceedings of the 5th

International Conference on Learning Representations (ICLR’17).

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

57:32 S. Y. Kung

[48] K. Pearson. 1901. On lines and planes of closest fit to systems of points is space. Philosophical Magazine Series 6, 2

(1901), 2:559–572.

[49] H. Hotelling. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational

Psychology 24 (1933), 498–520.

[50] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. Thinet: A filter level pruning method for deep neural network

compression. In Proceedings of the IEEE International Conference on Computer Vision. 5058–5066.

[51] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. 2018. Soft filter pruning for accelerating deep

convolutional neural networks. arXiv preprint arXiv:1808.06866.

Received 16 November 2021; revised 8 April 2022; accepted 24 May 2022

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 57. Publication date: November 2022.

